US006622283B1

US 6,622,283 Bl
Sep. 16, 2003

(12) United States Patent
Cohen

(10) Patent No.:
45) Date of Patent:

(54) DIGITAL SIGNAL PROCESSOR DECODING “A Fast Search Method Of Algebraic Codebook By Reor-
OF CONVOLUTIONALLY ENCODED dering Search Sequence,”0 Nam Kyu Ha, Samsung
SYMBOLS Advanced Institute of Tecnology.

“Generalized Trace—Back Techniques for Survisor Memory

(75) Inventor: Paul E. Cohen, San Jose, CA (US) Management in the Viterbi Algorithm,” Robert Cypher and

C. Bernard Shung, Journal of VLSI Signal Processing, 5,

(73) Assignee: NEC Electronics, Inc., Santa Clara, CA 85-94, 1993

(US) “Convolutional Encoding And Viterb1 Decoding” Dion
_ _ S _ Messer Funderburk, Apr.
(*) Notice: Sub]ect. to any dlsclalmer,: the term of this “A Fast Search Method Of Algebraic Codebook By Reor-
patent 1s extended or adjusted under 35 dering Search Sequence,” Nam Kyu Ha, Samsung Advanced
U.S.C. 154(b) by 0 days. Institute of Technology.
“Memory Management In A Viterb1 Decoder,” Charles M.
(21) Appl. No.: 09/493,767 Rader, Transactions On Communications, vol. Com—29, No.
. 9, Sep. 1981.

(22) Filed: Jan. 28, 2000 “Vitelr)bi Decoder Designs Using IP Soft Cores,” Scott R.

(51) Int. CL7 ..o, HO3M 13/03 Powell, Wayne L. Marking, and Thomas M. Cesear,

(52) US.Cl ..oeoveva.. 714/794; 714/792; 714/795, Inventra™Parameterized Sott Cores Business Unit, Mentor

714/796 Graphics Corp.
(58) Field of Searchccocooooovvvvvvvee. 714/792, 794, " Digital Signal Processor,” NEC, Sep. 1998,
7147795, 796 * cited by examiner
(56) References Cited Primary Examiner—Albert Decady
Assistant Examiner—Joseph D. Torres
U.S. PATENT DOCUMENTS (74) Attorney, Agent, or Firm—Skjerven Morrill LLP
5,220,570 A * 6/1993 Louetal.cceeenenen. 714/791 (57) ABSTRACT
5479419 A * 12/1995 Naoi et al. evoveveenn.... 714/794
5,781,569 A * 7/1998 Fossorier et al. 714/795 In one embodiment, a file of all the initial states (or their
5,787,127 A * 7/1998 Ono et al. 375/341 equivalents) and the nth surviving states associated with the
5,878,092 A = 3/1999 Chol ..ccooooiiiiiiinnen, 375/341 initial states 1s stored along with the path metric. The mitial
5974091 A * 10/1999 Huffoeiiinnn.. 375/265 states (OI‘ their equivalents) are an index to a previous file.
6,035,428 A * 3/2000 Jekalcocovininininniin, 714/702 Anew file or files are then generated. An appropriate
6,088,404 A * 7/2000 JeKal .oovoveeveereererennn.. 375/341 A o
6.108386 A * 82000 Chen et al. w....o........ 375/341 criterion 1s utilized to select a final surviving state. The path
6,134,697 A * 10/2000 Jekalccceveverueee... 714/792 can be traced back through a plurality of files and the “most
6,161,210 A * 12/2000 Chen et al.vov........ 714/786 likely” path determined. The 1dentifying binary numbers of
6,222,889 Bl * 4/2001 L1e€ .oovvuveeunvenevnnnannne. 375/265 the final states of each file and the binary numbers of an
6,259,749 B1 * 7/2001 Andoh ... 375/341 original 1nitial state determine the “most likely” sequence of
6,327,317 B1 * 12/2001 Chennakeshu et al. 375/341 convolutionally-encoded symbols received by the decoder.
6,374,387 BL * 4/2002 van den Berghe 7147790 The convolutional decoding can be implemented with a

OTHER PUBLICAITONS

“A Multistate Search Of Algebraic Celp Codebooks,”

Miguel Arjona Ramirez and Max Gerken, Electronics Eng.
Dept., University of Sao Paulo.

digital signal processor and a dedicated peripheral unit. This
apparatus can provide an eflicient use of memory for the
possible decoding paths.

43 Claims, 20 Drawing Sheets

50\
o1 52 53
Metric Trellis History
Server Decoder Tracker and
Unit Unit Merger Unit
| Bytestream
U‘:""
Signal
Symbol
Handles
Eight Transition
Metric Tables, then
Outputs a Single
History Table

US 6,622,283 Bl

Sheet 1 of 20

Sep. 16, 2003

U.S. Patent

(147 40%i)
I |

US 6,622,283 Bl

Sheet 2 of 20

Sep. 16, 2003

U.S. Patent

g
()
i

e
0’ 0’ ¢
Al

‘.
(s
s

0
slactactichactae
oP_‘oV‘o?BPF‘o'T?}?}P} 0000

(p4Y 4024)
¢ A

VeVeVeve s a

~ % ‘ ‘o FO)
ey -
5!

J3/3/0 0 @

U.S. Patent

Sep. 16, 2003

Sheet 3 of 20

1111
1110

FIG. 3
(Prior Art)

N =1
o o S <
A=
A e

1011 0111
0011 ZOﬂO

ot 1110 1101

'i{;:;:;t{ 1001
1010 0101 101OZO101
o 1000 0001 0010 0100
0110 1100 100120011
0100 1000 0001 0010
0010 0100%100020001
0000 0000 0000 0000

FIG. 4
(Prior Art)

US 6,622,283 Bl

US 6,622,283 Bl

Sheet 4 of 20

Sep. 16, 2003

U.S. Patent

£

G

Nun Jobse
pui Jayoel |
AOJSIH

g Old

9|qe] AIOJSIH
916uIg e sindinQ

Uay} ‘sajqel JLsN
uogisuel ybi3

sajpueH

UM
10p03RQg
Sljjed]

¢S

US 6,622,283 Bl

Sheet 5 of 20

Sep. 16, 2003

U.S. Patent

LB B R N R N . N B N N N W E N N W O ON__N N O W N W W N

allly S sl e chile dii ol oS Al chbie shl shile gl s opge dpim ol e bk A L B OB ol o bk ik bhie mpis ceph mah Wi OB

FIG. 64

M g NN TR O T ST R P SO M bk b e S P DO DA A A TR AT 0 w0n it D B ARA AREN apil W BN IR

FIG. 6B

U.S. Patent

.,-.-........—
-

Sep. 16, 2003

"
-
-

Sheet 6 of 20

7

FIG.

PM(01:44-4)=PM(10:t)+TM(01:t44)

P1(01:th-1)

""l-‘-

L

-

PM(00:t) =PM(10:tn.1)+TM(00:r)

PI(10:tp)

PM(10:t,) =PM(01:ty.1) +TM(10:t;,)

PM(00:th.1)
PM(00:th-1)

PM(10:tn.1)
PM(10:t,-1)
PM(01:th.1)
PM(01:ty-1)

US 6,622,283 Bl

th+1

-1

U.S. Patent Sep. 16, 2003 Sheet 7 of 20 US 6,622,283 Bl

otart
(hi, lo are given)
Compute 1201
Shi Sl

1202

Select Transition
Metrics for

Sp; and S|0

1203

Determine which
state data changes

1204
Update State data

FIG. 8

US 6,622,283 Bl

Sheet 8 of 20

Sep. 16, 2003

U.S. Patent

() .
(0)

o[l Xepu|

6 914

LLLOLOOL <=(€)=—(1)<—(}) =—(g)

(1) (1)
s.\a B

(€)
aji4 AICISIH

314

(€) @
9lld Xapu| 9ll4 AoisiH

1+ 9114

(1)

9|l4 X9pu|

(€)
8ji4 AojsiH

¢+ gy

US 6,622,283 Bl

Sheet 9 of 20

Sep. 16, 2003

U.S. Patent

)
(0)

94 Xopu|

(€)
9)l4 AIOJSIH

Yy a4

0}t 914

L0100 <=(E)=—(}) =—(})=—(2)

VOt "O1d

\E (1)

{1} (0) (€)
QRSV 2
o4 xepu) aji4 AoisIH
I+ ;314

{¢}
{1}

{0}

4

94 Xapu

(€)
914 AJoj)SIH

¢4 (914

0/

U.S. Patent Sep. 16, 2003 Sheet 10 of 20 US 6,622,283 Bl

801
Receive Symbols
Convert Symbols To 802

(Digital) Translation
Mefnc Symbols

Transter (Digital)
Transiation Melnc
Signals

U.S. Patent Sep. 16, 2003 Sheet 11 of 20 US 6,622,283 Bl

820 a1
Initidize History, Index and
oo o e =8
822
8% Transition Metrics
844

k=0,n=0, Perform Butterfly operations to
update History, Path Metric and

Index (if appropriate) on all states.

Clear “already
reported” table

Mark state m as already
reported,
setiim)=kand Hm)=m

Table

entry for state n

aready reported
?

entry for state n 840

is the same as for
state m

Table
entry for state m

has already been
reported
7

833
Report the -
kih table entry

843

FIG. 118

U.S. Patent Sep. 16, 2003 Sheet 12 of 20 US 6,622,283 Bl

Receive Copy Of 660
Table (Step 833)

801

Criterion
Met
?

Yes

Using Index Entries,
Determine the Sequence

of History Entries

862

From History Entries

and First index Entry,
Determine Bit Stream

Provide an Output 004
of the Bit Stream

FiIG. 11C

US 6,622,283 Bl

Sheet 13 of 20

Sep. 16, 2003

U.S. Patent

96

un

JOPOAUOD)

vid

G6

G/

UOLO4 AIOWBaN

i
l
|
!
o

Nun Buissanoid

¥6

Ik

jiun
J98AUOY)

an

£6

¢6

|suuey’

16

S|IOQIAS

US 6,622,283 Bl

Sheet 14 of 20

Sep. 16, 2003

U.S. Patent

LINN

W dHdId3d
d30003d
SITI3dL
0014
JHVMOAYH

N
ajepdn ajqe) pue

uonesadQ Ajuanng

b1

03l

Ve

N
$S920Jd

I}

g

O1|OqUIAS

U.S. Patent Sep. 16, 2003 Sheet 15 of 20 US 6,622,283 Bl

5-7 5 | 4 3 02
HBTDP CTRL : : :
Reserved HBTDP RES BIT NUM
FLUSH
FIG. 138
8-15 § 0-7
H LENGTH =
HBTDPERR LENGTH
FIGC. 13C
815 0-7
HISTORY ;
PATH SEQ INDEX
FIG. 13D
Time —=

M 01234567 89101112131415 1617181920212223
BITNUM[0]1]2]314]516]7]0/1]21314/5[6[7] [0[112]3]4]5]16]7
HVD_RES [1]10]ofofofofoiol1]ofojojololofo|= {1[0{0f0]0l0{0[Q

e

FIG. 14

o
et
=3
=
—
o
<
LL
Q
=
Lil

Extract Second Output Table

US 6,622,283 Bl

Sheet 16 of 20

Sep. 16, 2003

U.S. Patent

1INN
Vi 3HdRIAd
4400030
SITIF¥l
MO0
FAYMAYVYH

N
8)epdn o|qge) pue

uonesndp Apenng

681

<EIRINE).
AYOLSIH 881

SYILSIOTY

Ol L3N /a1
NOILISNYHL
SUILSIOIY
JId13IW HIVd 981

<EIRRELS

QIvOa OIS G81

d31 5103

31VAIAONYD 81

d31S1934

3dA1010dd £81

SH3LSIO3Y

135440 A

4318193

TOYLNOD 1}

091

Gl

iun
$5990.4

0S|

sSig
OqWIAS

US 6,622,283 Bl

Sheet 17 of 20

Sep. 16, 2003

U.S. Patent

€6l

9/

I

(3dAL0LOYd
peay)

INOG S3NJH3LLNg

(919)dwo)
suoneindwon
Apepng)

SSIUO0Ud NI VAL

RUN_FLUSH

RUN_BFLY

SSIHO0Ud NI A13¥3LLNS

/

TV 1383y

SSIUO0Ud NI 1353

16}
A1d9 NN

6l

06}

11V 1353y

US 6,622,283 Bl

Sheet 18 of 20

Sep. 16, 2003

U.S. Patent

.desyes

1A

8C0v
L0V
9¢0Y
T4

74
€0t

cCOv

U.S. Patent Sep. 16, 2003 Sheet 19 of 20 US 6,622,283 Bl

i] [oasens

2901
2902
2903

2904
2905
2906
2907
2908
2909

290A
290B

290C
290D

290E
290F
2910

FIG.

