US006604116B1

a2 United States Patent (10) Patent No.: US 6,604,116 Bl
Gupta 45) Date of Patent: *Aug. 5, 2003
(54) DECREASING MEMORY RETURN Meqjster et al., “A comparison of algorithms for connected
LATENCY BY PREDICTING THE ORDER OF set openings and closings”, Pattern Analysis and Machine
COMPLETION OF PARTIALLY READY Intelligence, IEEE Transactions on, vol. 24, Issue 4, Apr.

RETURNS 2002, pp. 484-494 *
(75) Inventor: Chandrasekaran Nagesh Gupta, San Pendse et al., “Uprating ot a single inline memory module”,
Jose, CA (US) Components and Packaging Technologies, IEEE Transac-

tions on, vol. 25, Issue 2, Jun. 2002, pp. 266—269.*

(73) Assignee: Hewlett-Packard Development |) |
Company, L.P., Houston, TX (US) Archibald, James, et al.,, “Cache Coherence Protocols:

Evaluation Using a Multiprocessor Simulation Model,”
(*) Notice: This patent issued on a continued pros- ACM Transactions on Computer Systems, vol. 4, No. 4,

ccution application filed under 37 CFR Nov. 1986, pp. 273-298.

1.53(d), and 1s subject to the twenty year

patent term provisions of 35 U.S.C. Goodman, James R., “Using Cache Memory to Reduce

Processor—Memory Tratfic,” ACM 0149-7111/83/0600/

154(2)(2). 0124, 1983, pp. 124-131.

Subject to any disclaimer, the term of this Papamarcox, Mark S., “A Low—Overhead Coherence Solu-
patent is extended or adjusted under 35 tion for Multiprocessors with Private Cache Memories,”
U.S.C. 154(b) by 0 days. IEEE 0194-7111/84/0000/0348, pp. 348-354.

* cited by examiner

(21) Appl. No.: 09/282,115

(22) Filed: Mar. 31, 1999 Primary Examiner—David Jung

7
(51) Int. CL' . GO6F 17/00 (57) ABSTRACT
(52) US.CL ..o, 707/200; 707/203; 707/8
(58) Field of Search 711/133-147, 154, The mventive memory controller reduces the latency of

711/167, 170, 148-153; 707/1-28 memory data returns for memory read request transactions.
The memory controller 1s connected between at least one

(56) References Cited bus and a memory, with the bus connected to at least two
processors. The memory controller examines a storage
U.S. PATENT DOCUMENTS queue that stores information on the phase status of the

transactions to determine whether completed transactions

4,755,930 A 7/1988 Wilson, Jr. et al. exist, and if not, to predict which partially completed

6,341,288 B1 * 1/2002 Yach et al. 707/100 . . .
6351753 Bl * 2/2002 Jagadish et al. 207/200 fransaction 1s most likely to become completed next. The
6.353.877 B1 * 3/2002 Duncan et al. 711/133 memory controller returns the data for completed transac-
tions and sets up the data return for the partially completed
OTHER PUBLICATIONS fransaction that 1s most likely to become completed next.

Multiple read requests may be processed out of order to

Huang et., “A neural-fuzzy classifier for recognition of maximize the memory bus utilization and throughput.

power quality disturbances”, Power Delivery, IEEE Trans-
actions on, vol. 17, Issue 2, Apr. 2002, pp. 609-616.% 20 Claims, 2 Drawing Sheets

41~ SCAN QUEUE FOR
COMPLETED TRANSACTIONS

47

40
COMPLETE ™S YES 4
TRANSACTIONS
43

[S THERE

46~.| SCAN QUEUE FOR PARTIALLY ! Aﬁﬂ?nﬂvuﬁoﬂi;sn YES 44
COMPLETED TRANSACTIONS TRANSACTION v /
I PENDING CANCEL SET UP
PREDICT NEXT
47-"] COMPLETED TRANSACTION NO

SET UP FCGR PREDICTED
48" PARTIALLY COMPLETED
TRANSACTION FOR RETURN

1

49_-1 HOLD UNTIL COMPLETED

l_ Y
RETURN DATA FOR
45" COMPLETED TRANSACTION

U.S. Patent Aug. 5, 2003 Sheet 1 of 2 US 6,604,116 B1

16 14 FIG. 1

\

)
procESSor | | Processor | | Processor | [PROCESSOR
19 MEMORY 15
13 10-~"| CONTROLLER MEMORY

