(12) United States Patent
Clift et al.

US006633970B1

US 6,633,970 Bl
Oct. 14, 2003

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(21)
(22)

(51)
(52)
(58)

(56)

PROCESSOR WITH REGISTERS STORING
COMMITTED/SPECULATIVE DATA AND A
RAT STATE HISTORY RECOVERY

MECHANISM WITH RETIRE POINTER

Inventors: David W. CIlift, Hillsboro, OR (US);
Darrell D. Boggs, Aloha, OR (US);
David J. Sager, Portland, OR (US)

Assignee: Intel Corporation, Santa Clara, CA
(US)
Notice: Subject to any disclaimer, the term of this
patent 15 extended or adjusted under 35
U.S.C. 154(b) by O days.
Appl. No.: 09/472,840
Filed: Dec. 28, 1999
Int. CL7 .o, GO6k 9/38
US.CL . 712/217; 712/23; 712/218
Field of Search 712/23, 217, 218
Retferences Cited
U.S. PATENT DOCUMENTS
4,901,233 A * 2/1990 Liptay ...c.ccoeeeerenennnen, 712/218
5,197,132 A 3/1993 Steely, Jr. et al. 712/217
5,452,426 A * 9/1995 Papworth et al. 7127217
5,471,633 A 11/1995 Colwell et al. 12/23
5,499 352 A 3/1996 Clift et al. 712/217
5,519,841 A 5/1996 Sager et al. 7117202
5613132 A 3/1997 Clift et al. .veeveeevnn.... 712/217
5,675,759 A * 10/1997 Shebanow et al. 712/217
5,727,176 A 3/1998 Clift et al. 712/217

104

Y

INSTR.

DECODER

106

uops | Trace | uops
CACHE

L1 INSTR. AND DATA CACHE [~—102
108
PRIMARY
ARRAY

$

12

122

120

c_1
SHADOW
ARRAY

AdLN3
34 410

HISTORY
BUFFER

ALLOCATOR

5,758,112 A * 5/1998 Yeager et al. 712/217
5,765,016 A * 6/1998 Walkercocvvvvveninnnnn. 712/23
5944810 A * §/1999 Cherabuddi 712/23
5,974,524 A * 10/1999 Cheong et al. 712/23

* cited by examiner

Primary Fxaminer—Kenneth S. Kim
(57) ABSTRACT

A mechanism 1s provided for allowing a processor to recover
from a failure of a predicted path of instructions (e.g., from
a mispredicted branch or other event). The mechanism
includes a plurality of physical registers, each physical
register can store either architectural data or speculative
data. The apparatus also includes a primary array to store a
mapping from logical registers to physical registers, the
primary array storing a speculative state of the processor.
The apparatus also includes a buifer coupled to the primary
array to store mformation identifying which physical regis-
ters store architectural data and which physical registers
store speculative data. According to another embodiment, a
history buffer 1s coupled to the secondary array and stores
historical physical register to logical register mappings
performed for each of a plurality of instructions part of a
predicted path. The secondary array i1s movable to a par-
ticular speculative state based on the mappings stored 1n the
history buffer, such as to a location where a path failure may
occur. The secondary array can then be copied to the primary
array when a failure 1s detected 1n a predicted path of
instructions near where the secondary array 1s located to
allow the processor to recover from the predicted path
failure.

44 Claims, 8 Drawing Sheets

uops
FROM
RACE
CACHE)
139
119
17 SCHED RF
ULER 138
DATA
CACHE
132 134 136
130

ROB

—
e
~
2 g0y
o 0E)
o
\&
n% HOLVYOOTW 0Z1
ogt el 281 TR
AHOLSIH
3HOV 4 001
. Y1vQ
”m L. > B >- mw
g A m w c [R5
=5 el 1) = T Q.
= SLINN
—
H AVHHY JHOVD mwQOOmo
S AHVIIHd sdon | 3OVHL [gdon| "HLSNI
61 ol 1vd 901 p0l.
(FHOVD
30VHL 801
WOHS) . ¢0l~ JHOVO Y.LVA ANV "HLSNI H

sdon

U.S. Patent

vidd
AL

_ J3X3 404 A31vD0TV SI 844

/44 944 SI AHLINT 44 3344 LX3IN
e
€4y
¢dd
144

US 6,633,970 B1

Sheet 2 of 8

=
¢ V.LV(Q 4
m.., ¢ Y1V(d n
. V.Lvd : (3 0L8Y1YQ 3LiHM)
~ 0Y1vQ 04Y y ddon
AdLN3 . 43151934
glg—VAVQ 34 ¥02— 0L H3INIOd VOIDO0T
9€T (d4) 3114 4318193 N 0L Naﬁ@#ﬁmm«‘ AHVYNIYG 1vH Nmom

U.S. Patent

US 6,633,970 B1

Sheet 3 of 8

Oct. 14, 2003

U.S. Patent

s [5) [T T T]| %o
ok
Aanannnnnnnn
mm_m&/o_m
o | [[[[[[|swen,
bLE
@ 2| [ofefsfe]ulu]ala]n]a]a
omm_mn_/ﬂm
aninnnnnnonon. S
¢c0¢ J+H el 0LE
H] m._.n_ ™ H344Ng
OTL Avuy 708 AHOLSH
AHdVNIHd LVH M .U— m

U.S. Patent Oct. 14, 2003 Sheet 4 of 8 US 6,633,970 B1

FIG. 4
4101 RAT SHADOW ARRAY 112
L OGICAL POINTERTO _—412
REGISTER RF ENTRY
A

m O O

US 6,633,970 B1

Sheet 5 of 8

Oct. 14, 2003

U.S. Patent

: v
02 z2e { v
afs HEEEREEEEE Y
al v HAnnnnnnms m_..m_m
oJ 175 S 7 2 N N I
gl ¢ EEEEEEEEEE o,m.:u
noNnssidoLinsade | 9| A [oLelx[x|x[x|x|x]x]xN37
cle OLL 0LS - _% NN\—\« don
; _,
N TR
v 7N c = 918
3 :EiN o] €- A N N N A -
g 1 12 e T A R I (Y IS TS TS KT Y
3 0 ONONINSSI 0 LNS38 € v | 9- HHHHHH.HH.Z e
8 6N e~ ao:
a an 0L} ¥eS _m ! NN_
5 AN
Y o al v -—-—...-.H.ﬂm e
g &n ol €J.Pm
2 0 nowanoouasay 8] %ﬂ.ﬂﬁ!iﬂu.'.o 218
v oon AVHRYNOHAMOA (b | L el X [x [X [x X [X [X [X [XX [N+
202”071 AVHYY 22l u34dng
NY3ELS don~_ A"YWIdd E_..._m 914 AHOLSIH

US 6,633,970 B1

Sheet 6 of 8

Oct. 14, 2003

U.S. Patent

. v
e HEEEREREREN;
afr ololofofojofs|t|{ 4|t
of6] [a]vlelalv]o|violala]
sin-oin 818 g [erjst] L eferfor| 2] v[1L]o
ONINSSI 40 LNS3H (€ ¥ 9 blels] 6 2h[EL| PH|SH|N
0¢ 069 [| (fay o]t BRI PH ~
0Ll - 4\
| 3(8 Il_llllllll }
v i o nnnnnnnnnn
3 BN olet| Jveofv|\3lalv|alv|olala
g 2 o-on 89 [Lle¥s el ee]orl [v]ulo
3 :oin ONBILEY L0 LTINS @ V|2 ol cs|s|6|o]et]a]er]v]SH]N
m mww w_w,q NN\W
D L)
v on =] I3 S I N Y O S W
d alvh ofoJofolofojofo]o0f0 ﬁa
g ofer] [vlol3]e[v[alvlo[a[e i
2 60 enwonowHien 8|S .ﬂﬂﬂﬂﬁ..ﬂ.o e
v ‘on ONINSSIA0LINS3IH (b v (el 9 (z|s|eor[r]ar]et]r]st e
¢0d On Lh gn €n $h Gn 9on /n @n ¢n ao:
Wv3dLS don 0L AVHHY 2ol H3d4ng
-80S AHVNIHG LvH Q "E)|4 ~ AHOLSH

US 6,633,970 B1

Sheet 7 of 8

Oct. 14, 2003

U.S. Patent

SdON ang

M3N OL diNS LSNIW SHILNIOJ H ONY S
NSHL "HONVHE HONOHHL dN SdON NI3WH
JHIL3H AINO NVD “3SYO SIHL NI ‘JHILAY
p/00TV 2 ‘3HILIY ONY 31¥D0TIV OL

JNNILNOD ‘AdOD HEV1d HL HILLY

=

a :9in
w el 'S4ON M3N HOA
3 ey HIINIOD DOTIV LY SIONVHO
g =10 HOT00 dWNF "L¥H OL MOQVHS
v ;11 WOHH AdOO HSYTd 'HONvHE
ave 1V S| MOGYHS 3DNIS

” (‘43040 YIHLIT NI

2n N3ddvH 0IN0D) 'S10I034d
'n -“SIN HONYHE HONvHE LX3N
-0 0L SIONVAQY MOAVHS

<COUO<CM<OO0
Ty,
-9

do
WyY3H1S doN ~_ c0c

sdon OCt
ayg HS$— v~
STsTefoTol st [o]o]r
HERERL .
vl a |0 HH-—HHHEEH-W_;W”M
| o [et] [3lvjslalv]|olalalals -
5| 8 [S EIE-—HEIEHEO@;
€ 19|V [E HHEEEHEHEEZJ
AVHEY AVEHY Ofn 1R ZIn EIn $I0 GLR 94N Z|D donO1€
Bocq_._w >m<s__m_n_ - ...mwm ,.wwm

N: o: HEEEEEEE '~
ojojofofofol kb] 43
IEM—HIIHEEJ 1
m—llﬂllﬂﬂﬁo 4o

a IHEHHIEEEZ
ém,q ><m¢< QYA 1T gin T viD SI don O1€

>>On_<_._m >m<§_mn_

0jojofofojoO|O]|r e
0Jolo{ bkl [} e

3|v[o|v]|oflalg |1

N: o: E
u 142>
Eﬂﬂﬂﬂlalulfa
Mo ol nGo o o0 HmeE:

><m_¢< AYHUY
300<zw AHVNIHG

~ N

1L HY41Si93Y 1
kb Swwor Ot L 'Ol

OLR 1IN ZLNELNg N Gin dof

531 H344Ng
e~ AHOLSH

US 6,633,970 B1

Sheet 8 of 8

Oct. 14, 2003

U.S. Patent

3 LN
9N
SN
YN
£HN
SN
-LLN
01N
-6f)
8NN
i
9
S0
240
£
¢l
kN
v 0N

WYIHLS don ~_

QOua<OCcOO0NWLCMUI<LCOO

| LLN 1V ,IN3AS, 40 NOILOIL3A HI L4V 81N
16 gy (8,700 OLGINOISSY 38 1A 506 (134 NAMIOG o
w V—_ ~3NTYA M3N
SSOHOV v_mmmm,%__._\,mom_rﬁ 218 018 § ozt ¥eg/ ~asn Nvd
i (1) 6 ELeRRh
5 el 1
‘QOHLIW 31YHISNOWIQ
0L JdON INO MIve s{ 8 [§ B EAEEIT bie
MOOVHS 3HLdAS(E/ | €] v [€ 296 [or] 2] v|sr|N0E
AVHHY AvHHY KTUEGEI
MOQYHS AHYWIHd
'IN3AT JHL
JHO438 OL dN MOAYHS 0 0
¥OVE 1SN SINIA. b
HONVHE JHO438 dON 3
v 'JHILIH ‘INIOd DOV
OL SIONVAQY MOGYHS 8
"S3NNILINOD NOLLYDOTV {2 n
b
MOQYHS AH um,mm.zma
2] 3 [7] [elo]e[e]olo oo o 0]
oo |2 @] [oToTelo T Lo o T ot
conecs S, (810 (5] BTVl Vo v ol o1
-SIN HONYHS "HONVHE LX3N Llefetforf 2] v 1o >
oLaaoNvAavmoavHs (b [e v | e [rlefs]efole]a|er]n]s NS
%wmmum md,w_,_m___« OIN 1IN ZINGINE PID GIN don0t€
AHVWIHd 721 H344n8
G0S \.\ f ._.O_Dwmmm_ﬁ
| H3LSIO3Y : HONVHS AHOLSIH
t Syosor ™ 8 '9I4

US 6,633,970 Bl

1

PROCESSOR WITH REGISTERS STORING
COMMITTED/SPECULATIVE DATA AND A
RAT STATE HISTORY RECOVERY

MECHANISM WITH RETIRE POINTER

FIELD

The 1nvention generally relates to processors, and 1in
particular to RAT state history recovery mechanism.

