(12) United States Patent

US006618851B1

(10) Patent No.: US 6,618,851 Bl

Zundel et al. 45) Date of Patent: Sep. 9, 2003
(54) METHOD AND APPARATUS FOR 6,105,147 A * 82000 Molloy ..oeeevrrirnennnnnnne. 714/16
STATE-REVERSION 6,247,042 B1 * 6/2001 Engstrom et al. 709/107
6,324,692 Bl * 11/2001 FisSKe .vevveeeerereerennns 717/171
(75) Inventors: Robert E. Zundel, Wilsonville; Doug
Mullin; James Synge, both of Portland; OTHER PUBLICATIONS
Scott Borduin, Lake Oswego, all of Wilson et al, “Demonic memory for process histories”,
OR (US) ACM pp 330-343, 1989.*
_ | Kruskal et al, “Efficient synchronization on multiprocessors
(73) Assignee: Autodesk, Inc., San Rafacl, CA (US) with shared memory”, ACM pp 218-228, 1986.*
: . o : Pal et al, “Isolation of transaction 1n object orienetd database
(*) Notice: Subject to any disclaimer, the term of this),
patent 1s extended or adjusted under 35 systems”, ACM CIKM, pp 17/9-186, 1994.7
U.S.C. 154(b) by 0 days. * cited by examiner
(21) Appl. No.: 09/387,751 Primary Examiner—Anil Khatri
_ (74) Attorney, Agent, or Firm—Schwabe, Willlamson &
(22) Filed: Aug. 31, 1999 Wyatt, P.C.
(51) Int. CL7 ..o, GO6F 9/44 (57) ABSTRACT
(52) US.CL ..., 717/3; 717/120; 711/156
(58) Field of Search 7177/3, 100, 101, A programming environment can be modified to provide
717/120, 127, 168; 711/1, 156, 166, 170, automatic support for reverting program memory states.
160 Such memory reversions are used to provide automatic
support for state-reversion, undo, redo, and abort operations
(56) References Cited for application programs written with the programming
environment. Memory allocation code (e.g., functions,
U.S. PATENT DOCUMENTS procedures, etc.) are modified to mark allocated memory as
4024507 A * 5/1977 Berkling et al. 711/170 protected, and an exception handler 1s assigned to such
5,113,521 A * 5/1992 Mcken et al. 714/15 memory. Attempts to access the memory cause an exception
5204964 A * 4/1993 Bowden, III et al. 709/102 to be generated. This exception 1s caught, providing oppor-
5,257,354 A * 10/1993 Comfort et al. 714/16 tunity for the memory to be preserved before 1t 1s modified.
5305380 A * 4/1994 Palmerccccoeennee. 382/305 Previous memory states can be retrieved by restoring such
5?3555483 A : 10/1994 Sel’lf.:t 711/154 Stored memory States‘ State_reversion can be eqqected by
5392,202 A * 2/1995 Davis et al wooovevreeene 7147 reating a new current memory state corresponding fo a
5,481,710 A * 1/1996 Keane et al. 709/320 revious (e retrieved) memory state
S611,043 A * 3/1997 Even et al. w.oeevevevenn... 714/38 P 'S v SHEe.
5,721,918 A * 2/1998 Nilsson et al. 707/202
6.063,126 A * 5/2000 BOIduineevvvmenr.. 703/2 16 Claims, 6 Drawing Sheets
30
32 AV
UNDO /U
MEMORY MANAGEMENT
34
JIM™N] REDO
36
\T\ ABORT

40

ASSEMBLY DAG

38

42

BREP DAG

<

44

RECIPE DAG

<

U.S. Patent Sep. 9, 2003 Sheet 1 of 6 US 6,618,851 B1

40

| ,: ASSEMBLY DAG | lm 38
|
|] - B o 42
| BREP DAG }/\/ |
[_

- B B 44 |
RECIPE DAG /\ /

U.S. Patent Sep. 9, 2003 Sheet 2 of 6 US 6,618,851 B1

FlGl 2
- - ‘ |
E1_|‘ e2 | e Ener || Enoz | o | Enem U
B |
-/ § VA ;o
) |) Y
50 52 54 56 °8 60 62
64 66 70
68 74 72
FIG. 3
T T2 l 3 | T4 |
000 N < - 100
| _ _ |
102 44,
114 110

104 106 108

U.S. Patent Sep. 9, 2003 Sheet 3 of 6 US 6,618,851 B1

| PROTECT MEMORY
& /\/ 152

| ATTEMPT MODIFY

- vy 154

_ EXCEPTION _}/\/
v 156

| PRESERVE MEMORY]A/
v 158

| MARK MEMORY j\/
160

v

| UNPROTECT MEMORY

| CONTINUEOVER | ~ 162
THE EXCEPTION /\/
B I 164

vy
| TRAVERSE PRESERVED | \/
I /\/166

| COMPARE MEMORY |

y 168 172
| COMPRESS DELTA }/\/

v 170
B STORE_COMPRESSEfl/\/ _PROTECT MEMORY

U.S.

—>

r

A

US 6,618,851 Bl

|

Patent Sep. 9, 2003 Sheet 4 of 6
S /QGI 5
START TRANSACTION
200
- - |
B v B 164-172
' COMMIT CURRENT TRANSACTION (FIG. 4)
PERFORM OPERATION__< B B
T C 204
206 208
T
| PROTECTED THROW EXCEPTION
MEMORY
2 _ _ _
| S 2 .
O SAVE MEMORY AND
CONTINUE
210 — —
YES — — —
EREOR | RESTORE MEMORY
L _ _
' NO v
220 PROTECT MEMORY
NO
DONE B v B
? DELETE BULLETIN
YES

NJ O 154-162

(FIG. 4)

/\J 212

N\

| o \ A 218
| DELETE BACKUP COPY ’/\/

U.S. Patent

Sep. 9, 2003

START
TRANSACTION

\/ FIG. 6
250

AFFECTS
API

MEMORY

NO

AFFECTS
EXTERNAL

MEMORY
?

252

Sheet 5 of 6

US 6,618,851 Bl

| 272

258
YES %
—»{ ERROR |
256 NO
BULLETIN NO ' , 208 268
SUPPORT .
’ ERROR NO DONE _TES
ABORT ? END |
UNDO
262 YES 260 | <
I o
CREATE BULLETIN
v B r v B /\/276
SEND BULLETIN RESTORE | ANNOUNCE START 278
Il EXTERNAL [ccormresTore |\
— I RESOURCE 4
PERFORM | | ' ANNOUNCE END
| OPERATION /" 280
a I L _ !
274

264

U.S. Patent Sep. 9, 2003 Sheet 6 of 6 US 6,618,851 B1

304 FIG. 7
— —_ -~ ~ /\/ 302
PROCESSOR P 332
306 \
308 ' MEMORY r
322 OPERATING
f SYSTEM

326

APPLICATION

PROGRAMS

328 L\PE—1 "STORAGE. N AT -
_ | 1

32 |
| _
' >
OPTICAL / LASER | | 336 338
330 — STORAGE \/\
314 /j

_ _ | | _
VIDEO] __ OUTPUT
DEVICE

316

318 PORTS i)

— —" 346 - -
MODEM B 344\[\ \—" 340

l - | | NETWORK

’M
L‘_/J INTERFACE l] INPUT DEVICE

| NETWORK |

320 INTERFACE ' REMOTE
- - 342 COMPUTING
DEVICE

US 6,618,851 Bl

1

METHOD AND APPARATUS FOR
STATE-REVERSION

FIELD OF THE INVENTION

This mvention generally relates to the field of application

program development, and more particularly to providing
automatic support for state-reversion transactions.