(" | PROCESSOR PROCESSOR | | PROCESSOR |
14
FIG. 2
21" REQUEST PHASE _

22~] |0CAL SNOOP PHASE REMOTE SNOOP PHASE |29
235 6
RESPONSE PHASE REMOTE RESPONSE PHASE

. :
FOR DATA RETURN
FIG. 34 FIG. 3B

_ IN ORDER QUEUE
. INSIDE | 36
39 [IN ORDER REMOTE | 34 -
QUEUE QUEUE QUEUE
10 STATE
— MACHINE I 31
IN ORDER REMOTE |
33 QUEUE QUEUE 35

13

OUTSIDE
37 QUEUL

32,33

U.S. Patent Aug. 5, 2003 Sheet 2 of 2 US 6,604,116 B1

41~ SCAN QUEUE FOR
COMPLETED TRANSACTIONS

47 40
COMPLETE ™ YES a4
TRANSACTIONS
45
NO S THERE
46~] SCAN QUEUE FOR PARTIALLY | 7 28 2 U 1o 2 S\ yEs 44
COMPLETED TRANSACTIONS TRANSETION

PENDING CANCEL SET UP
PREDICT NEXT

47-"1 COMPLETED TRANSACTION NO

SET UP FOR PREDICTED

48 PARTIALLY COMPLETED l
TRANSACTION FOR RETURN

49 HOLD UNTIL COMPLETED

oy

RETURN DATA FOR
45— COMPLETED TRANSACTION FIG. 4
MEMORY m 503
CONTROLLER -

SYSTEM BUS ¥

-
CONTROLLER
219

/0 BUS

DISPLAY NETWORK USM INTERFACE STORAGE
ADAPTER ADAPTER ADAPTER ADAPTER

m‘ S
FIG. 5 513

US 6,604,116 B1

1

DECREASING MEMORY RETURN
LATENCY BY PREDICTING THE ORDER OF
COMPLETION OF PARTIALLY READY
RETURNS

BACKGROUND OF THE INVENTION

The different processors of the multiprocessor system
typically share access with a common memory. Requests for
access to the memory from the processors are routed through
a memory controller. The memory controller receives a read
request from one of the processors. The memory controller
then reads the memory. The memory controller then formats
a response to the request that includes the data, and then
sends the response back to the requesting processor.

Prior art memory controllers are designed to process
requests 1n order, thus the memory controllers would return
a response with the requested data in the same order that the
requests for data are received. Some memory controllers
also 1ssue read requests to memory 1n the same order as the
corresponding requests are received by the memory control-
ler. Hence, the returns from the memory are also in the same
order, causing the request transactions to be always com-
pleted 1n the order 1n which they were received. The next
transaction that will be available to be returned to a proces-
sor 1S clearly known, since the memory controller operates
according to the received order of the requests.
Consequently, the memory controller can perform prepara-
fion operations 1n anticipation of the returning data from
Mmemory.

However, the order requirements of the prior art control-
lers have several limitations. Servicing the requests 1n order
requires a large amount of queue space. Data received by the
memory controller from the memory must be held until the
request assoclated with the data 1s sequentially the current
request. Thus, the data from memory must be queued. This
also causes a back log of requests, as requests cannot be
satisfied unfil their associated data 1s returned. As a further
consequence, the prior art controllers experience long
latencies, because of the queuing of the requests and the
data. Also, since the requests must be processed 1n a par-
ticular order, the requests cannot be re-ordered by the
controller to maximize bus utilization and throughput. Thus,

the hardware of the system 1s inefficiently used.

Therefore, there 1s a need 1n the art for a memory
controller that does not require large amounts of queue
space, has reduced request latencies, and can efficiently use
the memory bus.

SUMMARY OF THE INVENTION

These and other objects, features and technical advan-
tages are achieved by a system and method that reduces the
latency of memory data returns. The invention examines on
chip resources to determine whether completed transactions
exist, and 1f not, to predict which partially completed
fransaction 1s most likely to become completed next. The
invention returns the data for completed transactions and
sets up the data return for the partially completed transaction
that 1s most likely to become completed next. Multiple read
requests may be processed out of order to maximize the
memory bus utilization and throughput. Note that the com-

10

15

20

25

30

35

40

45

50

55

60

65

2

pleted transaction may be returned in an order that 1s
different from the read request order. Also note that the
partially completed transaction selected for set up may
correspond to a later read request than other pending par-
tially completed transactions. Since transactions are pro-
cessed out of order, data return latency 1s reduced.