BACKGROUND

In some current processors, 1nstructions are decoded mto
one or more micro-operations (uops), and each uop is loaded
into a re-order buffer (ROB) to await scheduling for execu-
tion. A register alias table (RAT) is provided for storing a
mapping or aliasing between logical registers and physical
registers. The physical registers include the real register file
(RRF) for storing retired data, and include the ROB for
storing temporary or unretired data. After a uop 1s executed,
the execution result 1s temporarily stored in the ROB. Uops
are retired (or committed to architectural state) in order by
physically moving the execution result (data) from the ROB
to the RRF, and updating a pointer in the RAT for the
corresponding logical register. An example of this type of
processor 1s described 1n U.S. Pat. No. 5,727,176. However,
this configuration has limitations. As execution units and
other portions of the processor increase in speed, 1t becomes
more difficult to physically move the data at retirement from
the ROB to the RRF. A better technique 1s needed to keep
frack of temporary and retired data in the processor.

U.S. Pat. No. 5,197,132 (the ’132 patent) discloses a
register mapping system having a log containing a sequen-
fial listing of registers that were changed in preceding cycles
for post-branch recovery. Aregister map includes a predicted
map and a backup map, with each map storing a mapping to
the physical home of each logical register. Muxes are
provided 1n the *132 patent for selecting between the two
maps for use. However, this arrangement 1s cumbersome and
requires significant silicon due to the muxing between the
two maps, and because data output paths are connected to
cach map. Moreover, the mapping circuit 1in the 132 patent
1s 1nflexible as 1t requires the backup map to maintain a
particular minimum distance (e.g., 20 clock cycles) behind
the predictive map to allow the processor to confirm that the
first 1nstruction does not cause an event that requires the
register map to be backed up to an earlier state using the
backup map. Thus, the 132 patent discloses a restrictive and
inflexible approach. As a result, there 1s a need for a more
flexible and effective technmique for keeping track of the
temporary and permanent data 1n the processor.

SUMMARY

According to an embodiment of the present invention, an
apparatus 1s provided for allowing a processor to recover
from a failure of a predicted path of instructions. The
apparatus includes a plurality of physical registers, each
physical register to store either architectural data or specu-
lative data. The apparatus also includes a primary array a
primary array to store a speculative state of the processor
including mappings from logical registers to physical reg-
isters. The apparatus also includes a buffer coupled to the
primary array to store information identifying which physi-
cal registers store architectural data and which physical
registers store speculative data.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and a better understanding of the present
invention will become apparent from the following detailed

10

15

20

25

30

35

40

45

50

55

60

65

2

description of exemplary embodiments and the claims when
read 1n connection with the accompanying drawings, all
forming a part of the disclosure of this invention. While the
foregoing and following written and illustrated disclosure
focuses on disclosing example embodiments of the
invention, it should be clearly understood that the same 1s by
way of 1llustration and example only and i1s not limited
thereto. The spirit and scope of the present invention being
limited only by the terms of the appended claims.

The following represents brief descriptions of the
drawings, wherein:

FIG. 1 1s a block diagram 1illustrating a portion of a
processor according to an embodiment of the present imnven-
tion.

FIG. 2 1s a diagram 1llustrating a RAT primary array and
a register file (RF) according to example embodiments of the
present 1vention.

FIG. 3 1s a diagram of a history buffer according to an
example embodiment of the present invention.

FIG. 4 1s a diagram 1llustrating a RAT shadow array
according to an example embodiment of the invention.

FIG. 5 1s a diagram of a history buffer and a RAT primary
array for three example steps.

FIG. 6 1s a diagram of a history buffer and a RAT primary
array for three example steps according to an example
embodiment of the present invention.

FIG. 7 1s a diagram of a history buffer, a RAT primary
array and a RAT shadow array for three more example steps
according to an example embodiment of the present mven-
tion.

FIG. 8 1s a diagram of a history buffer, a RAT primary
array and a RAT shadow array for three additional example
steps according to another example embodiment of the
present 1nvention.

DETAILED DESCRIPTION

According to an embodiment of the invention, the pro-
cessor described herein 1s a speculative machine. If a branch
instruction 1s encountered, prediction logic 1n the processor
predicts whether the branch will be taken. The branch
prediction logic 1s thus used to determine a predicted path
for speculatively fetching uops. Instructions are specula-
tively fetched from memory and decoded 1nto one or more
uops 1n order. The uops can then be executed out of order.
According to an embodiment of the invention, uops can even
be speculatively executed before their source data i1s avail-
able. The uops are then retired 1n order.

Rather than storing the temporary (unretired) data and the
permanent (retired) data in separate locations or files, the
temporary and permanent data are stored together
(intermixed) in a single register file (RF). The register file
(RF) is an array of physical registers or RF entries, which
stores both temporary and permanent data. Thus, because
the temporary and permanent data are both stored
(intermixed) in a single register file, it is unnecessary to
physically move the data at retirement, according to an
embodiment of the invention.

A RAT primary array 1s provided that stores a mapping
from the processor logical registers to physical registers (i.¢.,
register file entries). The RAT primary array stores or reflects
a current or working state of the processor. According to an
embodiment of the invention, the primary array reflects a
current and most speculative state of the processor. When a
uop 1s decoded, an allocator allocates an available (or free)
RF entry as a physical destination (Pdst) for the execution

US 6,633,970 Bl

3

results of the uop. According to an embodiment, the RAT
primary array 1s the only array that 1s used by the processor
to 1dentify the mappings from logical registers to physical
registers (of the current state of the processor). According to
an embodiment, the current state or most speculative state of
the processor (which is reflected in the RAT primary array)
is at the point of allocation (where an RF entry is allocated
to the next uop or instruction).

According to an embodiment of the invention, a RAT
shadow array and a history buffer are provided. The history
buffer 1s an array that stores historical state information of
the logical and physical registers that allows a uop to be
done (performed) or undone(reversed), as reflected in the
primary array. The successive mappings from logical regis-
ters to physical registers as allocated for each uop 1is
recorded 1n the history buffer. The history buffer also
includes a jump color path field to allow the processor to
distinguish between good uops in the history buffer (uops
which will be executed and retired) and bad uops which
were prefetched and allocated but which will not be
executed due to a failure of the predicted path (e.g., due to
either a mispredicted branch or other event).

The RAT shadow array is a second copy of the RAT (the
first copy being the primary array). Like the primary array,
the shadow array includes a pointer or address to an RF entry
(or physical register) corresponding to each logical register.
The shadow array stores a processor RAT state (e.g., map-
pings from logical register to physical register) that allows
the processor to recover from a mispredicted branch or other
event (such as an interrupt). The shadow array can be moved
forward or backwards to any position (or instruction)
between allocation and retirement using the information
stored 1n the history bulifer.

As described above, the primary array 1s updated at
allocation time. The shadow array can change states or
locations (e.g., move forward or backwards) based on the
information stored 1n the history buffer. The shadow array 1s
moved forwards or backwards independently from the state
or position of the primary array and independent of which
uops have executed. The ability of the shadow array to move
backwards allows the shadow array to be located anywhere,
rather than be restricted to some minimum distance behind
the primary array. If a branch instruction behind the location
of the shadow array (i.e., earlier in the program order)
mispredicts (creating a predicted path failure), the shadow
array can be backed up sequentially until the shadow array
reaches the point of path failure (i.e., to the last good uop or
instruction). The shadow array can then be flash copied into
the primary array to allow the primary array to quickly
recover from the mispredicted branch. According to one
example embodiment of the invention, the RAT attempts to
keep the shadow array at the location of (or pointed to) the
best estimate of the next mispredicted branch or event. If a
path failure occurs (e.g., a mispredicted branch or an event
is detected) near where the RAT shadow array is located, the
RAT shadow array preferably is flash copied (e.g., all array
entries copied in one clock cycle) into the RAT primary
array, thereby quickly moving the RAT primary array back
to the point (or state) near where the path failure occurred.
Multiple RAT shadow arrays (e.g., each located at a different
branch instruction) can also be used to recover from one of
several anticipated mispredicted branches or events.

Architecture

Referring to the figures in which like numerals indicate
like elements, FIG. 1 1s a block diagram 1llustrating a portion

10

15

20

25

30

35

40

45

50

55

60

65

4

of a processor according to an embodiment of the present
invention. Specifically, the instruction pipeline 1s 1llustrated
in FIG. 1. The processor 1llustrated in FIG. 1 1s provided
merely as an example embodiment, and the present inven-
fion 1s not limited thereto. Processor 100 includes an L1
instruction and data cache 102 for storing data and
instructions, an 1instruction decoder 104 for decoding
instructions into one or more micro-operations (Or micro-ops
or uops). As used herein, the terms instruction and uop (or
operation) may be used interchangeably, and include

instructions, operations, micro-ops, or other types of mstruc-
fions or operations. A trace cache 106 1s coupled to the

instruction decoder 104 for storing decoded uops. If one or
more uops are re-executed, the uops can be directly retrieved

from the trace cache 104, thereby avoiding refetching the
instructions from the cache (or memory) and decoding the
instructions.

A Register Alias Table (RAT) 108 and an allocator 120

cach receive uops from trace cache 106. RAT 108 translates
logical register names (logical source or Lsrc and logical
destination or Ldst) into physical register addresses
(physical source or Psrc and physical destination or Pdst).
The RAT 108 also includes two arrays for storing a mapping
from logical register to physical register: a primary array 110
stores the current (and most speculative) state, while a
shadow array 112 stores a previous state that may be used to
allow a quick and efficient recovery from a mispredicted
branch or other event (such as an interrupt or trap). Accord-
ing to an example embodiment of the invention, the shadow
array 112 can be located or pointed to the best estimate of the
next mispredicted branch. The shadow array 112 can be
pointed to a variety of different states of the processor. The
physical registers are shown 1n FIG. 1 as the register file

(RF) 136.

