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1

METHOD AND APPARATUS FOR
INTERCONNECT-DRIVEN OPTIMIZATION
OF INTEGRATED CIRCUIT DESIGN

BACKGROUND OF THE INVENTION

1. Field of the.Invention

The present i1nvention relates to a tool for integrated
circuit design. In particular, the present invention relates to
a tool for optimizing the physical design of a standard
cell-based integrated circuit for performance.

2. Discussion of the Related Art

A standard cell-based 1ntegrated circuit 1s designed using
a library of building blocks, known as “standard cells.”
Standard cells 1include such elements as buffers, logic gates,
registers, multiplexers, and other logic circuits (“Macros™).

FIG. 1a shows a typical design process or “tlow” 100 that
an 1mtegrated circuit designer would use to design a standard
cell-based integrated circuit. As shown in FIG. 1a, at step
101, the designer provides a functional or behavioral
description of the integrated circuit using a hardware
description language. In addition, the designer specifies
timing and other performance constraints (109) with which
the integrated circuit must comply. Then, at step 102, the
designer selects a standard cell library to implement the
design. Typically, the standard cells in the library are
designed to the requirements of a target manufacturing
technology. Often, each cell 1s also characterized to provide
performance parametric values such as delay, mput capaci-
tance and output drive strength.

At step 103, the designer uses a “synthesis tool” to create
from the functional or behavioral description a functionally
equivalent logic gate-level circuit description known as a
“netlist.” The elements of the netlist are mstances of stan-
dard cells selected by the synthesis tool from the standard
cell library 1n accordance with functional requirements and
the performance constraints. At this stage, the synthesis tool
uses the characteristic parametric values of each standard
cell and a model of input and output loads (“wire load
model” or “WLM”) to attempt to meet performance require-
ments.

At step 104, a “place and route” tool creates a “physical
design” by placing the standard cell instances of the netlist
onto the “silicon real estate” and routes conductor traces
(“wires”) among these standard cell instances to provide for
interconnection. Typically, the placement and routing of
these standard cell instances are guided by cost functions,
which minimize wiring lengths and the area requirements of
the resulting integrated circuit.

At step 105, with the wires of the integrated circuit having
been routed at step 104, a more accurate set of parasitic
impedance values 1n the wires can be extracted. Using the
extracted parasitic impedance values, a more accurate tim-
ing analysis can be run at step 106 using a static timing
analyzer (STA). If the physical design meets timing
constraints, the design process is complete (step 108).
Otherwise, steps 103-106 are repeated after appropriate
modifications at step 107 are made to the netlist and the
performance constraints.

Design process 100 suffers from a number of disadvan-
tages. First, WLM 1s a crude model based on statistics.

Because of the maccurate model, a designer typically uses

an “80” percentile WLM” (i.e., 80% of the nets will have a
capacitance less than predicted by the WLM). As a result,
the drivers for many nets are unnecessarily large, while other
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driver are too weak. Additionally, designers tend to provide
30% or more additional safety margins to accommodate
other 1naccuracies 1n the design flow. Such over-design
represents 1nefficiencies in both silicon area and perfor-
mance. Second, under this typical method, whenever a
non-trivial modification 1s made to the design to meet a
performance requirement, the design 1s re-synthesised,
re-placed and re-routed, which are very time-consuming and
costly steps, even when timing 1s met 1n a majority of nets.
Typically, at each 1iteration, the physical design undergoes
major changes that may introduce new sub-optimal nets
requiring another iteration of synthesis, placement and rout-
Ing to correct.

The 1nefficiency in the prior art method results in both
high cost and long development time 1n engineering, time-
to-market and manufacturing.

SUMMARY

The present mvention provides methods and systems for
optimizing a post-layout design without requiring
re-synthesis. In these methods and systems, accurately
extracted timing information from the physical design drives
transformation of the physical design, thereby avoiding the
inaccuracy of wire load models of the prior art. Further,
methods and systems of the present invention apply local
transformations to the physical design, thereby maintaining
substantial integrity (i.e., validity and accuracy) in the
interconnect models during the transformation process.
Accurate models of parasitic impedance can be obtained
using an asymptotic waveform evaluation technique.

According to one embodiment of the present invention,
onc method for post-layout optimization of an integrated
circuit includes: (a) providing a logic description of the
integrated circuit; (b) synthesizing from the logic description
a netlist of the integrated circuit using instances of cells from
a standard cell design library; (c) placing and routing the
instances to provide a physical design of the integrated
circuit; (d) extracting from the physical design models of
parasitic impedance of mterconnect in the physical design;
and (¢) optimizing the physical design by modifying the
physical design according to the models of parasitic imped-
ance. Under that method, in one embodiment, the optimi-
zation iteratively (a) identifies, using a static timing
analyzer, locations in the physical design where timing
violations occur and (b) applies one or more local transfor-

mations to the physical design to correct the timing viola-
fion.

In one 1mplementation, the method performs a forward
sweep and a backward sweep of the physical design to
compute a required signal arrival time and a latest signal
arrival time, respectively.

In accordance with another aspect of the present
invention, a library analysis step provides characterization
of the standard cell library to allows accurate timing and
load driving ability analyses. In particular, one method
enables a cell to be selected from a library to perform a given
logic function and to drive a given load capacitance. That
method includes: (a) dividing the cells in the library into
oroups, such that cells within each of the groups perform
substantially the same logic function; (b) within each group,
assigning to selected cells each an operating range of loads;
and (c) selecting a cell by matching the logic function and
the given load capacitance to the operating range of the cell.
In one 1implementation, the operating range of loads to a cell
in the library are assigned according to a metric relating an
arca of the cell to a delay of the cell. In one implementation,
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cach group contains not only cells performing the given
function, but also combinations of such cells and buffers of
appropriate drive strengths, and combinations of cells pro-
viding a complementary logic function and inverters.