The 1nvention 1s a memory controller that 1s connected
between at least one bus and a memory, with the bus
connected to at least two processors. Note the inventive

memory controller can operate with a single processor,
however, the advantages of the invention are realized when
the bus has at least two processors. The mventive memory
controller manages read requests from the processors. The
memory controller fetches the data from memory and checks
to see 1f another processor has ownership of the requested
data. If so, the owning processor will respond to the request-
ing processor. The memory controller includes a storage
queue for maintaining information about the pending
requests until associated responses have been sent out. A
state machine of the memory controller reviews the queue to
determine whether any transactions have completed all of
their phases. If not, the state machine will determine which
of the partially completed transactions 1s most likely to
complete all of its phases, and then will set up this trans-
action for return. If a different transaction 1s completed after
a partially completed transaction has been set up, the
memory controller will cancel the set up, and process the
completed transaction. This prevents a deadlock situation
from occurring.

The invention can operate with a system having more than
one bus, with each bus comprising at least two processors.
Thus, when the memory controller checks to see 1f another
processor on the local bus has ownership of the requested
data, the memory controller also performs a check on each
remote bus. Note that the local bus 1s the bus that includes
the requesting processor, and the remote buses are the
remaining buses of the system. Thus, data for a particular
transaction 1n a multiple bus system cannot be returned until
both the local and remote checks are completed. The state
machine would use a remote queue to track the phases of
fransaction on remote buses.

The inventive memory controller will batch process com-
pleted transactions to avoid forward progress 1ssues. The
memory controller uses two sub-queues, 1.€. the 1nside
queue and the outside queue, of the storage queue to hold
ogroups of completed transactions. When the 1nside queue 1s
empty, the contents of outside queue are loaded into the
inside queue. The transaction 1n the inside queue are pro-
cessed until the mside queue 1s empty. Any transaction that
completed their phase during the processing of the inside
queue are loaded into the outside queue. When the inside
queue 1s empty again, the contents of the outside queue 1is
loaded 1nto the 1nside queue for processing, and the opera-
tions begin again. This prevents a completed transaction
from being overlooked, 1n favor of other completed trans-
action for an extended period of time. Thus, forward
progress 1ssues are avoided.

Therefore, 1t 1s a technical advantage of the present
invention to have a memory controller that reduces the
latency 1n data returns for read request transactions, and
thereby 1improve system performance.

US 6,604,116 B1

3

It 1s another technical advantage of the present invention
that requests can originate from multiple processors located
on multiple buses.

It 1s a further technical advantage of the present invention
that the memory controller may be implemented 1 hard-
ware.

It 1s a still further technical advantage of the present
invention that the memory controller can operate without
incurring deadlocks and without forward progress 1ssues.

The foregoing has outlined rather broadly the features and
technical advantages of the present mvention in order that
the detailed description of the invention that follows may be
better understood. Additional features and advantages of the
invention will be described hereinafter which form the
subject of the claims of the invention. It should be appre-
ciated by those skilled in the art that the conception and
specific embodiment disclosed may be readily utilized as a
basis for modifying or designing other structures for carry-
ing out the same purposes of the present invention. It should
also be realized by those skilled 1n the art that such equiva-
lent constructions do not depart from the spirit and scope of
the 1nvention as set forth 1n the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present
invention, and the advantages thereof, reference i1s now
made to the following descriptions taken 1n conjunction with
the accompanying drawings, 1n which:

FIG. 1 depicts a block diagram of the inventive memory
controller within a system;

FIG. 2 depicts a flowchart of the phases of a read request

memory transaction being processed by the memory con-
troller of FIG. 1;

FIGS. 3A and 3B depict block diagrams of the internal
structure of the inventive memory controller of FIG. 1;

FIG. 4 depicts a flowchart of the operations of the
inventive memory controller of FIG. 1; and

FIG. § depicts a high level block diagram of a computer

system adapted to implement the mventive memory con-
troller of FIG. 1.