BACKGROUND

Providing support for state-reversion operations in an
application program 1s traditionally a complex and error-
prone task. For highly complex application programs, such
as Computer Aided Design (CAD) projects, the task is
particularly difficult. One reason for this difficulty 1s that
CAD designs are Irequently revised before a design i1s
deemed completed. For example, designs frequently evolve
and change according to revised design goals or when
certain features do not yield desired results. Thus, 1n any
particular design session, a designer may make many sub-
stantial changes to a design, where each change may then
require changes to other components of the design.
Consequently, implementation of a robust state-reversion
system becomes correspondingly complex.

For brevity, the term “undo”, unless indicated otherwise
by wording or context, generally refers to state-reversion
operations, as well as related undo, redo, abort, and opera-
tions. The term state-reversion means reverting a model to
an carlier state, like an undo, but where a new current state
1s created corresponding to the earlier state. Undo 1s used to
ogenerally represent all of these operations, since they can be
viewed as particular implementations or variations of dis-
closed mechanisms for reversing changes made within an
application program. The term “reversion” refers to program
code 1mplementing such state-reversion, undo, redo, and
abort support.

Part of the reason for the difficulty mn providing undo
support 1n a solid modeling system, and hence difficulty in
providing for state-reversion, 1s that there are no inverse
operations for most Boolean operations applied to objects
within a model. Thus, one must capture the details of what
has changed at a very low level, e.g., at the data structure
level. In addition, many user operations are often 11l formed,
causing the operation to fail after partial calculation of the
user request, and leaving the model in an unstable state that
requires correction.

Historically, there have been several methods of 1ncorpo-
rating undo support within the source code of an application
program. The simplest (and most limiting) has been to save
to permanent storage a check-point version of a design in
progress. This saved copy can be re-loaded if the design goes

awry. There are significant problems with this approach,
however. First, restorations are limited to the design as
saved. Second, designs can be extremely complex, and
significant resources (€.g., processor, memory, storage, etc.)
and time can be required to save and re-load designs; this
limits the frequency of such backups.

An 1mproved method has been to utilize an object-based
history mechanism. That 1s, design environments typically
break a drawing 1nto multiple objects, frequently arranged as

a graph. Drawing objects can be made responsible for saving
current state information before effecting a change to its
state. The saved state information can be used to revert an
object to a previous state. However, this approach also
suffers several significant shortcomings. One shortcoming 1s
that every object must properly handle reversions (e.g., have

10

15

20

25

30

35

40

45

50

55

60

65

2

appropriate program code to perform an undo). Similar to a
chain being only as strong as the weakest link, an entire undo
mechanism can be compromised by one object’s failure to
properly restore its state. Another 1s that every object must
consume Central Processing Unit (CPU) resources to effect

the state saving, and may seriously degrade program per-
formance.

Another method has been to maintain a list of inverse
operations. If a user rotates an object by ninety degrees, an
iverse operation 1s recorded to undo the rotation. But, this
method has shortcomings. One 1s that performing an inverse
operation 1s generally at least as resource consuming as the
original calculation to get to the current state. Another, more
problematic shortcoming, 1s that some operations have no
inverse. For example, application of a lossy filter discards
original data that cannot be recovered.

Yet another method has been to maintain a history of
design actions, where a reversion 1s cffected by
re-computing the enfire design up to some previous state.
This solution 1s similar to applying inverse operations, and
overcomes the problem with lossy operations. However,
operations relying on real-time, transient, or random data
still cannot be reversed. And, since a design may have a very
large number of operations to recreate, this solution can also
be extremely slow and resource intensive.

But, each of the above methods places a burden on an
application program designer (e.g., the CAD/CAM
developer) to design and implement a complex reversion
feature. Due to such complexity, a significant portion of
application program design time can be expended 1n order to
properly 1mplement 1t and allow its use throughout the
application program. Also, there 1s no guarantee that i1t will
be implemented correctly. And, since such a feature 1s
integral to an application program, 1t 1s unlikely that result-
ing program code will be easily portable to a different
application program.

SUMMARY

Programs and programming environments can be modi-
fied to provide automatic support for reverting program
memory states, allowing automatic support for state-
reversion, undo, redo, and abort operations. Memory allo-
cation code (e.g., functions, procedures, etc.) can be modi-
fied to mark allocated memory as protected, and assign an
exception handler to such memory. For example, an excep-
tion filter can be associated with a memory region, where the
filter decides, based on the exception details, whether the
exception represents an attempt to modily memory which
has been protected. Modifications are caught, providing
opportunity to preserve memory before i1ts modification.
This allows retrieving previous program states. State-
reversion of a model stored 1n a memory can be achieved by
tracking changes to the memory by application of transac-
tions to current states of the model. When a first transaction
1s received, the model has a first state. Application of the
transaction results 1n a second state. Changes to the memory
storing model are tracked between the first and second
states. Thus, on receiving a state-reversion request to revert
back to the first state, a new current model state can be
created, where this current state is equivalent to the first
state.

BRIEF DESCRIPTION OF THE DRAWINGS

The present mvention 1s presented by way of example,
and not by limitation, 1n the figures of the accompanying,
drawings. Like references within the specification corre-
spond to similar drawing elements.

US 6,618,851 Bl

3

FIG. 1 illustrates portions of a generalized CAD environ-
ment.

FIG. 2 shows an event line representing a sequence of
operations during execution of an application program.

FIG. 3 shows a transaction timeline.

FIG. 4 1s a flowchart for one method of implementing,
reversions 1n an API.

FIG. § 1s a high-level program-operation tlowchart illus-
trating how FIG. 4 operations are called during normal
program execution.

FIG. 6 1s a flow chart for integrating an application written
with the API with program memory not allocated with the

APL.

FIG. 7 1s an exemplary operating environment for an
application program written with the API.

DETAILED DESCRIPTION

Instead of requiring an application developer to worry
about providing undo support, such support can be made
automatic through incorporating functions provided by an
Application Programming Interface (API), a programming
language, or other programming environment. One particu-
lar implementation 1s to i1ncorporate such support into
memory management support for such environments. For
example, in a modified API written for C++, the new and
delete operators can be overloaded to provide this support.
However, to implement this API, it 1s important to under-
stand generally how a program operates. In general, a
program’s execution can be viewed from one of two per-
spectives. A first “traditional” approach 1s to watch the
actions taken by the program. As discussed in the
background, various methods can be applied to reverse the
effects of the program’s taking some action. A second, and
better approach, 1s to track changes made to program
memory (e.g2., RAM or other permanent storage) which is
storing the program’s current state as the program operates.
It 1s generally understood that program execution 1s data
driven. As a program runs, user operations cause changes to
program data which effect program output (e.g., display) and
stored program state data. If changes to display state and
stored program state are tracked as they occur, then a
particular user operation can be undone by restoring
memory storage to 1ts pre-action state. As discussed below,
this approach overcomes several prior-art limitations.

Unfortunately, 1t 1s not feasible to track every change
made to every data bit of memory. Therefore, available
memory can be allocated mmto memory blocks of predeter-
mined size (e.g., a standard system block size). During
execution of the user operation, any modified memory
blocks are saved for later restoration. For clarity, 1t 1s
assumed that block saves are performed between known
program operation states , €.g., checking for changes only at
the end of a transaction. For example, a current memory
state can be recorded at the start of a user operation, such as
changes to a design. At completion of the operation, the
memory state of the blocks 1s compared to the saved state,
allowing 1dentification of changes made by the operation.

