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ABSTRACT

A network switch arrangement and method for providing a
common architecture for queuing and dequeuing of data
frames as they are transferred from a switch port to an
external memory and similarly retrieved from the external
memory to the switch port, irrespective of the particular data
rate of the port. Logic controlling the actual data path 1is
partitioned from logic responding to port data rate informa-
tion by providing a “handshaking” communication arrange-
ment between the two logics independent of the data rate.
Hence, scalability of the data path over a wide range of data
rates may be achieved while maintaining a single, common
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COMMON SCALABLE QUEUING AND
DEQUEUING ARCHITECTURE AND
METHOD RELATIVE TO NETWORK

SWITCH DATA RATE

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to networks and more
particularly, to a system and method of controlling network

fratffic data 1n a switched network operating according to
Ethernet (IEEE 802.3) protocol.

2. Background Art

Switched local area networks use a network switch for
supplying data frames between network stations or other
network nodes, where each network node 1s connected to the
network switch by a media. The switched local area network
architecture uses a media access control (MAC) enabling
network interfaces within each network node and the net-
work switch to access the media. A network switch stores
and forwards data frames recerved from transmitter nodes to
destination nodes based on header information and the data
in the received frames, including source and destination
addresses. An external memory, such as an SSRAM, 1s used
by the network switch to temporarily store the data frames
as they are passed through the switch.

In particular, a multi-port network switch typically stores
and fetches data frames stored 1n 1ts external memory via
read and write buses within the switch connected to each
port through a port interface, an external bus, and an external
bus interface connecting the read and write busses to the
external bus. The multi-port switch may be used to inter-
connect network segments having different network data
rates (i.e., wire rates), hence, individual ports within a
multi-port network switch may need to accommodate a wide
range of differing data transfer rates (e.g., 10 Mbps, 100
Mbps or 1 GBps). Hence, a port interface and associated port
interface logic 1s needed to efficiently transfer data packets
between the individual ports and the external memory
without causing blocking (i.e., delay in transferring a data
packet received at a switch port). The port interface must be
capable of transferring data at rates corresponding to the
particular data transfer rate of the port.

Hence, to achieve non-blocking conditions 1n all ports,
cach port interface architecture and logic corresponding to a
particular port data transfer rate 1s optimized to efficiently
accommodate the particular port data transfer rate.
Consequently, the need for different port interface architec-
tures and interface logic dependent upon the port data
transfer rate correspondingly increases the cost and overall
complexity of a network switch having ports of differing
data transfer rates.

SUMMARY OF THE INVENTION

Hence, there 1s a need for a multi-port network switch
having a common port interface architecture independent of
the port data transfer rate to minimize the cost and com-
plexity associated with each individual network switch,
while maintaining non-blocking characteristics. In addition,
there 1s a need for a common logic scheme for each port
interface, also independent of the port data rate, to further
minimize the cost and overall complexity of each network
switch.

These and other needs are met by the present invention
which provides a common architecture for all of the ports
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2

within a network switch that 1s scalable over a wide range of
data rates. This scalability 1s accomplished through a com-
mon logic scheme that 1s independent of the port data rate by
utilizing a “handshaking” protocol to control the data path
without reference to the data rate.

According to one aspect of the invention, a network
switch arrangement includes an external memory for tem-
porarily storing data packets to be forwarded by the network
switch and an associated external memory controller within
the switch. Also within the switch, the network switch ports
cach have a predetermined transmission rate for receiving
data packets from and transmitting data packets to external
network nodes. A data packet transmission controller is
assoclated with each network switch port for controlling the
transmission of data packets between the external memory
and the network switch ports. A state machine within the
data packet transmission controller receives predetermined
information from the external memory controller concerning
data packets being either transmitted or received by the
network switch port. Based on the predetermined
information, the state machine issues a command signal to
a scalable data path logic within the data packet transmission
controller for controlling transmission of the data packets.
The scalable data path logic 1s also configured to be scaled
to the rate of transmission of data packets between the
network switch port and the external memory based on the
predetermined data rate of the network switch port.

The scalable data path logic affords the present invention
scalability of the data path over a wide range of data rates
may be achieved while maintaining a single, common logic
architecture.

According to another aspect of the mmvention, a method of
controlling a transmitting and receiving data path within a
network switch port includes writing data received at the
port to an external memory or reading data to be transmitted
by the port from the external memory via the transmitting,
and receiving data path at a certain defined data rate.
Additionally, a control signal 1s generated to control the
transmitting and receiving data path based upon predeter-
mined information concerning a particular data packet.
Finally, the data rate of the transmitting and receiving data
path 1s scaled to the certain defined data rate based upon the
control signal.

Additional advantages and novel features of the mnvention
will be set forth in part in the description which follows, and
in part will become apparent to those skilled 1n the art upon
examination of the following or may be learned by practice
of the invention. The advantages of the invention may be
realized and attained by means of the instrumentalities and
combinations particularly pointed out i the appended
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Reference 1s made to the attached drawings, wherein
clements having the same reference numeral designations
represent like elements throughout and wherein:

FIG. 1 1s a block diagram of a packet switched network
including a multiple port switch according to an embodi-
ment of the present mnvention.

FIG. 2 1s a block diagram of the multiple port switch of
FIG. 1.

FIG. 3 1s a block diagram 1illustrating 1n detail the switch-
ing subsystem of FIG. 2.