DESCRIPTION OF THE INVENTION

FIG. 1 depicts the mventive memory controller 10 in
system 11. The memory controller 1s connected to two buses
12, 13. Each bus 1s connected and 1s capable of supporting
multiple processors 14. Note that the system may have more
or less processors connected to each bus. Also, the system 11
may have only one bus or more than two buses. The memory
controller 10 manages read requests from the processors 14.
The memory controller 10 receives a read request from one
of the processors. The memory controller 10 then reads (or
writes) the data from (or to) the location specified in the read
(or write) request. If such data is at the specified location, the
data 1s sent to memory controller 10, which returns the data
to the requesting processor, via a read response. The
memory controller also checks to see 1f another processor
has ownership of the requested data. If so, the memory
controller will allow the owning processor to respond to the
requesting processor. Note that the memory controller 10

10

15

20

25

30

35

40

45

50

55

60

65

4

also performs other tasks not described herein, such as
pre-charging the RAM memory, or writing back data into the
memory. Further note that the invention 1s described 1n terms
of read requests, however the invention can also work with
other types of memory operations such as forwarded I/0O

read data.

The buses 12, 13 support multiple transactions, including,
multiple read requests. The memory controller 10 includes a
storage queue for maintaining information about the pending
requests until associlated responses have been sent out. The
system buses supports split transactions. Thus, the data
return for a transaction need not follow the request, but can
come 1n later, after data returns for subsequent transactions.
In other words, the data returns need not be 1n the same order
as the data requests. Thus, multiple pending read requests
may be processed out of order to maximize the memory bus
utilization and throughput. For example, 1f request A 1s
received from processor 1 and request B 1s received from
processor 2 1n that order, then the data for request B may be
returned to processor 2 before the data for request A 1s
returned to processor 1. Out of order data return 1s an
important feature, as the memory controller will not hold the
bus until the data return 1s complete. Thus, the bus 1s free for
other transactions. However, note that the bus protocol
specification may 1mpose order on some of the different
phases of the read request transaction. For example, the
buses may be based on MESI protocol (Modified, Exclusive,
Shared, Invalid—which are the four states of processor
cache), which is an ordered protocol. The MESI protocol is
described 1n Papamarcos, M. S. and Patel, J. H., “A Low
Overhead Coherence Solution for Multiprocessors with Pri-
vate Cache Memories,” 117 International Symposium on
Computer Architecture, 1984, pp. 348-354, Goodman,
James R., “Using Cache Memories to Reduce Processor-
Memory Traffic,” 10” International Symposium on Com-
puter Architecture, 1983, pp. 124131, and Archibald, James
and Baer, Jean-Loup, “Cache Coherence Protocols: Evalu-
ation Using a Multiprocessor Simulator,” ACM Transactions
on Computer Systems, V. 4, No. 4, November 1986, pp.
2'73-298, each of which are incorporated by reference. Thus,
certain phases of the transaction will happen 1n the same
particular order as the data memory requests are seen on the
buses, these phases are known as the in-order phases. Data
may be returned to the requesting processor after these
phases are complete. For this read requests the in-order
phases of the transaction are the request phase 21, the snoop
phase 22, and response phase 23. Note that other phases may
exist before or after these phases, but are not described
herein. Further note, the that multiple in-order phases can be
pending for different transactions. The in-order phases
means that the oldest particular in-order phase will be
completed first. In other words, the oldest request phase
should complete the response phase {first.

FIG. 2 depicts the phases of a read request transaction 20).
The transaction begins 1n the request phase 21. In this phase,
the memory controller 10 receives the read request from a
processor 14, and stores information about the requested
data, e.g. address, and the requesting processor. The memory
controller 10 also starts to read the memory. The next phase
of the transaction 20 is the snoop phase 22. In this phase, the
memory controller determines, via snoop responses of the

US 6,604,116 B1

S

processors, whether another processor has ownership of the
requested data. During the response phase 23, the memory
controller 10 collects the responses from the other system
bus agents, e.g. I/O controller 514. If the snoop results
reveals that another processor has ownership, the memory

controller 10 will not use the retrieved data from memory
15, but rather will allow the owning processor to respond to
the requesting processor. Otherwise, the memory will return
the retrieved data from memory 15 to the requesting pro-
cessor via a read response 1n the deferred phase 24. Note that
at this point, the data may be returned to the requesting
processor, as the response phase 1s the last of the in-order
phases. During the deferred phase 24, the memory controller
forms the read response from the retrieved memory data,
which will be sent to the requesting processor.