The allocator 120 allocates resources for each uop, and
includes a history bufler 122 for storing past or historical
logical register to physical register mappings and other
information. The history buifer 122 allows the previous uops
to be done or undone, and allows the shadow array 112 to be
created using these historical mappings (from logical regis-

ters to physical registers) and other information stored in the
history buffer 122. According to an embodiment of the

present nvention, the register file (RF) 136 stores or inter-
mixes both temporary data and permanent (or retired) data.
Because one register file 1s used to physically store tempo-
rary and retired data, 1t 1s therefore unnecessary to physically
move the data at retirement, and processor speed can be
accordingly improved. As a result, to keep track of which
data in RF 136 1s temporary, which data 1s retired, etc., the
history buifer 122 includes a number of fields and pointers
to keep track of the various states of data.

The processor 100 includes a re-order buffer (or ROB)
130 which determines when a uop has properly completed
execution and retired. An instruction queue (I1Q) 132 is
connected to the RAT and allocator 120 for storing uops
awaiting to be scheduled for execution. An out-of-order
(O00) scheduler 134 schedules uops in the 1Q 132 for
execution. Register file 136 1s connected to scheduler 134
and includes an array of physical registers (or RF entries) for
storing data. The execution units 138 are connected to the
RF 136 and the scheduler 134 for executing vops. Each uop
includes two sources (i.€., one or more sources) and a
destination (as an example). The execution units 138 receive

the vop from the IQ 132 and scheduler 134. A data cache 140
1s provided for storing memory data.

The RAT Primary Array and the Register File

FIG. 2 1s a diagram 1llustrating a RAT primary array and
a register file (RF) according to example embodiments of the

US 6,633,970 Bl

S

present mvention. In this example of FIG. 2, there are five
logical registers A, B, C, D and E, and there are 15 RF
entries (or physical registers) in the register file (RF) 136.
These numbers are selected merely as examples. There
could be almost any number of logical registers and RF
entries (physical registers), so long as there is at least one
physical register for every logical register. Register file (RF)
136 contains an array of the physical registers or RF entries.
The RF 136 stores (or intermixes) both temporary (i.c.,
unretired) data and retired data.

FIG. 2 includes a column 202 idenfifying the logical
register (i.e., either logical register A, B, C, D or E). The
RAT primary array 110 includes a column 204 that includes
pointers to RF entries of register file (RF) 136 to identify
which RF entries have been mapped to the logical registers
identified by column 202. In this example, the primary array
110 includes a pointer to RF3 (pointer to entry 3 of the RF
136) for logical register A, a pointer to RF0 for logical
register B, a pointer to RF4 for logical register C, a pointer
to RF2 for logical register D and a pointer to RF6 for logical
register E. Thus, primary array 110 identifies the current
(most speculative) state, and identifies, in this example, that
data for logical register A 1s physically stored in RF3, the
data for logical register B 1s stored in RFOQ, the data for
logical register C 1s stored 1n RF4, etc.

FIG. 2 also 1illustrates an example embodiment of the
register file (RF) 136. RF 136 in this example embodiment
includes 15 entries (or physical registers). A column 210
identifies each RF entry(or physical register) for the register
file 136. The register file 136 includes a data column 212 that
stores the data for each of the RF entries. As noted above, for
each logical register (in this example logical registers A—E
of array 110), the primary array 110 includes a pointer to a
physical register or RF entry where the data for that logical
register 1s physically stored, or where the execution results
will be stored after execution of the uop.

For example, as illustrated 1 FIG. 2, uopl performs a
write of data6 to logical register E. The allocator 120 (FIG.
1) selects (or allocates) RF6 as the next available physical
register (i.€., entry in RF 136) for the uop (i.e., for storing the
execution result of the uop). In this example shown in FIG.
2, RAT 108 updates the primary array 110 by storing the
pointer to RF6 for logical register E. After updating the RAT
primary array 110, array 110 indicates that the data for
logical register E 1s presently stored (or will be stored after
execution) in RF entry RF6. After this uop executes, the
execution result (i.e., data6) is stored in RF6 as shown in

FIG. 2.

Overall Operation in Instruction Pipeline

Referring to FIGS. 1 and 2, the overall operation of the
processor 100 will be briefly discussed according to an
example embodiment of the mvention. Complex instructions
are received from the cache 102 and decoded into one or
more micro-ops or uops by the instruction decoder 104. The
uops are stored 1n the trace cache 106. As output from the
trace cache 106, each uop includes an operation-code (op-
code), one or more source operands (or logical sources or
Lsrcs) and one destination operand (logical destination or
Ldst), for example. The logical sources (Lsrcs) and logical
destination(Ldst) may refer to the logical registers A—E, but
do not refer to the physical registers (RF entries). The trace

cache 106 provides one or more uops per clock cycle to both
the RAT 108 and to the allocator 120.

The allocator 120 receives at least the op-code of each uop
and determines what kind of resources are needed to execute

10

15

20

25

30

35

40

45

50

55

60

65

6

the uop. The allocator 120 then allocates resources for the
uop, including allocating the next free or available RF entry
(or Pdst) in RF 136 for the uop (i.e., for storing the execution
result of the vop). This point in the pipeline can be referred
to as allocation time. The allocator 120 then provides the
address or pointer to this new RF entry (the physical

destination or Pdst) for this uop to the IQ 132 and the RAT
108. The pointer to the new RF entry (Pdst) for this uop is
provided to the RAT via line 113, for example.

The RAT 108 receives at least the two logical sources
(Lsrcs) and the logical destination (Ldst) of the uop from the
trace cache 106 and i1dentifies the current physical registers
(i.e., physical sources and physical destination) correspond-
ing to the logical sources (Lsrcs) and the logical destination
(Ldst) for the vop using the RAT primary array 110. RAT
108 can identify a corresponding physical register (RF
entry) by identifying the RF pointer in column 204 of
primary array 110 for each logical register (Lsrc or Ldst).
RAT 108 provides at least the RF pointers to the physical
sources (Psrcs) of the uvop to the IQ 132. Thus, as an
example, the 1Q 132 receives the op-code of the uvop from
trace cache 106 via line 119, receives a pointer or address to
the physical destination (Pdst) for the uop (i.e., for storing
the execution result of the uop) from the allocator 120, and
receives pointers or addresses to the two physical sources
(Psrcs) for the uop from RAT 108. As a result, the 1Q 132
receives substantially the same uop as stored 1n trace cache
106, but receives the physical source and physical destina-
tion pointers or addresses rather than the logical addresses.

RAT 108 also receives the address of (or pointer to) the
new physical destination (Pdst) for the vop (corresponding
to the Ldst) from allocator 120 via line 113. RAT 108
updates the primary array 110 to store the pointer to the new
physical destination (Pdst) for the uop corresponding to the
logical register (the Ldst). For example, if a uop designates
logical register A as the logical destination, and allocator120
allocates RF12 (e.g., as the next available RF entry) as the
physical destination (Pdst) for the uop, RAT 108 updates the
pointer in column 204 (FIG. 2) for logical register A in
primary array 110 to point to RF12.

However, before updating the primary array 110 to i1den-
tify the new physical register (Pdst) corresponding to the
logical register A for the uop, RAT 108 reads out from
primary array 110 and stores the pomter to the old physical
register or RF entry (Pdst) corresponding to the logical
register A. (Register A is again, used only as an example).
This pointer to the old physical destination (RF entry) for
register A 1s provided from the RAT 108 to the allocator 120
via line 117 and 1s used by the allocator 120 to create a new
entry 1n the history buffer 122. The history buffer 122 is
described 1n greater detail below.

The uvop stored 1n the 1IQ 132, mcluding an op-code,
physical source addresses or pointers and a physical desti-
nation address or pointer, 1s provided to the scheduler 134
for scheduling for execution. At the appropriate time, the
op-code 1s provided via line 139 to the execution units 138,
and source data may be provided from the physical registers
from the RF 136 to execution units 138 as 1dentified by the
physical sources of the uop. The scheduler 134 also provides
the pointer to the physical destination for the uop (for storing
execution results) to the RF 136 and to the execution units
138. The execution units 138 (e.g., one of the execution
units) execute the uop and stores the execution result in the
physical register (i.e., RF entry) designated by the uop. In
the above example, if RF12 was allocated by allocator 120
for the uvop, the execution result for the vop would then be
physically stored in RF12. RAT primary array 110 stores the

US 6,633,970 Bl

7

mapping from logical register A to the physical register
RF12 (where the data for register A is physically stored).

If the next vop also writes to logical register A, a similar
procedure would be followed. Allocator 120 allocates the
next available RF entry for the vop and provides a pointer to
this RF entry to the RAT 108 via line 113. The RAT 108
reads the old pointer (old RF entry) from column 204 of
array 110 for logical register A (i.e., RF12), and provides this
old RF entry to the allocator 120 via line 117 for creating
another entry in the history buffer 122 (recording both the
old and new RF entries and logical register for the uop). RAT
108 then stores the RF entry for the logical register 1n
column 204 of the RAT primary array 110. The history
buifer 122 stores information that allows the vop to be done
or undone.

er

History Buf

FIG. 3 1s a diagram of a history bufler according to an
example embodiment of the present invention. History
buffer 122 1s an array that stores historical state information
of the logical and physical registers that allows a uvop to be
done (performed) or undone(reversed), as reflected in the
primary array. In other words, the history bufier 122 allows
the effects of each uop as seen by the logical registers to be
done (performed) or undone (reversed). The successive
mappings from logical registers to physical registers as
allocated by allocator 120 and mapped by RAT 108 for each
uop 1s recorded 1n the history buffer 122, and thus, the effects
to the logical registers resulting from each uop can be
performed or reversed, step by step (i.e., one uop at a time)
using mnformation stored in the history buffer 122.

Referring to FIG. 3, an example history buffer 122 1s
shown, and includes mformation for 10 RF entries. In this
example, there are 5 renameable logical registers A—E as
well as 15 RF entries or physical registers (i.e., RF1-RF15)

in the register file (RF) 136 (RF 136 is not shown in FIG. 3).
The minimum size of the history buifer 122 1s determined as:

Mmimum size of history buifer 122=no. of physical
registers—no. of logical registers. This size allows the state
information for all RF entries (physical registers) to be
tracked. The history buifer 122 can be larger.

The various fields and pointers 1in the history buifer 122
(described in detail below) allow the processor to keep track
of the various data and states. Each pointer in the history
buffer may be, for examplc a /-bit value that indexes or
points to a particular entry in the history buffer 122. Each
pointer 1 the history buffer 122 is readable and writeable
such that each pointer can be cleared or set to any value.

Referring to the history buffer 122 of FIG. 3, each column
includes an XXX/new field 310, a Free/Old field 312, a
logical destination field 314, a retire ficld 316 and a jump
color path field 318 (also known as the path field). The
logical destination field 314 identifies the logical destination
for the vop (e.g., either register A, B, C, D or E). The
XXX/New field 310 i1dentifies the new RF entry for the
logical register. X 1s used 1n field 310 1f no new RF entry has
been assigned yet to the logical register. The free/old field
312 1s a list of free (or available) RF entries (if unallocated)
or identifies the old RF entry (previous RF entry) if allocated
and not yet retired. The Retire field 316 1s a 1 if the vop has
been executed and retired, thereby making the old RF entry
free to be reallocated for a new uop. If the retire field 316 1s
a 1, the corresponding free/old field 312 indicates a “free”
(or available) RF entry. If the retire field 316 is a O (meaning
the uop and old RF entry are not yet retired), then XXX/New
field 310 will refer to a new RF entry (a new Pdst) and the

10

15

20

25

30

35

40

45

50

55

60

65

3

free/old field 312 will refer to an old RF entry (an old Pdst)
because the old RF entry is not yet free (available). The jump
color path field 318 of history buffer 122 1s described below.