US 6,622,283 Bl

Sheet 20 of 20

Sep. 16, 2003

U.S. Patent

US 6,622,283 B1

1

DIGITAL SIGNAL PROCESSOR DECODING

OF CONVOLUTIONALLY ENCODED
SYMBOLS

CROSS-REFERENCE TO RELATED
APPLICATTONS

U.S. application Ser. No. 09/4937764, filed on Jan. 28,
2000, and entitled “Method and Apparatus For Implemen-
tation of a Decoder For Convolutionally Encoded Symbols”
1s a related U.S. application 1s incorporated by reference
herewith.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This 1nvention relates generally to communication tech-
niques and, more particularly, to the decoding of digital
signals 1n a communication system. In the communication
system envisioned by the present invention, each bit of
information has been encoded 1n a multiplicity of transmut-
ted signals. The resulting signals are generally referred to as
convolutionally encoded symbols.

2. Description of the Related Art

Communications channels 1n general and digital wireless
communications in particular must counteract noise which
may obliterate 1ndividual transmitted symbols.
Conceptually, there are two approaches to this problem: one,
by introducing redundancy and another, by smearing the
fransmitted i1nformation over multiple symbols. These
approaches are not entirely separate since any redundancy
makes 1t easier to spread the information over a plurality of
signals, but neither are the two approaches 1dentical.

Convolution codes are often used to implement the smear-
ing of information over several symbols. Simply put, the
EXCLUSIVE_ _OR (XOR) logic operation is applied to
several recent information bits (equivalently, the informa-
tion bits are summed modulo 2) to generate a bit that is to
be transmitted. A second or third convolution code can be
used to generate a second or third bit and thereby introduce
redundancy as well as the information smearing in the
transmitted symbols. These several bits are often combined
and transmitted as a single symbol, represented perhaps by
one state of a modulation constellation.

Referring to FIG. 1, an example of channel coding used
for IS-95 1s 1llustrated. The IS-95 encoder 10 has a series of
delay line components 11. A first set of selected signals from
the terminals of the delay line components 11 are applied to
a first XOR component 12, while a second set of selected
signals from the terminals of the delay line components are
applied to a second XOR component 14. This rate Y2 code
has constraint length 9, 1.e. 9 delay line components 11.
Notice that for this encoder, each put bit results in two
different output bits and that each of the two output bits
depends on the current mnput bit and either four or five of the
preceding eight input bits. Assuming that the preceding eight
bits are fixed, there are only two output bit-pairs possible
from XOR components 12, 14 depending upon the next
input bit. However, there are four possible output bit-pairs
that could be transmitted 1n all when the preceding bits are
not fixed.

Note that, for the exemplary IS-95 channel encoder, a
single mnput bit affects the next 9 output bit pairs, no one of
which reflects exactly the information of that single input
bit. The convolution codes smear the information of the
single 1nput bit over eighteen bits of output bit pairs. The
virtue of this smearing of information 1s that, when a single

10

15

20

25

30

35

40

45

50

55

60

65

2

symbol (or even more than one symbol) is corrupted in
transmission, the decoder often can still recover the 1nput
information bit.

Computing Metrics

Pairs of output bits become symbols that have some
physical representation on the communications channel.
These symbols are transmitted and the receiver makes a
measurement of the resulting signal that 1t receives. Of
course, the received signal differs from the signal that is
transmitted and the difference between the two signals 1s
called noise. The receiver can calculate the distance between
the received signal and each of the four symbols that might
have been transmitted. The details of the computation of this
metric depend on the particular communications channel
and how the states are represented physically.

In the receiver’s computation of meftrics, a first option
provides for the conversion of the received signal to a digital
signal (in this case a pair of bits) and then computation of the
metric. Apparatus using this approach i1s called a hard
decision decoder. The other option, which 1s more complex
computationally but which generally results in fewer errors,
1s the computation of the metric from the original signal
levels; this process being provided by a soft decision
decoder.

Trellis Decoding

Referring next to FIG. 2, a four-state trellis diagram,
according to the prior art, 1s illustrated. Each column of the
trellis diagram represents a Viterb1 decoder at an instant of
time and the arrows 1n the diagram represent the transitions
of that decoder from one instant of time to the next. Notice
that the nodes of the diagram are labeled with a pair of
binary digits, 00, 01, 10, 11, the binary digits representing
the state numbers 0, 1, 2, and 3. Also observe that the arrows
between nodes are labeled either O or 1 and that the label of
cach node 1s always formed by concatenating the labels any
pair of arrows from two columns earlier that lead to that
node. Expressed another way, the number of each node
specifies the last two (because this is a four-state decoder)
transitions made to get to that state. Of course multiple paths
lead to each state, but these paths differ only at earlier
transitions.

Referring once again to FIG. 2, in moving from one
mcrement of time to the next, the Viterbi decoder, 1.e., a
decoder that decodes convolutionally encoded symbols,
receives or computes metrics representing the distance from
the received signal to what would be transmitted for an
information bit of “0” and for an 1nformation bit of “1”. This
computation 1s performed for each possible history of trans-
mitted bits as encoded by the various state identification
numbers. These metrics are referred to as transition metrics
and they include the noise for a current symbol. The
transition metrics are summed along the paths and these
sums are called path metrics

Two arrows represent transitions that can enter each node
and two other arrows represent transitions that can leave
cach node. At each node, path metrics are associated with
cach incoming arrow. The trellis decoder selects the smaller
path metric, 1.¢., the path metric representing the smaller
noise figure of the two mmcoming signals. All of the paths
associated with the non-selected arrow (i.e., transition) are
permanently abandoned by the trellis decoder. The transition
metric corresponding to an information bit of “1” 1s added
to the surviving incoming path metric and the sum 1is
forwarded to the node at the next time instant along the

US 6,622,283 B1

3

arrow labeled 1. Similarly, the transition metric correspond-
ing to an information bit of 0 1s added to the surviving
incoming path metric and sent to the node at the next time
instant along the arrow labeled 0. The configuration of two
incoming arrows and the two outgoing arrows from a node
can be described as a butterfly diagram.

Referring to FIG. 3, examples of butterfly diagrams are
shown for a 16-state encoder. For each butterfly diagram,
two states serve as mnput transitions to determine two states
for the next time 1ncrement. For example, for the buttertly
diagram represented by the solid lines, the states 0001 and
1001 serve as mputs to determine the states 0100 and 0011
for the next time increment. Unfortunately, a significant
amount of memory 1s needed to specily each state. In
implementing the decoding algorithm, not only 1s the history
information associated with each state retained, but the path
metrics are also retained, 1.e., for selecting between two
input transitions that terminate on the same state. If the
buttertly operations are processed as indicated in FIG. 3, two
copies of these data groups would be required to be saved 1n
order that the storage resulting from one butterfly diagram
does not corrupt the input data needed to process the result
of a different butterfly diagram.

An alternative to the doubling of the required memory 1s
to re-assign the state table at each iteration as illustrated in
FIG. 4. Note also 1n FIG. 4, at ecach stage, the buttertly
operation 1s applied 1n a quite regular fashion, the pattern
merely changes from one time increment to the next time
increment. Specifically, the height of the buttertly transition
1s constant within each stage, but reduces by half from one
stage to the next stage.

The primary, but not sole advantage to re-arranging the
order of the state memories 1s that, as the data for a state 1s
updated, the new data can be stored i1n the same locations
that were used, although for a different state number, at the
previous stage. In more visual terms, referring to FIG. 4, the
inputs and outputs for each buttertly operation lie at the same
positions of the arrays, 1.€., the transitions are horizontal.

By selecting the transition with the smaller path metric in
the decoder, at each step 1n time, the number of paths stays
constant 1n the following sense. Half of the entering paths
are abandoned, but the surviving paths are appended with
both 0 and with 1, creating two paths for each of the
surviving paths.

After a sufficient period of time, various paths are aban-
doned and the number of surviving paths that (at a fixed
carlier time t,) pass through a given state becomes ever
smaller. Eventually, all of the surviving paths will pass
through only a single state and at that time, the decoder can
conclude that the most likely mmformation bits are repre-
sented by that particular state at time t,.

In implementing a Viterb1 decoder, two practical difficul-
fies are present: computational load and the demand for
memory. The computational load 1s more a result of the high
symbol rates than of the complexity of the calculation, but
a strong incentive still exists to design the algorithms to be
as elficient as possible.

The memory demands of a Viterb1 decoder derive from
the need to maintain an indefinitely long history of the paths
surviving to each of the states. Maintaining long histories for
cach of the 256 states of an IS-95 decoder, for example, can
require large amounts of memory. A common solution to the
problem of maintaining long histories has been to force the
decoder to make decisions prematurely and therefore guar-
antee a fixed history length. However, such truncations
introduce errors and, 1n order to avoid excessive errors with

10

15

20

25

30

35

40

45

50

55

60

65

4

this approach, history lengths of 4-5 times the constraint
length are generally recommended.

Traditional Viterbir decoders, 1.e., decoders of convolu-
tionally encoded symbols, record (as a single bit in “trace-
back” memory) each decision that is made. At a later time,
the decoder must work backward through this historical
record, one bit at a time, to determine the final decoded
record. This trace-back operation can be computationally
Intensive.

Often, data 1s encoded 1n “frames” consisting of a fixed
number of bits and with several zero’s added to the end. This
procedure allows the decoder to assume that the final state
of the frame 1s zero. Having a known final state greatly
simplifies the trace-back problem.

Aneed has been felt for an apparatus and a method having
the feature that the implementation of the decoding of
signals resulting from signals provided by convolutionally
encoded symbols 1s improved. Another feature of the appa-
ratus and method would be that the implementation of the
decoding of convolutionally encoded symbols algorithm
requires less memory. Still another feature of the apparatus
and method would permit path trace-back to be performed 1n
units of more than one bit at a time (viz., {constraint__
length—1} bits at a time). Yet another feature of the apparatus
and method would be the decoding of convolutionally
encoded symbols 1n blocks of symbols.

SUMMARY OF THE INVENTION

The aforementioned and other features are accomplished,
according to the present invention, by providing a unit,
hereinafter called a block trellis decoder, that makes decod-
ing decisions determined by the multiple paths entering and
exiting from the nodes of a Viterb: trellis diagram. In the
present invention, rather than maintain a full history for each
node, linked lists of histories are maintained. A procedure
for selecting paths based on path metrics 1s used. Because
paths are abandoned at each step, the histories for more
distant past events can be compressed to become ever-
shorter tables. A set of paths can be summarized 1n a single
file. Each file includes, for each state through which a
surviving path passes: a state binary number, the state binary
number mdicating the set transition history; an index num-
ber pointing to a state binary number 1n the previous file; and
a path metric quantity. Forcing the decoder to make prema-
ture decisions may still be necessary, but this will be because
the total memory describing the transition history has been
cxhausted. Because this memory 1s used flexibly and
ciiiciently, forcing premature decision will be necessary less
often than when all history back to a fixed point in the past
1s maintained. The present invention 1s i1mplemented,
according to one embodiment, by a digital signal processor
and a dedicated peripheral unit. The dedicated peripheral
unit 1s designed to perform butterfly operations etficiently.
By appropriate choice of interface registers and interaction
between the digital signal processor and the peripheral unit,
the speed of the decoding process can be improved.