If the system 11 has more than one bus 12,13, then the
snoop phase 22 1s the local snoop phase, where only the bus
of the requesting processor 1s checked. For example, if
processor 16 1s the requesting processor, then bus 12 1s the
local bus, and local snoop phase 22 reviews the processors
connected to bus 12 and not bus 13. All other buses would
be considered remote buses, e¢.g. bus 13. The memory
controller 10 also 1nitiates a remote snoop phase 25 for each
remote bus, by placing a snoop inquiry on each remote bus.
The memory controller collects the response to the remote
snoop during the remote response phase 26. Data for a
particular transaction cannot be returned until remote snoop
25 and local response phases are completed. Therefore, for
data to be returned to a requesting processor 1n a multiple
bus system, both the local in-order phases and the remote
phases must be completed.

FIG. 3A depicts the internal arrangement of the memory
controller 10. State machine 31 tracks the progression of the
various transactions through the different phases and updates
the information 1n the queues. The state machine predicts
which transaction 1s mostly likely to complete next, and then
based on the prediction, prepares a read response 1n antici-
pation of receiving a data return from memory 15. The
memory conftroller 10 uses in-order queue 32 to store
information about the transactions as they are going through
their various 1n-order phases on the local bus, 1.e. bus 12.
The mnformation includes information about the read request
identifier, the memory request, memory address
information, the local snoop inquiry, and phase completion
information. The memory controller 10 uses remote queue
35 to store mformation about the transactions as they are
ooing through the remote snoop phase and the remote
response phase on the remote bus, 1.€. bus 13. The mfor-
mation 1includes information about the read request
identifier, the remote snoop 1nquiry, and phase completion
information. Note that the same transactions in the 1n-order
queue 32 also appear 1n the remote queue 35. The memory
controller 10 uses in-order queue 33 to store nformation
about the transactions as they are going through their various
in-order phases on the local bus, 1.¢. bus 13. The information
includes information about the read request identifier, the
memory request, memory address information, the local
snoop 1nquiry, and phase completion information. The
memory controller 10 uses remote queue 3 4 to store
information about the transactions as they are going through
the remote snoop phase and the remote response phase on

10

15

20

25

30

35

40

45

50

55

60

65

6

the remote bus, 1.e. bus 12. The information includes infor-
mation about the read request identifier, the remote snoop
inquiry, and phase completion information. Note that the
same transactions in the 1mn-order queue 33 also appear 1n the
remote queue 34. Further note that the inventive aspects of
the memory controller are 1mplemented in hardware. As an
alternative embodiment, the functions of in-order queue 32
and remote queue 35 may be combined 1n a single queue,
monitoring the both the local and remote phases for trans-

actions originating on bus 12. Similarly, the functions of
in-order queue 33 and remote queue 34 may be combined 1n
a single queue, monitoring the both the local and remote
phases for transactions originating on bus 13.

FIG. 4 depicts a flowchart of the operations of the
inventive memory controller 10. The state machine 31 scans
41 the queues 32, 33, 34, 35 to determine whether any
fransactions are completed transactions, meaning that the
in-order phases are complete (on a single bus system) or
both the in-order phases and the remote phases are complete
(on a multiple bus system). This scan may be performed on
every clock cycle that the system 1s 1dle. If there are
completed transactions, then the memory controller gener-
ates a read response and returns 45 the data to the requesting,
processor. Each completed transaction 1s handled in turn.
There can be multiple pending data returns at an given point
of time. Note that memory controller may return the com-
pleted transaction out of order, 1.€. a subsequent transaction
may be returned before the oldest transaction. This may be
done to maximize bus utilization and throughput. If there are
no completed transactions that are ready to be returned, the
state machine scans 46 the queues for partially completed
transactions. Transactions are partly complete if the m-order
phases are not complete (on a single bus system), or one or
both of the in-order phases and the remote phases are not
complete (on a multiple bus system). The state machine then
predicts 47 which of the pending partially completed trans-
actions 1s most likely to be completed next. Note that the
inventive aspects of the state machine are implemented in
hardware.

In a single bus system, the state machine will select the
oldest or first transaction with the m-order response phase
pending and the other phases complete as the transaction
mostly likely to complete. If there are no transactions with
only the response phase pending, the state machine will
select the oldest or first transaction with the m-order snoop
phase pending and the other phases complete as the trans-
action mostly likely to complete.

In a multiple bus system following the MESI protocol, the
state machine will select the oldest or first transaction with
the remote response phase pending and the local m-order
phases complete as the transaction mostly likely to com-
plete. If there are no transaction with only the remote
response phase pending, the state machine will follow the
hierarchy described with respect to the single bus system.