When a uop 1s retired, it 1s no longer necessary to store the
state information associated with that uop because there are
usually no circumstances 1n which one would want to back
up the processor to the state just prior to that uop (and thus,
the historical information stored 1n the history buffer 122 for
this uop can be deleted). Therefore, the old RF entry 312
(FIG. 3) for the retired vop (i.e., the previous or old physical
register used to store the execution results) is made available
(i.c., de-allocated) to be reallocated as a Pdst for a new uop.
Thus, 1n this manner, when a uop properly completes
execution and i1s retired, the ROB 130 (FIG. 1) notifies the
allocator 120 that the vop has been retired. The allocator 120
then sets the corresponding Retire bit (or field) 316 in the
history buffer 122 to a 1 and moves a retirement pointer (R)
320 past the corresponding column to indicate that the uop
and its associated new RF entry 310 (Pdst) have been retired
and the old RF entry 312 (corresponding to the same logical
register) is now available or free to be reallocated as the Pdst
for a new uop.

History buffer 122 also includes three pomters, including,
an allocation pointer (A pointer) 324, a shadow pointer (an
S pointer) 322 and a retirement pointer (R pointer) 320. All
three pointers typically move right to left (although the
shadow pointer 322 can move either direction depending on
whether the shadow array 112 1s moving forward or
backward). Allocation pointer 324 points to the next free (or
available) RF entry that will (usually) be allocated for the
next uop (i.e., allocated as the Pdst for storing the execution
results of the next uop). Thus, in general, the Free/old RF
entries on and to the left of the allocation pointer 324 are
Free (unallocated), while Free/old RF entries to the right of
the allocation pointer 324 are old or allocated and may or
may not be retired yet.

The retirement pointer 320 (FIG. 3) points to the next RF
entry that will be retired. Old RF entries to the left of the
retirement pointer 320 and having a 0 1n the retire field 316
are allocated (in use) and are not yet retired. Old RF entries
to the right of the retirement pointer 320 having a 1 1n the
retire field 316 have been retired. Old RF entries to the right
of the retirement pointer 320 which have a 0 in the Retire
field 316 were not retired and will not be retired (usually
because these uops were part of a Mispredicted path that
should not be retired or committed to architectural state).
The shadow pointer 322 points to the next new RF entry that
will be updated 1n the shadow array, as described 1n greater
detail below.

As noted 1n the Background above, some past systems
have physically stored temporary or speculative data
(unretired vop execution results) in one array (such as a
ROB) and the retired data (indicating the architectural state
of the processor) in a physically separate array (e.g., a Real
Register File). According to such a prior technique, when the
execution results or temporary data was retired, the data was
physically moved or copied from the first array (or ROB)
into the second array (or RRF). As processors increase in
speed, however, 1t becomes more difficult to physically
move the data at retirement from the ROB to the RRFE.

In contrast to this previous technique, the present mnven-
tion intermixes both temporary or speculative (i.e.,
unretired) data and retired data (indicating the architectural
state of the processor) in a single register file (RF) 136. As
noted above, when a uop 1s retired, the Retire field 316 for
the uop 1s set to a 1 and the retirement pointer 320 1is

US 6,633,970 Bl

9

incremented to the next uop. Thus, the most recently retired
data for each logical register indicates the current architec-
tural state of the processor. As noted, the history buffer 122
Old RF entries to the right of the retirement pointer 320
having a 1 in the retire field 316 have been retired, and are
considered architectural data. The remaining RF enftries
which have been allocated may also store temporary or
unretired data (execution results) which is speculative data
(speculative because it has not yet been retired or committed
to architectural state, and 1t 1s uncertain whether this tem-
porary data will be retired). Therefore, the use of a single
data array to store both unretired (or speculative) data and
retired (or architectural state) data allows a much simpler
and faster technique to be used to effect retirement because
only a retirement pointer 320 and a Retfire tlag 316 are
updated at retirement (rather than physically moving the
data between data arrays).

Jump Color Path Field of the History Buifer

The purpose of the jump color path field 318 1n the history
buffer 122 will now be briefly described. The jump color
path field 318 (or path ficld 318) is used to allow the
processor 100 to distinguish between good uops (uops which
will be executed and retired) and bad uops which were
prefetched and will not be executed due to a failure of the
predicted path—due to either a mispredicted branch or other
event.

The processor 100 speculatively prefetches instructions
and decodes them into uops for execution. To 1mprove
performance, branch prediction logic 1s provided to make
more 1ntelligent decisions regarding what information to
prefetch from memory. Whenever a branch uvop enters the
instruction pipeline, the prediction logic predicts whether
the branch will be taken, and instructions from the predicted
path are prefetched and decoded for execution. Uops are
fetched and decoded 1n program,order, and may execute out
of order. If a branch was mispredicted, all uops prefetched
after the mispredicted branch are bad or incorrect vops and
must be flushed from the pipeline, and the processor begins
prefetching from the correct path. However, because uops
can execute out of order (i.e., in an order that is different
from the order which the uops were fetched and decoded),
several uops may have been fetched, and RF entries allo-
cated for each uop before a previous mispredicted branch 1s
detected. Because, for example, an RF entry (Pdst) was
already allocated for each of these (bad) uops when the
mispredicted branch was detected, the processor needs a
technique to distinguish bad uops (or the RF entries in the
history buffer 122 allocated to bad vops) from the good uops
in the history buffer 122. The bad uvops will not be retired,
thus, should not be reflected 1n the history buifer 122 as
cither a current most speculative state or an earlier state of
the processor. Thus, the shadow pointer 322 and retirement
pointer 320, after stepping to the mispredicted branch will
need to skip over any bad uops (the RF entries allocated for
bad uops in array 110) up to the vops (or their allocated RF
entries in the history buffer 122) of correct path. The jump
color path field 318 allows the processor to distinguish
between RF entries for good uops (the correct path) and RF
entries for bad uops (the mispredicted path).

The jump color path field (or “path”) identifies micro-ops
that correspond to a particular path. A new “path” 1s created
after each mispredicted branch (or other event). According
to an embodiment of the invention, the path field 318 (jump
color path 318) allows a processor to distinguish between
bad uops (allocated RF entries) corresponding to a mispre-
dicted (or incorrect) path (RF entries allocated before detec-

10

15

20

25

30

35

40

45

50

55

60

65

10

tion of the mispredicted branch) and subsequent good uops
corresponding to the new correct path that were decoded and
RF entries allocated after detection of the mispredicted
branch. After the shadow and retirement pointers step to the
mispredicted branch, the shadow and retirement pointers
should skip the bad uvops 1n the primary array 110 up to the
first good uop (after the mispredicted branch). This is
indicated by the first uop (or old RF entry in array 110) after
the mispredicted branch 1n which the jump color path field

318 changes.

At allocation time for each of the new (correct path) uops,
the allocator 120 allocates an available RF entry for the Pdst
for the uop, and the primary array 110 and the history buifer
122 are updated as usual. However, 1n the history butfer 122,
the jump color path field 318 will be changed to a new or
different value for the new correct uvops as compared to the
old uops. A new “path” 1s created each time an event or
mispredicted branch 1s detected. This new path 1s established
or 1ndicated 1n the history buffer 122 by using a different
value for the jump color path field 318 1n history buifer 122.
For example, a first path can be referred to as the “blue”
path, while a second (correct) path (after an event or
mispredicted branch is detected) may be a “green” path, with
a different value used 1n path field 318 for the green path as
compared to the value used for the blue path.

According to an embodiment of the invention, the new
path (1.e., the use of a different value for the jump color path
field 318) is started beginning at the location or entry in
history buffer 122 where the allocation pointer (A) 324 is
pointing when the event or the mispredicted branch 1s
detected. One or more RF entries for (bad) uops subsequent
to the mispredicted branch may have already been allocated
before the mispredicted branch or event was detected. The
jump color path field allows the shadow pointer 322 and the
retirement pointer 320 to skip over these bad entries 1n the
history buffer 122 (since the current speculative state or past
state of the processor should not reflect these bad uvops which
will never be retired). Thus, according to an embodiment of
the 1nvention, the uvops in buffer 122 after the event or
mispredicted branch which are part of the same path (i.e.,
same value in path field 318) as the mispredicted branch are

bad, and should be skipped.

According to an embodiment of the present invention, a
uop may traverse two separate and distinct functional pipe-
lines (distinct from the instruction pipeline described
above), including an allocation (or primary) pipeline, and a
shadow pipeline. These “pipelines” are not strict definitions,
but merely provide a way to view the groups of steps or
functions performed on a uop or instruction.

The allocation pipeline may refer to the steps performed
relating to allocation of a vop, including allocation of a new
RF entry for a vop, updating the primary array 110 based on
the new allocation information. The allocation pipeline also
includes reading out of the old RF entry from the primary
array, updating of the history buffer 122 when a new RF
entry is allocated based on the allocation information (e.g.,
the logical register, the old RF entry and the newly allocated
RF entry). Additional steps, which may be considered as a
“retirement pipeline” include steps of updating the history
buffer 122 when an old RF entry is retired (e.g.,
de-allocating a RF entry by setting the Retire bit 316 and
moving the retirement pointer 320 to make the old RF entry
available to be allocated to a new uop).

The shadow pipeline includes the steps of appropriately
updating the shadow array 112 based on the history buffer
122, for example, to be as close as possible to the next

US 6,633,970 Bl

11

branch uop (or to point to the best estimate of the next
mispredicted branch or event). Because the RAT 108 uses
information in the history buffer 122 to update the shadow
array 112, the shadow array 112 can be updated asynchro-
nously as compared to the updating of the primary array 110
(i.e., without regard to the state or timing of the primary
array). Thus, the shadow array 112 and the primary array 110
are substantially decoupled or independent from each other.
The primary array 110 and the shadow array 112 function-
ally interconnect only when a flash copy 1s made from the
shadow array 112 to the primary array 110 in response to
detection of a failure 1n the predicted path, such as detection
of a mispredicted branch or detection of an event.

RAT Shadow Array

FIG. 4 1s a diagram 1illustrating a RAT shadow array
according to an example embodiment of the invention. The
RAT shadow array 112 is a second copy of the RAT (the first
copy being the primary array 110), and has a structure that
1s similar to the primary array 110. Shadow array 112
includes a pointer 412 or address to an RF entry (or physical
register) corresponding to each logical register 410. The
shadow Array 112 stores a processor RAT state (e.g., map-
pings from logical register to physical register) that allows
the processor to recover from a mispredicted branch or other
event (such as an interrupt). As shown in the example
shadow array 112 illustrated 1 FIG. 4, the logical register A
1s mapped to RF3, logical register B 1s mapped to RF1,
logical register C 1s mapped to RF4, etc.