FIG. 4 1s a block diagram of a network switch port system
according to an embodiment of the present mnvention.
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FIG. 5 1s a block diagram of the queuing block portion of
the network switch port system 1illustrated in FIG. 4.

FIG. 6 1s a state diagram 1illustrating the states of the

master state machine of the queuing block portion 1llustrated
in FIG. 5.

FIG. 7 1s a block diagram of the dequeuing block portion
of the network switch port system 1llustrated 1in FIG. 4.

FIG. 8 1s a state diagram 1illustrating the states of the
SSRAM control state machine of the dequeuing block
portion 1llustrated in FIG. 7.

FIG. 9 1s a state diagram 1illustrating the states of the
steering control state machine of the dequeuing block por-
tion illustrated m FIG. 7.

DETAILED DESCRIPTION OF ILLUSTRAITIVE
EMBODIMENTS

The present invention will first be described with the
example of a switch 1n a packet switched network, such as
an Ethernet (IEEE 802.3) network. It will become apparent,
however, that the present mnvention 1s also applicable to
other packet switched systems, as described 1n detail below,
as well as to other types of systems 1n general.

An embodiment of the present mvention will then be
described concerning the queuing and dequeuing blocks
within the described switch.

Switch Architecture Overview

FIG. 1 1s a block diagram of an exemplary system 1in
which the present 1nvention may be advantageously
employed. The exemplary system 10 1s a packet switched
network, such as an Ethernet (IEEE 802.3) network. The
packet switched network includes integrated multiport
switches (IMS) 12 that enable communication of data pack-
cts between network stations. The network may include
network stations having different configurations, for
example twelve (12) 10 megabit per second (Mb/s) or 100
Mb/s network stations 14 (hereinafter 10/100 Mb/s) that
send and receive data at a network data rate of 10 Mb/s or
100 Mb/s, and a 1000 Mb/s (i.e., 1 Gb/s) network node 22
that sends and receives data packets at a network speed of 1
Gb/s. The gigabit node 22 may be a server, or a gateway to
a high-speed backbone network. Hence, the multiport
switches 12 selectively forward data packets received from
the network nodes 14 or 22 to the appropriate destination
based upon Ethernet protocol.

Each multiport switch 12 includes a media access control
(MAC) module 20 that transmits and receives data packets
to and from 10/100 Mb/s physical layer (PHY) transceivers
16 via respective reduced media independent interfaces
(RMII) 18 according to IEEE 802.3u protocol. Each multi-
port switch 12 also includes a gigabit MAC 24 for sending,
and receiving data packets to and from a gigabit PHY 26 for
transmission to the gigabit node 22 via a high speed network
medium 28.

Each 10/100 Mb/s network station 14 sends and receives
data packets to and from the corresponding multiport switch
12 via a media 17 and according to either half-duplex or full
duplex Ethernet protocol. The Ethernet protocol ISO/IEC
8802-3 (ANSI/IEEE Std. 802.3, 1993 Ed.) defines a half-
duplex media access mechanism that permaits all stations 14
to access the network channel with equality. Traffic 1n a
half-duplex environment i1s not distinguished over the
medium 17. Rather, each half-duplex station 14 includes an
Ethernet interface card that uses carrier-sense multiple
access with collision detection (CSMA/CD) to listen for
traffic on the media. The absence of network tratfic is
detected by sensing deassertion of a receive carrier on the
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media. Any station 14 having data to send will attempt to
access the channel by waiting a predetermined time, known
as the interpacket gap interval (IPG), after deassertion of the
receive carrier on the media. If a plurality of stations 14 have
data to send on the network, each of the stations will attempt
to transmit in response to the sensed deassertion of the
receive carrier on the media and after the IPG interval,
possibly resulting 1n a collision. Hence, the transmitting
station will monitor the media to determine if there has been
a collision due to another station sending data at the same
time. If a collision 1s detected, both stations stop, wait a
random amount of time, and retry transmission.

The 10/100 Mb/s network stations 14 that operate m full
duplex mode send and receive data packets according to the
Ethernet standard IEEE 802.3u. The full-duplex environ-
ment provides a two-way, point-to-point communication
link enabling simultancous transmission and reception of
data packets between each link partner, 1.¢., the 10/100 Mb/s
network station 14 and the corresponding multiport switch
12.

Each multiport switch 12 1s coupled to 10/100 physical
layer (PHY) transceivers 16 configured for sending and
receiving data packets to and from the corresponding mul-
tiport switch 12 across a corresponding reduced media
independent interface (RMII) 18. In particular, each 10/100
PHY transceiver 16 is configured for sending and receiving
data packets between the multiport switch 12 and up to four
(4) network stations 14 via the RMII 18. A magnetic
transformer 19 provides AC coupling between the PHY
transceiver 16 and the corresponding network medium 17.
Hence, the RMII 18 operates at a data rate sufficient to
enable simultaneous transmission and reception of data
packets by each of the network stations 14 to the corre-
sponding PHY transceiver 16.

Each multiport switch 12 also includes an expansion port
30 for transferring data between other switches according to
a prescribed protocol. Each expansion port 30 enables
multiple multiport switches 12 to be cascaded together as a
separate backbone network.

FIG. 2 15 a block diagram of the multiport switch 12. The
multiport switch 12 contains a decision making engine 40
that performs frame forwarding decisions, a switching sub-
system 42 for transferring frame data according to the frame
forwarding decisions, an external memory interface 44,
management information base (MIB) counters 48a and 48b
(collectively 48), and MAC (media access control) protocol
interfaces 20 and 24 to support the routing of data packets
between the Ethernet (IEEE 802.3) ports serving the net-
work stations 14 and the gigabit node 22. The MIB counters
48 provide statistical network information in the form of
management information base (MIB) objects, to an external
management entity controlled by a host CPU 32, described
below.