Exemplary Application Program

To give context for the API, 1t 1s assumed herein that a
program developer 1s preparing a CAD application program
with the API. A CAD program, being a highly complex and
resource 1ntensive application, illustrates the flexibility of
the claimed memory-based approach to reversion tracking.

10

15

20

25

30

35

40

45

50

55

60

65

4

The term “reversion” 1s intended to 1include operation of the
invention as incorporated into an API or other development
environment. The terms “undo”™, “redo” and “abort” refer to
operations performed by the CAD program written with the
API. Undo means to take a CAD demgn to a previous state.
Redo means to undo an undo operation, €.g., to restore
program operation to a later program state. Abort, similar to
undo, means to stop a program operation and restore pro-
ogram operation to a known previous state, and to forget the

changes made during the stopped program operation

CAD program execution generally goes through three
stages. During the first stage, a user/operator provides pro-
ogram selections, such as clicking on a button or performing
a menu-selection, and the program provides feedback such
as highlighting a selected button or object. During a second
stage, the application program executes a user request that
inspects or modifies program data. And, during the third
state, the application program updates or displays user
interface nformation in response to the user request, and
performs any side effects related to the user request. The
term “transaction” 1s used to refer one or more user-initiated
actions (“identified transactions™) and program responses
thereto (“unidentified transactions™).

A transaction 1s roughly a group of actions which are
ciiectively mseparable, such that they are all either done or
all not done. Generally, 1dentified transactions are operations
where a user has directed that some change be made to a
CAD model. Unidentified transactions are behind the scenes
or automatic actions. For example, there are events related
to a mouse, such as move, button click, or drag events, that
ogenerate events, but are not recognized by the user as a
tfransaction per se. (An event is essentially a notification to
a program that some action has occurred.) Unidentified
transactions can also include changes to how the model 1s
viewed, but which do not actually change the model 1tself,
as well as program responses to user actions, which mclude
displaying the outcome of an operation by modifying a
ographics scene to show a different view, dynamically rotat-
ing the model, highlighting selected objects, etc.

FIG. 1 illustrates portions of a generalized CAD environ-
ment. Shown are the CAD application program 30 1itself,
which contains program modules (written using the API
supporting reversion) for performing undo 32, redo 34, and
abort 36 operations 1n accordance with the teachings of the
invention. The state-reversion, undo, redo, and abort opera-
tions each rely on memory management modules 38
described below. The CAD application program 30 1s of a
type supporting solid modeling of designs, such as the
Mechanical Desktop® Release 3 program by Autodesk Inc.
of San Rafael, Calif. Program 30 utilizes several Directed
Acyclic Graph (DAG) data structures to track design data
and design intent. These structures will be briefly discussed
to provide a foundation for terminology used throughout this
description. These DAGs are presented purely for exem-
plary purposes—other data structures, such as non-
directional graphs, trees, etc., can also be used. And,
although discussed separately, it 1s understood that these
DAGs may be combined or arranged differently to achieve
equivalent results. For example, BREP and graphics data for
a part can be derived from the part’s design capture recipe
(which contains different types of nodes for parts,
assemblies, and drawings).

A first DAG 40 roughly tracks an entire assembly. It 1s
assumed that leaf-nodes of the graph contain individual parts
of the assembly, where each part contains graphics
primitives, such as the triangles and lines representing
information that is presented to a user. This DAG 1s opti-

US 6,618,851 Bl

S

mized for reading for rendering and selection. Different
Levels of Detail for parts can be stored for a part, as well as
data to allow portions of a scene to be spatially sorted to
facilitate selection and culling.

A second DAG 42 tracks a solid model boundary repre-
sentation (BREP) for a part (an integrated collection of
objects). This DAG represents the boundary topology and
shape of the part. Instead of defining a part as a collection
of edges or points, a BREP defines a part with respect to one

or more shells. A simple part with no cavities in it will have
a single exterior shell. Each shell has one or more faces.
Each face contains surface information, such as a plane
equation, normal(s), etc, and is bounded by one or more
directional (having an inside and outside) loops; thus, a face
with a hole 1n it has an outer and an inner (hole) loop. Loops
are defined by a set of edges, each bound by vertices. Edges
form boundaries between multiple faces, and hence can be
part of multiple loops. In sum, shells, faces, loops, edges and
vertices define a polyhedron representing a desired solid.
Attributes such as color, shading, orientation, texture, and
relation to other objects can be associated with the polyhe-
dron. Shape information 1s described by associating curve
and surface information to the solid’s faces and edges,
respectively. The graphics primitives of the first DAG 40 are
primarily derived by tessellating the faces and edge of the
BREP of each part in a design.

A third DAG 44 1s a design capture recipe. Arecipe tracks
a designer’s “intent,” 1n terms ol parameters, features, and
constraints. Essentially, the recipe can be viewed as a
“qualitative” sequence of steps required to recreate an
assembly, or part thereof. That 1s, a recipe 1n not a quantified
sequence of steps to create the design. Instead, as drawing
clements are designed, a sequence of constraints are stored
to characterize each element. For example, rather than
defining a cube object as having a particular fixed size,
instead a side of the cube 1s drawn as a rectangle (four lines
connected 1n a loop, opposite lines constrained to be parallel,
adjacent lines constrained to be perpendicular), with two
adjacent sides then constrained to be equal in length. Next,
a dimension 1s added to one edge, allowing the user to adjust
the size of the square with a single parameter. To transform
this square 1nto a cube, the square 1s extruded using the
length of a side of the square as the distance of the extrusion.
Thus, the size of the cube can be varied by changing a single
parameter, and the constraint system will maintain the shape.
Assembly information for graphs, as well as graphics primi-
tives for sketches and other graphical feedback objects (e.g.,
grids, workplanes, etc.) are derived from the third DAG.

When a transaction 1s committed, the constraints and state
arc added to the design capture recipe, which 1s then
evaluated to modity the topology and geometry of the BREP.
The BREP 1s then retesellated. A tesellated object 1s one
having an appearance derived from a contiguous arrange-
ment of simpler objects, typically triangles. Complex object
surfaces can be represented by a combination of one or more
basic object shapes, such as splines, non-uniform rational
splines (NURBs), texture maps, and polygons. Executing
commands typically requires two high-level transactions
cach, a first which ends a current unidentified transaction,
and a second which ends an 1dentified transaction in which
the design capture recipe and BREP are changed). The
changes to the recipe cause events to be broadcast which
cause views (windows) to be ‘invalidated’, leading to them
being repainted after the command finishes.

In a user run command, for example, an 1dentified trans-
action adds constraints and states to the design capture
recipe, which 1s then evaluated to modity the topology and

5

10

15

20

25

30

35

40

45

50

55

60

65

6

cecometry of the BREP. The changes to the recipe and BREP
cause events to be broadcast which mmvalidate the approxi-
mate graphics representations of the BREP. The identified
fransaction then commits. A subsequent unidentified trans-
action begins 1mmediately, and starts by repainting the
scene. The invalidated graphics representations are replaced
by regenerating them from the BREP 1n order to display the
results of the operation. The umdentified transaction then
continues while the user re-displays the model from different
views, makes selections, and enters the input for the next
operation. (This input is typically validated via temporary,
dynamic graphical feedback on the display.) When the input
1s ready, the user invokes the next command, which auto-
matically commits the unidentified transaction, and then
begins the subsequent i1dentified transaction.