According to another aspect of the present invention, a
method of the present invention includes: (a) extracting from
the physical design parasitic models of mterconnect in the
physical design; and (b) applying optimization steps, each
optimization step transforming the physical design to
achieve a desired performance based on area or delay. In one
embodiment, the optimization steps are applied in order of
potential intrusiveness to the physical design. Thus, the
present ivention allows the less complex modifications to
be accomplished first. Typically, a large portion of the
potential optimization can be achieved by these minimally
intrusive modifications to the physical design, leaving the
physical design to be substantially optimized even before the
more 1ntrusive optimization steps are applied.

In one implementation, an initial optimization step 1den-
fifies 1n the physical design a cell instance mismatched to an
output load driven by the cell mnstance; and replaces the cell
instance by a second cell mstance matched to the output
load. Then, a second optimization step computes a potential
improvement 1n slack for each cell instance 1n the physical
design, selects from the physical design cell instances hav-
ing the largest potential improvements in slack, and applies
transformations to the selected cell mstances.

In that second optimization step, a bidirectional combi-
national total negative slack (BCTNS) ranking method of
the present invention 1s used. The BTCNS ranking method
identifies “hot spots” i the physical design, which are
locations where performance improvements with the highest
potential impact. The BTCNS method includes: (a) perform-
ing a forward sweep and a backward sweep of the physical
design to provide for each cell instance a forward priority
value and a backward priority value; (b) calculating an
equivalent priority value based on the forward priority value
and the backward priority value; and (c) ranking cell
instances 1n the physical design according to the equivalent
priority value.

Following the second step of optimization, a third opti-
mization according to a metric based on a path-based
algorithm (e.g., a critical path algorithm). The path-based
optimization can be used to correct hold and set-up time
violations. In that method, the last optimization step 1den-
fifies 1n the physical design a cell instance meeting timing
requirements but mismatched to an output load driven by the
cell instance, and replaces the cell instance by a second cell
instance matching the output load and having a smaller
silicon area.

In one implementation, the method of the present imnven-
fion takes advantage of a static timing analyzer capable of
performing incremental timing analysis, and an extraction
tool capable of performing incremental extraction of para-
sitic impedance in the interconnect.

The local transtormations 1n the present invention include
cell instance upsizing, cell 1nstance downsizing, node ofl-
loading, input swapping and logic duplication.

In one embodiment of the present invention, a system for
post-layout design optimization, includes: (a) a library inter-
face for access to a standard cell library; (b) a timing
analyzer interface for accessing a static timing analyzer; (c)
a design tool 1nterface for accessing a place and route design
tool; (d) a design database for storing a physical design of an
integrated circuit composed of instances of standard cells
from the standard cell library. The system provides routines
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for traversing the instances in accordance with predeter-
mined orders, a control program for obtaining timing infor-
mation of the instances from the static timing analyzer, a
control program for applying local transformations of the
instances guided by the timing information.

The present mvention 1s better understood upon consid-
eration of the detailed description below and the accompa-

nying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a shows a typical design flow 100 that an integrated
circuit designer would use to design a standard cell-based
integrated circuit.

FIG. 15 shows design flow 150, in accordance with one
embodiment of the present invention.

FIG. 2 shows design flow 200, representing the operations
of step 1095 of FIG. 1b, in one embodiment of the present

mvention.

FIG. 3 1s an overview of optimization tool 300 1n one
embodiment of the present invention.

FIG. 4 1s flow diagram 400 representing library analysis
step 201 of FIG. 2.

FIG. 5a shows the drive strengths of cells 501-504.

FIG. 5b shows, 1n the operating range of interest (i.e., 0
to 2 pf), process flow 400 found cells 501-503 which cover

the entire operating range with their mndividual operating
ranges 0 to C,, C, to C,, and C, to 2pf.

FIG. 6 shows a network model 600 used in STA 308.

FIG. 7 1s a flow diagram 700 that illustrates the operations
of delay calculator 307.

FIG. 8 1s a flow diagram 800 showing the operations of
Phase 1 optimization, according to one embodiment of the
present 1vention.

FIG. 9a 1s a flow diagram 900 providing an overview of
the optimization steps in Phase 2A.

FIG. 9b 15 a flow diagram 900 providing an overview of
the optimization steps in Phase 2B.

FIG. 10 1s a flow diagram 1000 showing the operations of
BCTNS sort step 904 of FIG. 9a.

FIG. 11a shows cell instance 1101 with its output “etfec-
tive load” modeled by capacitor. 1102 (C,) and input and
output signal transition times 1104, 1105 and 1106, as
computed by delay calculator 307.

FIG. 115 shows assumed operating conditions necessary
to achieve a largest possible delay improvement of cell
instance 1101.

FIG. 124 1s a flow diagram 1250 showing the operations
of backward propagation of PV values at step 1008 of FIG.
10.

FIG. 126 shows a backward column PV table initializa-

tion step 1200, used 1n output pin initialization step 1253 of
FIG. 12a.

FIG. 12¢ shows a flow diagram 1280 that sets forth the

steps for backward propagation of values of a PV table to a
divergence point.

FIG. 12d shows a flow diagram 1260 that illustrates the
steps for backward propagation of values of a PV table to a
merged point.

FIG. 13a shows backward propagation of PV values over
a parasitic model that 1s driven by multiple mnput terminals.

FIG. 1356 shows backward propagation of PV values over
a cell instance having multiple mput terminals.

FIG. 13c¢ shows backward propagation of PV values from
multiple output terminals of a parasitic model to a single
input terminal.
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FIG. 144 1s a flow diagram 1450 showing forward propa-
gation of PV values at step 1009 of FIG. 10.

FIG. 14b shows a forward column PV table mitialization

step 1400, used 1n input pin 1nitialization step 1453 of FIG.
14a.