BRIEF DESCRIPTION OF THE DRAWINGS

The present 1nvention may be better understood, and 1its
numerous objects, features, and advantages made apparent
to those skilled 1n the art by referencing the accompanying
drawings.

FIG. 1 1s an example of channel or convolutional encod-
ing according to the prior art.

FIG. 2 illustrates a 4-state Viterbi trellis diagram accord-
ing to the prior art.

US 6,622,283 B1

S

FIG. 3 1llustrates examples of butterfly diagrams for a 16
state decoder unit according to the prior art.

FIG. 4 1llustrates the cyclic nature of the butterfly dia-
orams for a 16 state decoder unit wherein the state desig-
nation 1s altered from the processing of one symbol to the
next symbol according to the prior art.

FIG. § 1llustrates s a block diagram of a Viterbi decoder
according to the present 1nvention.

FIGS. 6 A—6B 1illustrate the multiplicity of paths that are
described by the state identification numbers for a four state
Viterbi decoder according to the present invention.

FIG. 7 illustrates the processing of a symbol in a four-state
decoder according to the present 1invention.

FIG. 8 illustrates how the files transferred to the history
tracker and merger unit by the trellis decoder for a four state
decoder for convolutionally encoded symbols are generated
according to the present 1invention.

FIG. 9A 1llustrates a format for files maintained for a
plurality of symbols received by the decoder unit for a two
state convolutional encoder, while FIG. 9B 1dentifies the
path that 1s 1llustrated by the files according to the present
invention.

FIG. 10A 1illustrates a second format for files maintained
for the same plurality of symbols 1llustrated 1n the FIG. 9A,

while FIG. 10B identifies the path that 1s 1llustrated by the
files according to the present invention.

FIG. 11A 1s a flow diagram 1llustrating the operation of
the metric server;

FIG. 11B 1s a flow diagram of the operation of the trellis
decoder unit; and

FIG. 11C 1s a flow diagram 1llustrating the operation of

the metric tracker and server unit, according to the present
invention.

FIG. 12 illustrates one communication system 1ncorpo-
rating the present invention.

FIG. 13A 1s a block diagram of one embodiment of the
hardware block trellis decoder according to the invention,

while FIG. 13B, FIG. 13C and FIG. 13D 1llustrate data
formats for selected registers in FIG. 13A.

FIG. 14 1illustrates the timeline for the transter of tables
from the hardware block trellis decoder unit to the control
unit.

FIG. 15 1s a block diagram of a second embodiment of the
hardware block trellis decoder according to the present
invention.

FIG. 16 1s a state diagram of the second embodiment of
the hardware block trellis decoder of FIG. 185.

FIG. 17A, FIG. 17B, and FIG. 17C show the contents of
selected registers of the second embodiment of the hardware
block trellis decoder which 1illustrate the operation of the
invention.

The use of the same reference symbols 1n different draw-
ings indicates similar or 1dentical items.

DESCRIPTION OF THE PREFERRED
EMBODIMENT(S)

Detailed Description of the Figures

FIG. 1, FIG. 2, FIG. 3 and FIG. 4 have been described 1n
relationship to the prior art.

In the preceding description, the terms Viterb1 and trellis
were both used 1n a generally accepted manner. The device
that decodes convolutionally encoded symbols 1s typically

10

15

20

25

30

35

40

45

50

55

60

65

6

called a Viterbi decoder. As indicated above, the present
invention relates to a type of Viterbi decoder. However, a
term 1s needed for a specific type of Viterbi decoder. This
designation 1s needed for a unit that makes decisions 1llus-
trated by the multiple paths in and out of the nodes of FIG.
3. Heremnafter, this unit will be called the block trellis
decoder and the operations of the block trellis decoder will
be referred to as block trellis decoding operations. As will be
clear to those familiar the application of the WViterbi
algorithm, this terminology 1s specific to the discussion of
the present invention.

The mput to a Viterbi decoder inherently has a bit-at-a-
fime nature, but the consumer of 1ts output 1s a processor that
works more naturally and efficiently with data that 1s orga-
nized 1nto bytes or even 16-bit words. As was discussed
above, for a decoder with 2° states, a state number itself
speciflies the most recent B transitions leading to that state.
These two considerations lead to a decoder design, which
(for a 256 state decoder) is byte-oriented in the sense that
cight time-steps are taken, representing eight input symbols
and then the decoder outputs a table which resolves as much
of the history as 1t can.

Referring to FIG. 5, a block diagram, illustrating the
overall operation of the mventive block trellis decoder 50 1s
shown. The term “block trellis decoder” 1s dertved from a
characteristic of the decoder, the characteristic being that the
block trellis decoder processes a block of B symbols and
then provides an output table before continuing the process-
ing of the next block of B symbols. The block trellis decoder
S50 includes a metric server unit 51, a trellis decoder unit 52,
and a history tracker and merger unit 53. The metric server
unit 51 receives the communication signals or symbols from
the channel and develops the transition metrics 1n the form
of tables, a transition metric being assigned to each state.
The transition metric tables are transferred to the trellis
decoder 52. The trellis decoder 52 maintains internally a
history of the most recent transitions (from 0 to 8, depending
on time). For IS-95, for example, the output of the trellis
decoder 52 1s a table of up to 256 words. Each word 1s a
16-bit structure that includes two eight-bit fields; one eight-
bit field (the index) represents the path transition metrics that
occurred just before those transitions that are recorded
within the trellis decoder. The remaining eight-bit field holds
a pointer 1nto the next earlier table, a table that was recently
passed along to the history tracker and merger unit 53. As
noted before, the history tracker and merger unit 533 main-
tains these tables, subject to memory being available, for as
long as necessary until a table 1s reduced to a single entry.
At that time, the remaining entry and any entries that it
points to 1n succeeding tables represents a decision that can
be reported out from the history tracker and merger unit 53.

In FIG. 5, all three units may be implemented 1n software,
just, as 1t 1s possible that all three units may be implemented
in hardware; however, for many if not most applications,
units 51 and 53 are anticipated as being implemented as
software being processed by a digital signal processor (DSP)
or other data processing unit while the trellis decoder unit 52
will be implemented in hardware.

Referring once again to FIG. 5, the operation of the metric
server 51 for computing the transition metrics for the 1S-95
decoder can be 1llustrated, using two stage encoding 1n the
following manner. The metric server 51 receives channel
information in the form of signals R, wherein

R=P(s +d)=P-S

where P 1s a power factor, which for the duration of a frame
can be treated as a constant, s 1s the transmitted signal, and

US 6,622,283 B1

7

d 1s the channel distortion. Consecutive pairs of these signals
encode a single bit.

The metric server 51 can compute transition metrics by
summing pairs of terms = R, with the selection of + of -
taken according to which symbols are generated by candi-
date state transitions for the encoder. The justification for
taking simple sums rather than computing the squared
Euclidean metric (by summing the terms of the form
(R £|P[)*) is that these two approaches yield path metrics that
differ by only a constant of the form

5=2(R521|P | 2)

For decoding a single frame at a particular rate, using only
the middle term (with the constant, 2|P|, canceled out) is
equivalent to the more complex computation of the Euclid-
can metric. The quantities #R R . are not only computa-
tionally simpler, but avoid the 1ssue of estimating a value for
p|.

The four choices of signs in the expression =R.+R. .
provide the transition meftrics, m,, m,, m,, and m, that are
required. However, these numbers are signed. A way to
avold the use of signed metrics 1s to use instead the metrics
defined by TRO0=m,-m__., TROl=m,-m__. 6 TR10=m,-
m,,.., and TR11=m;-m, . (where m, . in the minimum of
m,, M,, M,, and ms). This operation is permissible because
the difference 1s only a constant, m_ . . In addition, one of the
four metrics 1s always zero.

An equivalent (but computationally simpler) means for
computing the same signed transition metrics 1s summarized
as follows. Given a pair of mput signals, R and R,, let

A=R_ it R_>0, otherwise A, =0

A=01f R_>0, otherwise A,=—R_

B=R, it R,>0, otherwise B,=0

B,=0 1f R, >0, otherwise B,=—R,
It follows that

TROO=A+5,

TRO1=A+5,

TR10=A,+8,

TR11=A+85,

As will be clear, the transition metrics can be calculated
in a manner different from the manner described above for
the IS-95 example. For the present invention, it 1s useful that
the values be unsigned and critical that the larger metric
correspond to a less likely transition.

After generating the transition metrics 1in the metric server
51, a table of metric values 1s transferred to the trellis
decoder 52. For decoding a rate %2 convolution code, this
table will have four entries. More generally, a rate 1/n code
will require this table to have n” entries. In the trellis
decoder, three tables of length N=2° are maintained. One
table, the history table keeps track of the transitions made
while decoding the current block. Together with the history
table, a second table, the index table, serves 1n constructing
the table to be output at the end of the processing the current
block. The index table holds the pointer into tables that were
output at the end of earlier blocks (or O if there were no
earlier tables). Both the history and index tables are words
of data that are B bits wide. Finally, a table of path-metrics
1s used to keep track of the sum of transition metrics for the

10

15

20

25

30

35

40

45

50

55

60

65

3

surviving paths. The width of the path-metrics 1s determined
as a compromise between performance (bit-error rate) and
cost (substrate size and circuit power). The activity of the
trellis decoder unit can be understood as follows.

Before proceeding, it should be recalled that the state
number 1s determined by the sequence of recent transitions
that comprise the binary 1dentification of the state number.
For example, referring to FIG. 6, for the four state encoder,
the (10) state is reached by O-transition preceded by a
1-transition. However, as can be seen from FIG. 6A, two
paths have the 1-transition followed by a O-transition. Refer-
ring to FIG. 6B, two more paths are possible that provide a
1-transition followed by a O-transition. However, as will be
clear by review of FIG. 6 A and FIG. 6B, cach of these paths
has a different starting state. Therefore, focusing on a path
within a block, the starting state number and the final state
number determine the path for the block of symbols being
processed by the trellis decoder 52. Summarizing, because
the 1dentification of a state 1s determined by the preceding
transitions, within a block a path mvolving a plurality of
states 1s uniquely determined by the 1nitial state and the final
state when the number of mtervening transitions is equal to
the binary characters identifying the state.

Let the states of a path through the 2 state trellis be,
where the block size is B (=constraint_ length-1),

0=S0, Sy .+ -, Spy Speq - - -

As noted above, the fact that “the path assumes states S, .
at time nB” determines the transitions during the preceding,
block of B symbols. It follows that the sequence of states S,
S.ps Sap, - - . 18 sullicient information to construct all of the
transitions (equivalently, the entire path). The strategy used
for the block trellis decoder 1s to develop, at the end block
n+2, an output table which, in general, makes 1t easy to
compute for a surviving path, S,z from S, ;y5. Notice that
makes it easy, at any time, to compute the entire surviving
path that ends at a particular state, S, ...