FIG. 2 illustrates an event line 350. An event line 1s
analogous to a timeline, and represents a sequence of
user-driven operations taken by an application program. All
program activity can be viewed as a sequence of events El
52, E2 54, etc. occurring over time. Events are defined by
user action and program response thereto, and are grouped
together to define “transactions.” As shown, there are three
transactions 64, 66, 70. For simplicity, it 1s assumed that one
transaction starts 68 where a previous transaction ends 68,
since having gaps between transactions can prevent undo/
redo operations unless complex tracking 1s used.
Consequently, 1t 1s assumed that no event can be recorded by
the transaction system unless there 1s an active transaction.

For example, the first transaction 64 may represent 1ni-
tialization of a CAD application program. Note that initial-
ization can occur before (e.g., outside of) the transaction
monitoring system 1s started, since there are no actions at
that time which we want the user to undo, and hence no need
to be able to undo program 1nitialization. Events E1 52-E,,
56 can be acquisition of program memory via appropriate
API memory allocation functions, and other actions neces-
sary to 1nitialize the CAD program. After 1nitialization, the
second transaction 66 may represent a user’s defining an
object, such as a triangle, within the CAD environment.
Events E,.. , 538 through E,, ,, 62 can be the user’s selection
of a triangle creation operation, selection of where within a
drawing to place the triangle, as well as sizing and attribute
selections. As noted above, transaction granularity i1s arbi-
trary and more or fewer actions may be imncluded within each
transaction 66.

Now assume that the third transaction 70 1s an undo
operation for the triangle creation transaction 66. This
operation can be seen as either trimming the event line 50,
so that 1t stops at boundary 68, or as causing program state
as 1t existed at boundary 68 to be made available at the undo
transaction ending boundary 72. Although effectively the
same result, 1if viewed 1n the latter context, one can treat the
undo transaction 70 as just another transaction that itself
may be undone. Undoing the undo transaction, e€.g., per-
forming a redo operation, would bring program state back to
as 1t existed at transaction boundary 74. The state-reversion,
undo, redo and abort operations employ the first approach of
“trimming” the transaction history, without creating a new
fransaction, by moving a boundary between the past and
future events without losing the future events. The rollback
operation employs the latter method of making a new
program state at boundary 72 that 1s equivalent to the earlier
boundary 68.

Note that discussion has focused on bringing program
state to 1ts conflguration at some transaction boundary 68,
74. These boundaries represent the granularity of the undo
system. Intermediate states, e¢.g., E,—E,;, are therefore unre-

US 6,618,851 Bl

7

coverable. Generally, transactions are deemed to start at the
beginning of user-recognizable points in time, such as when
a user 1nitiates some program operation, and end after the
application program has completed responding to the opera-
fion.

FIG. 3 shows a transaction timeline 100. As discussed for
FIG. 2, a transaction 1s a collection of one or more actions.
Assume that a user desires to edit a previously created
feature or constraint (which is associated with an operation).

Similar to an undo operation, an edit operation requires
obtaining a previous program state. However, an edit opera-
f1on 1s more complex since it involves stepping back through
a design’s recipe, changing something, and then recomput-
ing the design. It 1s presumed that relationships between
design objects are stored as a system of design constraints,
so that an edit operation can be accounted for by re-solving
the design constraints according to the edited value(s). As
with other fransactions, an edit operation can also be
undone.

Shown are a series of transactions T1 through T,, 102,
104, 106, 108, 110 that have occurred during execution of an
application program written with the API supporting rever-
sion. Assume that after performing transaction T2 104 1n a
design, a user applies an edit operation to transaction T1
102. This corresponds (in the exemplary CAD application
program) to rolling back the BREP to its previous state as it
was before performing T1 102 (displayed graphics can be
rolled back as well). A user can then modify the recipe (e.g.,
adjust a part size), and allow the design to be re-evaluated
according to the changed information. In one configuration,
to rollback a BREP, a copy 1s made of the BREP. The copied
BREP 1s then tesseclated for display so that the user can
adjust parameters. Later, after a user has approved changes,
the “original” BREP 1s rolled back, and the use changes
applied to this “original” (e.g., non-copy) BREP.

By stepping back through the recipe, a designer can
change an object 1n the design without having to manually
change all other related objects. For example, if 50 objects
are related to a cube, 1n a non-constraint based system,
changing the length of the cube can require all related
objects to be adjusted to account for the change. By storing
design information as a recipe of constraints, when the cube
1s modified, a CAD system can automatically re-solve
relevant constraints and account for the change. (In the
process of resolving all constraints, the topology and geom-
etry of the design may alter dramatically.) Similarly, using a
constraint system allows one to sequence through a recipe
and 1nsert a new object mto the design and re-solve the
constraints. Or, one can evaluate “what 1f” configurations by
changing parameters to test their impact on an overall
design.

As with providing undo support, for any other change
operation, these edit operations are “captured” so that this
operation may 1tself be undone if necessary. Towards this
end, when the design recipe rollback occurs, the roll back
operation generates nested transactions T3 106 which
includes the rollback request, the edit operation 1itself, as
well each original transaction which 1s re-computed. The
identity of each nested operation i1s associated with the
original recipe step so we can revert to 1t for subsequent
edits. Roll backs can occur to any of these nested steps.
Note, however, that undo operations are assumed to affect
entire edit operations. (As discussed below for FIG. 4, each
fransaction’s changes to memory are recorded for later
reversion.) By encapsulating the edit operation as a
transaction, the edit operation becomes another transaction
subject to an undo request.

10

15

20

25

30

35

40

45

50

55

60

65

3

So, 1f an event T4 108 1s an undo operation for edit
transaction T3 106, rather than deleting transaction T3,
instead (like with the edit operation) transaction T4 corre-
sponds to actions needed to undo the edit operation (which
can 1nclude a rollback transaction to track the BREP
modification). Thus, at the completion of transaction T4 108,
program state 1s as it was at the end 114 of transaction T2
104. But, by bemng encapsulated 1n transactions, the undo
108 operation can itself be undone, thus restoring program
state as 1t was after the edit transaction 106.

Undoing an undo operation 1s called a “redo” operation.
As with normal undo operations, performance of a redo
requires knowing all states that have occurred since the
current transaction. State changes are recorded by the trans-
action system using bulletins. Different resources may or
may not be subject to the transaction accounting system,;
those resources whose changes can be tracked have an
assoclated bulletin describing changes to the resource and/or
provision for reversing such change. A bulletin 1s required to
be able to build a list of all state (¢.g. memory) changes that
occurred for the bulletin, so that the memory changes can be
applied to result 1n a final memory state corresponding to the
bulletin’s initial state. Thus, a user may elect, at transaction
T, 110, to undo all transactions back to transaction T2 104,
the beginning of which 1s the end 112 of T1 102, and then

subsequently decide to redo transactions through transaction
T10 (not shown; assume T10<T,).

After applying the memory changes, mstead of discarding
the intermediate states, one can elect to keep the redo
information, and the recovered transaction T10 state 1s
adopted as a new current state T, ;. In particular, since it 1s
known that transaction T,,, , 1S now 1dentical to transaction
T10, a link can be defined between the two states to allow
a jump over intervening states. Such a facility might be
useful 1f a user performs subsequent transactions Ty, ,
through T, ,,, and later decides to undo all transactions to
some point before transaction T10. Rather than performing
the undo operation for mtervening steps, the link provides an
undo shortcut. Maintaining the undo information and adopt-
Ing a new state corresponds to performing a state-reversion.
It 1s understood that the state-reversion may incorporate an
edit operation as applied to an earlier state, where this edited
state 1s adopted as the new current memory state. The edit
operation can be a partial edit, where just the BREP 1s rolled
back to the earlier state, the model edited, and the subse-
quent recipe operations from later states re-applied to form
a new (modified) current state.

