US006606651B1

a2 United States Patent (10) Patent No.: US 6,606,651 B1

Linde 45) Date of Patent: Aug. 12, 2003

(54) APPARATUS AND METHOD FOR 6,256,673 B1 * 7/2001 Gayman 709/232

PROVIDING DIRECT LOCAL ACCESS TO 6,393,466 Bl * 5/2002 Hickman et al. 709/214

FILE LEVEL DATA IN CLIENT DISK 6,457,046 B1 * 0/2002 Munakata 709/216

IMAGES WITHIN STORAGE ARFA 6,523,130 B1 * 2/2003 Hickman et al. 714/4
NETWORKS

* cited by examiner

(75) Inventor: David Linde, Plantation, FL (US) _ _
Primary FExaminer—Moustata M. Meky

(73) Assignee: Datacore Software Corporation, Ft. (74) Attorney, Agent, or Firm—Fenwick & West LLP
Lauderdale, FL (US) (57) ABSTRACT
(*) Notice: Subject to any disclaimer, the term of this A volume insight architecture in which software processes
patent 1s extended or adjusted under 35 internal to the server system 1ssue read/right commands
U.S.C. 154(b) by O days. against client data stored on a disk device local to the server
independent of client control. A volume 1nsight driver inter-
(21) Appl. No.: 09/565,171 ments the physical location of client data on the server disk

and dynamically adjusts the data addresses from the soft-

(22) Filed: May 3, 2000 ware processes such that they coincide with the actual

(51) Inte CL7 oo GO6F 13/00 address of the client data on the server disk. The software
€2) JELUR ¢! R 709/216; 709/203 ~ Processes and the address translation process are invisible to
(58) Field of Search ... 709/200, 201, 'he client. The server treats the locally stored client file
709/203. 212. 213. 214. 215. 21 6? 217’ system as a local server file system. Processes which can be
’ ’ ’ ’ ’ 218"’ 219"’ run against the local file system image on the server cannot
’ distinguish between a true locally mounted file system
(56) References Cited image and the locally presented file system 1mage presented
by the volume msight architecture. Maintenance functions,
U.S. PATENT DOCUMENTS such as backup, virus detection, etc., are locally performed.
5367698 A * 11/1994 Webber et al. ..ooo........ 200/203 This reduces the overhead burden on the client systems.
5930513 A * 7/1999 Taylorcccoeveeueea... 717/174
5,933,603 A * §8/1999 Vahalia et al. 709/225 20 Claims, 4 Drawing Sheets
™
1~ Client System # n

Client System # 1

'

~

Server System
Front End
Driver Interface
e
3
™~ i 5 ¢
) — N
Data Cache olurne Native
<4+—» |nsight |[<€¢—» NT |
Driver /0
Manager
Vo
Native NT Disk Device Driver
A
9 Y 9

O O

U.S. Patent Aug. 12, 2003 Sheet 1 of 4 US 6,606,651 B1

Client System # n

Client System # 1

Server System

Front End
Driver Interface

Volume

Data Cache

7
Native NT Disk Device Driver

Figure 1

Insight
Driver

NT I/O
Manager

U.S. Patent Aug. 12, 2003 Sheet 2 of 4 US 6,606,651 B1

Figure 2A

Client Partition 1

Client Partition 2

Client Partition 3

Figure 2B

U.S. Patent Aug. 12, 2003 Sheet 3 of 4 US 6,606,651 B1

10

Server

Disk
" > Figure 2C

12

Client Partition 1

Client Partition 2

Client Partition 3

U.S. Patent Aug. 12, 2003 Sheet 4 of 4 US 6,606,651 B1

Figure 3
Client Partition 1
Client Partition 2 16 10
(Client (Server
Disk Partition
1) 1)
Client Partition 3
9
(Server
Disk)
Client Partition 1
17
Cren | 1
Client Partition 2 2) (Server
Partition

2)

US 6,606,651 Bl

1

APPARATUS AND METHOD FOR
PROVIDING DIRECT LOCAL ACCESS TO
FILE LEVEL DATA IN CLIENT DISK
IMAGES WITHIN STORAGE AREA
NETWORKS

BACKGROUND OF THE INVENTION

1. Technical Field

The present mvention relates to computer data storage
systems. In particular, 1t relates to the presentation/access of
a client file system 1mage locally to the server which
provides the underlying disk image of that client machine or
the off loading of routine processes from the client machines
onto the server machine which provides the underlying disk
image of that client machine.