After the state machine selects the partially completed
transaction that 1s most likely to be the next completed
fransaction, the memory controller sets up 48 the predicted
transaction for return to the requesting processor. If the data
1s known to be available in memory, the data will be
retrieved and inserted into the response. The memory con-
troller will request ownership of the data bus. In other words,

US 6,604,116 B1

7

the memory controller will perform any tasks that can be
performed 1n order to reduce the latency of data returns. The
memory controller will then hold 49 the set up until the
transaction 1s completed, 1.€. the remote and local phase are
completed. When the phase are completed, the memory
controller will return 45 the data to the requesting processor.

To avoid deadlock situations, the memory controller will
cancel the return set up for a transaction with partly com-
pleted phases whenever a different transaction has all of its
phases completed. This situation can occur due to the
re-ordering of transactions. During scanning the queue 41
for completed transactions, 1f a completed transaction 1is
detected, the state machine will check 43 to see 1f there 1s a
set up for a partially completed transaction. If there 1s a
setup, the memory controller will cancel the setup for the
partially completed transaction and proceed with forming a
setup for the completed transaction. After forming the setup,
the memory controller will return 45 the data for the

completed transaction.

Thus, the state machine processes the returns as quickly
as possible. The state machine determines whether there are
any completed transactions and then returns the data for
these transactions. The state machine also predicts which
partially completed transaction 1s most likely to complete
next, and then sets up the return for this transaction. Note
that the transaction that 1s most likely to complete may not
be the oldest transaction 1n terms of read request. In stead of
holding up other completed, transactions (or transaction
likely to complete) waiting for the oldest transaction to
complete, the inventive memory controller processes the
completed transaction a head of the oldest transaction.
Therefore, the inventive memory controller reduces latency
in returning data for read requests, and thereby increases the
performance of the system.

FIG. 3B depicts another aspect of the inventive memory
controller. The mventive controller uses two sub-queues 1n
the 1n-order queues 32,33 to batch process completed
fransactions, namely the inside queue 36 and the outside
queue 37. Batch processing avoids forward progress 1ssues.
In other words, the sub-queues prevent an older completed
transaction (or orphan transaction) from being left pending,
while other, newer completed transactions are processed.
When the state machine 1s in an 1dle state, e.g. scanning for
completed transaction 41 or holding a set up until comple-
tion 49, the state machine will copy the identifiers or indices
of the pending completed transaction from the outside queue
37 mto the inside queue 36. Note that the completed
transactions have completed both the local and remote (if
any) phases. The memory controller will then begin to return
the data for each transaction in the inside queue, starting
with the lowest index and going up in index until all the
fransactions 1n the inside queue 36 are returned. As the
transactions 1n the 1nside queue 36 are being processed and
the data 1s being returned, the indices of the newly com-
pleted transactions are copied into the outside queue 37 by
the state machine. When all of the transactions in the inside
queue 36 have been processed, the state machine returns to
the 1dle state, which then allows the state machine to copy
the mdices from the outside queue 37 into the 1nside queue
36 and begin processing these transactions. This operation 1s
repeated until all pending completed transactions have been

10

15

20

25

30

35

40

45

50

55

60

65

3

completed, at which time, the state machine will process the
partially completed transactions 1n accordance with FIG. 4.
Thus, forward progress 1ssues are avoided.

FIG. 5 1llustrates computer system 500 adapted to use the
present invention. Central processing unit (CPU) 501 is
coupled to system bus 502. Note that only one system bus
and one processor are shown for simplicity, although the
system 500 may include more than one system bus and/or
processor, as shown m FIG. 1. In addition, bus 502 1s
coupled to random access memory (RAM) 503 through
memory controller 10, and input/output (I/O) controller 514.
The CPU 501 may be any general purpose CPU, such as an
HP PA-8200. However, the present invention 1s not
restricted by the architecture of CPU 501 as long as CPU
501 supports the inventive operations as described herein.
Note, system 500 could include ROM (not shown) may be
PROM, EPROM, or EEPROM. Also note, RAM 503 which
may be SRAM, DRAM, or SDRAM. RAM 503 and ROM
hold user and system data and programs as 1s well known 1n
the art.

The I/O controller 514 connects various I/0 devices to the
system bus 502. The various I/O devices are connected to the
controller 514 via I/O bus 515, for example computer
display 510 via display adapter 509, network (such as a
LAN, WAN, Ethernet, or Internet) 512 via network adapter
511, user devices such as pointing device 507 and/or key-
board 513 via user interface adapter 508, and mass storage
(such as hard drive, CD drive, floppy disk drive, tape drive)
via storage adapter 5035.