FIG. 14c¢ shows a flow diagram 1480 that sets forth the

operations for forward propagation of values of a PV table
to a divergence point.

FIG. 14d shows a flow diagram 1460 that 1llustrates the

steps for forward propagation of values of a PV table to a
merged point.

FIG. 15a shows forward propagation of PV values over a
parasitic model that 1s driven by multiple 1input terminals.

FIG. 15b shows forward propagation of PV values over a
cell instance having multiple input terminals.

FIG. 15¢ shows forward propagation of PV values from a
single input terminal of a parasitic model to multiple output
terminals.

FIG. 16 shows flow diagram 1600, which illustrates the
steps for computing EPV for each cell in the cluster.

FIG. 17 shows flow diagram 1700, which 1llustrates the
operations for optimization step 907 (i.e., cell downsizing).

FIG. 18 shows tlow diagram 1800, which illustrates the
operations for optimization step 908 (i.e., cell upsizing).

FIG. 19 shows tlow diagram 1900, which illustrates the
operations for optimization step 909 (i.e., node off-loading).

FIG. 20 1s a flow diagram 2000, which provides an
overview of the optimization steps 1in Phase 3.

FIG. 21 shows flow diagram 2100, which illustrates
“mnput swapping~ optimization step 2011 of Phase 3.

FIG. 22 shows flow diagram 2200, which illustrates
“logic duplication” optimization step 2012 of Phase 3.

FIG. 23 provides an example of circuit optimization by
logic duplication.
FIG. 24 shows flow diagram 2400, which illustrates a

buffer msertion technique for addressing hold time viola-
fions.

FIG. 25 shows flow diagram 2500 which illustrates a
process for reducing overall silicon area

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The present invention provides a design tool and a method
for optimizing a standard-cell based integrated circuit after
placement and routing are performed, without requiring
complete re-synthesis of the itegrated circuit design. The
present 1nvention optimizes the integrated circuit design
based on accurate extraction and modeling of the intercon-
nect network.

FIG. 1b shows an overview of design flow 150 in one
embodiment of the present invention. Unlike the prior art, 1n
the present invention, the mtegrated circuit design steps of
synthesis, 1nitial placement and 1nitial routing are not
re-1terated. Instead, modifications to the physical design are
performed 1ncrementally. After completing HDL
description, synthesis, place and route, extraction and timing
analysis steps 1015-106b, which can be substantially the
same as corresponding steps 101-106 of FIG. 14, the timing
problems uncovered by timing analysis step 1065 are
addressed by an interconnect optimization step 109b. Step
1095 fixes some or all of the timing problems using the local
transformation techniques described below. These local
transformations are realized at step 1106 by providing
incremental place and route directives to the corresponding
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place and route tools. At step 1115, an incremental extraction
of parasitic impedance 1s performed on the revised physical
design. Process flow 150 then returns to timing analysis step
10656 to determine 1f the revised physical design meets all
timing requirements. If not, step 1095, 1105 and 1115b are
repeated.

FIG. 2 shows 1n further detail step 1095 of FIG. 1b. As
shown in FIG. 2, at step 201; a standard cell library (e.g., a
“lib” file of a format supported by Synopsys Corp.) is
analyzed and characterized. Under step 201, cells are clas-
sified according to their logic functions (e.g., NAND gates
of different drive strengths are grouped), and each cell’s
operating characteristics (e.g., drive strength at each output
terminal and capacitance at each input terminal) are
estimated, as explained 1n further detail below. The results
are Included in an augmented library file (in a suitable
format, such as Copernicus Library Format or “CLF”).

At step 202, the design database 1s prepared for receiving
an 1nput netlist. The design database provides data
structures, described 1n additional detail below, for facilitat-
ing the optimization steps 1n FIG. 2. The synthesized, placed
and routed physical design i1s then read into the database.
The design 1s typically provided, for example, in the LEF
and DEF file formats supported by Candence Design Sys-
tems Inc. In addition, timing and other constraints
(expressed, for example, in an industry standard format,
such as those formats used 1n the “Primetime” tool from
Synopsys, Inc. or the “DesignCompiler” tool from synopsys
Inc.) are also read into the database.

At step 203, parasitic impedance models (“parasitic”
models) of interconnect wires are incorporated into the
database. Parasitic models are provided by parasitic extrac-
tor 204, which can be implemented by, for example, the
extraction tool “Columbus”, which 1s available from Fre-
quency Technology, Inc., Santa Clara, Calif. The parasitic
models are incorporated into the 1nitial netlist. Such parasitic
models can 1nclude such circuit elements as resistors,
capacitors and inductors.

At step 205, a clock tree analysis 1s performed by clock
tree analyzer 206 to 1dentify clock signals and clock signal
paths. Clock tree analyzer 206 can be provided internally, or
by an external clock tree analyzer (e.g. “Cartier” from
Frequency Technology, Inc.) interfaced to the design tool of
the present mvention. The extracted clock information is
incorporated 1nto the design database.

At step 207, based on the clock analysis, the extracted
parasitic models, the operational characteristics of the cell
instances 1n the physical design, and the performance con-
straints of the physical design, an 1nitial timing analysis 1s
performed. In this embodiment, the initial timing analysis 1s
performed by a static timing analyzer (STA), which is
described 1n further detail below. In this static timing analy-
sis step, the “slack™ of each electrical terminal, or “pin,” 1s
calculated. On a pin, the term “slack”™ refers to the time
difference between the latest signal arrival time and a
required signal arrival time. A cell instance can also be
assigned a slack, which 1s typically the least slack selected
from the cell mstance’s mput and output terminals.