2. Background Art

The development of computers initially focused on single
systems with attached dedicated storage devices. Over time,
communication systems were developed to allow sharing of
data between computers. Typically, networks of computers
use server and client machines. A client machine 1s used by
an 1ndividual for specific functions such as billing, etc.,
while the server system 1s used to provide the disk storage
for one or more client machines. Recent developments
involved the sharing of storage devices between systems
through the use of SAN and LAN systems, as discussed
more fully below. As the use of SAN and LAN systems
increased, the number and variety of interconnected device
types and systems also increased. The variety of devices
available to the users of these systems provide substantial
benefits. However, the complexity they also created resulted
in substantial performance and compatibility problems. In
particular, the software was required to support multiple
device types which increased the overhead required by the
clients systems. In addition, normal maintenance functions
created a burden for each of the local systems which had the
cifect of reducing overall performance. It would be advan-
tageous to have method of providing a simple interface to
numerous, potentially compatible systems. This would pro-

vide improved performance, and reduce overall complexity
of maintenance and software.

In addition to the performance impact on software opera-
tions during normal use, the need for individual systems to
perform normal system maintenance operations such as data
backup or virus scanmng also degrades performance of
those systems by increasing their workloads. In addition,
these activities also generate additional traffic on SAN/
[LANSs, thereby alfecting other systems. It would be desirable
to have a method of offloading normal system maintenance
functions and eliminating any workload on local systems
that it would create.

A problem associated with large multisystem computing
environments 1s that critical data 1s now found on all
platforms spread throughout the enterprise. The drivers
required to access data can create problems due to incom-
patible release levels, etc. It would be desirable to have a
system that could provide a single driver interface that
reduces complexity as well as reduce the chance of incom-
patibility.

With the advent of large-scale networking, enterprise
applications have proliferated onto a myriad of intercon-
nected computer systems. The combination of networked
servers and private storage has guaranteed that data is
allocated, replicated, and managed 1n an ad-hoc manner.
Today the limitations of storage technology determine the

10

15

20

25

30

35

40

45

50

55

60

65

2

manner 1n which data 1s organized and presented. It would
be desirable to be able to manage data on a large-scale,
across interconnected computer systems, 1n such a manner
that data avallablhty could be accessed through a single
interface and 1n which maintenance functions can be off
loaded and executed independently from the client proces-
SOT.

Another element of the solution to storage management
problems has been the development of storage area network
(“SAN”) products. A SAN is a connection scheme between
computers and storage peripherals which 1s based on an FC
(Fiber Channel) data transport mechanism. SANs typically
use FC technology as the data transport means between
multiple systems and networks due to their excellent per-
formance and reliability.

A SAN can be defined as an architecture composed of a
group ol storage systems and servers that are connected
together via an FC switch or hub. The mtroduction of SANs
provides some partial solutions to a number of problems
related to high bandwidth, and increased connectivity. How-
ever while, SANs address improved connectivity and higher
bandwidth, they do not resolve problems related to either
interface complexity or the distribution of maintenance and
backup functions throughout a system rather than central-
1zed control of maintenance and backup functions. The
resultant distribution of these fictions and the complexity of
the 1nterfaces results 1n higher levels of data traffic and
reduced overall enterprise performance. It would be desir-
able to have a system 1n which the users of storage devices
on SANSs could manage system maintenance independent of
the device type, and offload the maintenance and adminis-
tration functions the user’s files on the storage device to the
SEIver.

While addressing the basic desirability of providing wide
scale access to data, the prior art has failed to provide a
uniform and secure method of accessing data on multiple
storage device types and failed to provide a method of
performing routine maintenance tasks which can be cen-
trally controlled in which eliminates data traffic in the
network and overhead to the client systems.

SUMMARY OF THE INVENTION

The present invention solves the foregoing problems by
providing a volume 1nsight architecture. Volume insight
architecture uses software processes internal to the server
system to 1ssue read/right commands against client data
stored on a disk device local to the server. A volume 1nsight
driver dynamically adjusts the data addresses from the
software processes such that they coincide with the actual
address of the client data on the server disk. The software
processes and the address translation process are mvisible to
the client. The server treats the locally stored client file
system as a local server file system. Processes which can be
run against the local file system 1mage on the server cannot
distinguish between a true locally mounted file system
image and the locally presented file system 1mage presented
by the volume 1nsight architecture.