The operation of the decoder 1n processing a single
symbol 1s 1illustrated using a four-state decoder as an
example. Referring to FIG. 7, at time t_, a certain set of paths
have survived; 1n fact, one path has survived for each of the
four states and so each state will have a path metric as well
as a (two-bit) history and a (two-bit) index associated with
the state. Associated with the symbol detected at time t_, 1s
a table of transition metrics, however, the particular metric
value associated with a ‘1’ transition will depend on which
state (xy:t,) 1s under consideration. Associated with state
(xy: t) is a path metric PM(xy:t) as well as two transition
metrics, TM°(xy:t,) and TM'(xy:t,). The first of these
tfransition metrics 1s assoclated with a transition to the state
(y0:T,, ;) and the second with a transition to the state
(y1:T, ;). Also associated with state (xy:t,) is an index
value, I(xy:t), and a history value, H(xy:t). From consid-
eration of FIG. 7, two (xy:t,) states can have a 1-transition
to the (01:t) state, (00:t,) state and the (10:t) state as shown
in FIG. 7. The trellis decoder unit can select either the path
surviving to the (00:t) state or the path surviving to the
(10:t,) state. The trellis decoder makes this selection by
determining which of {PM(00:t)+TM'(00:t)) or (PM
(10:t)+TM*(10:t)} is smaller. In FIG. 7, the second of
these quantities, {PM(10:t,)+TM"'(10:t)}, is the smaller so
the path surviving to the (10:t) state is extended to be the
one to survive to the (10:t,) state. This path is illustrated in
FIG. 7 by the fact that the path through the (10:t,) state and
the (01:t,, ,) state is drawn with a solid line whereas that path

through the (00:t,) state is drawn with a dotted line to show

US 6,622,283 B1

9

that it does not survive to time t__ ,. For the surviving path
through state (0O1:t __), the path metric is updated as

PM(01: t,,)=(PM(10:,)+TM"(10:1))

At the same time, H(O1:t _, ;) is recorded as H(10:t).

Trellis decoder unit 52 can be implemented 1n two distinct
embodiments. In one embodiment (suitable for a software
implementation of the trellis decoder unit), I(01:t,, ;) is
recorded as I(10:t,) In a second embodiment (suitable for a
hardware implementation), the index values are not modi-
fled when processing symbols. The reason for the two
different realizations 1s that the second embodiment 1mnvolves
less data movement and so will consume less power 1n a
hardware implementation. In a software implementation, the
history and index values can often be held in a single
machine word and, 1n this case, both assignments are done
in a single operation. The benefit of this process 1s that the
computation of the table to be passed to the history tracker
and merger unit 33 1s slightly simpler.

In either embodiment, the paths through the other states
are handled analogously. Likewise, 1n a decoder with more
states (e.g., the IS-95 decoder with 256 states), the operation
1s exactly the same for each state. As will be clear to those
skilled 1 the art of Viterbi decoders, it 1s possible to
conserve memory 1n the trellis decoder unit and simplify
computations by operating on pairs of states together so as
to update the path metrics, history and (in the case of the first
embodiment) index values for the two states at the same
time, keeping the same memory locations. This implies that
the data associated with a given state moves from one
location to another from one time interval to another;
however, at the end of (constraint_ length-1) steps all of the
data are back to their original locations. This observation
considerably simplifies the production of the tables that are
output to the history tracker unait.

Each time a table of metrics arrives, the trellis decode unit
must update the state information (i.e., the path metric,
history and, in the first realization, the index) for each state.
These operations are most conveniently performed on pairs
of states 1n what 1s called a butterfly operation. For example
in a 256 state decoder, 128 butterfly operations are per-
formed each time a table of metrics arrives (i.e., for each
symbol). The state information resides at the two indices lo
and hi 1n the tables of state information inside the trellis
decode unit 52. Keep in mind that the states at these indices
change from one time to the next so that the indices of the
updated states will also be lo and hi. The states re-arrange
themselves back to the original order after four rearrange-
ments for the sixteen state decoder. In the case of the four
state decoder, the original order 1s achieved after two suc-
cessive re-assignments; 1n the case of the 256 state decoder,
1.€., the IS-95 decoder, the original order 1s achieved after
eight successive re-assignments. In addition, with these
reassignments at each stage, much of the data movement
required by the butterfly operation 1s avoided because the
butterfly operation calls for history bytes to be simply copied
to their previous location. Referring to FIG. 8, the buttertly
operation is illustrated. The first step (1201) of the butterfly
operation 1s to determine the states, S, . and S, , correspond-
ing to the indices h1 and lo. This determination 1s necessary
in order to then establish the four transition metrics out of
those two states which we will call TR(lo,lo), TR(lo,hi),
TR(hi,lo) and TR(hi,hi) (for example, TR(lo,hi1) is the tran-
sition metric associated with a transition from lo to hi) in
step 1202. The path and transition metrics are needed to
determine which paths will be extended (and how they will
be extended). This identification of the surviving paths

5

10

15

20

25

30

35

40

45

50

55

60

65

10

allows us to determine which history (and in the first
embodiment, index) values will be updated in step 1203.
There are four possibilities and these can be encoded as a
number from O to 3. Specifically, (0) neither are updated; (1)
lo 1s updated; (2) hi is updated; and (3) hi and lo are updated.
The details of the updates are as follows.

(0) PM(lo)<—PM(lo)+TR(lo,lo)

PM(hi)<—PM(hi)+TR(h1,h1)

(1) PM(lo)<—PM(hi)+TR(hi,l0)

PM(hi)<—PM(hi)+TR(hi,hi)

H(lo)<—H(hi) and in embodiment 1, I(lo)<—I(hi)
(2) PM(lo)<—PM(lo)+TR(lo,lo)

PM(hi)<—PM(lo)+TR(lo,hi)

H(hi)<—H(lo) and in embodiment 1, H(hi)<—H(lo)
(3) PM(lo)<—PM(hi)+TR(hi,lo)

PM(h1)<—PM(lo)+TR(lo,hi)

H(lo)<—H(hi) and in embodiment 1, I(lo)<—I(hi)

H(hi)<~H(lo) and in embodiment 1, H(hi)+H(lo)

The trellis decoder unit 52 maintains only a single copy of
the path metric, index and history for each state, though
these values change with time. Using the four state decoder
as an example, after updating the path metrics, indexes and
history data at time t,, _,, the trellis decoder passes a table of
data to the history tracker and merger unit 53 which will
enable the unit to compute, for the paths that survive at time
t, .., the state S, {from the state S, .. To describe the
computation of this output data 1t 1s useful to simplify our
notation. At time t, _ ., the only information remaining in the
trellis decoder relates to time t, 4, so for stmplicity we will
not include the time. Also, the state information will be
indicated as simply an index and not as a binary number. At
time t,,_ ., the trellis decoder unit 52 incorporates three
tables, PM,, I, and H, where k takes values O, . . ., 3. Only
PM,, I, and H, are used or modified in producing the output
table, but for convenience let us denote by 11, the surviving
path through state S(k:t,, . ,).

Recall that the path metrics are unsigned and that arith-
metic relating to the path metrics 1s in all cases saturated.
One consequence of this 1s that there 1s a maximum value for
the path metric, MAX, which 1s characterized by having all

bits equal to 1. A path with a metric of MAX 1s regarded as
no longer surviving.

Consider the first realization 1 which the index values
have been updated. For k=0, 1, 2, 3, H, 1s the state that the
path II, assumed at time ¢, .. It 1s possible that H,, H,, H,
and H are all distinct, but 1n fact this will rarely be the case.
More often there will be duplication, and an 1mportant
aspect of producing the table to be transferred from the

trellis decoder unit 52 1s to remove these repetitions. For the
purpose of illustration, suppose that H,, H, and H, are
distinct values, that PM,=MAX and that H,=H;. In this
example, 1t necessarily follows that I,=I;, and that the trellis
decoder unit will pass a table to the history tracker unit that
has but two entries. In fact, 1t can pass the table:

anggan
[
N

US 6,622,283 B1

11

and 1n this case, the index table will be revised to the
values I,=0 and I,=I,=1 (to serve as an index into the
table). Likewise, it could just as well pass the table:

and revise the index table to the values 1,=0 and 1,=1,=0.
In either case, the history table 1s updated to the values
H,=0, H,=1, H,=2 and H;=3 before the next symbol 1s
processed.

In the second embodiment 1n which the index values have

not been updated, we again observe that for k=0, 1, 2, 3, H,

1s the state that the path II, assumed at time t, ... It 1s
possible that H,, H,, H, and H; are all distinct, but 1n fact
this will rarely be the case. More often there will be
duplication, and an 1mportant aspect of producing the table
to be output from the trellis decoder unit 1s to remove these
repetitions. For the purpose of illustration, suppose that H,,,
H, and H, are distinct values, that PM,=MAX and that
H,=H,. In this example, it necessarily follows that I,=I,, and
that the trellis decoder unit will pass a table to the history

tracker unit that has but two entries. In fact, it can pass the
table:

[
2 H,

and 1n this case, the index table will be revised to the
values I,=0 and I,=I5;=1 (to serve as an index into the
table). Likewise, it could just as well pass the table:

[4,
0 IHD

and revise the index table to the values t,=0 and I,=1,=0.
Whichever of these two tables 1s transferred to the
history tracker and merger unit 33, the history table 1s
updated to the values H,=0, H,=1, H,=2 and H,=3
before the next symbol 1s processed.

More generally, for a decoder with N=2” states, the tables
will be output at times t g,,, -5 and those tables will have up
to N pairs of B-bit numbers. Spe(:lﬁcally, the 1S-95 decoder
will output tables of up to 256 pairs of 8-bit numbers at times
tgni16y- INOtICE that for this decoder the first table 1s output
only after sixteen symbols have been processed. Notice also
that the right-hand side of each entry of the first table 1s O.

In the history merger and tracker unit, the object 1s to

determine the most probable path through the multiplicity of
states and transitions. The path determines a sequence of

states. When each state 1s determined, the logic signals that
ogenerate that state are generally the logic signals that were
originally transmitted. Then the transmitted logic signals are
determined, the sequence of logic signals that was applied to
the convolutional encoder can be determined.

The operation of the two pointer-indexes 1s illustrated in
FIG. 9A, FIG. 9B, FIG. 10A and FIG. 10B. In this
procedure, the history files transferred from the trellis
decoder remain the same, as seen by FIG. 9A and FIG. 10A.
However, the index files in FIGS. 9A and 10A are different.

As shown 1 FIG. 9A, an index entry points to a history entry

10

15

20

25

30

35

40

45

50

55

60

65

12

in the previous file set. However, as shown 1n FIG. 10A, 1n
brackets, an index entry points to an address (in brackets) in
the previous history file. The index files 1n the first chrono-
logical file are the same as 1n FIGS. 9A and 10A and are the
starting state for the sequence of files. As illustrated in FIGS.
9B and 10B, the same binary number sequence 1s provided
as a result of the following (backtracking) the path through
the transferred files.

FIG. 11A, FIG. 11B, and FIG. 11C provide flow charts
illustrating the operation of portions of the invention. Refer-
ring now to FIG. 11 A, the operation of the metric server 1s
illustrated. In step 801, the metric server unit receives the
transmitted encoded signals, generally referred to as sym-
bols from the channel. In step 802, the symbols are con-
verted to digital quantities referred to as transition metric
signals. The transition metric signals are then transferred, 1n
step 803, from the metric server unit 31 to the trellis decoder
unit 52. The transition metrics are associated with a state. As
will be clear to those familiar with “soft decision” Viterbi
decoders, a conditional decision 1s made for each possible
value of the most recent B bits (i.e., each possible state). In
the trellis decoder then, 1n considering each state k, the most
recent encoded bits are assumed to be described by the state
number k. With this understanding, the two expected sym-
bols are known to correspond to an uncoded logic “0” bit
or/and uncoded logic “1” bit. The transition metrics at state
k are, therefore, the differences between the actual received
symbol (with its noise) and each of the two symbols (no
noise) that the encoder would have provided as output under
these alternatives. These two selections, as a function of
state, can be computed once given the convolutional codes
of the encoder.