The motivation or reason for providing a shadow (or
secondary) array will be briefly described. According to an
embodiment of the invention, the RAT primary array 110
reflects the current and most speculative state of the pro-
cessor. As described above, at allocation time (i.e., when
resources are allocated for a vop, including allocating an RF
entry as the Pdst for the uop), the RAT primary array 110 is
updated to reflect this new speculative state for the logical
registers. In other words, at allocation time, the logical to
physical register mappings in RAT primary array 110 are
updated to reflect the allocation of a new RF entry to a uop,
where the RF entry 1s assigned as the physical destination
(Pdst) for the logical destination (Ldst) of the uop. Thus, at
allocation time, the RAT primary array 1s updated to reflect
this new mapping from logical register to physical register.
However, as described above, the state stored 1n the primary
array 1S “speculative.” An event or a mispredicted branch
may cause the predicted path to fail (i.e., where one or more
prefetched instructions will be bad and will not be retired)
which may also cause the speculative state stored in the RAT
primary array 110 to be 1naccurate or incorrect.

For example, when a mispredicted branch 1s detected, the
instruction pipeline 1s flushed and uops after the mispre-
dicted branch along a correct path are fetched and decoded
for execution. When the mispredicted branch 1s detected, the
RAT primary array 110 may contain a speculative state (i.c.,
register mappings) that is many uops ahead (in program
order) of the mispredicted branch. In order to correct the
information (or state) stored in the primary array 110, the
state of the RAT primary array 110 should be backed up to
the state just after allocation of the RF entry for the mispre-
dicted branch (since just after the branch is where the new
correct path uops will begin fetching and executing).
Fortunately, according to an embodiment of the invention,
the history buifer 122 stores the information necessary to
undo or reverse the logical register to physical register
mappings performed for each uvop. Thus, according to an
embodiment of the invention, the RAT 108 and the allocator

5

10

15

20

25

30

35

40

45

50

55

60

65

12

120 can use the information stored in history buffer 122 to
step the RAT primary array 110 back one or more uops per
clock cycle until the primary array reaches the state at or just
after the mispredicted branch or event. The RAT primary
array 110 can be stepped back one uop by replacing the
pointer 204 1n primary array 110 for a logical register with
the pointer to the old RF entry (field 312 in history buffer

122). This moves the RAT primary array 110 one uop back.

However, the primary array 110 may be many uops ahead
of the execution units, and may be even 50 or 100 uops
ahead, for example. As such, the time penalty or price for a
mispredicted branch could be very expensive and severe,
e.g., up to 50 or 100 clock cycles. This is a high price (i.e.,
large time delay) to pay for each mispredicted branch or
event, and can significantly degrade processor performance.
Therefore, according to an embodiment of the present
invention, a second copy of the RAT 1s maintained as the
RAT shadow array 112 (with the first copy of the RAT being
the RAT primary array 110) to allow the RAT primary array
110 to recover more quickly from an event or mispredicted
branch.

According to an embodiment, both the primary array 110
and the shadow array 112 may step forward one or more
uops at a time. As described above, the primary array 110 1s
updated at allocation time. The shadow array is updated (or
changed) asynchronously (e.g., independent and decoupled
from the primary array 110) based on the information stored
in the history butfer 122. Thus, the shadow array 112 may be
one or two cycles behind the primary array 110, for example,
but there are no restrictive requirements on where the
shadow must be located. For example, the shadow array may
be located anywhere between allocation and retirement. In
this example, the shadow array 112 continues following the
primary array 110, stepping ahead one or more uops at a
time, until the shadow array reaches an estimate of the next
mispredicted branch or event (as an example location). The
shadow array 112 may stop, for example, just before, on, or
just after the estimated next mispredicted branch or event.
The RAT shadow array 112 i1s maintained at this best
estimate of the next mispredicted branch or event until 1t 1s
determined whether or not the execution of the uop or
branch near where the shadow array 1s located resulted 1n a
failure of the subsequent path. For example, the shadow
array waits at the best estimate of the next mispredicted
branch until 1t 1s determined whether or not the branch was
correctly predicted. Thus, the shadow will probably wait
until the branch or uop executes, but will not have to wait for
the uop or branch instruction to be retired. If the branch
instruction near where the shadow array 1s located was
correctly predicted (or the uop does not generate an event),
no path failure results at that point and the shadow array 112
would then resume sequentially stepping forward (e.g., one
or more uops per clock cycle) using information in the
history buffer 122 up to the next estimated event or mispre-
dicted branch, where the shadow array 112 would again wait
for an indication as to whether the branch was correctly
predicted or not (or whether the uop generated an event).

If a path failure occurs (¢.g., a mispredicted branch or an
event 1s detected) at or near where the RAT shadow array
112 1s located, rather than stepping the primary array 110
back one uop at a time (which can be very time consuming),
the RAT shadow array 112 can be flash copied (e.g., all array
entries copied in one clock cycle) into the RAT primary
array 110, thereby quickly moving the RAT primary array
110 back to the point (or state) at or near where the path
failure occurred (e.g., back to the state near the mispredicted
branch or to the uop that generated the event). If the path

US 6,633,970 Bl

13

failure occurred near the location of the RAT shadow array
112, the RAT array can be moved or adjusted to the correct

state 11 necessary before flash copying the RAT shadow array
112 mto the RAT primary array 110.

Therefore, after the event occurs, the RAT shadow array
112 is adjusted to the correct state if necessary (e.g., the
shadow 1s moved or adjusted if the shadow is not at the
correct state when the event occurs). The “correct” state may
be different in different implementations. According to an
embodiment, the correct state could be, for example, the
state up to and including the allocation of the mispredicted
branch instruction or up to and including the instruction that
caused the event.

Thus, the RAT primary array 110 can use the RAT copy
in the shadow array 112 to recover the correct RAT state
more quickly after a predicted path failure (e.g., recover
from a mispredicted branch or event) if the shadow array 112
1s located at or near the point of path failure.

According to one example of the mnvention, the RAT 108
attempts to keep the shadow array 112 located at (pointed to)
the state of the best estimate of the next mispredicted branch
or event. The RAT 108 may attempt to keep the shadow
array 112 as close to the next mispredicted branch as
possible (e.g., on or just before or just after the next branch).
RAT 108 may use other algorithms or even heuristics or
learning processes for locating the shadow array 112 1n a
position that allows the RAT the quickest or most efficient
recovery from a predicted path failure. According to an
embodiment, a branch predictor uses branch history mfor-
mation to provide a confidence level for each branch instruc-
tion that indicates the probability that a branch was correctly
predicted. According to an embodiment, the RAT shadow
array or arrays are preferably located at one or more
branches where there 1s a relatively low probability that the
branch was correctly predicted (i.e., located where an event
is more likely to occur). When the processor determines that
the branch was correctly predicted, the shadow array 112
then continues sequentially stepping ahead until 1t reaches
the next branch (or the estimate of the next mispredicted
branch or event).

Although techniques are described herein for the place-
ment or movement of the shadow array 112 1n order to allow
a quick recovery by the RAT from a failure in the predicted
path, other techniques or algorithms can be used as well.
According to an embodiment, the shadow array 112 1s very
flexible and can be moved forward and backward to virtually
any uop or state between uop allocation and uop retirement
using the information 1n the history buffer 122. According to
an embodiment of the invention, if the shadow array 112
moves on past a particular branch (or other uop), and that
branch later mispredicts (or the uop generates an event), the
shadow array 112 can be sequentially backed up one or more
uops at a time until the shadow array reaches the mispre-
dicted branch. When the shadow array 112 has been backed
up to the point of the predicted path failure (e.g., to the
mispredicted branch or to the vop that generated an event),
the shadow array 112 1s then flash copied to the primary
array 110 to allow the primary array 110 to recover from the
predicted path failure.

The fact that shadow array 112 can be moved backwards
means that it 1s unnecessary to keep the shadow array 112
behind the point of uop retirement (or the point where it 1s
confirmed that the branch instruction was correctly
predicted). Without the ability to back up the shadow array,
the shadow array would typically have to be located at or
behind the point of retirement (or point of uop being

10

15

20

25

30

35

40

45

50

55

60

65

14

confirmed that it executed properly without event), rather
than moving ahead to the best estimate of the next point of
predicted path failure (e.g., to the estimate of the next
mispredicted branch). The location of the best estimate of
the next predicted path failure may be much closer to the
location of the primary array 110 than the retirement point.
Thus, without the ability to back up the shadow array 112,
the penalty for a mispredicted branch (or other predicted
path failure) could be much greater. The flexibility of the
shadow array 110 therefore can decrease the penalty asso-
clated with a mispredicted branch or other predicted path

failure.

The shadow array 112 may be considered to be decoupled
or independent from the primary array 110 because the
shadow array 112 1s not required to be located at a particular
point of execution or retirement or at some other predeter-
mined location or uop with respect to the state of the primary
array. For example, it 1s not necessary for the shadow array
112 to maintain a predetermined distance (e.g., of at least 20
uops) between it and the primary array 110. Rather the
shadow array 112 1s flexible and can move freely between
the point of allocation and the pomt of uop retirement
without regard to the location or operation of the primary
array. This, 1n part, 1s made possible by 1ts ability to move
backward as well as forward, using the information in the
history buffer 122.

According to an embodiment of the imvention, an archi-
tecture 1s provided in which there is only one array (the
primary array 110) in which register mapping (logical to
physical) or register renaming occurs. The shadow array 112
can be used to allow the RAT primary array 110 more
quickly recover from a predicted path failure. However,
according to an embodiment, there 1s preferably no data path
output from the shadow array 112, and the shadow array 112
1s preferably not used to actively map or rename registers.
Rather, according to an embodiment, the shadow array 112
1s moved to the best estimate of where the next mispredicted
branch or other path failure will likely occur. If a predicted
path failure occurs at or near that point, the shadow array 112
1s adjusted to the correct state 1f necessary and 1s then copied
into the primary array 110. However, the RAT preferably
does not switch over to using the shadow array 112, as that
would require additional or more complex circuitry to allow
a switching or muxing between each array and additional
data paths from the shadow arrays 112. In other words, the
processor 100 preferably does not read Pdst information out
of both the primary array 110 and the shadow array 112, but
only reads out of the primary array 110. This is only one
advantageous aspect of the invention, but 1s not required.
Other embodiments are possible.

According to an embodiment, several (or multiple)
shadow arrays can be employed to allow the RAT primary
array 110 to recover from any of several possible path
failures (e.g., mispredicted branches or events). For
example, eight shadow arrays can be used, 1n which each
shadow array 112 uses the information in the history butfer
122 to step forward (behind the primary array 110). When a
first possible path failure is identified (e.g., the first branch
uop), the first shadow array stops at or near that first branch.
The remaining seven shadow arrays continue stepping for-
ward until they reach a second point (¢.g., a second branch
uop) where a path failure is possible or likely, and the second
shadow array stops at or near this vop. The remaining six
shadow arrays 112 conftinue this process until each of the
eight shadow arrays 112 (or at least some of them) have
reached a different point of possible path failure (e.g.,
reached a different branch or other uop where an event can

US 6,633,970 Bl

15

be generated). If one of the eight points or uops (e.g., branch
instructions) creates a path failure (e.g., if an event 1is
generated or a branch 1s mispredicted), the RAT shadow
array 112 at (or corresponding to) the point of path failure is
flash copied into the primary array 110, and into the other
shadow arrays as well. The primary array 110 and all the
shadow arrays would then continue moving forward 1n the
same manner as described above from the point of failure
(¢.g., from the mispredicted branch) along a correct path. If
the corresponding shadow array 1s not exactly on the point
of failure (e.g., if the path fails between where two of the
shadow arrays are located), the shadow array 112 that is
closest to the point of path failure is selected. This selected
shadow array closest to pomnt of failure 1s then moved
forward or backwards (as necessary) to reach the point of
failure (1.e., moved to the state or point of the mispredicted
branch), and then this adjusted shadow array 112 is then
flash copied 1nto the primary array 110 and the other shadow
arrays.