Volume 1nsight architecture also centralizes and supports
maintenance functions, such as backup, virus detection, etc.
This allows maintenance functions to be performed at the
server level which reduces the overhead burden on the client
systems using the volume insight architecture.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of the volume insight archi-
tecture system which connects client systems to a server
storage device.

US 6,606,651 Bl

3

FIG. 2A 1llustrates possible locations of client disk 1images
arranged on portions of a server storage disk.

FIG. 2B 1illustrates the arrangement of client partitions
within the server presented client disk 1mage.

FIG. 2C 1llustrates the relationship between the client disk
images and the client partitions shown and FIGS. 2A-B.

FIG. 3 1s a block diagram 1illustrating allocation of space
on the server disk. The 1llustration shows the allocation of
client partitions and client disks on the server disk.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

Prior to a discussion of the figures, a detailed overview of
the features and advantages of the invention will be pre-
sented. In a typical network environment, a server with
typically have large data storage devices which are shared by
multiple client systems which are connected to the server.
Individual client machines may require only small amounts
of storage. For that reason the server system typically
allocates small portions of its larger disk drives to the client
systems. For ease of discussion, the term “disk™ will be used
to describe a variety of storage devices which may include
magnetic disks, optical disks, holographic memories, solid-
state memories, etc.

In a conventional prior art network, a portion of the server
disk 1s allocated to client systems may be broken up into
smaller partitions by the client systems. The client systems
would be responsible for managing the contents of the
portion of the server disk which was allocated to them, and
the server typically would not be able to access the indi-
vidual partitions nor directly manage data on the client
allocated portions of the server disk. This 1s a disadvantage
both for the client system and the client. For example, the
client system performance 1s reduced due to the additional
overhead burden placed on it when executing routine main-
tenance and support functions, such as virus scanning, data
backup, disk defragmentation, etc. In addition to the burden
on the client system, the mndividual responsible for manag-
ing the client system also 1s burdened with the responsibility
of ensuring that these routine maintenance functions are
attended to.

The volume 1nsight architecture provides the server with
direct access to client data which 1n turn allows significant
performance improvements for client systems because many
routine tasks can now be performed on client data by the
server without creating any overhead for the client systems.
In addition, by automatically attending to these routine
maintenance functions, the individual responsible for the
client system routine maintenance functions can now use the
time formerly dedicated that activity for other more produc-
five functions.

The volume insight architecture uses a volume insight
driver to control server access of client data on the server
disk. The volume 1nsight driver controls access to the client
data 1n the following manner. First, the volume 1nsight driver
determines location of the client disk 1image within a server
partition. Then, the volume insight driver interprets the data
on the client disk 1image to determine the location of the
client partitions. For example, in a currently available x86
architecture disk storage system, the server would step
through the data 1n the client disk image until the x86 disk
format information 1s extracted. The disk format information
1s used to determine the location of client partition bound-
aries within the client disk 1image. Once the location of the
client partition boundaries 1s known, the offsets from the
beginning of the server disk to the beginning of the client

10

15

20

25

30

35

40

45

50

55

60

65

4

partitions can be calculated to generate the actual location on
the server disk where the client data resides. That oifset
address 1s used by software processes in the server to access
the client data. As a result, the software processes 1n the
server can be used to access client data through the use of the
volume 1nsight driver which calculates the correct location
of the data on the {ily.

An advantage of the volume 1nsight architecture 1s that 1t
presents a standard disk driver interface locally to the server
systems which services basic commands such as Open,
Close, Control, Read and Write requests. These basic com-
mands are then translated by the server mto commands for
an underlying driver that 1s specifically configured to control
a given I/O device type. The overhead of local translation
commands on the server has no impact on the client
machine. Further, by simplifying operations on the client

machine, 1t 1mproves client machine performance.