Referring now to FIG. 11B, the operation of one 1mple-
mentation of the trellis decoder 1s 1llustrated. In step 820, the
history table, the 1index table and the path metric table are
initialized. The symbol variable b 1s set equal to —B 1n step
821. In step 822, the transition metrics are transferred from
the metric server to the block trellis decoder. In step 823, the
variable b i1s incremented to the value b+1. In step 824, a
determination 1s made whether the variable b=0. If b=0 1n
step 824, the table entry variable k 1s set to k=0, state
variable n 1s set to n=0, and the “already reported” table 1s
cleared 1n step 826. A determination 1s made whether n2B
in step 827. When, 1n step 827, n 1s not 2B, a determination
1s made whether the table entry for state n has already been
reported 1n step 828. When the determination in step 828 1s
made that the entry table for state n has already been
reported, then the procedure continues to step 830 wherein
the variable n 1s incremented to n+1. From step 830, the
procedure returns to step 827. When, 1n step 828, a deter-
mination 1s made that the table entry for state n has not
already been reported, then 1n step 833 the kth table entry 1s
reported. In step 834, the variable m 1s set equal to n+1. In
step 835, a determination 1s made whether the table entry for
the mth state has been reported. When 1n step 835, a
determination 1s made that the table entry for state m has
already been reported, then m 1s set equal to th+1 1n step 840.
When a determination 1s made 1n step 835 that the table
entry for state m has not already been reported, then a
determination 1s made whether the table entry for state n 1s
the same and the table entry for state m 1n step 836. When
in step 836 the table entry for state n 1s not the same as the
table entry for state m, then the decision proceeds to step
840. When the decision 1s made 1n step 836 that the table
entry for state n 1s the same as the table entry for state m,
then the state m is marked as already reported, I(m) is set=k
and H(m) is set=m in step 838. The procedure then returns

US 6,622,283 B1

13

to 840 where m 1s set equal to m+1. In the step 842, a
determination 1s made whether m=B. When m 1s not 2B 1n
step 842, then the procedure goes to step 835. When m =B,
then the variable k 1s set equal to k+1 1n step 843. From step
843, the procedure goes to step 830. When n2B 1n step 827
or when b=0 1n step 824, then 1n step 844, buttertly opera-
tions are performed to update the history entries, the path
metric entries and index entries (if appropriate) for all states.
Then the procedure returns to step 822 wherein the transition
metrics are transferred from the metric server unit to the
trellis decoder unit.

Referring now to FIG. 11C, the activity of the history
tracker and merger unit depends on the transter of the tables
created in the trellis decoder unit, and has a counter part to
step 833 of FIG. 11B 1n step 860 of FIG. 11C. In step 861,
a determination 1s made whether a preselected criterion 1s
met by the transfer of the table to the history and tracking
unit. For example, one possible criterion is the transfer of a
single history table in step 860. Another possible criterion
which has been mentioned previously 1s the reduction of
available memory space to an unacceptable level. A third
possible criterion 1s that a history table of sufficiently small
size is received (e.g., with only one entry) from the block
trellis unit. When the criterion 1s not met in step 861, the
process returns to step 860 to await the next transfer of a
table. When the criterion 1s met 1n step 861, 1 step 862, the
sequence ol history entries forming a path from the last
history entry 1s determined through the use of the index
entries to provide a pointer to a history entry in the next
carlier table transferred to the history merger and tracking
unit 1 step 863. In step 864, from the sequence of history
entries, a decoded bit sequence can be determined and this
bit stream sequence can be provided as an input, after
decoding and restoration of the signals, to an output device.

Referring to FIG. 12, an implementation of the present
invention 1s illustrated. The encoded symbols are transmit-
ted through channel 91, the channel possibly introducing
noise to the symbols, and applied to a recerver unit 92. The
receiver unit 92 can, for example 1n the case wireless
fransmission, include an antenna and an amplifier. The
signals from the receiver unit 92 are applied to analog/digital
(AID) converter unit 93, the AID converter unit providing
output signals 1n the form of digital magnitudes. The output
signals from the AID converter unit 93 are applied to
processing unit 94. The processing unit 94 can be 1mple-
mented by a hardwired processing unit, a processing unit
processing signals entirely under the control of the software
program, 1.€., stored 1n a memory portion 94A, or a com-
bination of hardware and software implementations. As a
result of the processing in the processing unit 94, a decoded
signal bit stream of signals can be provided (for example in
the example of encoded voice mformation to digital-to-
analog (D/A) converter unit 95. A/D converter unit 94 can
apply signals to an output unit 96, e.g., loudspeaker.

Referring to FIG. 13A, one embodiment of the block
trellis decoder for decoding convolutionally-encoded sym-
bols implemented 1n hardware 1s shown. This embodiment
of the block trellis decoder will be called hereinafter as
hardware block trellis decoder (HBTD) 100 unit. This
HBTD umit 100 includes a processor unit 150 and hardware
block trellis decoder peripheral (HBTDP) unit 160. The
HBTDP unit 160 can be described as a memory mapped
peripheral unit operating under control of a processor unit
150, e.g. a DSP unit or a general-purpose processor unit. In
FIG. 13A, only the interface registers 161-169) of the
HBTDP unit are shown to 1illustrate the operation of the
HBTD unit 100. The HBTDP unit 160 includes a CLIP__

10

15

20

25

30

35

40

45

50

55

60

65

14

METRIC register 161 that can be a 16-bit register. From the
perspective of the processor unit 150, the CLIP_ METRIC
register 101 can be a write-only register. At power-up of the
HBTD unit 100, the processor unit 150 assigns an unsigned
value to the register. The value 1n the CLIP_METRIC
register 161 1s the highest value of the path metric that can
be transferred. Register 161, therefore, improved the opera-
tion of the decoder by eliminating paths with path metrics of
such a high value that these paths can be discarded are of no
interest,

The HBTDP unit 160 also includes five 8-bit memory
mapped registers, a TROO register 162, a TRO1 register 163,
a TR10 register 164, a TR11 register 165, and a HBTDP__
CTRL register 166. The processor unit 150 must be able to
write to these registers, but it 1s not essential that the
processor unit 150 read these registers. An unsigned transi-
tion metric 1s transferred to each of the TROO register 162,
the TRO1 register 163, the TR10 register 164, and the TR11
register 165. A control word 1s written nto the HBTDP__
CTRL register, the control word consisting of a BITNUM
field (()-2), A FLUSH field (3), a HBTDP field (4), and a
reserved field (5-7). These fields are illustrated in FIG. 13B.

In operation, the processing of the butterfly operations,
the storage of tables and the apparatus for updating the tables
performed in the butterfly operation and table update unit
171. The four transition metrics (corresponding to a single
convolutionally encoded bit) are loaded to their respective
registers. Then, the HBTDP__CTRL register 166 1s written
into, causing the HBTDP unit 160 to update its internal state.
When the HBTDP RES field 1s set, the internal state 1s set
to 1ts 1nitial conditions, and then the HBTDP unit 160
updates its internal state. This updating will occur only when
the BITNUM field 1s zero. When the FILUSH bit field 1s set,

the HBTDP unit 160 updates its internal state assuming that
the current bit is a tail bit (in the framed mode). The FLUSH

bit will never be set for continuous bit decoding. In succes-
sive writes to the HBTDP__CTRL register 166, the BIT-
NUM field takes (assuming a block size of 8) the values 0,
1,2,3,4,5,6,7,0,1, ... ctc. Although the HBTDP unit 160
itself could compute the BITNUM field, this field 1s included
in the HBTDP__CTRL register 160 to accommodate error
checking and to ensure synchronization of the HBTDP unait
160 with the processor unit 150. When the HBTDP unit 160
detects a violation of the mtended sequence of values, the
violation can be reported to the processor unit 150.

The HBTDP unit 160 has three 16-bit unsigned output
registers, the HLENGTH register 167, the HISTORY reg-

ister 168, and the MINMETR register 169. The output
registers are read by the processor unit 150 each time after

the HBTDP__CTRL field has a BITNUM=7 written therein
(i.e., every eight bit). Referring to FIG. 13C, the HLENGTH
register 167 stores two fields, an 8-bit LENGTH field (i.e.,
bits 0—7) and an 8-bit HBTDERR field (i.e., bits 8—15). The
HBTDP unit 160 sets the HBTDERR field to a code that
indicates the kind of error encountered while processing the
most recent eight bits, the value HBTDERR=0 indicating no
error. HLENGTH=0xFFFF indicates that the HBTDP unit
160 1s busy and that the processor unit 150 should wait 1n a
delay loop or wait for an interrupt procedure. The code
HBTDPERR=0xFF should be used only with HLENGTH=
OxFFFF.

The HBTDP umit 160 sets the LENGTH field to an
unsigned integer value (in the range of 0-255). This field
represents the number of data values that the processor unit
150 should read from the HISTORY register 168. Referring,
to FIG. 13D, the HISTORY register 168 includes an INDEX
field for bits 0—7 and a PATH__SEQ field for bits 8—15. The

US 6,622,283 B1

15

intention 1s that the processor unit 160 will read the HIS-
TORY register 168 the number of times indicated in the
HLENGTH ficld when the HBTDPERR ficld 1s zero. The
processor unit 150 will then save the data from the HIS-
TORY register 168 1n the memory of the processor unit 150.
If the processor unit 150 does not perform the expected
number of read operations, The HBTDP unit 160 should
report this (as a code in the HBTDPERR field) the next time

that the HBTDP unit 160 reports to the processor unit 150.
The HBTDP unit 160 scts the MINMETR field to a 16-bit

unsigned number that 1s needed only 1n a framed decoding,
mode.

When the HBTDP unit 160 1s finished processing a group
of eight bits and, consequently, has output data to be
transferred to the processor, an interrupt to the processor unit
150 1s 1mitiated. In preparation for the transfer of data, the
HLENGTH field 1s set to an appropriate value other than
OxFFFF. This use of the HLENGTH field provides the
means for either a polling service or an mterrupt service of
output data from the HBTDP unit 160.

A table of path metrics 1s maintained by the HBTDP unait
160, one for each of the 256 states of the decoder. No need
can be found for a user to access these tables directly.
However, access to the internal registers of the HBTDP unit
160 may be useful either for diagnostic purposes or for
unforeseen operational reasons. While permitting read
access to these tables 1s harmless, permitting a write access
provides the possibility of accidental corruption of the path
metric values.

With respect to the error conditions, the system should be
such that HBTDP umit 160 errors do not occur in field
operation. During system development, however, HBTDP
unit 160 errors will undoubtedly occur. These errors are

reported 1n the HBTDPERR field of the HLENGTH register.
Typical error conditions are indicated in Table 1.

TABLE 1

HBTDPERR Condition

0x00

Output ready, no error

Full output not read for preceding eight-bit group.
HBTDP__RES clears this error

Bit order error Correct sequence of values for BITNUM

field was not followed
Output not ready. Always occurs with LENGTH = 0xFF

OxbFF

Whenever the HLENGTH field 1s read, the error condi-
tion should be cleared. As a result, a single error event will

be reported only once. However, the single reporting does
not 1ndicate that the error condition has been resolved. Of
course, the field HLENGTH=0xFF will continue to be
reported until the data 1s ready.

Referring to FIG. 15, a second embodiment of the block
trellis decoder unit 110, with a block trellis decoder periph-
eral (HBTDP) unit 180 implemented in hardware, that can
provide expedited computations 1s shown. This embodiment
of the block trellis decoder unit of FIG. 5 includes a
processor unit 150, typically a digital signal processing unit,
and a hardware block trellis decoder peripheral (HBTDP)
unit 180. The processor unit 150 performs the functions of
the metric server and of the merger and tracker unit for the
block trellis decoder unit. The interface between the HBTDP
unit 180 and the control unit 150 1s performed by group of
registers 181 through 188. The registers include a control
register 181, an offset register 182, a prototype register 183,
a candidate register 184, a scoreboard register 185, path
metrics registers 186, transition metric registers 187, and
history registers 188. The control register 181 1s a single

10

15

20

25

30

35

40

45

50

55

60

65

16

register accessed by single address. A read operation or a
write operation involving this register will provide codes
that are described 1n more detail with reference to Table 2.
The offset register 182 1s a single register at a single address.
A sixteen bit unsigned integer i1s written to this address and
will be added to any address subsequently read from the
prototype register 183 or the candidate register 184. The
prototype register 183 1s a single register accessed by a
single address. A read of the prototype register 183 accesses
an address. The candidate register 184 1s a single register
accessed by a single address. The candidate register 184 also
stores an address. The scoreboard register 185 1s a single
register accessed by a single address. The path metric
register 186 1s a single register accessed by a single address.
The transition metrics registers 187 are a block of registers
of the width of transition_ metrics. The block of registers
includes 32 registers, 8 groups of 4 registers so that the
transition metrics for the entire group of symbols can be
stored. 4 registers for each block of transition metrics. And
the history registers 188 1s a block of 256 registers, each
register being 16 bits wide. The upper eight bits of each
register represents eight decoded bits (actually, as will be
discussed below, candidates for decoded bits) and the lower
cight bits point to a table entry that the processor unit
maintains. The butterfly operations and table update unit 189
performs the butterfly operations on the transition metrics
and updates the tables in a manner that has been described
above.