The undo shortcut method 1s used to implement the
rollback operation. However, as discussed above, with undo
and redo, a new transaction 1s not created. Instead, bulletins
are executed backward or forward as needed. But, after
performing an undo, when a new subsequent transaction
commits, the undone transactions and all of their associated
bulletins are truncated, rendering them unavailable to a redo
operation.

Note that there 1s an 1ssue with respect to memory that has
been allocated 1n a later transaction that has been undone to
an ecarlier transaction. When undoing transactions, subse-
quently acquired memory should not simply be freed, since
it might not be available 1f a redo operation 1s performed. In
particular, application programs that expect objects to be
loaded in memory at certain locations (with pointers within
and to such objects), will require the memory to be available
for a redo. Consequently, after a rollback operation, the
previous (now restored) transaction state 1s informed that it
has acquired extra memory space (e.g., that memory is
marked as free). The memory is not released so that undoing

US 6,618,851 Bl

9

a memory deallocation allows an object to be restored to 1its
same address in memory.

Alternatively, if memory resources are scarce, the original
memory can be freed, and if a redo 1s performed, all memory
references to the original memory are revised according to
a new memory location acquired during the redo operation.
One way to 1mplement address revision 1s to make group-
ings of addresses be relative to a base address value. On
reacquisition of memory, the base address 1s set to the
reacquired memory’s location, thus minimizing revision
clforts.

Note also that either a linear list or hierarchical tree can
be used to track operations and related program states. In a
linear system, 1f a new transaction 1s completed after per-
forming an undo operation, then all undo 1information cor-
responding to future transactions can now be discarded. That
1s, 1f after some ftransaction T, 110, a series of undo
fransactions occur to take program state back to T2 104, and
then a new transaction T3' 106 (T3 prime) is completed, then
all redo 1information for the previously performed transac-

tions T3 106 through TN 110 can be discarded.

However, 1t may be useful to provide what-if capabilities
to the application program by preserving undo transactions
in a tree. A branch operation can be implemented each time
a transaction would otherwise delete the previously recorded
transactions. Thus, 1nstead of replacing transaction T3 106,
a new hierarchy leat-node T3' 1s created, while the previous
13 through TN series 1s left intact. A visual interface can be
provided to allow one to choose an active path through the
hierarchy.

Undo operations may be complicated by having transac-
fions occurring 1n multiple files. For example, a CAD
assembly document A can contain two parts, each respec-
fively located 1n incorporated documents B and C. If several
transactions are performed in all three documents, then the
undo operations can get complex as the transaction history
may include transactions from both A, B and C. In particular,
the current document focus may be 1n document B, even
though the last transaction occurred 1n A. Consequently, an
undo operation in B will result 1n a change to A, not B, and
may be confusing to a user. To alleviate confusion, a user
interface can be used that notifies the user of such indirect
ciiects from an undo operation. Alternatively, program dis-
play can be adjusted so that each affected document 1s
temporarily displayed while relevant transactions are
undone.

FIG. 4 1s a flowchart for one method of implementing
reversions 1n an API, so as to allow CAD program state to
be reset to transaction boundary states as discussed above
for FIGS. 2 and 3. Shown 1s a flowchart of one approach to
protecting memory to provide reversion allowing applica-
fion program’s to offer state-reversion, undo, redo, and abort
operations.

As discussed above, the general approach 1s to take a
“snapshot” of memory at the beginning of a transaction, and
to then save memory changes, post-transaction, for undo
purposes. No work needs to be performed by an application
program or data objects 1n order to 1implement tracking the
memory changes since changes are tracked at the operating
system level, e.g., through registering protection/exception
handlers with a virtual memory {facility. Additionally,
memory changes only occur one time per memory page per
transaction, and the backup mechanism remains completely
fransparent/automatic to application programmers. This con-
trasts the traditional approach of requiring each object to
track changes and maintain the ability to revert the object to

10

15

20

25

30

35

40

45

50

55

60

65

10

an carlier state. In addition to the complexity of properly
flageing and tracking every object that has changed, this
approach also requires strict and accurate conformity by
every programmer on every data modifying block of code
written; 1f any one programmer fails to properly implement
tracking changes for an object, then the whole system
degenerates.

From an API user/program developer’s perspective, trans-
actions are arbitrarily defined within an event stream, and
therefore the developer 1s required to call a first API function
that flags the start of a transaction, and then call a second
API function to indicate that the transaction has been
committed (completed), or aborted (in effect, an undo
request for any changes made during the transaction up to
the abort). These start/stop notifications are generally placed
around user-identified (e.g., user-initiated) transactions. The
stop notification can be 1implied, however, if transactions are
presumed contiguous, since a start notification necessarily
identifies the end of a previous transaction. If transactions
are not contiguous, then an explicit transaction end call 1s
necessary. It 1s assumed, however, that they are contiguous,
with a single API call including an 1dentification of a
transaction, the call to execute the request, as well as a
commit (or abort on failure) election.

So, at the start of some transaction, memory 1s protected
against write accesses. In particular, as memory 1s allocated
for use by the mvention, 1t 1s protected during allocation.
Thus, any pages of memory allocated to the heap from
general system resources during the transaction are also
protected. Since memory has been allocated with modified
allocation functions, a programmer 15 guaranteed that the
allocated memory 1s properly protected and backed up
automatically. An exception handler 1s defined to handle
attempts to access the memory (e.g., a Win32 SEH filter). By
utilizing exception handlers, memory access attempts can be
managed automatically at the first attempt to access the
memory. The CAD program developer simply writes the
CAD program without worrying about how the API imple-
ments state reversion.

Memory 1s allocated and accessed in chunks of predeter-
mined size. For example, 4 kilobyte (K) chunks can be used.
The blocking size 1s arbitrary, within operating system
constraints, and should be chosen for program efficiency
(e.g., certain block sizes, such as the operating system’s
virtual page size, are better suited to operating system
throughput). Larger block sizes may result in excessive
overhead due to backing up regions of memory not actually
touched during a transaction. In the exemplary CAD
context, the minimum protectable memory block will con-
tain approximately 50-100 typical CAD objects. If the
memory allocation scheme clusters objects together well,
many objects on the same page can be modified 1n the same
transaction, while only incurring the exception overhead
once per page per transaction. This reduces overhead in
unnecessarily calling memory exception handlers to track
changes to memory state.

Thus, at step 152, a program attempting to modify allo-
cated memory results 1in the operating system “throwing” a
memory access exception; this exception i1s “caught” by a
handler (the throw/catch pairing is collectively referenced as
exception 154). (Recall that memory is protected on allo-
cation .) An exemplary exception handler for catching access
attempts 1s a Microsoft Win32 exception handler. The han-
dler temporarily suspends application program execution,
and begins execution of handler code instead. At step 156,
the current state of the memory 1s preserved to ultimately
allow for application of a program’s undo operation. A

US 6,618,851 Bl

11

bulletin object 1s created in regular (e.g., un-preserved)
memory, and 1s appended to an ordered list of such bulletins.
This bulletin tracks the relationship between the memory
and the preserved copy of the memory. Generally, for each
transaction T, and sub-transaction thereof (see FIGS. 2, 3
discussion), there can be one or more bulletins associated
with the transaction. These bulletins track the nature of a

fransaction, as well as what 1s required to undo, cancel, or
otherwise reverse the effects of the transaction.