Another advantage provided by the volume insight archi-
tecture 1s that i1t can directly access data in the client
partitions allocated to a client by the server, 1t 1s then able to
off load maintenance functions, such as backup,
defragmentation, virus detection, etc. This allows mainte-
nance functions to be performed without degrading perfor-
mance of the client systems, and further allows these func-
fions to be performed at more convenient times which
results 1n an overall improvement 1n network performance.

The volume 1nsight architecture can be integrated with
storage networks such as SANs and LANs. In a SAN/LAN
environment, the effect of the virtual channel 1s to reduce
overall data traffic which results 1n an overall improvement
in system performance. In addition, the virtual channel
provides each server system a single driver interface for
communication with client systems which allows easy pro-
cramming and maintenance.

Referring to FIG. 1, this figure Illustrates a computer
storage arca network architecture 1n which a variety of client
systems 1 are interconnected with server storage devices 9
via a server system 2. The server 2 uses a front end driver
interface 3 to present disk 1images to the client systems 1.
Commands and data between the server 2 and the client
systems 1 are stored 1n the data cache 4. The request for data
will be translated by the server 2 to the correct command
sequence for a native NT device driver 7 which actually
communicates with the server storage device 9.

For the purpose of illustration, a Windows/NT (TM)
native NT disk device driver 7 1s shown. However, those
skilled in the art will recognize that any suitable device
driver can be used and any suitable operating system can be
substituted for the Windows/NT (TM) operating system
shown 1n this figure.

Also shown FIG. 1, 1s the software device driver compo-
nent of the invention shown as volume insight (VI) driver 3.
The VI driver 5 presents one or more disk partition images
to the NT I/O Manager 8. As will be explained more fully
below, the VI driver 5 translates the server disk 9 addresses
on the fly to provide the proper offset to the client disk image
which 1s 1n a server partition. The NT I/O manager 8
interrogates the VI driver 5 and will load any necessary file
system drivers that are appropriate for each presented par-
fitton 1mage. Once NT I/O manager 8 has completed this
initial step, processes 6 will have access to the client
partition. If a file system was found on the server that was
appropriate for the client partition image, then the partition
image will appear as a mounted file system locally on the
SEIver.

The VI driver 5 of the mnvention translates the operational
request of the N'T I/O manager 8 into operational requests of

US 6,606,651 Bl

S

the data cache 4 pertaining to the speciiic particular server
disk partition image 10, 11, 12 which ultimately contained a
particular embedded client disk partition 13, 14, 15.

The front end driver interface 3 and data cache 4 store
present client disk images 10, 11, 12 within disk partitions
on storage attached to the server system 2 (i.e. storage
domain controller).

Regarding FIGS. 2A-C, the client machine logically
partitions the presented disk image 1nto one or more client
partitions 13, 14, 15, and then formats these partitions with
file system 1mages. The client file system 1mages exist as a
finite set of contiguous bits of data embedded somewhere
within the disk 1image presented to the client machine by the
storage domain server.

In FIG. 2A, a server storage disk 9 the shown segmented
into several portions 10, 11, 12. Each portion 10-12 may be
presented as a disk 1image to a client system 1. When the
client system 1 accesses the presented disk 1image allocated
to 1t, 1t 1ssues a standard command to the server 2 which
receives the command through the front end driver interface
3 which 1s converted by the server 2 1nto a command that can
be executed by the native NT disk device driver 7 and
executed against a server storage device 9. The data
accessed by the client system 1 1s moved from the client
system 1 through the data cache 4 to the server storage
device 9 on a write operation, or moved from the server
storage device 9 through the data cache 4 to the client system
1 on a read operation.

Given the above described architecture, a benefit provided
by the i1nvention is the ability of the server system 2 to
directly access and manipulate data within the embedded
client system partitions 13, 14, 15. Each client system 1 has
a client disk image 1n the VI driver 5 of server 2 for each of
its disks which describes its contents. For example, there
would be a client disk 1mage for each storage disk portion
10-12. Of course, as i1ndividual client needs increase, a
particular client system 1 may have more than one storage

disk portions 10-12.

Also shown 1n the foregoing figures are internal software
processes 6 which represent applications that can be run by
the server against data on the server disk 9, including the
client data. The software processes 6 may include a backup
program which automatically starts at a given time of day,
defragmentation software, virus detection software which
may be started periodically or run prior to saving data, etc.
These processes 6 would be executed using the native NT
[/O manager 8 on the server system 2. The software pro-
cesses 6 can be activated and run by the server 2 as follows.