The external memory interface 44 enables external stor-
age of packet data 1mn an external memory 36 such as, for
example, a synchronous static random access memory
(SSRAM), in order to minimize the chip size of the multi-
port switch 12. In particular, the multiport switch 12 uses the
external memory 36 for storage of received frame data and
memory structures. The external memory. 36 1s preferably
either a Joint Electron Device Engineering Council (JEDEC)
pipelined burst or Zero Bus Turnaround™ (ZBT)-SSRAM
having a 64-bit wide data path and a 17-bit wide address
path. The external memory 36 1s addressable as upper and
lower banks of 128K 1n 64-bit words. The size of the
external memory 36 is preferably at least 1 Mbytes, with
data transfers possible on every clock cycle through pipe-
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lining. Additionally the external memory interface clock
operates at clock frequencies of at least 66 MHz, and,
preferably, 100 MHz and above.

The multiport switch 12 also includes a processing inter-
face 50 that enables an external management entity such as
a host CPU 32 to control overall operations of the multiport
switch 12. In particular, the processing interface 50 decodes
CPU accesses within a prescribed register access space, and
reads and writes configuration and status values to and from
configuration and status registers 52.

The internal decision making engine 40, referred to as an
internal rules checker (IRC), makes frame forwarding deci-
sions for data packets received.

The multiport switch 12 also includes an LED interface
54 that clocks out the status of conditions per port and drives
an external LED logic. The external LED logic drives LED
display elements that are human readable.

The switching subsystem 42, configured for implement-
ing the frame forwarding decisions of the IRC 40, includes
a port vector first in first out (FIFO) buffer 56, a plurality of
output queues 38, a multicopy queue 60, a multicopy cache
62, a free buller queue 64, and a reclaim queue 66.

The MAC unit 20 mncludes modules for each port, each
module including a MAC receive portion, a receive FIFO
buffer, a transmit FIFO buffer, and a MAC transmit portion.
Data packets from a network station 14 are received by the
corresponding MAC port and stored 1n the corresponding
receive FIFO. The MAC unit 20 obtains a free bulfer
location (i.e., a frame pointer) from the free buffer queue 64,
and outputs the received data packet from the corresponding
receive FIFO to the external memory interface 44 for storage
in the external memory 36 at the location specified by the
frame pointer.

The IRC 40 monitors (i.e., “snoops”) the data bus to
determine the frame pointer value and the header informa-
tion of the received packet (including source, destination,
and VLAN address information). The IRC 40 uses the
header information to determine which MAC ports will
output the data frame stored at the location specified by the
frame pointer. The decision making engine (1.., the IRC 40)
may thus determine that a given data frame should be output
by either a single port, multiple ports, all ports. (i.e.,
broadcast) or no ports (i.e., discarded). For example, each
data frame 1ncludes a header having source and destination
address, where the decision making engine 40 may 1denfify
the appropriate output MAC port based upon the destination
address. Alternatively, the destination address may corre-
spond to a virtual address that the appropriate decision
making engine identifies as corresponding to a plurality of
network stations. In addition, the frame may include a
VLAN tag header that identifies the frame as information
destined to one or more members of a prescribed group of
stations. The IRC 40 may also determine that the received
data packet should be transferred to another multiport switch
12 via the expansion port 30. Hence, the internal rules
checker 40 will decide whether a frame temporarily stored
in the external memory 36 should be output to a single MAC
port or multiple MAC ports.

The internal rules checker 40 outputs a forwarding deci-
sion to the switch subsystem 42 1n the form of a forwarding
descriptor. The forwarding descriptor includes a priority
class 1dentifying whether the frame i1s high priority or low
priority, a port vector identifying each MAC port that should
transmit the data frame, receive port number, an untagged
set, VLAN information, vector identifying each MAC port
that should mmclude VLAN information during transmaission,
opcode, and frame pointer. The port vector identifies the
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MAC ports to receive the data frame for transmission (e.g.,
10/100 MAC ports 1-12, Gigabit MAC port, and/or Expan-
sion port). The port vector FIFO 56 decodes the forwarding,
descriptor including the port vector, and supplies the frame
pointer to the appropriate output queues 38 that correspond
to the output MAC ports to receive the data frame trans-
mission. In other words, the port vector FIFO 56 supplies the
frame pointer on a per-port basis. The output queues 58 give
the frame pointer to a dequeuing block 76 (shown in FIG. 3)
which fetches the data frame identified 1n the port vector
from the external memory 36 via the external memory
interface 44, and supply the retrieved data frame to the
appropriate transmit FIFO of the identified ports. If a data
frame 1s to be supplied to a management agent, the frame
pointer 1s also supplied to a management queue 68, which
can be processed by the host CPU 32 via the CPU interface
50.

The multicopy queue 60 and the multicopy cache 62 keep
track of the number of copies of the data frame that are
transmitted from the respective ports, ensuring that the data
frame 1s not overwritten 1n the external memory 36 until the
appropriate number of copies of the data frame have been
output from the external memory 36. Once the number of
copies output corresponds to the number of ports specified
in the port vector FIFO 56, the frame pointer 1s forwarded
to 1s the reclaim queue 66. The reclaim queue 66 stores
frame pointers that need to be reclaimed and walks the
linked list chain to return the buffers to the free buifer queue
64 as free pointers. After being returned to the free bufler
queue 64, the frame pointer 1s available for reuse by the
MAC unit 20 or the gigabit MAC unit 24.