Based on the slack values, the design tool of the present
invention provides one or more optimization steps. To
simplify presentation, only optimization steps 208 and 209
are explicitly shown i FIG. 2. In one embodiment of the
present invention, four optimization steps (identified below
as Phases 14 and described in further detail below) are
provided in the design tool. In each optimization step, the
physical design 1s modified by a number of local
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transformations—i.e., each transformation affects only a
small number of closely related cell instances and nets. In
one embodiment, the local transformations are reported and
implemented by providing incremental placement and rout-
ing directives to a placement and routing tool (e.g., steps
210-212). At the end of each optimization step, a static
fiming analysis 1s performed, using the same STA mentioned
above. If the timing constraints are met, further optimization
1s not necessary.

As mentioned above, 1n one embodiment, four optimiza-
tion steps (“phases”) are provided. In one embodiment,
described below, the first three phases are arranged 1n such
a manner that each phase has a potential for resulting 1n
orcater modification to the post-layout circuit than the
previous phase (i.e., increasing “intrusiveness”). In the first
phase (“Phase 1), which is a “clean-up” optimization step,
the physical design 1s inspected for load-driver mismatches.
A load-driver mismatch occurs when a driver drives a load
outside of the driver’s optimal range. In Phase 1, to correct
a load-driver mismatch, a cell instance can be upsized or
down-sized to meet the required timing constraints (i.e., the
mismatched cell instance can be replaced by a logically
equivalent cell instance with more or less drive strength, or
longer or shorter propagation delay).

In the second phase (“Phase 2”), “hot spots™ are identified
in the physical design. A “hot spot” 1s a cell with a potential
fiming 1improvement that can result 1in a substantial improve-
ment 1n timing performance both locally and along signal
paths that include this cell. In one embodiment, Phase 2
consists of two phases, referred to below as Phase 2A and
Phase 2B. Phase 2A 1s based on a “total negative slack”
calculation at each terminal. Negative slack at a terminal 1s
the amount of time by which the expected signal arrival time
at the terminal fails to meet the required arrival time, taking
into consideration all timing paths leading to the terminal.
“Total negative slack (or “TNS”)” at a terminal is the
cumulative negative slacks over all timing end points of
interest. An endpoint having a positive slack i1s 1gnored.
More detailed information regarding TINS can be obtained,
for example, from Synopsys Inc. Depending on the nature of
the hot spot, one or more local transformations can be
applied to realize the timing improvements.

Because only local transformations are applied at Phases
1 and 2, the resulting modified physical-design does not
require re-synthesis. In many physical designs, a very high
percentage of all timing violations can be corrected by the
local transformations of Phases 1 and 2. Thus, optimization
of these physical designs can be achieved without reiteration
of the time-consuming re-synthesis, placement and routing
loop, thereby reducing the cost of an integrated circuit
design.

In the embodiment mentioned above, in addition to
Phases 1 and 2 described above, a third phase (“Phase 3”)
also applies local transformations to minimize worst nega-
tive slake (WNS), in signal paths. In a first part of a fourth
phase (“Phase 4A 7), “hold” timing violations in signal
propagation paths are corrected. A “hold” time violation
occurs when a signal transition at a clocked element (i.e., a
sequential element, such as a flip-flop) occurs prior to the
previous logic value of the signal 1s latched by the clocked
clement. A “setup” timing violation occurs when the clocked
clement latches a signal prior to the signal’s arrival.

Finally, in the second part of the fourth phase. (“Phase
4B”), the physical design is examined to minimize overall
silicon area, by downsizing appropriate cell instances.

In the present invention, because highly accurate parasitic
models are used 1n the optimization steps, a more aggressive
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design style can be used. For example, a 50% WLM target
can be set 1n the synthesis step, so as to leave a larger portion
of the timing violations to be corrected by the optimization
steps. Under such an arrangement, over-design 1n the final
physical design 1s reduced, resulting 1n a lower silicon area
and a more timing-eflicient integrated circuit. Because the
present 1nvention applies local transformations, rather than
relying on a global re-synthesis, changes to the placed and
routed physical design are incremental and minimally intru-
sive. Physical design optimization can therefore be achieved
much more quickly than in the prior art.

FIG. 3 1s an overview of optimization tool 300 in one
embodiment of the present invention. Design tool 300
includes an overall control program 301, which controls and
sequences the process flow 200 1n FIG. 2, for example. In
optimization tool 300, design database (“design graph™) 305
contains the data structures representing the physical design
at all times. Some examples of objects 1n design graph 3035
includes:

a. “Macro”—a representation of a standard cell 1 the
standard cell library;

b. “MacroPin”—a terminal of a Macro;

c. “Timing Arc”—a data structure representing the propa-
gation delay between two MacroPins;

d. “Node”—an 1nstance of a Macro;
e. “NodePin”—a terminal 1n a Node;
. “Net”—a net connecting two or more NodePins;

o. “TransformFactory”’—a data structure representing a
collection of Net and Node changes to transtorm the
design graph; and

h. “Transform”—an 1instance of a transformation 1n a
TransformFactory.

To 1import the placed and routed physical design and the
timing and performance constraints, interfaces 310-314 are
provided. Interfaces 310-314 each translate design data or
constraints expressed 1in an industry standard data format to
internal data structure of design graph 305.

The physical design can be exported to an external tool to
perform further design activities, such as to perform incre-
mental placement and routing, or to perform more accurate
extraction of parasitic impedance. Interface 304 translates
selected data structures of design graph 305 into industry
standard formats accepted by the external tool.

Algorithms 315 include routines for traversing design
oraph 305, thus allowing application programs 1n optimiza-
tion tool 300 to extract information 1n design graph 305 in
specifled orders. Some examples of such routines include
routines for returning a cluster, a cell, a net or a path in
depth-first, breadth-first or another ranked order. (A cluster
1s a group ol combinational logic elements between two
clocked elements in common or related clock domains.)
Specifically, algorithms 315 provide routines for a “forward
sweep” and a “backward sweep” of a cluster. These opera-
tions are explamed 1n further detail below. Algorithms 315
provide an internal interface between functional modules
(e.g., transformation routines 309, described below) and
design graph 305.