The operation of the HBTDP unit 180 can be understood
as follows. The purpose of the HBTDP unit 180 1s to
accelerate the butterfly computations. Consequently, the
interface registers serve to provide the transition metrics to
the HBTDP unit 180 and to receive from the HBTDP unit
180 the partially decoded paths 1n the form of the history
register fields. The partial paths determined by the HBTD
unit 110 will be referred to hereinafter as trails.

The control register 181 both controls and supports the
overall state of the HBTDP unit 180. In the preferred
embodiment, three different codes can be written 1n the
register and five codes can be read. The codes are summa-
rized as shown 1n Table 2.

TABLE 2

Read from the Control Register Write to Control Register

BUTTERFIES__DONE (193) RESET__ALL
INITIALIZED (191) RUN__BFLY
RESET__IN__PROGRESS (190) RUN__FLUSH

BFLY__IN__ PROGRESS (192)
TRAIL_IN__ PROGRESS (194)

The numeric values for these codes are not specified, but
they are listed 1n 1ncreasing order and this order 1s useful for
making the DSP software more efficient. For example, when
a value=INITIALIZED 1s read, then the HBTDP unit 180 1s
waiting for the processor unit 150 to 1ssue a command. The
processor unit 150 can read the control register 181 to
determine the state of the HBTDP unit 180 and can write to
the control register 181 to alter the state of the HBTDP unat
180. The relationship of the control register 181 to the state
of the HBTDP unit 180 1s summarized i FIG. 16. Each of
the states of the HBTDP unit 180, as indicated by the “Read
from Control Register” codes 1n Table 1, are disclosed in
oval figures, while the codes that transfer the machine from
one state to the next are shown beside the transition paths in
FIG. 16. The states of the machine have the same labels (and
numeric designations) in FIG. 16 as the “Read” entries Table

2.

US 6,622,283 B1

17

In order to 1nitialize the HBTDP unit 180, the command
RESET ALL 1s entered in the control register 181. This
command should be entered in control register 181 at power
up and prior to the start of each frame, 1.€., a frame being the
oroup of symbols/path metrics processed as a unit. The
RESET__ALL command results in the HBTDP unit 180
entering the reset 1n_ progress state 190. While in the
reset__1n_ progress state 190 1s present, the HBTDP unit 180
stores 1nitial values to the history and the path metric arrays.
During this 1nitialization, the processor unit 150 should not
enter any data 1n the command registers, 1.e., the control
register 181, the offset register 182, the prototype register
183, the candidate register 184 and the scoreboard register
185, or 1n the history registers 188 or to the path metric
registers 186. However, entries can be made 1n the transition
metric registers 187.

When the 1nitialization 1s finished, the HBTDP unit 180
enters the INITIALIZED state 191 and the INITIALIZED
code 1s entered 1 the Read portion of the control register
181.

When the processor unit 150 writes the RUN__ BFLY code
or the RUN__FLLUSH code 1n the control register 181, the
trellis butterfly operations are initiated. These codes cause
HBTDP unit 180 to enter the butterfly__in_ progress state
192. These codes should be entered in the control register
181 only after the 32 values are entered i the transition
metric registers 187. The mdividual values entered 1n the
transition metric tables are treated by the HBTDP unit 180
as unsigned data, the larger values representing the less
likely transitions. The four transition metrics for each pair of
received symbols are written 1n consecutive locations 1n the
transition metric registers. The RUN__FLUSH code should
be entered in the control register 181 only for the last
trellis/butterfly operation 1n a frame. When the HBTDP unit
180 cnters the butterfly_ in_ progress state 192,
BUTTERFLY__IN__ PROGRESS code 1s entered 1n the con-
trol register 181.

When the HBTDP unit 180 completes the butterfly com-
putations for one block, HBTDP unit 180 enters the
butterflies done state 193, and the BUTTERFIES DONE
code 1s entered 1n the Read portion of the control register
181. A field 1n the prototype 183 results in the HBTDP unit
180 entering the trail _1n_ progress state 194.

Instead of storing complete sets of history data, the
processor unit 150 stores quantities that will hereinafter be
called trails. Referring to FIG. 17A, three trails are 1llus-
trated. These trails are labeled A, B, and C and represent
surviving paths from the butterfly operation. The {first por-
tion of the word 1s state address/decoded portion of the path
while the second portion of the word 1s an index to one of
the surviving paths identified by the previous pointer. The
trail pointers (trail ptrs) in data memory designate starting
address and the fmal address of a traill member, each trail
member having a word length. Trail C is the most recent trail
as can be seen from the next trail (NextTrail) address. From
this third trail, the three words indicate that the third decoded
bytes/states can be 0B, 09, or 0A. However, because each of
the three indexes for the three surviving paths are 00, the
second decoded byte must be 0A. The index of the surviving
state of the second byte 1s 00, then the decoded first byte
must also be 0A.

The HBTDP unit 180 and the processor unit 150 must
cooperate to store the data as shown in FIG. 16. The HBTDP
unit 180 determines the trails in a less compact format. For
example, trail B 1n FIG. 17A can be represented within the
HBTDP unit 180 as the file shown 1n FIG. 17B. Note the

many redundant copies of each word. (For purposes of

10

15

20

25

30

35

40

45

50

55

60

65

138

example, the file 1n FIG. 17B has word 16 entries whereas
for an IS-95 protocol, the file 1n FIG. 17B would contain 256
entries. Also, in this example, the low order byte of each
word 1s 0. The O value 1s an accidental occurrence of this
example and, in practice, different values would be found.)

The history register array 188 i1s part of the interface
between the processor unit 180 and the HBTDP unit 180, but
this interface 1s not sufficient for transferring trail informa-
tion. In order to provide a sufficient interface, three addi-
tional codes called prototype, candidate, and offset are
transterred to the memory portion of processor unit 150. The
prototype register 183, candidate register 184, offsct register
182 and the history registers 188 constitute a trail production
interface. In using this interface, the prototype register 183
and the candidate register 184 can have ficlds both be written
theremn and retrieved therefrom. As writes occur during the
trail production, the quantities stored 1n the history registers
188 will change. The processor unit 150 must therefore
make an 1nitial copy of the history registers 188 to preserve
the 1nitial values. The starting location 1n memory used to
store this 1nitial copy 1s written to the offset register 182. The
HBTDP unit 180 then adds this offset value to the values that
are read from the prototype register 183 and candidate
register 184.

The HBTDP unit 180 reads the contents of the prototype
register 183 to obtain the address of the word to be added to
the trail. Since the offset has been entered as described
above, the address that will be returned i1n the prototype
register 183 is the address of the word in the (initial) address
file that unit 150 has stored 1n 1ts memory. The processor unit
150 places this word in the trail that it 1s creating. The
processor unit 150 should then write to the prototype register
183 the offset 1n that trail. In the example of FIG. 17A, a O
1s written to the prototype register by the processor unit 150
after reading the address of 0a00 from the prototype register
183 and a 1 1s written to the prototype register 183 after
reading the address of the word 0800 from the prototype
register 183. When the processor unit 150 reads an address
from the prototype register that is >(256+offset value), no
additional prototype values are left to be processed. In fact,
once the processor unit 150 starts reading the prototype
register 183, the processor unit 150 must (for the correct
operation of the HBTDP unit 180) continue until this value
1s reached.

Each time HBTDP unit 180 obtains the prototype-derived
word to place 1n the trail, the HBTDP unit 180 must search
the (initial) copy of the history table for other instances of
that word. The HBTDP unit 180 assists in this search by
reporting candidates to the processor unit. This reporting of
addresses by the candidate register 184 uses the same
conventions as does the prototype register 183 when trans-
ferring addresses. The processor unit 150 determines the
address of a candidate by reading the candidate register 184
to obtain the address of a candidate, comparing the candidate
word with the word obtained by the address of the prototype
register 183, and determine whether the two words are the
same. If 1n fact the word obtained from the prototype register
address and the word obtained from the candidate register
address are the same, then the processor unit 150 must
communicate this fact to the HBTDP unit 180 by writing the
corresponding trail offset to the candidate register 184. The
benelit to the HBTDP unit 180 of performing this transfer 1s
that 1t will not thereafter have to consider this entry as a
future candidate. Another benefit 1s that the HBTDP unit 180
will decode properly.

No transfer of information (including history register
data) that would lead to the production of the trail is

US 6,622,283 B1

19

ogenerated at the end of the processing of the first group of
(8) symbols. The first group of history data is transferred at
the end of the processing of the second group of symbols.
Because the control unit 1s by-passing the normal trail
production sequence, the processor unit 150 prepares the
HBTDP unit 180 for the next occurrence of the buttertlies_
in__progress state by storing an n in each element of the
history register array 188 in the HBTDP unit 180.

In order to support the trail production operation
described above, the HBTDP unit 180 suggests prototype
and candidate addresses. This function i1s performed by
maintaining a register with 256 bits, each bit indicating
whether a corresponding address 1s still the address of a
candidate or the address of a prototype. This register 1s
called the scorecard register 185 1n FIG. 15. In essence, this
register 1s searched for the first-bit-set and the corresponding
address 1s reported. For the processor unit 150 to perform a
similar operation, an array of 256 words of 16-bit random
access memory (RAM) would be needed. The actual search
of the array would require an additional apparatus and would
require addition operational cycles. Because the HBTDP
unit 180 needs to perform such an operation, the scoreboard
(interface) register 185 is provided so that the processor unit
150 can take advantage of the apparatus that 1s required by
the HBTDP unit 180 in any event. The processor unit 150
needs these capabilities 1n order to compress the trail mfor-
mation as described above. Referring to FIG. 17C, the same
information 1s presented as 1s found 1n FIG. 17A. However,
the 1nformation from the first two trails has been placed 1n
(decoded) memory locations 4000—4001. The memory loca-
tions 40244027 and 4061-4066 have been reclaimed as a
result of the compression and are available for reuse during
the decoding. The computation cost in performing the com-
pression varies, but the computational cost 1s smallest when-
ever a short trail 1s constructed. Conversely, little memory
space 1s likely to be recovered when there are few trails.

The stmplest example of compression occurs when a trail
has length 1. This compression 1s shown 1 FIG. 17A and
consists of following the curved arrows on the right hand
side of FIG. 17A backward and recording the high order
bytes 1n the Decoded file. The procedure can be followed
without support of the HBTDP unit 180.

The compression begins with the comparison of succes-
sive paiwrs of trails, starting with the most recently con-
structed trail and its predecessor. Each trail can be thought
of as function whose range 1s a subset of the preceding trail.
For example, in FIG. 17A, each trail maps to the zero’th
clement of the preceding trail. But, in general the range can
be any subset of the (potentially 256) entries in the preceding
path. The purpose of the procedure 1s to determine this
range, to shorten the older trail so as to have only the
clements 1n this range, and keeping track of how to modily
the newer trail so the information is preserved. Then the
newer trail 1s modified appropriately. The purpose of the
scoreboard interface 1s to determine the range of the newer
trail. This scoreboard interface reuses the candidate word of
the trail procedure interface and also uses the scoreboard
register 185. This scoreboard register 1835 1s the interface to
a 265 bit shift register that the HBTDP unit 180 needs for
trail production. A write to the scoreboard register 185 of a
value =256 will clear the shift register 185 and a write of a
value <256 will set the bits in the offset register 182. Bits are
set for each entry in the newer trail, using the write to the
scoreboard register 1835.