At step 158, the memory 1s tracked as having been
accessed. Tracking can be effected by setting a “dirty” bit
alter memory has been unprotected 160, or through inspec-
tion of bulletins which provide a record of the memory
alteration. At step 160 the memory 1s unprotected, and the
handler returns a code indicating that normal processing
may continue 162, since the memory 1s now unprotected.
Re-attempting write access now succeeds (rather than
throwing another exception). Since memory has been pre-
served 156 and unprotected, further events during the trans-
action that attempt to write to the memory occur without
overhead.

At transaction commit time, e.g., at the end of the
transaction, the list of bulletins (e.g., indicating preserved
memory) 1s traversed 164 and the preserved copy for each
memory block 164 1s compared 166 against the current state
of the memory. In the context of the FIGS. 2, 3
embodiments, a transaction T, notifies all sub-transactions
(of which there may only be one, €.g., the just transaction
itself) of the commit, and each sub-transaction notifies all
assoclated bulletins to perform whatever actions are required
for supporting state-reversion, undo, redo, abort operations.
Generally, this includes performing a bit-wise XOR between
the current and preserved memory states resulting 1n zeros
for all bits 1n the memory region that remain unchanged
since the memory was preserved, 1.¢., since the transaction
was started.

Compression can then be performed through application
of a lossless encoder such as a Run Length Encoder (RLE),
which replaces runs of zeros with a shorter code sequence.
If desired, the RLE output can be passed to another encoder,
to perform multi-level encoding. The compressed 168 “dif-
ference” or delta data 1s then stored 170 1n a memory backup
file. It will be appreciated that ditfferent comparison and
compression methods can be used. After the compressed
data 1s stored, the memory region i1s re-protected 172,
allowing the preservation cycle to repeat upon subsequent
attempted modification of the memory.

Special provision can be made for memory regions that
are allocated or deallocated (freed) during a transaction. A
straightforward method 1s to add these newly created or
deleted regions onto the end of the list of all preserved
memory. For allocated memory, the “original” contents of
the memory 1s a zero-filled region. Similarly, for deallocated
memory, the resultant memory 1s a zero-filled region. Then,
as the list 1s traversed, the memory 1s compared, encoded,
and backed up as usual.

During program application execution, a transaction(s)
can be undone by decoding stored memory contents and
re-applying the XOR operation to get back the original
memory conilguration at the start of the desired transaction.
During normal program operation, memory objects (e.g., a
C++ object or the like) are allocated and freed within a
memory page, and bulletins are associated with new
memory allocations. However, to be conservative, pages that
are emptied by deleting objects stored within them are not
de-allocated until the event causing its creation can no

10

15

20

25

30

35

40

45

50

55

60

65

12

longer be undone. This conservative approach guarantees
that the memory will be available if an undo requires it to be
reinstated to a particular state.

FIG. § 1s a high-level program-operation flowchart 1llus-
trating how the FIG. 4 operations are called during normal
program execution.

As shown, a transaction starts 200. This causes a previous
transaction to be committed (assuming abutting
transactions), and corresponds to performing operations
164-172 of FIG. 4. After committing the previous
transaction, performance of the current transaction 1s started
204. A check 206 1s made to determine whether the trans-
action affects protected memory. (Typically, for speed, this
test is performed in hardware for each write operation.) Such
identification, as discussed above, can be implemented by
assoclating access handlers to memory regions, where the
handler provides a hook for preserving memory to be
modified before 1t 1s modified. Thus, 1f the transaction affects
memory, such as by writing to 1t, the operating system
throws an access exception 208 that 1s caught by a memory
handler. As discussed above for FIG. 4, the memory 1is
preserved and marked as accessed (e.g., “dirty”) 154—-162,
and then transaction processing 204 confinues. Since an
exception handler operates asynchronously of program
operation, transaction processing 204 1s not “aware” of the
diversion to the handler. (If the transaction operation did not
attempt to change memory, then the operation would be
directly performed since the operating system would not
throw an exception.)

After performing the operation, a check 210 (e.g., by the
application program) is made to determine whether the
operation resulted 1n some error. Errors include a user
command to cancel or undo the transaction 1n progress, and
unexpected exceptions thrown during program execution,
such as from an operating system error, or {from an error
from a mathematical computation. If an error occurred, then
memory is restored 212 (if necessary) to its state at the
mnitialization of the transaction, just as if the transaction had
been completed and then undone. The memory i1s then
re-protected 214, and any relevant bulletins are deleted 216,
and memory backup copies are deleted 218. After an abort/
cancel command, associated bulletins and backup copies are
deleted as being unnecessary (no action completed),
whereas with the undo operation (as discussed above), they
are not deleted. Processing for this transaction then ends,
and processing continues with the start of the next transac-

tion 200.

If there was no error, a further check 220 1s made to
determine whether the transaction 1s done. If so, then
processing for this transaction then ends, and processing
continues with the start of the next transaction 200. It the
transaction 1s not completed, then processing loops back to
confinue processing the operation 204.

Note that the operation of FIGS. 4 and § are interleaved,
and can be 1mplemented 1n different but analogous steps. In
terms of using an API providing automatic undo support,
FIG. 4 operation 150 1s performed automatically on memory
allocation, and operations 152-162 are performed automati-
cally on attempted memory access. However, recall that
backing up memory 1s based on determining differentials
between past and present memory conflgurations. Hence,
entire memory pages are considered “dirty” and needing
backing up, and unmodified objects within a page are backed
up along with modified objects. Operations 164—172 are
intended to be the result of manual “commit” functions
called by the API programmer; this allows, as discussed

US 6,618,851 Bl

13

above, for transaction boundaries to be arbitrary. When the
API programmer deems an operation complete, a single
function call invokes appropriate code for steps 164-172 to
compress and store preserved changes made to memory.

FIG. 6 1s a flow chart for integrating an application written
with the API with program memory not allocated with the
API. Ideally, all memory events occur with protected
memory, making it possible to automatically undo and redo
all application program operations. However, 1 practice,
this 1s not a realistic operation model.

A typical example 1s use of database services. Databases
are complex and difficult to implement efficiently. Therefore,
rather than write their own, developers frequently purchase
a database API to provide database services for an applica-
fion. The database services are likely to maintain private
memory areas not under the control of the API-based
application. Other examples include disk files, third-party
run time libraries, and display data that 1s shown to a user
(e.g., a pop-up information box).

Since these resources do not support the API’s memory
reversion system, this can cause instability with the undo
operations, 1f part of the undo requires reversing effects to
external resources. To get around these problems, bulletins
can be used to encapsulate interaction with external non-
API-based resources. A bulletin 1s used to track changes and
provide state-reversion, undo, redo, and abort support. The
bulletin itself emulates the preservation functions integrated
into the API memory system. Consequently, the viability,
reliability, and performance of the state-reversion, undo,
redo, and abort operations are compromised according to the
skill of the bulletin developer.

As shown, at step 250, a transaction 1s started. A
(hardware) test 252 is then performed to identify whether
some operation of the transaction affects preserved memory
(e.g., memory allocated through an API function(s)). If so,
then the memory is preserved as discussed above for FIG. 4
(e.g., block 154 et seq.). If not, then a test 254 is made to
determine whether the operation affects an external
resource, such as privately allocated memory. (Note that test
254 1s program-design dependent; the programmer utilizing,
the API decides whether resource changes require support
for state-reversion, undo, redo, and abort.) If not, then
processing continues as discussed above for FIG. § (e.g.,

block 204 et seq.).