EXAMPLES

Some aspects of the mvention will be further explained
with reference to the following e}{amples FIG. § 1s a
diagram of a history buffer and a RAT primary array for
three example steps. An example uop stream 503 (including
the destination register for each write operation) is shown as
an example for explaining aspects of the immvention. There
are five logical registers in the RAT primary array 110
(registers A—E) and there are ten columns or entries 1n the
history butfer 122. Step 1 of FIG. 5 illustrates a power-on
reset condition. According to an embodiment of the
invention, in the power-on reset condition (step 1, FIG. §),
the first five physical register pointers (RF1-RFS) are loaded
into primary array 110 for logical registers A-E,
respectively, as shown 1n FIG. 5. Also, pointers to the
remaining RF entries (RF6—RF15) arc also loaded 1n
numerical order 1n the history buffer as shown. The alloca-
tion pointer (A) 324, shadow pointer (S) 322 and retirement
pointer (R) 320 initially point to the first (right-most)
column or entry 1n the history buffer 122. The retire field 316
1s set to 1 for all entries or columns 1n the history bufler to
indicate that all the RF entries 1dentfied in free/old field 312
are free (or unallocated). This list of RF entries in the
free/old field 312 having R fields set to 1 1s therefore
considered a “free list.”

Step 2 of FIG. 5 1llustrates the result of 1ssuing uop ul}
(i.e., allocating and RF entry and updating primary array 110
and history buffer 122) according to an example embodi-
ment of the present invention. As shown 1n the list of uops
505, vop ul 1s a write to logical register A. At allocation time
for vop ul, the allocator 120 allocates the next available RF
entry as the Pdst for ul. In this case, the next available RF
entry is RF6. After the RF entry (RF6) is selected for the uop
ul, the RAT 108 reads out the old RF entry pointer (to RF1)
in primary array 110 for register A, and stores this old RF
entry pointer in the free/old field 312 of the first entry of
history buffer 122, shown in FIG. § as line 520. The newly
allocated RF pointer (pointer to RF6) is then stored in the
new field 310 for this entry 1n the history bufier 122, shown
as line 522. An A 1s written to the logical destination field
314 for vop ul to indicate that logical register A 1s being,
renamed or mapped to physical register RF6. The retirement
field 316 for u0 is cleared to a zero (0) and will remain
cleared until uop ul retires. The RAT primary array 110 1s
then updated to store the pointer to the new RF entry (RF6)
allocated to register A, shown as line 524.

Also, 1n step 2, the allocation pointer (A) 324 is moved
one entry to the left to indicate that new RF entry 6 (RF6)

10

15

20

25

30

35

40

45

50

55

60

65

16

has been allocated as the new Pdst for register A. Also, the
retire field (R) 316 is cleared to zero to indicate that this uop
is not yet retired, and thus, both the old RF entry (RF1) and
the new RF entry (RF6) are unavailable (allocated).

Therefore, 1t can be seen that at step 2, the history bufler
122 includes all the information (i.e., old RF entry, New RF
entry, logical register) necessary to reverse or undo the
logical to physical register mappings caused by 1ssuing uop
ul. The vop ul 1s 1dentified by field 504 1n history bufler
122.

At some point 1n the future, when uop ul 1s retired, ROB
130 (FIG. 1) will notify allocator 120 (FIG. 1) that u0 has
been retired, and the retire field 316 will be set back to 1,
which would indicate that the old RF entry (RF1) would
again be free and available to be allocated to a new uop.
Uops are retired 1n order. Thus, when uop ul retires, any
carlier uops that may have wanted the data in RF1 would
have also retired. Thus, RF1 can be retired or made available
or free when uop u0 retires. Uops after u0 (such as ul) will
want the data in RF6 (or subsequent data) for register A, and
thus, RF6 cannot yet be made available when ul retires.

Step 3 of FIG. 5 illustrates the result of 1ssuing uvop ul
(allocating an RF pointer for ul, and updating the history
buffer 122 and the primary array 110). Uop ul is a write to
logical register C. RF7 1s allocated for Ul. The old RF
pointer (to RF3) is stored in the free/old field 312 of the
second entry of the history buffer 122, line 530. The free RF
pointer (in the old/free field 312 of step 2) that has been
allocated to ul (RF7) is stored in the new field 310 of the
second entry of the history buffer 122, line 532. Finally, the
RAT primary array 110 1s then updated to store the pointer
to the newest (and most speculative) RF entry or Pdst
assigned to logical register C (pointer to RF7), shown as line
534. The allocation pointer (A) 324 is moved to the next
(third) entry of buffer 122, and the retire field 316 for the
second entry, uop ul, 1s cleared to zero to indicate that this
uop (ul) 1s not yet retired.

FIG. 6 1s a diagram of a history buffer and a RAT primary
array for three example steps according to an example
embodiment of the present invention. Step 1 of FIG. 6
illustrates the results of issuing uops u2—u9. The history
buffer 122 1n step 1 of FIG. 6 stores a new RF pointer (field
310), an old RF pointer (field 312) and the corresponding
logical register (field 314) for each of uops u0—u9. These
reflect the logical to physical register mappings performed
for each of uops u0—u9. For example, u4 results 1n the old
RF entry (RF6) corresponding to register A to be replaced
with the new RF entry (RF10). The RAT primary array 110
in step 1 also reflects the newest or most speculative state,
after allocation of an RF entry for u9. Referring to the
primary array 110 1n step 1 of FIG. 6, RF12 mapped to
register A resulted from uop u6, RF15 mapped to logical
register B resulted from uvop u9, RF13 mapped to register C
resulted from uvop u7, RF14 mapped to logical register D
resulted from vop u8, and RF8 mapped to logical register E
resulted from uvop u2. Note that the allocation pointer 324
progressed from right to left (u0—u9) and then back u0.
However, none of the uops u0—u9 have been retired (all Os
in the Retire field 316). Thus, the allocator 120 would at this
point stall the RAT from allocating resources for any addi-
tional vops because no RF entries are available.

Step 2 of FIG. 6 illustrates the result of subsequently
retiring uops u0—u9. Ones (1s) have been written to the retire
field 316 for each vop, indicating that each of these uops is
available again for allocation. Retirement does not alter the
contents of the primary array 110.

US 6,633,970 Bl

17

Step 3 of FIG. 6 1illustrates the results of subsequently
1ssuing uops ul0—uls. For example, RF35 1s allocated to ul2,
which 1s a write to logical register B. Thus, for ul2 in step
3, the old value in array 110 for register B (RF 15) is stored
in the old/free field as the old value, line 620. The new
allocated RF pointer (RFS) is then stored in the new field

310 for ul2, line 622. The new allocated RF pointer (RFS5)
1s then stored 1n the RAT primary array entry corresponding
to logical register B, line 624.

FIG. 7 1s a diagram of a history buffer, a RAT primary
array and a RAT shadow array for three more example steps
according to an example embodiment of the present mven-
tion. Step 1 of FIG. 7 continues from the end of step 3 of
FIG. 6. In this example, 1t 1s assumed that vop ul3 1s a
branch instruction. As a result, mm step 1 of FIG. 7, the
shadow array 112 advances from ul0 to ul4, which 1s the
next uop after the branch uop (ul3). Uops ul0—ulS have
been allocated. It can be seen that vops ul0—ul5 have been
allocated because the retirement field 316 1s cleared to zero
for each of these uops. The RAT primary array 110 in step
1 of FIG. 7 also reflects the allocation up through ul$ (e.g.,
logical register Abeing mapped to RF6, and register C being
mapped to RF9). Because ul3 is a branch uop, the uops after
uld (i.e., ul4-uls) are part of a predicted path. Thus, the
shadow array 112 contains (or reflects) the state of the
logical registers up through the allocation for ul3 (the
branch uop). The shadow array 112, however, stops at ul4
until the processor determines whether branch vop ul3 was
correctly predicted (thus, indicating whether vops ul4 and
ulS are correct or not). Thus, the shadow array 112 is
pointed at (or near) the estimate of the next predicted path
failure, ul3 (since shadow array 112 in step reflects the state
up through the allocation for uop ul3, the branch
instruction).

In step 1 of FIG. 7, 1n this example, it 1s assumed that
branch uvop ul3d was mispredicted, as shown 1 FIG. 7, step
1. The branch uop ul3 mispredicts (a mispredict is detected),
and the shadow array 112 advances to the branch instruction,
uop ul3(these could occur in either order).

In step 2 of FIG. 7, since the state of the shadow array 112
reflects Pdst allocations only up through the mispredicted
branch instruction (uop ul3), the RAT primary array 110 can
recover from the mispredicted branch 1n one clock cycle by
flash copying the information i shadow array 112 to the
primary array 110. Step 2 of FIG. 7 illustrates the primary
array after flash copyimg the information from the shadow
array 112 to the primary array 110. Thus, in step 2 of FIG.
7, the primary array 110 and the shadow array 112 are
identical. However, according to an embodiment, to the
fields and pointers 1n the history buffer 122 are not changed
by the flash copy into the primary array 110.

In step 3 of FIG. 7, after the flash copy from the shadow
array 112 into the primary array 110, the shadow pointer
jumps up to the position of the allocation pointer 324.
Allocator 120 allocates the next two RF entries, RF10 and
RFE7 (see new Field, N, 310 in history buffer 122) for uops
ul6 and ul7, respectively, and allocation pointer A 324 steps
forward two uops just past ul7 (as shown in step 3 of FIG.
7). In addition, as compared to step 2 of FIG. 7, the
retirement pointer (R) 320 continues to step forward, one
uop at a time, as the ROB 130 notfifies the allocator 120 that
cach of uvops ul0—ul3 have been retired. Thus, the retire
field (R) 316 is set to 1 in history buffer 122 for each of uops
ul0—ul3 because these uops have been retired, while the
retire field 316 for bad vops ul4—uls are cleared to zero
because these bad uvops will not be retired. The retirement
pointer 320 moves forward up to ul4 (uvops ul0—uld have

10

15

20

25

30

35

40

45

50

55

60

65

138

now been retired). Thus, at this point, the retirement pointer
320 points to ul4. Once the shadow pointer (S) 322 and the
retirement pointer (R) 320 have moved past the mispredicted
branch ul3 (i.e., once all uops up through the mispredicted
branch have been retired), the retirement pointer (R) 320
may skip over any bad uops after the mispredicted branch
(or other path failure) which were allocated before the
mispredicted branch was detected. These bad uops (i.e.,
ul4—ulS) are part of a mispredicted path and will never be
retired (and thus should be skipped and not retired).
Preferably, however, the retirement pointer walks (one or
more uops per clock cycle) through all the uops (both good
and bad), but the processor indicates which uops are good
(and should be retired) and which uops are bad (and should
not be retired). The ROB 130 can issue a false retirement
indication for those bad uops (e.g., ul4—ulS) after the
mispredicted to branch (to indicate that their execution
results should not be committed to architectural state). The
processor can distinguish bad uops after the branch from
ogood uops, for example, based on the jump color path field
318 (i.e., bad vops have a greater sequence number than the
mispredicted branch and a jump color path that is the same
as the mispredicted branch instruction ul3). This is briefly
explained below.