FIG. 3 shows four functional modules: optimization mod-
ule 302, transform module 309, STA 308 and delay calcu-
lator 307. Delay calculator 307, which 1s described in further
detail below, computes a delay 1n a given net using an
“asymptotic waveform evaluation” (AWE) method. STA
308 performs both the initial static timing analysis (e.g., step
207 of FIG. 2) and the static timing analysis after each
optimization step (e.g., steps 208—209), as mentioned above.
To compute delay at a net, STA 308 1invokes delay calculator
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307. Transformation module 309 includes all programs for
transforming a Node. During an optimization step, transior-
mation module 309 invokes STA 308 to evaluate each
applicable transformation. Optimization module 302
includes all programs for executing the optimization steps
(¢.g. Phases 1-5). Optimization module 302 invokes trans-
formation module 309 to implement local transformations.
Library analysis step 201 in FIG. 2 computes the appro-
priate operational output load ranges for the standard cells of
cach logic function. FIG. 4 1s a flow diagram 400 represent-
ing library analysis step 201 of FIG. 2 in one embodiment.
As shown 1n flow diagram 400 of FIG. 4, a user provides a
desired relative “delay to area” tradeofl 7

ratio (Ol
402, the basic driver 403 of the given technology (typically,
a small buffer cell in the library), a “load increment” AC,
value 404 (i.c., the finest load capacitance resolution for the
library analysis), and the standard cell library file (.LIB) 405,
including all performance characterization data. A relative
“delay to area” tradeoff ratio (denoted «;;) 1s used to
control cell selection. @, ; ; 1s a measure of the delay advan-
tage gained by replacing cell 1 by cell j under the condition
of an output load k. Generally, a lower «;,, results 1n a
design optimized towards higher speed performance.
Conversely, a higher o, results m a design optimized
towards reducing silicon area.

At step 401, the standard cells are grouped according to
logic functions (e.g., NAND, OR, NOR, AND, XOR, etc.).
Standard cells included 1n the same logic function group are
interchangeable with respect to logic function. Two cells
belong to the same function group if they have the same
number of input and output terminals or “pins”, perform the
same logic function and provide, at each output pin, the
same output “sense”—iI.e., negative or positive logic. In
addition, among the logic function groups., groups that
perform “complementary” logic functions (e.g., AND and
NAND) are identified. Standard cells in complementary
logic function groups are mterchangeable by the insertion of
an 1nverter. Step 401 further identifies:

(a) buffers, inverters, and primary input and output cells
(i.e., registers, flip-flops and other state elements) in the
cell library;

(b) for each state element, clock signal terminals and the
timing requirement between the clock terminal and
cach mput or output terminal of the state element;

(¢) for each cell, the area of the cell, the drive strength—
1.€., delay as a function of load—of each output termai-
nal and the loading of each input terminal; and

(d) for each combinational logic cell, a propagation delay.

After the function groups are identified, library analysis
step 201 examines all function groups individually (i.e., step
406 of FIG. 4). For each function group (selected at step
408), a zero-load cell delay is calculated for each standard
cell within the function group (step 409). In the following,
the delay for a standard cell 1 driving an output load C, 1s
denoted by D(1, C;). Under this convention, the zero-load
cell delay for cell 1 is denoted D(i, 0). The zero-load cell
delay D(1, 0) of a given standard cell 1 can be obtained, for
example, using delay calculator 307 of FIG. 3 by evaluating
the standard cell’s delay response when driven by basic
driver 403 with an 1deal rising or falling transition. In one
embodiment,-the standard cell’s delay responses are esti-
mated for both rising and falling transitions. Delay calcula-
tor 307 1s discussed 1n further detail below.

At step 410, the mean value D, (0) of all zero-load delays
in a function group and the mean area A of all cells 1n that
function group are computed. At step 411, the cells 1n the
function group are sorted according to their drive strengths
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(e.g., 1n order of increasing area). The next steps (i.e., steps
412-421) find the operating ranges of the cells in the
function group. The operating range of each cell 1s defined
between a “low load” operating point (C,,) and a “high
load” operating point (Cy;)

The smallest driver (i.¢., the driver with the smallest area)
is examined first (step 412). This smallest driver is assigned
a C,, of O pf (step 413) Beginning with a trial C,,, value of
AC,, the C,,; of the cell 1s found iteratively by calculating,
at step 415, the ¢, ; ;s between the current cell 1 and all other
stronger drive cells (j being the running index for these

stronger drive cells) under the condition of an output load
value k=C,,, . After each 1iteration of steps 415 and 416, the
value of C,; i1s increased by AC; (step 417).

An o ; , 1s calculated according to the following equation:

D(i, k) — D(/J, k)
D (0)
A(J) = AQ)
Am

& ik =

in which, D(1,k) and D(j,k) are respectively the delays of
cells 1 and j under a load k, D, (0) is the mean value of all
zero-load delays for cells in logic function group, A(i) and
A()) are the areas of cells 1 and j, and A, 1s the mean area
of all cells 1n the function group, as mentioned above.

If a cell j 1s found such that a;;, exceeds a4y the
current C,,, 1s the “high load” operating point for cell 1 (step
418). Cell j, which has the largest a.; ; , that exceeds oy, g0,
is selected (step 419) as the cell to operate in the next
operating range, with a C, ; value assigned the current C,,,
value (step 420), and an initial C,,; equaling the current C,,,
plus AC, (step 414). The next function group is selected
(step 406) after all the cells in the present function group
providing coverage for the operating ranges ol interest are
identified (as determined by step 421). Library analysis step
201 completes after all function groups are processed (step
407).