First, the mternal software process 6 would be activated
and communicate with the native NT I/O Manager 8. The
native NT I/O Manager 8 would then access the client disk
image data for a particular client on the VI driver 5. Once
this client disk 1mage data i1s obtained, the native NT I/O
Manager 8 would use this data to access the server storage
device 9 via the native NT disk device driver 7. The VI
driver 5 data, having provided the exact location 1n nature of
the contents of a particular storage disk portion 10-12
provides the information necessary for the internal software
processes 6 to complete whatever task the internal software
process 6 needs to accomplish. As can be seen, this ability
to recognize and manipulate client system 1 data by the
server 2 can be 1independent of the client system 1.

FIG. 2B 1llustrates the segmenting of a particular storage
disk portion 12 mto three separate partitions. The client disk
image contains information related not only to partitions, but
also to individual files, filenames, file sizes, etc.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 2C 1illustrates the physical relationship between the
client partitions 13, 14, 15, and the storage disk portions 10,

11, 12 on the server disk 9.

FIG. 3 and 1illustrates the physical layout of client disk
images 16, 17 and client partitions 13, 14, 15 on server
partitions 10, 11 on a server disk 9. The client disk image 16,
17 does not have to start at the beginning of the server disk
9, or at the beginning of a server partition 16, 17.

When a software process 6 1s mitiated, the VI driver §
obtains the offset to the client partition from the native N'T
disk device driver 7. Once the off

sct beginning of the server
disk 9 to a particular client disk (for example, client disks 16
or 17) is determined, the VI driver § controls access to the
data starting at the particular client disk 16 or 17 and begins
scanning the data to search for disk format information.
Once the disk format information 1s detected, the partition
length mformation extracted from it. At this point, the VI
driver § can now calculate the boundaries of the client
partitions 13—15. In the case of the first client disk (cli

1ent
disk 16), the boundaries of the three client partitions 13—15
can be calculated at this point by adding the offset informa-
tion obtained from disk format information from the begin-
ning of the server disk 9. The actual disk location of client
partitions 13—15 on the server disk 9 can now be used by the
software process 6 to access data on the client disk partition.
The VI driver 5 dynamically calculates these offsets when
the software process 6 1s 1nitiated. As a result, the software
process 6 does not have to know the actual location of the
data on the client disk, since the VI driver 5 dynamically
calculates the offsets the client partltlons 13—15 on the fly.

Those skilled 1n the art will recognize that while the
aforedescribed x86 disk architecture uses disks divided into
partitions, the same principles can be used with any disk

architecture 1n which data belonging to a user 1s stored on
storage devices on a server, in which may or may not be
oifset from the beginning of the disk. Important feature of
the 1nvention 1s 1ts ability to dynamically modify client data
location addresses so that processes can be run by the server
against the client data without having the processes know
the actual location of the client data.

While the mnvention has been described with respect to a
preferred embodiment thereof, 1t will be understood by those
skilled 1n the art that various changes in detail may be made
therein without departing from the spirit, scope, and teach-
ing of the invention. For example, any operating system can
be substituted for the Windows (TM) system illustrated
above, any type of hardware storage device can be used, the
number of drivers can vary, etc. Accordingly, the mnvention
herein disclosed 1s to be limited only as specified in the
following claims.

I claim:

1. An apparatus for independent access by a server of
client data stored on the server 1n a computer network,
comprising:

a storage device, attached to server, at least portion of the

storage device used to store client data;

a server, further comprising:

means to interpret disk format data on the storage
device to determine the location of client data, client
disk 1mages, and client partitions stored on the
storage device;

software processes, 1n the server, the software pro-
cesses for their having software to alter or manipu-
late client data independent of client control; and

a volume 1nsight driver to dynamically convert data
addresses from the software processes to coincide
with the location of the client data the server storage
device;

US 6,606,651 Bl

7

whereby the software processes 1n the server alter,
manipulate or read client data on the storage device on
the server independent of client control.

2. An apparatus, as 1n claam 1, wherein:

the volume 1nsight driver includes means to determine the

location of the client partitions by first determining the
oifset to the client disk 1mage from a start of the disk,
then stepping through the data in the client disk 1mage
to determine the lengths of each partition, and then

determining the actual location of the partitions;

the volume 1nsight driver having means to receive data

address information of the software processes, and
further having means to adjust the addresses received
from the software processes to match the actual loca-
tion of client data in the partition.