At the time the mispredicted branch was detected,
resources had already been allocated for vops ul4 and ulS$,
which can be seen 1n step 2 of FIG. 7 because the allocation
pointer 324 points just past uop uls. Thus, RF entries (i.c.,
REF6 and RF9, respectively) had already been allocated to
ul4 and ulS at the time the mispredicted branch was
detected, as shown 1n step 1 of FIG. 7. As a result, ul4 and
uls are allocated after the mispredicted branch (ul3) and are
part of a mispredicted path. Thus, vops ul4 and ul$ are bad
(incorrect). Uops ul4 and ulS are bad and will never be
retired. Because a mispredicted branch was detected, the
value 1n the jump color path 318 will be changed beginning
where the allocation pointer (A) 324 was pointing when the
mispredicted branch was detected. Thus, a new value (1) is
used for the Jump color path field (J) 318 beginning for uops
ul6 and ul7 to indicate that these uops are part of a different
predicted path (in this case, a correct path). Thus, in history
buffer 122, the jump color path field 318 is a zero (0) for
ul0—ul$, and is a one (1) for uops ul6 and ul7. (The jump
color path field 318 for columns after ul7 are 1 because
these columns are unallocated, and thus are old data, but will
be set to 1 when allocated to uop ul8, etc.). According to one
example, the uops ul0—ulS are part of a green path (ump
color path field 318=0),while uvops ul6 and ul7 are part of
a blue path (jump color path field 318=1).

FIG. 8 1s a diagram of a history buffer, a RAT primary
array and a RAT shadow array for three additional example
steps according to another example embodiment of the
present mvention. Step 1 of FIG. 8 continues from the end
of step 3 of FIG. 6. At step 1 of FIG. 8, the shadow array 112
advances to vop ul4, the branch vop ul3 mispredicts, and
the shadow array 112 is flash copied mnto the primary array
110. Thus, the primary array 110 and the shadow array in
step 1 of FIG. 8 contain the same information.

At step 2 of FIG. 8, the allocation pointer (A) 324
progresses just past ul7. In this example, the shadow pointer
(S) 322 1s advanced in sequence (one or more uops at a time)
to the mispredicted branch ul3, and then skipped over ul4
and ulS (bad uops) to ul6 based on the change in the jump
color path field 318. The shadow pointer 322 then moves
sequentially up to the allocation point (i.e., past ul7). In
addition, uvop ul0 retires and the retirement pointer (R) 320
moves to ull. The retirement of ull, however, generates an

US 6,633,970 Bl

19

event (such as an interrupt), which causes the subsequent
predicted path (including uvops ul2—ul7) to fail. Even ul3 is
bad and should not have been executed. Thus, uops ul2—ul7
are now considered to be bad uops.

Step 3 of FIG. 8 will now be described. In response to
detecting the event generated by uop ull of step 2 of FIG.
8, the shadow pointer (S) 322 moves back sequentially (e.g.,
in order one or more uops per clock cycle) from the location
of allocation pointer (A) 324 (column 805) back to the
position of the retirement pointer (R) 320, which is at ull.
The shadow pointer (S) 322 walks backwards sequentially
through both the good uops and the bad uops. There 1s no
problem with the shadow pointer (S) 322 moving backwards
through bad uops (e.g., vops ul4 and ulS) because this
merely restores the old values to the shadow array.
Alternatively, the bad uops can be skipped.

Steps 2 and 3 together 1llustrate the process of moving the
shadow array 112 backwards one uop to ul7. The shadow
pointer (S) 322 is moved backwards by copying the value
(i.e, the RF pointer) in the old field 312 of each column
which the shadow pointer (S) 322 traverses or passes into the
appropriate logical register entry in the shadow array 112.
For example, as shown 1n steps 2 and 3 of FIG. 8, to move

the shadow pointer (S) 322 back one uop to ul7, the pointer
value (RF2) in the old field 312 of ul7 is copied into the

shadow array 112 (shown as line 812 in FIG. 8), at the
location 1n array 112 corresponding to the logical register for
ul7, logical register E (shown as line 810, FIG. 8). The
shadow pointer (S) 322 is accordingly shown as pointing to
ul7 1n step 3. Thus, step 3 1llustrates the history buifer 122,
primary array 110 and shadow array 112 after the shadow
array (S) 322 has moved backwards one uop to ul7.

In a similar manner, the shadow pointer(S) 322 then
continues moving backwards sequentially one or more uops
at a time until the shadow pointer (S) 322 reaches the
location of retirement pointer (R) 320 (pointing to ull),
which 1s the uop that generated the event. The contents of the
shadow array 112 are then flash copied into the primary
array 110. The shadow pointer (S) 322 then jumps up to the
location of the allocation pointer (A) 324. The allocator 120
then continues allocating RF entries for the next uop (i.e.,
ul8), which is part of the correct path. The RF entry (column
805) will be allocated for uop ul8, and a different value will
be used 1n the jump color path field 318 for vops ul§, ul9,
etc, because uops ul8 and ul9 are part of a new predicted
path. The jump color path value for ul8 can be a third value
(¢.g., the value 2), or can switch back to the value zero if
jump color path 318 1s a binary value.

According to an embodiment, uop ull does not retire due
to the event (i.e., ull is a bad uvop due to the event).
Retirement pointer (R) 320 must be moved forward to ul8,
which is the next uop that will be retired (ull—ul7 are bad
uops). Because uops ull—ul7 are bad uops, these uops will
not be retired and their corresponding retire fields 316 will
cach remain a zero (0), indicating not retired. There are
different ways to move the retirement pointer (R) 320
forward to ul8. Uops ull—ul7 are all bad uops, due to vop
ull which generated an event (at the time allocation pointer
A was pointed at the vop or column 805 immediately after
ul?). Uop ul7 was the last uvop allocated when the event at
ull was detected. Therefore, vops ull—ul7 are all bad or
incorrect uops, and will not be retired.

According to one embodiment of the invention, the ROB
130 realizes that uvop ull 1s a bad uop and sends the allocator
120 a bogus or false retirement indication for uop ull,
causing the retirement pointer 320 to move from ull to ul2.

10

15

20

25

30

35

40

45

50

55

60

65

20

The same 1s done to move the retirement poimter 320 from
ul2 to ul3d. The ROB 130 could 1ssue false retirement
indications for each uvop between the event and the next

branch instruction (e.g., issue false or bogus retirement
indications for uops ull and ul2 in this example). Once the
retirement pointer (R) 320 reaches this next branch instruc-
tion ul3, the retirement pointer (R) 320 then skips over the
uops with the jump color path field (0) that is the same as the
branch (ul3) to ul6. Additional false retirement indications
are then issued to move the retirement pointer (R) 320 to
ul8, which 1s the next correct instruction that will actually
be correctly retired. According to another embodiment, the
ROB 130 sequentially 1ssues false retirement indications for
cach of ul3—ul7, moving the retirement pointer 320 to uls.
According to yet another embodiment of the invention, a
third distinct value (i.e., 2) can be used in the jump color
path field for the new (correct) path of uops ul8§, ul9, etc.
This can be, for example, referred to as the purple path, and
1s associated with the present location of the allocation
pointer 324. The retirement pointer (R) 320 would then jump
ahead to where the allocation pointer (A) 324 is pointing
(e.g., R jumps ahead until it reaches the value in the jump
color path field associated with the position of the allocation
pointer 324). Other techniques can be used to move the
retirement pointer (R) 320 to the next uop to be retired (e.g.,
to uop ul8). However, the retire field 316 for each of the
incorrect uops will remain cleared or zero because these
incorrect uops will not be validly retired (but these incorrect
or bad vops may generate the bogus retirement indication to
move the retirement pointer forward).

According to an embodiment of the mnvention, the retire-
ment pointer 320 steps through all uops (both good and bad)
after a mispredicted branch occurs, and the processor may
use false retirement indications for those bad uops.
However, if an event occurs that 1s not a mispredicted branch
(e.g., trap, interrupt), the retirement pointer 320 may then
jump up to the location of the allocation pointer 324 after a
flash copy 1s performed from the shadow array 112 into the
primary array 110.

In general, there may be two types of events: a trap and
a fault. If an instruction causes a fault, the instruction will
not be retired. However, 1f an instruction causes a trap, the
instruction will be retired (and a 1 will be written to the retire
field 316 for the instruction). Therefore, in the example of
step 3 of FIG. 8 described above, the vop ull generated a
fault type of event because ull was not retired (the processor
issued a bogus retirement indication for ull).

A brief explanation will now be provided which describes
onc way 1n which RF entries are reallocated for new uops.
The history buffer shown 1n FIG. 8 is ten entries wide and
may be considered to be a circular bufler, as an example. The
allocator 120 (FIG. 1) allocates RF entries for each new uop.
According to an embodiment, the allocator 120 can allocate
an entry from the oldest uop 1n the history buffer 122. For
example, after uops ul8 and ul9 are allocated, uop u20 must
be allocated from the RF entries listed in the new and old
fields of the next column in the history buffer 122 (i.e.,
column for uop ul0). The allocator 120 will select the new
RF entry 310 or the old RF entry 312 from a column in the
history buffer 122 to be allocated to the new uvop, depending
on the value of the corresponding retire field 316 of that
column. If the retire field 316 1s a 1, (indicating that this
previous uop was validly retired), the old RF entry 312 is
allocated to the new uop. This indicates that The old RF
entry 1s reallocated when the previous uop 1s retired because
uops are retired 1in order and there are no other uops which
will need this old data (data in the old RF entry). Newer uops

US 6,633,970 Bl

21

may still need the new data (data in the new RF entry). On
the other hand, if the retire field is a O (indicating that the uop
was never retired), the allocator will reallocate the new RF
entry 310 1n the column of the history buffer 122. This 1s
because the new RF entry contains bad or incorrect data
which will not be needed by any uops (and thus can be
reallocated), while the old RF entry contains the correct data
which may be needed by other uops.

As an example, if RF entries have been allocated for vops
ul0—ul9. The allocator 120 1s now ready to allocate an RF
entry for uop u20, and the allocator 120 will select one RF
entry from the column corresponding to previous uop uld.
The retire field 316 1s a 1 for uop ul0 as shown at the bottom
of FIG. 8. This indicates that uop ul0 was retired, and the
old RF entry (RF8 in this example) will be allocated for uop
u20. For uop u2l, it can be seen that the next column
corresponds to ull. The retire field 316 for ull 1s a zero

which 1ndicates that ull was not retired. Thus, the new RF
entry (RF3) from ull at the bottom of FIG. 8 will be

allocated to u2l.

The particular register allocation/deallocation technmiques
described herein are demonstrative. Neither these nor any
other specific register allocation/deallocation techniques
may be required for the present imvention. Alternative
known or otherwise available register allocation and/or
deallocation techniques may be used.

Several embodiments of the present invention are spe-
cifically illustrated and/or described herein. However, 1t will
be appreciated that modifications and variations of the
present invention are covered by the above teachings and
within the purview of the appended claims without departing
from the spirit and intended scope of the invention. For
example, while the present invention has been described
with reference to the above-described history buifer, a wide
variety of techniques or bufler formats can be used to keep
track of the historical allocation of physical registers for
cach uop.