FIGS. 54 and 5b 1illustrate the results of applying process
flow 400 to compute the operating ranges for standard cells
in a NAND group. FIG. 5a shows the drive strengths of
standard cells 501-504.

As shown 1n FIG. 5b, using process flow 400, the oper-
ating range of interest, zero to 2 pf, are found covered by
standard cells 501-503, with operating ranges (0,C,), (C,,
C,), and (C,, 2) pf.

As mentioned above, in one embodiment, timing analysis
1s provided by STA 308 of FIG. 3. STA 308 can be called
upon to compute path delays in circuits that can include state
clements and combinational logic elements. In one embodi-
ment of the present invention, cell 1nstances 1n the design
database that are 1nserted or modified since the last timing
analysis are marked. Incremental timing analysis 1s achieved
by computing timing for these marked instances and
instances whose timing 1s affected by such marked 1nstances.
Suitable techniques for providing this incremental timing
analysis capability can be found, for example, m “An
Algorithm for Incremental Timing Analysis,” by Lee et al.,
published in The Proceedings of the 32" ACM/IEEE Design
Automation Conference (1995). FIG. 6 shows a network
model 600 used 1n STA module 308. The signal arrival time
at mput terminal 602 1s provided by an “entry delay” relative
to a clock signal 606, based on an assumption that the input
signal 1s driven by an output driver of an upstream state
clement 604. Similarly, the required signal arrival time at
output terminal 603 is provided by an “exit delay”, relative
to clock signal 612, based on an assumption that the output
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signal 1s fed 1nto an 1nput terminal of second state element
605. Entry and exit delays are computed from clock termi-
nals identified by a clock analysis step, such as clock
analysis step 206 of FIG. 2. To accommodate interacting
clocks, clock skews and offset between clocks are modeled
in STA 308.

STA module 308 can use a primary 1nput terminal, a clock
terminal 1n a state element, or a terminal with user-specified
constraints as a start timing point. Similarly, STA 308 can
use a primary output terminal, a terminal with a defined
setup time or a terminal with user-specified constraints as a
timing end point.

Circuit 601 1ncludes clusters 607 and 610, which are each
a combinational circuit that couples an output terminal of a
first state element and an mput terminal of a second state
celement. Cluster 607 1s a combinational circuit between
flip-flops 604 and 608, and cluster 610 1s a combinational
circuit between flip-tlops 608 and 609. Timing within a
cluster 1s calculated “stage” by “stage” using, for example,
delay calculator 307, which 1s mentioned above. A stage
begins at the input terminals of a driver cell instance
providing output signals, and ends at the input terminals of
receiver cell instances receiving the driver cell instance’s
output signals. Instead of delay calculator 307, commercial
timing calculators, such as “PrimeTime”, from Synopsys
Corporation, or the “Central Delay Calculator”, from
Cadence Design Systems can also be used.

To allow signal timing through a stage to be calculated,
STA 308 requires (a) pin-to-pin cell delays from the cell
library, which can be estimated, for example, 1n library
analysis step 201 of FIG. 2, as mentioned above, and (b)
interconnect parasitic models, which can be extracted, for
example, by parasitic extraction step 204 of FIG. 2, as
mentioned above. STA 308 also accepts from a user a list of
false paths, which guides the timing analysis and allows
more accurate results. STA 308 computes (a) for each input
and output terminal, a “worst” slack value, (b) for each cell
instance, a cell delay, and (c) at each output[]terminal of
a cell mstance, an “effective load” model.

To perform a timing analysis, STA 308 performs a “for-
ward sweep” and a “backward sweep.” In a forward sweep,
STA 308 starts from the start timing points and traverses cell
instances and parasitic models level by level (i.e., using the
well-known critical path method, or “CPM”) to compute a
“latest arrival time” (LAT) at each terminal. LAT is the
longest cumulative delay to the current pin relative to a
timing start point. (The LAT at a timing start point is the
“entry delay.”) During a forward sweep, the timing of a cell
instance or parasitic model 1s computed only after the timing
for all cell instances driving the input terminals of the cell
instance or parasitic model are computed. The timing data
associated with a forward sweep are: (a) the LAT at each
input terminal; (b) the input transition time used to compute
the delay at each input terminal; and (c) pin-to-pin delay
between any 1nput terminal of the cell instance or parasitic
model to any output terminal of the cell instance or parasitic
model.

In a backward sweep, STA 308 starts at the timing end
points and traverses cell instances and parasitic models level
by level to compute a “required arrival time” (RAT) at each
terminal. RAT 1s the longest cumulative delay from the
current pin relative to a timing end point. (RAT at a timing
end point is the “exit delay.”) During a backward sweep, the
RAT 1s computed only after computing RATs for all cell
instances connected to the output terminals of the cell
instance. When both RAT and LAT are available at a
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difference between the required arrival time and the latest
arrival time (RAT-LAT)—is computed. If the slack is
negative, 1.€., the expected latest arrival time 1s later than the
required arrival time, a timing violation 1s detected. Where
multiple slacks can be computed at a terminal, the smallest
slack among the multiple slacks (which may be negative) is
selected as the “cell slack”™.

To compute a delay, delay calculator 307 uses a graph of
the stage, parasitic models representing the interconnect
wires between the output terminals of the driver cell instance
and the 1nput terminals of the receiver cell 1nstances, and
input time transitions at all input terminals of the driver cell
instance. Delay calculator 307 outputs delay and transition
times for both positive- and negative-going transitions at
cach. output terminal of the driver cell instance and at each
input terminal of the receiver cell instances. In addition, as
mentioned above, an effective load model 1s provided to
cach output terminal of a cell instance.