FIG. 3 depicts the switch subsystem 42 of FIG. 2 1in more
detail according to an exemplary embodiment of the present
invention. Other elements of the multiport switch 12 of FIG.
2 are reproduced 1n FIG. 3 to illustrate the connections of the
switch subsystem 42 to these other elements.

As shown 1n FIG. 3, the MAC module 20 includes a
receive portion 20a and a transmit portion 24b. The receive
portion 20a and the transmit portion 24b ecach include 12
MAC modules (only two of each shown and referenced by
numerals 70a, 70b, 70c, and 70d) configured for performing
the corresponding receive or transmit function according to
IEEE 802.3 protocol. The MAC modules 70c and 70d
perform the transmit MAC operations for the 10/100 Mb/s
switch ports complementary to modules 70a and 705,
respectively.

The gigabit MAC port 24 also includes a receive portion
244 and a transmit portion 24b, while the expansion port 30
similarly includes a receive portion 30a and a transmait
portion 30b. The gigabit MAC port 24 and the expansion
port 30 also have receive MAC modules 72a and 72b
optimized for the respective ports. The transmit portions 245
and 30b of the gigabit MAC port 24 and the expansion port
30a also have transmit MAC modules 72¢ and 72d, respec-
tively. The MAC modules are configured for full-duplex
operation on the corresponding port, and the gigabit MAC
modules 72a and 72c¢ are configured 1 accordance with the
Gigabit Proposed Standard IEEE Draft PS02.3z.

Each of the recetve MAC modules 70a, 705, 72a, and 72b
include queuing logic 74 for transfer of received data from
the corresponding internal receive FIFO to the external
memory 36 and the rules checker 40. Each of the transmut
MAC modules 70c, 70d, 72c¢, and 72d includes a dequeuing
logic 76 for transferring data from the external memory 36
to the corresponding internal transmit FIFO, and a queuing
logic 74 for fetching frame pointers from the free buifer
queue 64. The queuing logic 74 uses the fetched frame
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pointers to store receive data to the external memory 36 via
the external memory interface controller 44. The frame
buifer pointer specifies the location in the external memory
36 where the received data frame will be stored by the
receive FIFO.

The external memory mterface 44 includes a scheduler 80
for controlling memory access by the queuing logic 74 or
dequeuing logic 76 of any switch port to the external
memory 36, and an SSRAM interface 78 for performing the
read and write operations with the external memory 36. In
particular, the multiport switch 12 1s configured to operate as
a non-blocking switch, where network data 1s received and
output from the switch ports at the respective wire rates of
10, 100, or 1000 Mb/s. Hence, the scheduler 80 controls the
access by different ports to optimize usage of the bandwidth
of the external memory 36.

Each receive MAC stores a portion of a frame 1n an
internal FIFO upon reception from the corresponding switch
port; the size of the FIFO 1s sufficient to store the frame data
that arrives between scheduler time slots. The corresponding
queuing logic 74 obtains a frame pointer and sends a write
request to the external memory interface 44. The scheduler
80 schedules the write request with other write requests from
the queuing logic 74 or any read requests from the dequeu-
ing logic 76, and generates a grant for the requesting
queuing logic 74 (or the dequeuing logic 76) to initiate a
transfer at the scheduled event (1.e., slot). Sixty-four bits of
frame data 1s then transferred over a write data bus 69a from
the recerve FIFO to the external memory 36 1n a direct
memory access (DMA) transaction during the assigned slot.
The frame data 1s stored 1n the location pointed to by the
buffer pointer obtained from the free bufler pool 64,
although a number of other buifers may be used to store data
frames, as will be described.

The rules checker 40 also receives the frame pointer and
the header information (including source address, destina-
tion address, VLAN tag information, etc.) by monitoring
(i.e., snooping) the DMA write transfer on the write data bus
69a. The rules checker 40 uses the header information to
make the forwarding decision and generate a forwarding
instruction 1n the form of a forwarding descriptor that
includes a port vector. The port vector has a bit set for each
output port to which the frame should be forwarded. If the
received frame 1s a unicopy frame, only one bit 1s set 1n the
port vector generated by the rules checker 40. The single bit
that 1s set in the port vector corresponds to a particular one
of the ports.

The rules checker 40 outputs the forwarding descriptor
including the port vector and the frame pointer into the port
vector FIFO 56. The port vector 1s examined by the port
vector FIFO 56 to determine which particular output queue
should receive the associated frame pointer. The port vector
FIFO 56 places the frame pointer into the top of the
appropriate queue 38 and/or 68. This queues the transmis-
sion of the frame.