3. An apparatus, as a claim 2, wherein the software
processes automatically access data on client partitions on
the server storage device and execute a routine maintenance
procedure against the client data.

4. An apparatus, as a claim 3, wheremn the software
processes automatically scan client data on the server stor-
age device for viruses.

5. An apparatus, as m claim 3, wherein the software
processes automatically backup client data on the server
storage device.

6. An apparatus, as 1n claim 3, wherein the software
processes automatically defragment the client data on the
server storage device.

7. An apparatus, as 1n claim 3, further comprising:

the volume 1nsight driver determines the location of
individual client partitions by scanning data in the
client disk to detect the disk format mnformation and by
using partition length mmformation 1n the disk format
information to calculate the offset of the boundaries of
the client disk 1mage from the beginning of the server

disk.

8. An apparatus, as 1n claim 7, further comprising:

the volume 1nsight driver calculates the actual location of
disk data from the offset to the disk data received by a
software process and added to the offset of the location
of the individual client partition.

9. An apparatus, as 1n claam 8, wherein the software
process accesses client data at the actual location of the disk
data by inputting data to the volume insight driver with a
non-offset address and then having the non-offset address
modified by the volume insight driver to reflect the actual
location of the client data.

10. An apparatus, as 1n claim 9, wheremn the volume
insight driver dynamically calculates the offset to client data
when the software process 1ssues a command to access data
with the non-offset address.

11. A method of independently accessing client data
stored on the server 1n a computer network by the software
process within the server, including the steps of:

storing client data on a storage device attached to the
SETVET;

executing a software process 1n the server which accesses
client data on the storage device;

using a volume insight driver in the server to intercept
data address information output by the software pro-
CESS;

interpreting disk format data on the storage device to
determine the location of client data, client disk 1images,
and client partitions stored on the storage device;

10

15

20

25

30

35

40

45

50

55

60

3

converting data addresses from the software processes to
coincide with the location of the client data the server

storage device; and

altering, manipulating or reading client data accessed with
the inverted data addresses under control of the soft-
Ware pProcesses;

whereby the software processes in the server alter,
manipulate or read client data on the storage device on

the server independent of client control.
12. A method, as 1 claim 11, including the additional

steps of:

determining the location of the client partitions by first
determining the offset to the client disk 1mage from a
start of the disk, then searching the data in the client
disk 1mage to determine the lengths of each partition,
and then determining the actual location of the parti-
tions;

inputting data address information from the software
processes to the volume insight driver;

adjusting the addresses received from the software pro-
cesses to match the actual location of client data in the
server disk.

13. A method, as a claim 12, the additional step of
automatically accessing data on client partitions on the
server storage device and executing a routine maintenance
procedure against the client data.

14. A method, as a claim 13, including the additional step
of automatically scanning client data on the server storage
device, under control of the software process, for viruses.

15. Amethod, as 1n claim 13, including the additional step
of automatically backing up client data on the server storage
device under control the software process.

16. Amethod, as 1n claim 13, including the additional step
of automatically defragmenting the client data on the server
storage device under control of the software process.

17. A method, as in claim 13, including the additional
steps of:

using partition length information from the disk format
information to calculate the offset of the boundaries of
the client disk 1mage from the beginning of the server
disk; and

determining, under control of the volume insight driver,
the location of individual client partitions by scanning
data 1n the client disk to detect the disk format infor-
mation.

18. A method, as in claim 17, including the additional

steps of:

calculating the actual location of disk data from the offset
to the disk data received by the software process and
adding 1t to the offset of the location of the individual
client partition.

19. Amethod, as in claim 18, including the additional step
of accessing, by the software process, of client data at the
actual location of the disk data by inputting data to the
volume 1nsight driver with a non-offset address and then
modifyimng the non-offset address by the volume insight
driver to reflect the actual location of the client data.

20. Amethod, as 1 claim 19, including the additional step
of using the volume insight driver to dynamically calculate
the offset to client data when the software process 1ssues a
command to access data with the non-ofiset address.

	Front Page
	Drawings
	Specification
	Claims