Although the present 1nvention and 1ts advantages have
been described 1n detail, 1t should be understood that various
changes, substitutions and alterations can be made herein
without departing from the spirit and scope of the invention
as defined by the appended claims.

What 1s claimed 1s:

1. A memory controller for managing memory transac-
tions from a plurality of processors, wherein the memory
controller 1s connected between a memory and at least one
bus, the plurality of processors are connected to the one bus,
and each transaction originated from a particular processor
of the plurality of processors, the memory controller com-
prising:

a storage queue for storing status information of the

memory transactions from the one bus; and

a state machine for determining whether any of the
fransactions are completed transactions based on the
status 1nformation, and 1f there are no completed
transactions, determines which of the transactions 1s a
partially completed transaction that 1s most likely to
become a completed transaction based on the status
mmformation;

wherein 1f there 15 at least one completed transaction, then
the memory controller forms a response and returns the
response to the originating processor; and

if there are no completed transactions, the memory con-
troller sets up a response for the partially completed
transaction and holds the response until the partially

completed transaction becomes a completed transac-
tion.

2. The memory controller of claim 1, wherein the each
transaction includes:

a memory phase wherein the memory controller sends a
memory request for data from the memory according to
the transaction;

US 6,604,116 B1

9

a processor phase wherein the memory controller sends a
processor request to the processors on the bus to
determine that another processor different from the
originating processor does not have ownership of data
referred to by the transaction; and

a response phase wherein the memory controller receives
a memory response to the memory request and a
processor response to the processor request;

[

wheremn a transaction 1f complete 1s each phase 1s
complete, and a transaction 1s partially complete 1f at
least one phase 1s incomplete.

3. The memory controller of claim 2, wherein the state

machine selects the oldest transaction with the response
phase mcomplete as the partially completed transaction.

4. The memory controller of claim 2, wherein the at least
one bus includes a first bus and a second bus, a portion of
the plurality of processors 1s connected to each of the first
bus and the second bus, the transaction originated from a
processor on the first bus, and the processor phase 1s a local
processor phase wherein the memory controller sends a first
processor request to the processors on the first bus to
determine whether a processor has ownership of data
referred to by the transaction; wherein each transaction
further comprises:

a remote processor phase wherein the memory controller
sends a second processor request to the processors on
the second bus to determine that a processor does not
have ownership of data referred to by the transaction;

wherein during the response phase, the memory controller
receives a first processor response to the first processor
request and further receives a second processor
response to the second processor request.

5. The memory controller of claim 1, wherein:

the memory controller sends a first processor request to
the processors on the bus to determine that another
processor different from the originating processor does
not have ownership of data referred to by the transac-
tion.

6. The memory controller of claim 5, wherein the at least

one bus includes a first bus and a second bus, a portion of
the plurality of processors 1s connected to each of the first
bus and the second bus, and the first processor request 1s sent
to the first bus, the memory controller further comprising:

a remote queue for storing status information of memory
transactions on the second bus, wherein the memory
transactions originated from a processor on the {first
bus;

wherein the memory controller sends a second processor
request to the processors on the second bus to deter-
mine that a processor does not have ownership of data
referred to by the transaction.

7. The memory controller of claim 6, wherein the storage

queue 1s a first storage queue for storing status mmformation
of first memory transactions from the first bus, wherein each
of the first memory transactions originated from processors
on the first bus, and the remote queue 1s a first remote queue
for storing status information of the first memory transac-
fions on the second bus, the memory controller further
comprising:
a second storage queue for storing status mformation of
second memory transactions from the second bus,

wherein each of the second memory transactions origi-
nated from processors on the second bus; and

10

15

20

25

30

35

40

45

50

55

60

65

10

a second remote queue for storing status mformation of
the second memory transactions on the first bus.
8. The memory controller of claim 1, wherein:

if the state machine determines that there 1s at least one
transaction 1s a completed transaction after the memory
controller has set up the response for the partially
completed transaction, then the memory controller can-
cels the set up and forms a response for the completed

transaction and returns the response to the originating
ProCESSOT.
9. The memory controller of claim 1, wherein the storage

queue Comprises:

an 1side queue for holding a batch of completed trans-
actions for which the memory controller forms and
sends a response for each transaction of the batch; and

an outside queue for holding the next batch of completed
transactions to be placed into the inside queue.
10. The memory controller of claim 1, wheremn the

memory transactions are read requests.