But, if the operation does impact external resources, a test
256 1s performed to determine whether the external resource
supports a bulletin to allow changes to the external resource
to be undone. (Note that test 256 is also program-design
dependent; the programmer utilizing the API decides
whether bulletins are supported.) Although many external
operations can be reversed, some cannot. For example,
writing to a write-once media, or permanently deleting files,
would not be reversible. In such situations, no such bulletin
support 1s available, resulting 1n an error 258 condition.
Such an error can be handled by mdicating to a user that an
undo operation 1s unavailable. However, it 1s understood that
some operations, while 1rreversible, can still be “undone”.
An example 15 when program output 1s written to a
permanent-storage media. Although the writing act itself
cannot be undone, since the data that was written can be
re-created, one can step back over the transaction. Redoing
the transaction can be skipped (since the media will have not
changed) or another write operation performed on new
media.

If the test 256 1ndicates that the external resource supports
bulletin-based tracking of the operation, then a bulletin 1s

10

15

20

25

30

35

40

45

50

55

60

65

14

created 260 for the operation. In creating the bulletin, a
current state of the external resource 1s preserved before the
operation 1s performed.

Bulletins can have several formats. In one format, the
bulletin completely describes the nature of the operation
affecting external resources (¢.g., changes to the resource are
cached within the bulletin), and an undo operation is asso-
ciated with the bulletin, so that the undo operation uses the
cached data to automatically restore the external resource’s
state. In another format, rather than caching changes 1n a
bulletin, instead a callback function (written by the third-
party external-resource provider) is associated with an
operation changing the external resource. (Alternatively,
instead of associating with the operation, the function can be
associated with the resource itself.) Note that possible side-
ciiects of using bulletins can be minimized 1f one incorpo-
rates some of the external resource data into preserved

memory (say by assigning a value to an object).

Note, however, that care 1s required when resources are
acquired and released. It 1s important, for example, to not
release (delete) resources when a possibility exists that an
undo or redo will necessitate 1t being active again, particu-
larly 1if there 1s some reason why it might not be able to be
re-acquired (e.g., memory is scarce). In such cases, bulletins
should hold onto the resource and not release it unfil the
bulletin itself is destroyed. (Bulletins are destroyed when the
owning transaction is deleted.) Committed transactions are
deleted when older than the oldest transaction available for
undo. All undone transactions are deleted when a new
(subsequent) transaction 1s committed.

A bulletin can implement a difference-data (delta)
approach similar to tracking changes to API-allocated
memory. For example, if a file 1s being changed, 1t can be
backed up and the differences stored for a later undo
operation (e.g., parallel operations as used for memory
preservation). Such an approach is very useful when the file
data 1s highly compressible.

After the bulletin has been created and sent 262, the
operation affecting an external resource can now be per-
formed 264. After performing the operation, a test 266 1is
made to determine whether there was some error or attempt
to abort or undo the operation. If not, a further test 268 1is
made to determine whether the transaction has completed. If
50, transaction processing ends 270. If not, then processing
loops back 272 to begin performance of the next operation
within the transaction.

FIG. 7 and the following discussion are intended to
provide a brief, general description of a suitable computing
environment 1 which to implement the exemplary CAD
application program written with an API providing auto-
matic reversion support. The exemplary application program
may be described by reference to different high-level pro-
oram modules and/or low-level hardware contexts. Those
skilled in the art will realize that program module references
can be interchanged with low-level 1nstructions.

Program modules include procedures, functions,
programs, components, data structures, and the like, that
perform particular tasks or implement particular abstract
data types. The modules may be incorporated into single and
multi-processor computing systems, as well as hand-held
devices and controllable consumer devices. It 1s understood
that modules may be 1implemented on a single computing
device, or processed over a distributed network
environment, where modules can be located 1n both local
and remote memory storage devices.

An exemplary system for implementing the invention
includes a computing device 302 having system bus 304 for

US 6,618,851 Bl

15

coupling together various components within the computing
device. The system 304 bus may be any of several types of
bus structure including a memory bus or memory controller,
a peripheral bus, and a local bus using any of a variety of
conventional bus architectures such as PCI, AGP, VESA,
Microchannel, ISA and EISA, to name a few. Note that only
a single bus 1s illustrated, although plural buses typically
achieve performance benelits. Typically, attached to the bus
302 are a processor 306, a memory 308, storage devices
(e.g., fixed 310, removable 312, optical/laser 314), a video
interface 316, input/output interface ports 318, and a net-
work interface 320.

The processor 306 may be any of various commercially
available processors, including Intel processors, or the DEC
Alpha, PowerPC, programmable gate arrays, signal
processors, or the like. Dual, quad processors, and other
multi-processor architectures also can be used. The system
memory includes random access memory (RAM) 322, and
static or re-programmable read only memory (ROM) 324. A
basic input/output system (BIOS), stored in ROM, contains
routines for information transfer between device 302 com-
ponents or device 1nitialization.

The fixed storage 310 generally refers to hard drive and
other semi-permanently attached media, whereas removable
storage 312 generally refers to a device-bay into which
removable media such as a floppy diskette 1s removably
inserted. The optical/laser storage 314 include devices based
on CD-ROM, DVD, or CD-RW technology, and are usually
coupled to the system bus 304 through a device interface
326, 328, 330. The storage systems and associated
computer-readable media provide storage of data and
executable instructions for the computing device 302. Note
that other storage options include magnetic cassettes, tapes,
flash memory cards, memory sticks, digital video disks, and
the like.

The exemplary computing device 302 can store and
execute a number of program modules within the RAM 322,
ROM 324, and storage devices 310, 312, 314. Typical
program modules include an operating system 332, appli-
cation programs 334 (¢.g., a web browser or network appli-
cation program), etc., and application data 336. Program
module or other system output can be processed by the video
system 316 (¢.g., a 2D and/or 3D graphics rendering device),
which 1s coupled to the system bus 304 and an output device
338. Typical output devices include monitors, flat-panels
displays, liquid-crystal displays, and recording devices such
as video-cassette recorders.

The operating system 332 1s assumed to include the
ability to protect some unit of memory against write access,
throw an access violation exception when a subsequent write
access occurs on that memory, and allow the memory to be
unprotected and have program execution continue with the
instruction causing the exception. Thus, program preemp-
fion will be transparent to the program. If the operating
system does not natively include such memory support, 1t
will be emulated, such as through extensions to the operating,
system, or through a program execution wrapper
(surrounding execution environment).

A user of the computing device 302 1s typically a person
interacting with the computing device through manipulation
of an mput device 340. Common input devices include a
keyboard, mouse, tablet, touch-sensitive surface, digital pen,
joystick, microphone, game pad, satellite dish, etc. One can
also provide mput through manipulation of a virtual reality
environment, or through processing the output from a data
file or another computing device.

10

15

20

25

30

35

40

45

50

55

60

65

16

The computing device 302 1s expected to operate 1n a
networked environment using logical connections to one or
more remote computing devices. One such remote comput-
ing device 342 may be a web server or other program

module utilizing a network application protocol (e.g., HI'TP,
File Transfer Protocol (FTP), Gopher, Wide Area Informa-
tion Server (WAIS)), a router, a peer device or other com-

mon network node, and typically includes many or all of the
clements discussed for the computing device 302. The
computing device 302 has a network interface 320 (e.g., an
Ethernet card) coupled to the system bus 304, to allow
communication with the remote device 342. Both the local
computing device 302 and the remote computing device 342
can be communicatively coupled to a network 344 such as
a WAN, LAN, Gateway, Internet, or other public or private
data-pathway. It will be appreciated that other communica-
tion links between the computing devices, such as through
a modem 346 coupled to an interface port 318, may also be

used.