In general, a read from the prototype register 183 returns
an address. That address 1s the base address that was
previously written to the offset register 182 plus an index

10

15

20

25

30

35

40

45

50

55

60

65

20

which indicates smallest 0 entry i the shift register 185
subject to the constraint that that index 1s greater than the
index reflected by the previous read of the prototype register
183. For example, if only the bits 19, 7, and 10 of the shift
register 185 have value 0, then successive reads of the
prototype register 183 will return the values offset+7,
oifset+10 and offset+19. The processor unit 150 reads from
the prototype register 183 a value corresponding to an
index<256.

The path metric register 187 1s a 16 bit read-only register.
This register 187 stores an unsigned value that 1s meaningful
only when the HBTDP unit 180 1s 1n a trail__in_ progress
mode following a run__flush operation. This value provides
a measure of the confidence in decoding of a frame.

Operation of the Preferred Embodiments

The decoding of convolutionally-encoded symbols 1s
provided, according to the present invention, in three stages.
In the first stage, the transition metrics are generated 1n
response to the receipt of the transmitted symbols. The
internal state of the block trellis decoder unit 1s maintained
in several tables. The table entries include a history field, a
field that 1s determined by the possible paths of the group of
symbols, an index field, a field that 1dentifies a history field
in the preceding table, and a path metric field, a field that
establishes the deviation of the path from the path most
likely to have been followed by the encoded symbols. In the
important IS-95 protocol, the table entries of the tables can
be expressed 1n fields having 8 bits, a field length particu-
larly convenient for manipulation by modem data processing
systems. A single surviving path 1s identified by some
criterion, e€.g., only one path survives, the remaining pos-
sible paths having been discarded. By retracing the table
entries of the surviving path, the transmitted symbols can be
determined and, based on the determination of the transmait-

ted symbols, the original signals can be determined. The
procedure 1s summarized i FIGS. 11A-11C.

Referring once again to FIG. 13A-FIG. 13D, the opera-
tion of the block trellis decoder using the hardware block
trellis decoder (HBTDP) unit can be understood as follows.
The HBTDP unit can be used for continuous or framed
decoding. Control unit receives a pair of signals for each
transmitted symbol. From the pair of signals, the control unit
computes the transition metrics and loads the transition
metrics mnto the TROO register, the TRO1 register, the TR10
register, and the TR11 register. Then the control unmit 150
writes a control word to the HBTDP__CTRL register to
update the mternal tables to reflect the new group of metrics.
After the control unit has provided 8 groups of transition
metrics, then the control unit must read the HLENGTH
register and the HISTORY register before presenting the
additional groups of transition metrics to the HBTDP unit.
The exception to this procedure 1s that the output registers
are not read after the first group of eight bits following
HBTDP__RES=1. (As will be clear, the problem of synchro-
nization between the control unit and the HBTDP unit can
present a problem, 1.e., the control unit can possibly be
applying transition metrics (and control signals) faster than
the HBTDP unit can process the incoming signals. One
solution would be to provide each transition metric register
with an eight-deep (in the case where B=8) first-in/first-out
{FIFO!} register. The control unit can apply signals to the
FIFO registers without regard to the HBTDP unit activity.
Another possible solution is to 1nsure that the HBTDP unit
completes 1ts processing activity in a predetermined time
and the control unit can provide a NOP (no operation)
mnstruction to delay the application of the next group of

US 6,622,283 B1

21

transition metric signals. Another possibility would be the
use of one of the reserved bits 1n the HBTDERR field of the

HLENGTH registers to signal to the control unit that the
next set of transition metrics can be written.) Generally, each
fime the control unit transfers transition metrics for eight
consecutive encoded bits, the control unit reads from the
output registers of the HBTDP unit an array of 16-bit data.

(As indicated above, the exception to this procedure is the
cight bits that start w1th HBTDP__RES=1.) The array has a

variable specified by the low order eight bits of HLENGTH
register. Each individual element of one of the arrays con-
sists of the two eight bit fields of the HISTORY register. The
high order eight bits enumerate the possible decoding of the
last eight bits (actually the eight bits before the most recent
eight bits) and the low order eight bits provide an index into
the preceding array as described previously.

With respect to framed operation, the IS-95 specifies that
the traffic channel data 1s prepared 1n distinct frames of a
number of bits, the number of bits depending on the data rate
being used. The data rate can change from frame to frame.
The convolutional encoder 1s, at the start of each frame at a
state 0 (of 256 possible states). Moreover, after the infor-
mation bits are passed through the encoder, eight tail bits (all
zero) are fed into the encoder to return the encoder to state
0. For the first bit of a frame, the control unit sets the
HBTDP__RES bit to start from state). Subsequent bits of the
frame HBTDP__RES cleared (i.e., set=0). For each of the
last eight bits of the frame (i.e., the tail bits), the control unit
sets the FLUSH bit. The FLUSH bit 1s of course clear for all
of the other bits of the frame. As noted above, the control
unit receives a sequence of output tables. The control unit
receives an output table from the HBTDP unit after all but
the first eight sets of transition tables. This operation of this
transfer 1s illustrated in the time line 1llustrated 1n FIG. 14.
In the framed mode of operation, the FLUSH bait 1s set for
cach of the last eight bits of the frame and, as a consequence,
the very last output table has but a single entry. The high
order eight bits of the last entry are the last eight bits of the
decoded frame and the low eight bits of that entry serves as
an 1ndex into the second-from-last array. The selected entry
(at that index) is likewise used to produce the preceding
eight bits of the decoded frame and an index into the
third-from-last table, etc. The process of stepping backwards
through the through the tables in this manner 1s referred to
as back-tracking. Recall that the CLIP_ METRIC register 1s
provided in the HBTDP unit to promote decoding efficiency.
The 1ntended use of for this register stems from the fact that,
for the IS-95, the coding rate for the traffic channel 1s not
known, a priori, and 1t 1s often necessary to decode the same
frame at different rates. After a frame has been decoded at
one or more rates, the control unit may determine that the
paths with metrics greater than some particular value are of
no imterest. If the CLIP_ METRIC register 1s set to this
value, those paths will not be reported by the HBTDP unit.
In this case, output arrays may sometimes become empty, as
indicated by a value of the LENGTH field of zero. Decoding
of a frame at a particular rate can be abandoned early when
this happens. Even when this does not happen, the arrays can
be shortened through the use of the CLIP_ METRIC regis-

LCT.

With respect to the continuous mode of operation, 1n the
IS-95, the paging and sync channels must also be decoded.
The start of decoding on one of these channels corresponds
in some sense the start of a frame, and so the HBTDP__RES
field 1s set on this occasion. However, continuous mode
operation 1s complicated by the fact that there 1s no end of
frame and no output table that 1s guaranteed to have only a

10

15

20

25

30

35

40

45

50

55

60

65

22

single entry. In fact, a table with a signal entry may not to
occur often. Nonetheless, every eight bits, the control unit
receives and must store a new array of tables from the
HBTDP unit. The decoded data must eventually be extracted
from these tables, both because the encoded data 1s needed
and because the memory has a finite storage capacity. Any
time after several table arrays have been transferred from the
HBTDP unit, the control unit can attempt to extract the
decoded bit-stream. Because no single starting point can be
determined, the control unit must back-track from each entry
of some chosen array. In general, not all entries in the
preceding array correspond to some index from the chosen
array. Therefore, it is possible (conceptually if not actually)
to simplity preceding array by removing the non-referenced
members. Repeating this back toward the first table array,
the memory needed to store all of the arrays i1s at least
reduced. In practice, after a few 1iterations, only one member
will remain 1 an array. Once this condition occurs, the
processor can proceed as 1n the framed case. The algorithm
for back-tracking provides for flexibility. Simplification of
the arrays can be used to reduce the memory requirements.
Or the simplification of the arrays can be delayed 1n order to
avold excessive back-tracking. Whatever approach 1s taken,
the processing requirements should be much less than the
bit-at-a time techniques of the prior art.

Because the n binary digits associated with and identify-
ing cach state also i1dentifies the last n transitions, the state
1s a natural storage unit for identifying the previous n
transitions. Thus, a series of files that includes all the
surviving states identifies the last n transitions for all of the
surviving paths and are thus referred to as a history file.
Associated with each surviving state 1s an index file that
“points” to the appropriate history subfile 1n the next pre-
vious file. Using the index file, the path can be traced back
to the imitial state. As a result of this tracing back, the
surviving path can be determined.

As 1ndicated above, when a single final surviving state 1s
reached, then the “most likely” path can be identified
through the tracing back procedure. Even 1n a continuous
decoding, when there 1s no final state, the method of 1ssuing
tables at the end of each block of 8 bits provides and easy
way to find a good position from which to start backtracking
(viz. when a table is short).

The present 1nvention 1s particularly well suited to the
IS-95 conventions. In this convention, the states are deter-
mined by an eight-bit binary number. Because the process-
ing device 1s typically implemented in a byte, or multiple
byte format, the use of eight-bit quantities 1s particularly
advantageous.

It will be further clear that the processing of transition
metrics in blocks of symbols having B (=constraint length—
1) members to provide tables having partial path information
1s particularly convenient, however, the division of the
symbols 1n groups of B symbols 1s not essential. Blocks of
symbols having a different number of members can be
similarly processed. For instance, the number of members
can be an integer times B. Such a division on symbols can
be useful when B 1s small, wherein tables can be generated
that more fully populate word-length data fields.

In the modified decoder, the variable length tables are
transferred every n*B symbols, where B is (constraint
length—1). The first table is transferred after (n+1)*B sym-
bols rather than after 2B symbols. Internal to the block
decoder unit, the butterfly operations operate as before, but
at the end of each block of B symbols the history entries are

left-shifted by B bits and the low order B bits of the k-th

US 6,622,283 B1

23

history entry are set to k. In this way, at the end of n*B
symbols the history entries have n*B significant bits. This
embodiment 1s useful 1s for small constraint lengths, e.g., 5.
In this case using the multiple of 3 would result in B=12 so

that the variable length tables would again be 16-bits wide
(12 bits of the history field+4 bits of index field. For

constraint length 3, a multiple of 7 would similarly result in
B=14, and with index entries of two bits, would result 1n 16

bit fields.

The second embodiment, the operation of which was
described with respect to FIGS. 15, 16, 17A, 17B and 17C,
provides an improved interface between the processor unit
and the peripheral unit. In particular, this embodiment
provides a trail compression that results in a simplified
decoding procedure.

Those skilled 1n the art will readily implement the steps
necessary to provide the structures and the methods dis-
closed herein, and will understand that the process
parameters, materials, dimensions, and sequence of steps are
grven by way of example only and can be varied to achieve
the desired structure as well as modifications that are within

the scope of the mvention. Variations and modifications of
the embodiments disclosed herein may be made based on the
description set forth herein, without departing from the spirit
and scope of the invention as set forth in the following
claims.