FIG. 7 1s a flow diagram 700 that illustrates the operations
of delay calculator 307. As shown 1n FIG. 7, at step 701, for
cach mput terminal of a receiver cell, a capacitance 1is
obtained from the cell library to represent the capacitance
load at the input terminal of the receiver cell instance. Next,
at step 702, using AWE techniques, the parasitic model of
the 1nterconnect wires between the output terminal of the
driver cell instance and an mput terminal of a receiver cell
instances 1s combined with the input capacitances at the
receiver cell instances to create a reduced-order model. In
one embodiment, as shown 1n FIG. 7, a m-model 1s provided
using the first three moments of the driving point admit-
tance. A suitable method for creating a m-model from the
first three moments 1s described, for example, 1n “An
explicit re-circuit delay approximation based on the {first
three moments of the impulse response,” by Tutuianu et al.,
IEEE Design Automation Conference, 1996. Higher accu-
racy can be achieved using higher order models.

At step 703, the size of the “ettective load” capacitor C, .
1s 1teratively dertved by equating the average current from
the reduced-order model with the single capacitor model.
Also, during this step, using the mput transition time (“slew
rate”) at each input terminal of the driver cell, a gate delay
cgate and an output transition time or slew rate at an output
terminal of the driver cell instance are computed.

Finally, at step 704, using the reduced-order model of step
702, and the output transition times computed at step 703,
the 1nput transition time at each input terminal of the
receiver cell instances 1s calculated. In one embodiment, the
input transition times are obtained using a Newton-Raphson
iteration scheme on the m-model mentioned above.

As discussed above, after the initial timing analysis of
step 207 (FIG. 2) is completed, Phase 1 optimization of step
208 1s performed. FIG. 8 1s a flow diagram 800 showing the
operations of Phase 1 optimization, according to one
embodiment of the present invention. As shown 1n FIG. 8,
Phase 1 begins at step 801 by receiving a netlist annotated
with performance constraints and slack values from 1nitial
timing analysis step 207. (In the following, a netlist includ-
ing slack values and performance constraints 1s referred to as
an “annotated netlist”.) After the appropriate routines in
algorithms 315 are invoked to set up a “backward sweep”
traversal of the netlist (step 802), each cell instance encoun-
tered during the backward sweep 1s examined (step 803). At
step 805, 1f the cell slack 1s determined to be non-negative,
1.€., no timing violation has occurred at that cell, the cell 1s
skipped over. However, 1f the cell slack 1s determined to be
less than zero, the effective load C_. of the cell instance 1s
then examined to determine if C . 1s within the operating
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range of the cell instance. If C_,1s within the operating range
of the cell instance, nothing further 1s done for that cell
instance. Otherwise, 1.e., 1f C_g 1s not within the operating
range of the cell instance, one of the following local trans-
formations 1s invoked at step 807: (1) replacing the current
cell mstance by a larger cell instance 1n the same function
group with an operating range covering C_g (11) mnserting a
buffer that has an operative range covering C_g or (i)
replacing the current cell mstance by a combination of an
instance of a cell in the complementary function group and
an mverter with a drive covering C_.

After algorithms 315 complete the “backward sweep”
traversal of the netlist discussed above, timing 1s recom-
puted at step 820. Then, a second “backward sweep” 1s set
up at step 810. Again, each cell instance encountered during,
the backward sweep is examined (step 811). At step 813, if
the cell slack 1s determined to be negative, 1.€., a timing
requirement violation has occurred, the cell instance 1is
skipped over. Skipping over this cell instance avoids creat-
Ing a worse a timing violation as a result of a downsizing
step or a bufler elimination step. Downsizing and buifer
celimination are local transformations that can be applied at
this second backward sweep. However, 1f the cell slack 1s
determined to be non-negative, 1.¢., no timing violation has
occurred, the effective load C_, of the cell 1s examined to
determine 1t C_, 1s within the operating range of the cell
instance. It C_g 1s within the operating range of the cell
instance, nothing further is done for that cell instance.
Otherwise, 1.¢., 1f C_1s not within the operating range of the
cell instance, one of the following transformations 1is
invoked at step 815: (1) replacing the current cell instance by
a smaller cell instance in the same function group with an
operating range covering C_, or (1) removing a buffer, so as
to allow the drive strength of the previous cell 1nstance to
directly drive C,_g, or (ii1) replacing the current cell mstance
by a combination of a cell instance in the complementary
function group and an 1nverter with a drive operating range
covering C_g.

At Phase 2A, optimization 1s performed using a “bidirec-
tional combinational total negative slack” (BCTNS) algo-
rithm. FIG. 9a 1s a flow diagram 900 showing an overview
of the optimization steps in Phase 2A. As shown 1n flow
diagram 900, the physical design 1s first partitioned into
clusters at step 901. (In the following, a netlist that has its
logic circuits partitioned into clusters 1s referred to as a
“cluster-partitioned netlist”). Optimization under the
BCTNS algorithm proceeds on a cluster by cluster basis
(i.c., repeating steps 902-910), until all clusters are opti-
mized (step 912). For each cluster, the cells within the
cluster are first ranked by BCTNS sorting step 904 1in
descending order of worst BCTNS values. A user-specified
number of cells are then selected one by one 1n the sorted
order (steps 905 and 906) for optimization. BCTNS values
are recomputed after each optimization pass.

BCTNS sorting step 904 1s 1illustrated by tflow diagram
1000 of FIG. 10. As menfioned above, prior to Phase 2A,
STA 308 annotates slack values on the physical design.
Then, at steps 1002-1004, the BCTNS algorithm computes
a “potential improvement” (PI) value for each cell in a given
cluster. PI 1s computed according to the circuit models
shown in FIGS. 11a and 11b. FIG. 11a shows cell instance
1101 with 1ts output “effective load” modelled by capacitor
1102 (C,) and input and output signal transition times 1104,
1105 and 1106, as computed by delay calculator 307 1n the
manner described above. As computed by delay calculator
307, the delay between an input terminal of cell instance
1101 and output terminal 1107 1s denoted D
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To compute PI, the largest possible delay improvement 1s
assumed to be achievable by replacing cell instance 1101 by
the optimal driver as 1n the function group. FIG. 115 shows
the assumed operating conditions necessary to achieve PI. In
FIG. 11b, cell mstance 1101 1s replaced by cell instance
1151, which 1s the largest driver 1n cell instance 1101°s
function group with each mput terminal driven by basic
drivers with an 1deal step waveform. Delay calculator 307
then computes, the delay D, . under the conditions of FIG.