In accordance with the practices of persons skilled 1n the
art of computer hardware and software programming, the
present mvention 1s described with reference to acts and
symbolic representations of operations that are sometimes
referred to as being computer-executed. It will be appreci-
ated that the acts and symbolically represented operations
include the manipulation by the processor 306 of electrical
signals representing data bits which causes a resulting
transformation or reduction of the electrical signal
representation, and the maintenance of data bits at memory
locations 1n the memory 308 and storage systems 310, 312,
314, so as to reconfigure or otherwise alter the computer
system’s operation and/or processing of signals. The
memory locations where data bits are maintained are physi-
cal locations having particular electrical, magnetic, or opti-
cal properties corresponding to the data bits.

Having described and illustrated the principles of the
mvention with reference to illustrated embodiments, 1t will
be recognized that the 1llustrated embodiments can be modi-
fied 1n arrangement and detail without departing from such
principles.

For example, while the foregoing description focused—
for expository convenience—on a CAD application
program, 1t will be recognized that the same techniques and
analyses can be applied to different programs and program-
ming environments, such as word processors, spreadsheets,
databases, compilers, program editors and graphical editors.
Consequently, in view of the wide variety of programs and
programming environments that would benefit from auto-
matic reversion support (e.g., automatic support for state-
reversion, undo, redo and abort operations), the detailed
embodiments are intended to be 1llustrative only, and should
not be taken as limiting the scope of the mvention.

Rather, what 1s claimed as the invention, 1s all such
modifications as may come within the scope and spirit of the
following claims and equivalents thereto.

What 1s claimed 1s:

1. Amethod for memory-based state-reversion of a model,
said model having a queue of memory states tracking state
changes over time by application of a transaction to a current
memory state, said transaction resulting in a subsequent
memory state added to the queue, the method comprising:

receiving a first transaction for the model, said model
having a first memory state;

applying the first transaction to the model, resulting 1n a
second memory state;

tracking changes to the model between said first and
second memory states;

US 6,618,851 Bl

17

recelving a state-reversion request to revert back to the
first memory state; and

creating, 1n response to said state-reversion request, a new
memory state equivalent to the first memory state.
2. A method according to claim 1, in which before
receiving the memory state reversion request, the method
further comprising:

receiving a second transaction for the model, said model
in the second memory state;

applying the second transaction to the model, resulting 1n
a third memory state; and

tracking changes to the model between said second and
third memory states;

wherein both second and third memory states are retained
after receiving the state-reversion request.
3. A method according to claim 2, further comprising:

receiving a request to undo the state-reversion;
deleting the new memory state; and

reinstating the third memory state as the current memory
state of the model.
4. A method according to claim 1, in which the model 1s
stored 1n a first memory, and where tracking changes
between memory states comprises:

monitoring changes to the first memory during applica-
tion of a particular transaction, said first memory hav-
ing an initial memory state before said application, and
a final memory state after said application;

identitying changes between said initial and final memory
states;

recording said 1dentified changes 1n a second memory to

allow reversing said identified changes.

5. A method according to claim 4, wherein creating the
new memory state comprises reversing saild identified
changes recorded 1n the second memory to re-create the first
memory state of the model.

6. A method according to claim §, wherein a history of
memory changes 1s maintained for a series of transactions,
such that the state-reversion request may target any trans-
action within the series so as to result in the new memory
state corresponding to said targeted transaction.

7. An article of manufacture comprising a computing-
device readable medium having encoded thereon instruc-
tions capable of directing a processor to perform the opera-
tions of:

receiving a lirst transaction for the model, said model
having a first memory state in a queue of memory states
tracking memory state changes for the model;

applying the first transaction to the model, resulting 1n a
second memory state added to the queue;

tracking changes to the model between said first and
second memory states;

receiving a state-reversion request to revert back to the
first memory state; and

creating, 1n response to said state-reversion request, a new
memory state 1n the queue equivalent to the {first
memory state.

8. Amethod for memory-based state-reversion of a model,
said model having a queue of memory states tracking state
changes over time by application of a transaction to a current
memory state, said transaction resulting in a subsequent
memory state added to the queue, the method comprising:

step for receiving a first transaction for the model, said
model having a first memory state 1n the queue;

step for applying the first transaction to the model, result-
ing in a second memory state;

10

15

20

25

30

35

40

45

50

55

60

65

138

step for tracking changes to the model between said first
and second memory states;

step for receiving a state-reversion request to revert back
to the first memory state; and

step for creating, in response to said state-reversion
request, a new memory state 1n the queue equivalent to
the first memory state.

9. A method according to claim 8, further comprising;:

step for receiving a request to undo the state-reversion;

step for deleting the new memory state; and

step for remnstating the third memory state as the current
memory state of the model.
10. A method according to claim 8, 1n which the model 1s
stored 1n a first memory, and where tracking changes
between memory states comprises:

step for monitoring changes to the first memory during,
application of a particular transaction, said first
memory having an initial memory state before said
application, and a final memory state after said appli-
cation;

step for 1identifying changes between said 1nitial and final
memory states;

step for recording said identified changes 1mn a second

memory to allow reversing said identified changes.

11. A method according to claim 10, wherein creating the
new memory state comprises step for reversing said 1denti-
fied changes recorded 1n the second memory to re-create the
first memory state of the model.

12. An article of manufacture comprising a computing-
device readable medium having encoded therecon instruc-
tions capable of directing a processor to perform the opera-
fions of:

step for receiving a first transaction for the model, said
model having a first memory state;

step for applying the first transaction to the model, result-
Ing 1n a second memory state;

step for tracking changes to the model between said first
and second memory states;

step for receiving a state-reversion request to revert back
to the first memory state; and

step for creating, in response to said state-reversion
request, a new memory state equivalent to the first
memory state.

13. A system for state-reversion of a model, said model
having current memory states which change over time into
subsequent memory states by application of transactions to
current memory states, the method comprising:

a first receiving arrangement for receiving a first transac-
tion for the model, said model having a first memory
state 1n a queue of memory states tracking memory
state changes for the model;

means for applymng the first transaction to the model,
resulting 1n a second memory state 1n the queue;

a tracking arrangement for tracking changes to the model
between said first and second memory states;

a second receiwving arrangement for receiving a state-
reversion request to revert back to the first memory
state; and

means for creating, 1n response to said state-reversion
request, a new memory state 1n the queue equivalent to
the first memory state.

US 6,618,851 Bl
19 20)

14. A system according to claim 13, further comprising: a second monitoring arrangement configured to monitor
a third receiving arrangement for receiving a request to changes from an mitial memory state of the first

undo the state-reversion; memory to a final memory state of the first memory due
a deleting arrangement for deleting the new memory state; to said monitored transaction,

and ’ means for recording said monitored changes 1 a second
means for reinstating the third memory state as the current memory.

memory state of the model in the queue. 16. A system according to claim 15, further comprising a
15. A system according to claim 13, further comprising: state-reversion arrangement configured to reverse said
a first memory for storing the model; 10 monitored changes recorded in the second memory.

a 1irst monitoring arrangement conilgured to monitor
application of a transaction; £ % % % %

	Front Page
	Drawings
	Specification
	Claims