As shown 1n FIG. 3, each of the transmit MAC units 70c,
70d, 72d, and 72c¢ has an associated output queue 58a, 58b,
58c, and 584, respectively. In preferred embodiments, each
of the output queues 58 has a high priority queue for high
priority frames, and a low priority queue for low priority
frames. The high priority frames are used for frames that
require a guaranteed access latency, e.g., frames for multi-
media applications or management MAC frames. The frame
pointers stored 1n the FIFO-type output queues 38 are
processed by the dequeuing logic 76 for the respective
transmit MAC units. At some point 1 time, the frame
pointer reaches the bottom of an output queue 358, for
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example, output queue 58d for the gigabit transmit MAC
72c¢. The dequeuing logic 76 for the transmit gigabit port 24b
takes the frame pointer from the corresponding gigabit port
output queue 38d, and 1ssues a request to the scheduler 80
to read the frame data from the external memory 36 at the
memory location speciiied by the frame pointer. The sched-
uler 80 schedules the request, and 1ssues a grant for the
dequeuing logic 76 of the transmit gigabit port 24b to 1nitiate
a DMA read. In response to the grant, the dequeuing logic
76 reads the frame data (along the read bus 69b) in a DMA
transaction from the location 1n external memory 36 pointed
to by the frame pointer, and stores the frame data in the
internal transmit FIFO for transmission by the transmit
orgabit MAC 72c¢. If the forwarding descriptor specifies a
unicopy transmission, the frame pointer 1s returned to the
free buller queue 64 following writing the entire frame data
into the transmit FIFO.

A multicopy transmission 1s similar to the unicopy
transmission, except that the port vector has multiple bits
set, designating the multiple ports from which the data frame
will be transmitted. The frame pointer 1s placed 1nto each of
the appropriate output queues 38 and transmitted by the
appropriate transmit MAC units 205, 24b, and/or 30b.

The free buffer pool 64, the multicopy queue 60, the
reclaim queue 66, and the multicopy cache 62 are used to
manage use of frame pointers and re-use of frame pointers
once the data frame has been transmitted to its designated
output port(s). In particular, the dequeuing logic 76 passes
frame pointers for unicopy frames to the free buller queue 64
after the buffer contents have been copied to the appropriate
transmit FIFO.

For multicopy frames, the port vector FIFO 56 supplies
multiple copies of the same frame pointer to more than one
output queue 38, each frame pointer having a unicopy bit set
to zero. The port vector FIFO 56 also copies the frame
pointer and the copy count to the multicopy queue 60. The
multicopy queue 60 writes the copy count to the multicopy
cache 62. The multicopy cache 62 1s a random access
memory having a single copy count for each buffer in
external memory 36 (i.c., each frame pointer).

Once the dequeuing logic 76 retrieves the frame data for
a particular output port based on a fetched frame pointer and
stores the frame data in the transmit FIFO, the dequeuing
logic 76 checks 1f the unicopy bit 1s set to 1. If the unicopy
bit 1s set to 1, the frame pointer 1s returned to the free bufler
queue 64. If the unicopy bit 1s set to zero indicating a
multicopy frame pointer, the dequeuing logic 76 writes the
frame pointer with a copy count of minus one (-1) to the
multicopy queue 60. The multicopy queue 60 adds the copy
count to the entry stored in the multicopy cache 62.

When the copy count 1n multicopy cache 62 for the frame
pointer reaches zero, the frame pointer 1s passed to the
reclaim queue 66. Since a plurality of frame pointers may be
used to store a single data frame 1n multiple buffer memory
locations, the frame pointers are referenced to each other to
form a linked-list (i.., chain) of frame pointers to identify
the stored data frame 1n 1ts entirety. The reclaim queue 66
traverses the chain of buffer locations identified by the frame
pointers, and passes the frame pointers to the free bufler
queuc 64.

The foregoing description of the switch architecture pro-
vides an overview of the switch operations 1 a packet
switched network. A more detailed description of the fea-
tures of the present invention as embodied in the multiport
switch 12 will now be provided. First, the architecture of
exemplary queuing and dequeuing blocks will be discussed,
followed by details for transferring data between the exter-
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nal memory and network switch ports utilizing the exem-
plary queuing and dequeuing blocks.

Scalable Queuing and Dequeuing Architecture

As shown in FIG. 3, each MAC (70, 72a or 72b) includes
a queuing logic 74 and a dequeuing logic 76. As described
previously, the queuing and dequeuing logic blocks are
responsible for transferring frame data between the MAC
transmit ('Tx) or receive (Rx) FIFO’s to the external memory
36. Although the queuing logic blocks 74 and the dequeuing
logic blocks 76 differ in their respective architectures, each
of the MAC’s of the present embodiment, whether a 10/100
Mbps, 1 Gbps port or 1.2 Gbps port, have queuing and
dequeuing blocks sharing common respective architectures.
As will be described below, common architectures for the
queuing or dequeuing blocks, 1rrespective of the data rate of
the port, affords interchangability of the blocks between
ports of differing rates.

FIG. 4 1llustrates an exemplary architecture for a port
module 100 including a queuing block 74 and a dequeuing
block 76. The MAC core 101 includes a transmit portion 102
and a receive portion 104 being respectively associated with
the dequeuing and queuing blocks (76 and 74, respectively)
of the port module 100. A transmit FIFO 106 1s associated
with the dequeuing block 76 for reading data from the
external memory 36 and buffering data to be sent over the
media 14 via the transit portion 102 and the reduced RMII
logic 18. The queuing block 74 1s associated with receiving
data over the media 14 via the receive portion 104 and the
receive FIFO 108 1 order to write received data into the
external memory 36.

In particular, a preferred embodiment of the queuing
block 74 architecture 1s 1llustrated in the block diagram of
FIG. 5. A receive FIFO control 202 receives data from the
receive FIFO 108 and serves to control the reading of data
from the receive FIFO 108. A master state machine 204
controls the queuing sequence as data 1s transferred from the
receive FIFO 108 to the external memory 36 via, in part, the
receive FIFO control 202. Free pointer control 206 1is
provided to receive free frame pointers used to address the
data being stored 1n the external memory 36. In particular,
the free pointer control 206 signals the master state machine
204 when a free pointer 1s ready and also delivers the free
pomter to an SSRAM address generator 212. The address
generator 212 provides an external memory write address
indicating the location within the external memory 36 that
the data 1s to be stored.