What 1s claimed 1s:

1. A block trellis decoder for decoding a sequence of
convolutionally-encoded symbols, the block trellis decoder

comprising:

a processing unit, the processing unit receiving the
sequence of convolutionally-encoded symbols, the pro-
cessing unit generating transition metrics for each state
of a symbol; and

a hardware decoder unit responsive to transition metrics
for each block including at least B symbols, the hard-
ware decoder unit generating a fixed length table for
cach block of transition metrics, the fixed length table
including a history entry, an index entry, and a path
metric entry, the fixed length tables identifying surviv-
ing partial paths for the blocks of symbols, the hard-
ware decoder unit transferring the fixed length tables to
the processing unit, the processing unit determining
surviving paths from the fixed length tables, the hard-
ware decoder unit including an interface apparatus
having:

a plurality of transition metric registers for receiving
from the data processing unit the transition metrics
generated as a result of each symbol;

a maximum path metric register responsive to signals
from the data processing unit for storing a predeter-
mined maximum allowed path metric;

a control register responsive to the data processing unit
for storing a field resulting in an 1nitialization of the
hardware decoder and a number field determining,
when updating will take place; and

a history register for storing a history field and an index
field of the fixed length table for retrieval by the data
processing unit.

2. The method as recited 1n claim 1 wherein each block
including at least B symbols comprises a block including at
least n‘B symbols.

3. The decoder as recited 1n claim 1 wherein the transition
metric registers include synchronization apparatus, the syn-
chronization apparatus preventing transition metric data
from being lost when the hardware decoder unit 1s not ready
to process the transition metrics retrieved from a next block
including at least B symbols.

10

15

20

25

30

35

40

45

50

55

60

65

24

4. The decoder as recited 1n claim 1 further including a
length register, wherein the length register indicates to the
processing unit when the hardware decoder unit 1s not ready
to transfer data.

5. The decoder as recited i claim 1 wherein the hardware
decoder unit includes buttertly apparatus, the butterfly appa-
ratus generating and updating the fixed length table.

6. A method for block-decoding a sequence of
convolutionally-encoded symbols compromised by noise in
transmission and reception comprising:

dividing the sequence of symbols into groups of symbols
having a preselected number of symbols;

for each group of symbols, generating a table, the table
having table entries including a history field, an mndex
field, and a path metric field, the table identifying
surviving partial paths for said each group of symbols,
cach of said table entries 1dentifying a surviving partial
path 1n a next previous table, the surviving partial path
identified 1n the next previous table being a part of the
surviving partial path identified by the table; and

based on a predetermined criterion, assembling at least

one surviving path from the tables.

7. The method as recited in claim 6 wherein the prese-
lected number of symbols 1s B, B being equal to the
constraint length of the encoder encoding the symbols minus
1.

8. The method as recited 1n claim 6, wherein the prese-
lected number of symbols 1s n°B, n being an integer and B
being equal to the constraint length of the encoder encoding
the symbols minus 1.

9. The method as recited 1 claim 6 wherein the surviving
partial paths are utilized to decode the sequence of symbols.

10. The method as recited in claim 6, wherein the history
field mncludes a record of transitions for a surviving partial
path determined by a next previous group of symbols.

11. The method as recited in claim 6 wherein the mdex
field 1identifies a history field 1n a table generated by a next
previous group ol symbols.

12. The method as recited 1 claim 6 wherein the path
metric field identifies a deviation from an ideal surviving
path.

13. For use with a processor unit, a peripheral unit for
accelerating the block-decoding of a sequence of
convolutionally-encoded symbols, the peripheral unit com-
Prising;:

an 1nternal memory of N bits;

transition metrics registers to store transition metrics for

cach state of a symbol;

a trellis decoding apparatus responsive to transition

metrics, the trellis decoding apparatus including

a ixed length table having an entry for each state, and

a butterily apparatus performing butterily operations on
a predetermined number of symbols to update a fixed
length table, wherein the updated fixed length table
identifies surviving partial paths for states of the
predetermined number of symbols; and

history registers to store entries of the fixed length table
when the fixed length table has been updated for a
final symbol, and to transfer the fixed length table to
the processor unit, wherein the processor unit
decodes the sequence of convolutionally-encoded
symbols from the transferred fixed length table;

a scorecard register, wherein the processor unit can write
signal groups to the scorecard register;

a prototype register, wherein the processor unit can write
signal groups to and read signal groups from the

US 6,622,283 B1

25

prototype register, all of the N bits of internal memory
being set to zero when the processor unit writes a signal
group with a value of N or greater to the scoreboard
register, a corresponding bit 1n the nternal memory 1s
set equal to one when the processor unit writes a signal
group having a value between zero and N-1 to the
scoreboard register, and successive reads of the proto-
type register return numbers n< or =N-1 for which
corresponding bits are zero;

an olilset register, wherein when the processor unit writes
a non-zero value to the offset register, subsequent
successive reads of the prototype register will return a
sum of the non-zero value and a number n; and

a candidate register, wherein the candidate register 1s a
second prototype register that returns signal group
values greater than a most recently read value from the
prototype register, wherein
the processor unit includes a memory unit to store the

transferred fixed length table, and prior to decoding
the sequence of convolutionally-encoded symbols
from the transferred fixed length table, the processor
unit forms a variable length table from the trans-
ferred fixed length table.

14. For use with a processor unit, a peripheral unit for
accelerating the block-decoding of a sequence of
convolutionally-encoded symbols, the peripheral unit com-
Prising;

fransition metrics registers to store transition metrics for
cach state of a symbol;

a trellis decoding apparatus responsive to transition

metrics, the trellis decoding apparatus including

a fixed length table having an entry for each state,
wheremn the fixed length table includes a history
entry, an 1index entry, and a path metric entry, and

a butterily apparatus performing butterily operations on
a predetermined number of symbols to update a fixed
length table, wherein the updated fixed length table
1dentifies surviving partial paths for states of the
predetermined number of symbols; and

history registers to store entries of the fixed length table
when the fixed length table has been updated for a final
symbol, and to transfer the fixed length table to the
processor unit, wherein the processor unit decodes the
sequence of convolutionally-encoded symbols from the
transferred fixed length table.

15. The peripheral unit as recited 1n claim 14, wherein the
processor unit mcludes a memory unit to store the trans-
ferred fixed length table, wherein prior to decoding the
sequence of convolutionally-encoded symbols from the
transferred fixed length table, the processor unit forms a
variable length table from the transferred fixed length table.

16. The peripheral unit as recited in claim 15 wherein the
peripheral umit further comprises a prototype register to
provide data to the processor unit, and the data provided to
the processor unit identifies entries to appear i the variable
length table.

17. The peripheral unit as recited 1in claim 16 wherein
addresses 1n the variable length table that are stored in the
processor unit are transierred to the peripheral unit utilizing,
the prototype register.

18. The peripheral unit as recited in claim 16 wherein the
processor unit transfers data to the peripheral unit through
the prototype register and the data transferred to the periph-
eral unit 1dentifies offsets in the variable length table.

19. The peripheral unit as recited 1n claim 15, wherein the
peripheral unit further comprises a memory location to
identify an address of the fixed length table.

10

15

20

25

30

35

40

45

50

55

60

65

26

20. The peripheral unit as recited 1n claim 19, wherein the
peripheral unit mcludes an offset register to transfer the
address of the fixed length table from the processor unit to
the peripheral unit.

21. The peripheral unit as recited in claim 15 further
comprising;

a candidate register, wherein the processor unit receives

data from the peripheral unit through the candidate
register indicating potential duplicate table entries; and

a prototype register, wherein the peripheral unit receives
data from the processor unit through the prototype
register 1dentifying duplicate table entries.

22. The peripheral unit as recited 1n claim 15, further

comprising a score-board register having locations to 1den-
tily whether an entry 1n a fixed length table has been entered
in a variable length table.

23. The peripheral unit as recited 1n claim 15, further
comprising a score-board register, the score-board register
having locations identifying whether an enfry in a fixed
length table has been entered in a variable length table.

24. The peripheral unit as recited 1n claim 14 wherein the
predetermined number

of symbols 1s B, B being equal to the constraint length of

the encoder encoding the symbols minus 1.

25. The peripheral unit as recited 1n claim 14, wherein the
predetermined number of symbols 1s n-B, n being an integer
and B being equal to the constraint length of the encoder
encoding the symbols minus 1.

26. The peripheral unit as recited 1n claim 14, wherein the
processor unit generates a variable length table from the
transferred fixed length table.

27. The peripheral unit as recited in claim 26 further
comprising a plurality of auxiliary registers to provide data
fields to assist the processor unit in generating the variable
length table from the fixed length table.

28. The peripheral unit as recited 1n claim 27, wherein the
fixed length table 1s shortened by removing duplicate history
entries.

29. The peripheral unit as recited 1n claim 27, wherein the
fixed length table 1s shortened by removing history entries
associated with a path meftric that exceeds a preselected
value.

30. The peripheral unit as recited 1n claim 27, wherein
partially decoded paths are stored as sequential trail member
table entries 1n the processor unit.

31. The peripheral unit as recited in claim 14 further
comprising a control register to store control data groups
from the processor unit, wherein the control data groups are
utilized to control the peripheral unit.

32. The peripheral unit as recited 1n claim 14, wherein the
control register stores state data groups from the peripheral
unit, and the state data groups 1dentify a current state of the
peripheral unit for the processor unit.

33. The peripheral unit as recited 1n claim 32, wherein the
processor unit 1s a digital signal processing unit.

34. A method of accelerating the block-decoding of a
sequence of convolutionally-encoded symbols comprising;

calculating transition metrics for each state of a symbol;

performing a plurality of butterfly operations on the
transition metrics for a predetermined number of con-
secutive symbols to update entries for a fixed length
table, wherein the fixed length table includes a history
entry, an index entry, and a path metric entry and entries
in the fixed length table 1dentily surviving partial paths;
and

when the transition metrics associated with a final symbol
of the predetermined number of consecutive symbols 1s

US 6,622,283 B1

27

processed and the fixed length table has been updated,
generating a variable length table.

35. The method of claim 34 further comprising assem-
bling surviving partial path data for each surviving path in
sequential memory locations.

36. The method as recited 1in claim 35, wherein the
generating 1s implemented 1n a processor unit, the perform-
ing 1s implemented in a peripheral unit, and the sequential
memory locations are 1n a processor unit memory.

J7. The method as recited 1n claim 36 further comprising;:

transierring the transition metrics from the processor unit
to the peripheral unit utilizing transition metric regis-
ters in the peripheral unit; and

transterring the surviving partial path data from the
peripheral unit to the processor unit utilizing history
registers.
38. The method as recited 1n claim 37, wherein generating
a variable length table 1n the processor unit comprises:

transierring the surviving partial path data by exchanging

prototype codes, candidate codes, and offset codes.

39. The method as recited in claim 35, wherein the
assembling 1s 1mplemented 1 a processor unit and 1n a
peripheral unit.

40. The method as recited 1n 34, wherein the
convolutionally-encoded symbols are encoded with a con-
straint length of N, the predetermined number 1s N-1 and a
number of states associated with each symbol is 2V,

41. The method as recited 1in 34, wherein the
convolutionally-encoded symbols are encoded with a con-
straint length of N, the predetermined number is n-(N-1)

10

15

20

25

23

where n 1s an 1nteger, and a number of states associated with
each symbol is 2V,

42. The method as recited in claim 34, wherein the
convolutionally-encoded symbols are encoded 1n a IS-95
format, the predetermined number 1s 8, and a number of
states associated with each symbol 1s 256.

43. A block trellis decoder for decoding a sequence of
convolutionally-encoded symbols, the block trellis decoder
comprising:

a processing unit to generate a plurality of transition
metrics corresponding to a block of said
convolutionally-encoded symbols and to determine a
surviving path utilizing a fixed length table 1dentifying
surviving partial paths corresponding to said block of
said convolutionally-encoded symbols, wherein said
fixed length table comprises a history entry, an index
entry, and a path metric entry; and

a hardware decoder unit, said hardware decoder unit
comprising a plurality of transition metric registers to
store said transition metrics, a maximum path metric
register to store a maximum allowed path metric, a
control register, and a history register, to generate a
path metric utilizing said transition metrics, to compare
said path metric with said maximum allowed path

metric and, to generate said fixed length table 1n
response to a comparison of said path metric and said
maximum allowed path metric.

	Front Page
	Drawings
	Specification
	Claims