11. A method for managing memory transactions from a
plurality of processors with a memory controller, wherein
the memory controller 1s connected between a memory and
at least one bus, the plurality of processors are connected to
the one bus, and each transaction originated from a particu-
lar processor of the plurality of processors, the method
comprising the steps of:

storing status information of the memory transactions
from the one bus 1n a storage queue;

determining whether any of the transactions are com-
pleted transactions based on the status information, via
a state machine;

determining, if there are no completed transactions, which
of the transactions 1s a partially completed transaction
that 1s most likely to become a completed transaction
based on the status information, via the state machine;

forming a response, if there i1s at least one completed
transaction, for the one completed transaction, and
returning the response to the originating processor; and

setting up a response, 1f there are no completed
transactions, for the partially completed transaction,
and holding the response until the partially completed
transaction becomes a completed transaction.

12. The method of claim 11, wherein each transaction

includes the steps of:

sending a memory request for data from the memory
according to the transaction during a memory phase;

sending a processor request to the processors on the bus
to determine that another processor ditferent from the
originating processor does not have ownership of data
referred to by the transaction during a processor phase;
and

receiving a memory response to the memory request and
a processor response to the processor request during a
response phase;

wherein a transaction 1f complete 1s each phase 1is
complete, and a transaction 1s partially complete 11 at
least one phase 1s incomplete.

13. The method of claim 12, wherein the step of deter-

mining which of the transactions i1s a partially completed
fransaction comprises the step of:

selecting the oldest transaction with the response phase
incomplete as the partially completed transaction, via
the state machine.

US 6,604,116 B1

11

14. The method of claim 12, wherein the at least one bus
includes a first bus and a second bus, a portion of the
plurality of processors 1s connected to each of the first bus
and the second bus, the transaction originated from a pro-
cessor on the first bus, and the processor phase 1s a local
processor phase wherein the memory controller sends a first
processor request to the processors on the first bus to
determine whether a processor has ownership of data
referred to by the transaction; wherein each transaction
further comprises the step of:

sending a second processor request to the processors on
the second bus to determine that a processor does not
have ownership of data referred to by the transaction
during a remote phase;

wherein during the response phase, the memory controller
receives a first processor response to the first processor
request and further receives a second processor
response to the second processor request.

15. The method of claim 11, further comprising the step

of:

sending a first processor request to the processors on the
bus to determine that another processor different from
the originating processor does not have ownership of
data referred to by the transaction.

16. The method of claim 15, wherein the at least one bus

includes a first bus and a second bus, a portion of the
plurality of processors 1s connected to each of the first bus
and the second bus, and the first processor request 1s sent to
the first bus, the method further comprising the step of:

storing status information of memory transactions on the
second bus, wherein the memory transactions origi-
nated from a processor on the first bus on a remote
queue; and

sending a second processor request to the processors on
the second bus to determine that a processor does not
have ownership of data referred to by the transaction.

10

15

20

25

30

35

12

17. The method of claim 16, wherein the storage queue 1s
a first storage queue for storing status information of first
memory transactions from the first bus, wherein each of the

first memory transactions originated from processors on the
first bus, and the remote queue 1s a first remote queue for
storing status information of the first memory transactions

on the second bus, the method further comprising the steps
of:

storing status information of second memory transactions
from the second bus, wherein each of the second

memory transactions originated from processors on the
second bus on a second storage queue; and

storing status information of the second memory transac-
tions on the first bus on a second remote queue.
18. The method of claim 11, further comprising the steps

of:

canceling the set up for the partially completed
fransaction, if another transaction 1s subsequently
determined to be a completed transaction; and

forming a response for the completed transaction, and
returning the response to the originating processor.
19. The method of claim 11, further comprising the steps

of:

holding a batch of completed transactions for which the
memory controller forms and sends a response for each
transaction of the batch, on an inside queue of the
storage queue; and

holding the next batch of completed transactions to be
placed 1nto the inside queue, on an outside queue of the
storage queue.

20. The method of claim 11, wherein the memory trans-

actions are read requests.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,004,116 B1 Page 1 of 1
DATED . August 5, 2003
INVENTOR(S) : Chandrasekaran Nagesh Gupta

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 10,
Line 59, after “wherein a transaction” delete “1f” and 1nsert therefor -- 18 --
Line 59, before “each phrase” delete “18” and insert therefor -- 1f --

Signed and Sealed this

Nineteenth Day of October, 2004

o WD

JON W. DUDAS
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