Additionally, as part of the data path, a SSRAM data
control and buffer header constructor 208 1s provided to
construct the buffer frames that are to be stored in the
external memory 36. To achieve this construction, data 1is
received by the constructor 208 from the receive FIFO
control 202 at the direction of the master state machine 204

via a signal QU__ST.

The signal QU__ST serves to control the data path based
on a chip select command received by the master state
machine 204 from the external memory interface scheduler
80. The chip select command communicates information to
the master state machine 204 such as the data rate and the
data path width for the port 1n which the particular state
machine 204 is contained. For example, 1n a 100 Mbps port,
the data path 1s 8 bytes wide and the scheduler assigns a
small number of available slots to the port during a schedule
cycle. For a Gbps port, the scheduler might assign a much
larger number of available slots to the port during a schedule
cycle and the data path could be 16 bytes wide by granting
external memory access for 2 consecutive clock cycles.
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Thus, dependent upon the data path width and data rate, the
chip select signal from the scheduler 80 will vary 1n accor-
dance with the particular port conditions 1t selects. The
master state machine 204, in essence, issues the signal
QU__ST 1n response to the chip select signal as a “master-
slave” type relationship without regard to any particular
reference clock signal. Hence, the state machine 1s scalable
since 1t simply follows the chip select command without
reliance on a common reference timing.

Additionally, the queuing block 74 includes an IRC
snooping signal interface 210 that 1s signaled by the master
state machine 204 with signal QU__ST. The IRC snooping
signal mterface 210 sends a signal to the IRC 40 to “snoop”
the write bus 692 1n order to prepare of the forwarding
descriptor, described previously.

A notable feature of the queuing block 74 architecture 1s
that the data path including the receive FIFO control 202 and
the SSRAM data control and buffer header constructor 208
are partitioned from the master state machine logic 204. This
partitioning atfords the queuing block scalability of the data
path without providing a separate control logic for each port
data rate. Irrespective of the rate of the port, the architecture
of the preferred embodiment for the queuing block 74 is
adaptable to differing data rates according to the chip select
signal received by the master state machine 204 from the
scheduler 80. In turn, the master state machine 204 scales the
burst count (BURST__CNT) and address count (ADDR__
CNT) signals to the SSRAM data control and buffer header
constructor 208 and SSRAM address generator 212,
respectively, based upon the chip select command signal.

The employment of “handshaking” between the master
state machine 204 and the data path logic (e.g., Rx FIFO
control 202) affords the present embodiment scalability
while maintaining a common architecture and state machine
logic. That 1s, the state machine merely “listens” for a slot
and performs a corresponding function independent of the
data rate. Sumilar to the relationship between the scheduler
and the master state machine 204, the relationship between
the master state machine 204 and the data path control logic
(i.e., 202 and 208) 1s, in essence a “master-slave” relation-
ship requiring no timing synchronization between the two,
but, 1nstead, merely an 1nifiation of control by the master
state machine 204 upon the data path control logic (202 and
208).

FIG. 6 1llustrates a state diagram depicting the states of
the state machine 204. In an 1nitial state 300, the master state
machine 204 awaits a free pointer for a new data frame. If
no free pointer 1s available, the master state machine 204
remains at state 300 until such time that a free pointer is
ready. When a free pointer 1s ready, as indicated by the free
pointer ready signal from {Iree pointer control 206, the
master state machine 204 enters state 302 wherein data is
written to the first buffer 1n the external memory 36.

While 1n state 302, the state machine 204 continuously
checks to determine if the end of frame (EOF) or end of
buffer (EOB) has been determined. Should an end of frame
be detected such as, for example, 1n a frame having less than
256 bits according to the preferred bulfer size, the master
state machine 204 proceeds to state 304 and instructs. the
SSRAM data control and buffer header constructor 208 to
write a header into the buffer within the external memory 36.
Alternatively, if the 256 bits of the buffer are filled without
detecting an end of frame in state 302, the state machine 204
proceeds to state 306 wherein a header 1s written 1nto the
first buffer including the next frame pointer information, the
buffer length of the first buffer. The state machine then
determines whether a next free pointer 1s ready.
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If a pointer 1s ready, the state machine 204 proceeds to
state 308 1n which subsequent data 1s written to correspond-
ing subsequent buffer locations within the external memory
36. When the end of a buffer (EOB) is detected, the state
machine directs the buffer header constructor 208 to write
header data into the subsequent buffer that has been filled. If,
in state 308, the end of the data frame 1s detected through
issuance of the end of frame signal from the receive FIFO
control 202 to the master state machine 204, the state
machine 204 proceeds to write header information into the
buifer into which data was last written and proceeds to state
312.

At state 312, the master state machine 204 directs the
buffer header constructor 208 to return to the first bufler
header and write the total frame length, a beginning-of-
frame bit indicating that this buffer contains the beginning of
the frame, and a good frame bit indicating that the frame did
not experience any receive errors. The master state machine
204 then proceeds back to state 300 for reception of a new
data frame.