What 1s claimed 1s:

1. An apparatus for allowing a processor to recover from
a failure of a predicted path of instructions comprising;:

a plurality of physical registers to store architectural data
and speculative data, each physical register to store one
of architectural data and speculative data;

a primary array to store a speculative state of the proces-
sor 1ncluding mappings from logical registers to physi-
cal registers;

a history buifer coupled to the primary array to store
information identifying physical registers in a mapped
sequence; and

a retirement pointer associlated with the builer, the retire-
ment pointer to identify which physical registers 1n the
mapped sequence store architectural data.

2. The apparatus of claim 1, further comprising logic to
change the retirement pointer when one of the physical
registers stores architectural data.

3. The apparatus of claim 1, wherein the information
stored within the buffer comprises a bit to identify whether
a respective physical register stores architectural data.

4. The apparatus of claim 1, wherein the buffer allows
recovery from a mispredicted event.

5. The apparatus of claim 1, wherein the buffer comprises
an array having a free/old field and a retire field, the free/old
field to identify available physical registers and previous
physical registers based on corresponding information in the
retire field.

6. The apparatus of claim 1, wherein the retirement
pointer 1dentifies the next physical address to be allocated.

10

15

20

25

30

35

40

45

50

55

60

65

22

7. A method of allocating registers 1 a speculative
processor comprising the steps of:

recelving an instruction specifying a logical register for
storing an execution result;

allocating a physical register for storing the instruction,
said physical register being one of a plurality of reg-
isters to store architectural data and speculative data,
cach physical register to store one of architectural data
and speculative data;

storing 1n a history buffer information identifying physical
registers 1n an allocated sequence; and

moving a retirement pointer associated with the history
buffer to 1identily whether an execution result stored 1n
the physical register in the allocated sequence 1s archi-
tectural data.
8. An apparatus for allowing a processor to recover from
a failure of a predicted path of instructions comprising;:

a plurality of physical registers to store architectural data
and speculative data, each physical register to store one
of architectural data and speculative data;

a primary array storing a mapping from logical registers
to physical registers, the primary array storing a current
speculative state of the processor;

an allocator allocating an available physical register as the
physical destination for storing the execution results of
an 1nstruction, the allocated physical register corre-
sponding to a logical register;

a history bufler coupled to the secondary array and storing
information related to historical remapping of logical
registers from previous physical registers to current
physical registers;

a secondary array coupled to the primary array and the
history bufler, the secondary array storing a secondary
speculative state of the processor including a mapping
from logical registers to physical registers, the second-
ary array being movable to any instruction between the
point of physical register allocation and retirement
based on the history bufler, the secondary array being
movable to any location or instruction independent of
which 1nstructions have been executed;

wherein the secondary array can be copied to the primary
array to allow the processor to recover from the failure
in the predicted path.

9. The apparatus of claim 8, further comprising a retire-
ment pointer associated with the history buffer to identily
which physical registers store architectural data.

10. The apparatus of claim 8 wherein said secondary array
1s moved to an estimated location of a next failure in the
predicted path, the secondary array being adjusted to a
correct state if necessary and then copied into the primary
array 1f a path failure occurs to allow the primary array
recover from the path failure to the correct state.

11. The apparatus of claim 8 wherein the processor
attempts to maintain the secondary array at an estimate of
the next mispredicted branch instruction or other 1nstruction
which may generate an event that would result 1n a failure
of the subsequent path.

12. The apparatus of claim 8 wherein the secondary array
comprises a plurality of secondary arrays, at least some of
the secondary arrays being located at different locations, one
of the secondary arrays being selected and copied into the
primary array if predicted path failure occurs to restore the
primary array to a correct state.

13. The apparatus of claim 11 wherein each of the
secondary arrays 1s located at a different location in the
history buffer.

US 6,633,970 Bl

23

14. The apparatus of claim 8 wherein the history buifer
includes path information that allows the processor to dis-
tinguish between: a) register mappings for any instructions
after a path failure which are part of failed or incorrect path
which should not be executed, and b) register mappings for
instructions after a path failure which are part of a correct
path.

15. The apparatus of claim 8 wherein the history buifer
includes a list of free or available physical registers.

16. The apparatus of claim 8 wherein the history buifer
comprises one or more pointers to the history buffer, includ-
Ing:

an allocation pointer 1dentifying the next available physi-

cal register to be allocated for the next instruction;

a retirement pointer 1dentifying the entry in the history
buffer corresponding to the next imstruction to be
retired; and

a secondary pointer identifying the current location or
state of the secondary array.

17. The apparatus of claim 8 wherein the secondary array

comprises a plurality of secondary arrays, each secondary

array storing a secondary speculative state of the processor
including a mapping from logical registers to physical
registers, each of the secondary arrays being movable to any
instruction between the point of physical register allocation
and retirement based on the history buffer, each of the
secondary arrays being movable to any location or mnstruc-
fion mndependent of which instructions have been executed;

wherein one of the secondary arrays can be copied to the
primary array to allow the processor to recover from
the failure in the predicted path.

18. The apparatus of claim 17 wherein each of the
secondary arrays storing a speculative state at an estimate of
where a path failure 1s likely to occur, the apparatus using,
branch prediction logic to 1dentily estimates where the path
failures are likely to occur.

19. An apparatus for allowing a processor to recover from
a failure of a predicted path of instructions comprising;:

a plurality of physical registers to store architectural data
and speculative data, each physical register to store one
of architectural data and speculative data;

a primary array storing a first speculative state of the
processor including a mapping from logical registers to
physical registers,

a secondary array coupled to the primary array, the
secondary array storing a second speculative state
including a mapping from logical registers to physical
registers, the second speculative state of the processor
being previous to the primary speculative state of the
processor; and

a history buffer coupled to the secondary array and storing
information related to historical remapping of logical
registers from previous physical registers to current
physical registers.

20. The apparatus of claim 19 wherein the secondary
array being movable to a particular speculative state based
on the mappings stored in the history buifer, wherein the
secondary array can be copied to the primary array when a
failure 1s detected 1n a predicted path of mstructions to allow
the processor to recover from the failure in the predicted
path.

21. The apparatus of claim 19 wherein the history buffer
identifies the following information for each instruction:

a logical register that 1s the logical destination for the
execution results of the instruction;

a new physical register selected from available physical
registers and that 1s allocated as the physical destination

10

15

20

25

30

35

40

45

50

55

60

65

24

for the execution results of the instruction, the new
physical register being mapped to the logical register;
and

an old physical register previously mapped to the logical
register.
22. The apparatus of claim 21 wherein the predicted path
fallure comprises at least one of the following:

a mispredicted branch instruction;
an 1nstruction that generated a fault; and

an 1nstruction that generated a trap.

23. The apparatus of claim 19 wherein the primary array
includes a pointer to a physical register for each logical
register.

24. The apparatus of claim 19 wherein the secondary
array includes a pointer to a physical register for each logical
register.

25. The apparatus of claam 19, further comprising a
retirement pointer associated with the history buffer to
identify which physical registers store architectural data.

26. An apparatus comprising:

a plurality of registers to store architecturally committed
data and speculative data, each one of said plurality of
registers to store one of architecturally committed data
and speculative data;

logic to store a plurality of states including a speculative
state and at least one shadow state, each of said
plurality of states including mappings from logical
registers to physical registers 1n said plurality of reg-
1sters;

a history bufler storing information identifying physical
registers 1n a mapped sequence and information related
to historical remapping of logical registers from previ-
ous physical registers to current physical registers; and

logic to change a retirement pointer associlated with the
history bulifer, the retirement pointer to 1dentify which
physical pointers in the mapped sequence store archi-
tecturally committed data.

27. The apparatus of claim 26 and further comprising;:

logic to advance a plurality of pointers, one of said
plurality of pointers being an allocation pointer that
indicates a primary state that 1s advanced by specula-
fively executed instructions, one of said plurality of
pointers being a shadow pointer that indicates a shadow
state having a lesser degree of speculation than said
primary state.

28. The apparatus of claim 27 and further comprising:

speculation recovery logic to copy said shadow state to
said primary state to undo at least a portion of com-
pleted speculative execution.

29. The apparatus of claim 27 wherein said logic to
advance said plurality of pointers 1s capable independently
advancing each of said plurality of pointers.

30. The apparatus of claam 28 wherein said at least one
shadow state comprises a plurality of shadow states, each of
said plurality of shadow states reflecting a different degree
of speculation that i1s lesser than said primary state, and
wherein said speculation recovery logic 1s capable of copy-
ing any of said plurality of shadow states to said primary
state to undo speculative execution.

31. The apparatus of claim 26 wherein said logic to store
a plurality of states comprises:

a primary array to store said speculative state;
a secondary array to store said shadow state; and

logic to update said primary array upon retirement of an
Instruction.

US 6,633,970 Bl

25

32. The apparatus of claim 31 wherein the logic to update
said primary array comprises a history buifer coupled to the
secondary array, said history buifer to store historical physi-
cal register to logical register mappings performed for each
of a plurality of instructions of a predicted path.

33. The apparatus of claim 26, wherein the logic changes
the retirement pointer when one of the physical registers
stores architecturally committed data.

34. The apparatus of claim 26, further comprising a
history buffer associated with the retirement pointer, the
retirement pointer to identify a specific entry in the history
buffer.

35. The apparatus of claim 34, wherein the information
stored within the buffer comprises a bit to identify whether
a respective physical register stores architectural data.

36. The apparatus of claam 34, wherein the history bufler
allows recovery from a mispredicted event.

37. The apparatus of claim 34, wherein the history buffer
comprises an array having a free/old field and a retire field,
the free/old field to identity available physical registers and
previous physical registers based on corresponding infor-
mation 1n the retire field.

38. The apparatus of claim 34, wherein the retirement
pointer 1dentifies the next physical address to be allocated.

39. An apparatus comprising;:

a plurality of physical registers to store architecturally
committed data and speculative data, each one of said
plurality of registers to store one of architecturally
committed data and speculative data;

10

15

20

25

26

a primary array to store a speculative state of a processor
including a mapping from logical registers to physical
registers;

a history buflfer to store information related to historical
remapping of logical registers from previous physical

registers to current physical registers 1n a mapped
sequence; and

a pointer controlled by logic so as to 1denfify a location
within the history buffer, the location to 1dentify which
physical registers in the mapped sequence store archi-
tectural data.

40. The apparatus of claim 39, further comprising logic to
change the retirement pointer when one of the physical
registers stores architectural data.

41. The apparatus of claim 39, wherein the information
stored within the history buffer comprises a bit to identily
whether a respective physical register stores architectural
data.

42. The apparatus of claim 39, wherein the history bufler
allows recovery from a mispredicted event.

43. The apparatus of claim 39, wherein the history buffer
comprises an array having a free/old field and a retire field,
the free/old field to 1dentity available physical registers and
previous physical registers based on corresponding infor-
mation 1n the retire field.

44. The apparatus of claim 39, wherein the retirement
pointer 1dentifies the next physical address to be allocated.

G o e = x

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,633,970 Bl Page 1 of 1
DATED . October 14, 2003
INVENTOR(S) : David W. Clift et al.

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 22,
Line 52, “primary array” should be -- primary array to --.

Signed and Sealed this

Seventh Day of March, 2006

JON W. DUDAS
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