FIG. 7 1llustrates a preferred embodiment of the dequeu-
ing block 76 architecture 1in block diagram form. The
purpose of this architecture 1s to control the reading of data
from the external memory 36 to the transmit FIFO 106 for
transmission over the medium 14. An SSRAM control state
machine 404 controls the operation of the dequeuing block
76 by 1ssuing command signals to the other elements within
the dequeuing blocks 76. Specifically, the SSRAM control
state machine 404 directs the output queue reading control
400 to read a frame pointer from the output queue interface
402. When the output queue reading control 400 indicates
that a frame pointer 1s ready, an SSRAM address generator
410 reads the frame pointer from the output queue reading
control 400 and generates an SSRAM address signal to the
SSRAM external memory 36 which, 1n turn, sends data to
the transmit FIFO steering logic 408.

The transmit FIFO steering logic 408 sequences data flow
to the transmit FIFO 106 for transmission over the medium
14. Additionally, the SSRAM address generator 410
accounts for “chaining” (i.e., linked multiple memory
locations) of different frame pointers when more than one
buffer in the external memory 36 1s required to store a data
frame. This 1s accomplished by receiving an end of buifer
signal from the SSRAM control state machine 404 which
communicates to the address generator 410 that a next
address must be synthesized.

The transmit FIFO data steering logic 408 receives a data
write command from a steering control state machine 406
which, in turn, 1s controlled by the data command signal
(DATA _CMD) from the SSRAM control state machine
404. It 1s the data command signal from the SSRAM control
statc machine 404 that is scaled in order to allow this
common architecture to be used for all port data rates.

The SSRAM control state machine 404 also receives a
chip select command from the external memory scheduler
80 that provides the necessary information for the SSRAM
control state machine to scale the data rate according to the
slots and slot rate granted to the port 1n which 1t 1s located.

Additionally, the dequeuing block 76 includes a frame
pointer reclaim logic 412 that returns used frame pointers to
the multi-copy queue 60 or free buifer queue 64.

FIG. 8 illustrates a diagram of the dequeuing operation by
the state machine 404. As shown at state 500, the state
machine 404 waits until a frame pointer 1s ready for reading
a first header from a retrieved data frame. After the first
header 1s read, the state machine 404 proceeds to state 502

wherein the first burst of data (DATA 1) is read from the

10

15

20

25

30

35

40

45

50

55

60

65

12

external memory 36. The amount of data read 1n one burst
1s dependent upon the particular data rate of the port 1n
which the dequeuing block 76 1s located. For example, 1n a
100 megabit per second port, one burst would be equivalent
to 8 bits of data. On the other hand, 1n a gigabit port, one
burst would equal 16 bits of data. However, 1t 1s noteworthy
that, 1rrespective of data rate, the state machine 404 only 1s
concerned with reading a burst regardless of the amount of
data 1n that burst. This allows the state machine to adapt to
any rate at which the port i1s operating.

After state 502, the state machine 404 proceeds to state
504 in which a second burst of data (DATA 2) is read from
the external memory 36. If the data packet does not occupy
the entire buffer (i.e., the data packet is a “runt” packet less
than 64 bytes) and a request signal is received, the state
machine 404 returns to state 500 1n anticipation of a new
data frame. Otherwise, the state machine 404 enters state
506 in which the third data burst (DATA 3) is read. If, at state
506, the state machine 404 detects a request signal and the
end of the data frame (EOF), the state machine 404 returns
to state 500 1n anticipation for another data frame. If the end
of frame has not occurred, the state machine enters state 508
in which data bursts are read until the end of buffer (EOB)
1s detected. At such time, the state machine 404 enters state
510 1n which a subsequent header within the frame 1s read
and then subsequently returns the state machine to state 508
wherein data bursts are read from the next butfer. When the
end of frame (EOF) is detected in state S08, the state
machine returns to state 500 1n anticipation for the next data
frame to be read.

FIG. 9 1llustrates a state diagram of the transmit FIFO data
steering control state machine 406. As shown, the initial
state 600 awaits to receive a first data header (DA FIRST
HEADER) from the external memory 36. When the transmit
FIFO data steering control state machine 406 receives a first
header data command signal (CMD__FIRST HDR) from
the state machine 404, the steering control state machine 406
proceeds to state 602 showing a receiving state for a first
data burst (DA DATA 1). When the steering control state
machine 406 receives a first data command signal (CMD__
DATA__1) from the state machine 404, its state proceeds to
state 604 wherein a second data burst (DA DATA 2) is
received. Should the steering control state machine 406
detect that the data 1s a runt frame, 1t then returns to state 600
in anticipation of a next data frame header. Alternatively, 1f
the steering control state machine 406 detects an address end
of frame (AD__EOQOF), which corresponds to the end of the
data buffer within the external memory 36, the state machine
406 proceeds to state 606. State 606 1s an extended data state
in which extra data 1s added to the data being written to the
transmit FIFO 106 by the transmit FIFO steering logic 408.
If only another CMD DATA signal (i.e., CMD__DATA_ 2)
1s received, the state machine 406 proceeds to state 608.

Similarly, the other data burst states 608 and 610 continue
to sequence the writing of data to the transmit FIFO 106
until either a data end of frame (DA__EOF) or an address
end of frame (AD__EOF) has been detected. In the case of
detection of the data end of frame, the steering control state
machine 406 returns to state 600 1n anticipation of a next
data frame. If an address end of frame 1s detected, the state
machine 406 proceeds to state 606 to add any extended data
that 1s to be written to the transmit FIFO 106. From state
606, the state machine 406 will either return back to the first
header data receive state 600 if no command signal is
received (1.e., CMD__IDLE) from the state machine 404 or
to the first data burst state 602 if a command signal (CMD__
FIRST _HDR) is received.
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In both the queuing 74 and dequeuing 76 blocks, the
partitioning of the state machine logic from the data path
affords the present invention scalability while maintaining
the common architectures for different data rates from
approximately 10 Mbps to 10 Gbps. Each of the state
machines within the queuing and dequeuing blocks (74 and
76) receives a chip select signal from the external memory
scheduler 80 which effectively communicates to the state
machines that the data rate 1s set at a particular rate. In
responding to this chip select signal, each of the state
machines does not change 1its 1nternal operation dependent
on rate but, rather, acts in dependence on the timing and
information of the chip select signal in a “master-slave” type
of arrangement. In turn, the data path control for each of the
queuing and dequeuing block architectures receives com-
mand signals from the state machines acting in dependence
on the chip select signal 1n a stmilar “master-slave™ arrange-
ment. Thus, the state machines and data path control por-
tions of the queuing and dequeuing blocks merely respond
to signal events occurring rather than the timing of those
events. Hence, the queuing and dequeuing blocks may
perform control of the data path 1rrespective of the data rate
of the port in which it 1s located. Correspondingly, the
common architectures scalable to any one of a number of
data rates affords interchangeability and, therefore, reduced
complexity and cost of manufacturing of the network switch
ports.

While this invention has been described in connection
with what 1s presently considered to be the most practical
and preferred embodiment, it 1s to be understood that the
imvention 1s not limited to the disclosed embodiment, but, on
the contrary, 1s mtended to cover various modifications and
cquivalent arrangements mcluded within the spirit and scope
of the appended claims.

What 1s claimed 1s:

1. A network switch arrangement comprising:

an external memory for temporarily storing data packets
to be forwarded by the network switch;

at least one network switch port having a predetermined
data rate for receiving data packets from network nodes
and transmitting data packets to said network nodes;

a data packet transmission controller associated with the
at least one network switch port for controlling the
transmission of data packets between the external
memory and the at least one network switch port;

an external memory controller;

a state machine within the data packet transmission con-
troller for receiving predetermined information from
the external memory controller concerning the data rate
of one of data packets being transmitted from the at
least one network switch port and data packets being
received by the at least one network switch port, and
the state machine 1ssuing a command signal based on
the predetermined information; and

data path logic within the data packet transmission con-
troller for receiving the command signal and configured
to control transmission of data packets based on the
received command signal, the data path logic also
coniligured to scale a data path for transmission of data
packets between the at least one network switch port
and the external memory based on the predetermined
data rate of the network switch port.

2. The arrangement of claim 1, further comprising an
address generator that generates an address to be used by the
external memory controller for at least one of storing and
accessing data 1n the external memory.
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3. The arrangement of claim 1, wherein the state machine
has a predetermined logic configured to receive a chip select
command from an external memory scheduler, the external
memory scheduler configured to assign memory access slots
corresponding to the data rate of the at least one network
switch port.

4. The arrangement of claim 3, wherein the predetermined
logic 1s configured to scale the data path in accordance with
a data rate set by the external memory scheduler.

5. The arrangement of claim 1 wherein the data rate of the
at least one network switch port 1s one of 10 Mbps, 100
Mbps, 1 Gbps and 1.2 Gbps.

6. The arrangement of claim 1, wherein the data path logic
1s configured to receive data packets from a port receive
buffer and route the data packets to the external memory for
storage.

7. The arrangement of claim 1, wherein the data path logic
1s configured to receive data from the external memory and
route the data to a port transmit buffer for transmission by
the at least one network switch port.

8. A method of controlling a transmitting and receiving,
data path for a network switch port having a predetermined
data rate for receiving data packets from and transmitting
data packets to network nodes, comprising the steps of:

writing data received at the network switch port to an
external memory and reading data to be transmitted by
the network switch port from the external memory via
the transmitting and receiving data path;

generating a control signal to control the transmitting and
receiving data path based upon the predetermined data
rate of a particular data packet being received by the
network switch port or transmitted from the network
switch port; and

scaling the transmitting and receiving data path based
upon the control signal, wherein
scaling includes controlling an amount of data read
from the external memory during a read burst.

9. The method according to claim 8, wherein the scaling
1s base on the predetermined data rate for the network switch
port selected by an external memory interface scheduler.

10. The method according to claiam 9, wherein the data
rate 1s one of 10 Mbps, 100 Mbps, 1 Gbps and 1.2 Gbps.

11. The method according to claim 9, further comprising
the steps of:

receiving data from a receive buliler 1in the network switch
port;

preparing the data for storage in the external memory;

addressing one or more storage locations within the
external memory 1in which to store the prepared data
based on the control signal; and

and writing the prepared data to the one or more addressed

storage locations.

12. The method according to claim 11, wherein the step of
preparing the data for storage includes separating the data
into one or more packets of a predetermined number of
bytes.

13. The method according to claim 12, wherein the step
of addressing one or more storage locations within the
external memory includes assigning a separate storage loca-
tion to each of the one or more packets.
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14. The according to claim 9, further comprising the steps retrieving data stored in the specific location from the

of: external memory and transmitting the data over a

retrieving a frame pointer addressing a specific location medium attached to the network switch port at the
within the external memory; certain defined rate.

generating an address based on the retrieved frame pointer
that addresses the specific location; I
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