115H. PI 1s defined as the difference between D and
D

CLHFFEFIL

best’
After the Pls for all the cell instances 1n the cluster are

computed, the largest PI (Pl ) and the least PI (PIL ;)
obtained for the cluster are identified (step 1005). For each
terminal 1n the cluster, a data structure 1s created to represent
a three-column table (“Priority Value” or PV table) having
a user-specified number T, of rows (step 1013). The value
r*A,,, where Ap,1s (PL,, . —PI, . )/T,, fills column 1 of each
row r of the PV table, denoted by “PV(r,1)” (step 1007). At
step 1008, according to the method illustrated mn FIGS.
12a—12d and described below, column 2 (“PV(r, 2)”) of each
PV table 1n the cluster 1s filled by backward propagation of
PV values from the output terminals of the cluster. At step
1009, according to the method 1llustrated in FIGS. 14a—-14d
and described below, column 3(“PV(r, 3)”) of each PV table
in the cluster 1s filled by forward propagation of PV values
from 1nput terminals of the cluster. Then, at step 1010, using
columns 2 and 3 of the PV table of each cell and the
associated PI value, and the size of the cell, an “equivalent
priority value” (“EPV”) is computed for each cell according
to flow diagram 1600 of FIG. 16. At step 1011, BCTNS sort
step 904 for the cluster 1s complete after the cells 1n the
cluster are ranked in decreasing EPV order.

Backward propagation of PV values step 1008 of FIG. 10
1s 1llustrated by flow diagram. 1250 of FIG. 12a. As shown
in flow diagram 1250, backward propagation of PV values
begins from a timing-annotated cluster (step 1251). Algo-
rithms 315 routines for traversing the cell istances of the
cluster are initialized at step 1252. Then, at step 1233, a
backward column initialization step 1253 fills column 2 of
the PV table for each output terminal of the cluster, as
discussed below 1n conjunction with FIG. 12b.
Subsequently, at steps 1254—1257, a backward sweep traces
from the output terminals of the cluster stage by stage back
to the mnput terminals of the cluster. In this embodiment, at
cach stage, the backward sweep first propagates PV values
at the output terminals of the parasitic interconnect model to
the input terminal or terminals of the parasitic model (step
1256), and then continues to propagate the PV values at
these 1nput terminals of the parasitic interconnect model
over the cell instance to the input terminals of the cell
instance (step 1257). For each stage, the nets of the input
terminals of the stage are taken as the output terminals of the
stage become “ready”. A net 1s said to be “ready” 1n this
context after the values in the second column (1.e., PV(r, 2))
of its PV table are filled. Backward propagation of PV values
1s complete when all ready nets are traversed.

Flow diagram 1200 of FIG. 1256 1illustrates backward
column imtialization step 1253. As shown in backward
column 1mitialization flow diagram 1200, initialization step
1253 begins at step 1201 with a timing-annotated cluster, as
discussed above. In flow diagram 1200, steps 1202-1211 fill
column 2 of the PV table of every output terminal (i.e., the
timing end points) of the cluster. For each row r of the PV
table for a cell instance, the slack S for the output terminal
is added to potential improvement value PV(r, 1) in the first
column of the same row r (step 1206) to provide an
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improved slack value S' for that output terminal. If improved
slack value S'is greater than O (i.c., timing is met by this
improvement), the improved slack value is set to 0 (steps
1207 and 1208). Otherwise, an incremental improvement
value AS which equals the difference between the improved
slack and the current slack (i.e. AS=8'-S) is obtained at step
1209. The backward PV value of row r (i.e., PV(r, 2)) for that
output terminal 1s provided as the incremental improvement
value for the corresponding PI value of column 1 of the PV
table (i.e., AS*PV(r, 1)).

As discussed above, PV values are propagated at steps
1256 and 1257 by a backward sweep over parasitic inter-
connect models and over cell 1nstances, respectively. When
a parasific model 1s driven by multiple 1input terminals, as
illustrated by FIG. 134, or 1s driven by an output terminal of
a cell instance having multiple input terminals, as illustrate
by FIG. 13b, the values 1n the PV table of the output terminal
arec propagated to divergence points. For example, in FIG.
13a, the values of the PV table of output terminal 1301 are
propagated backwards to the PV tables of mput terminals
1302 and 1303. Similarly, in FIG. 13b, the values in the PV
table of output terminal 1304 of cell 1307 are backward
propagated to the PV tables of input terminals 1305 and
1306 of cell instance 1307. If multiple output terminals of a
parasitic model are driven by a single 1nput terminal of the
parasitic interconnect model, as 1llustrated mm FIG. 13c¢, the
values of the PV table of output terminals of the parasitic
interconnect model (e.g., output terminals 1321, 1322 and
1323) are propagated to a merge point at terminal 1324. In
this embodiment, different procedures are provided for
backward propagation of the values of a PV table for
propagating to divergence and merge points, as illustrated by
the flow diagrams in FIGS. 12¢ and 124, respectively.

FIG. 12¢ shows a flow diagram 1280 that 1llustrates the
steps for backward propagation of values of a PV table to a
divergence point. As shown 1n FIG. 12¢, at step 1281, a
running 1ndex 1 1s initialized to zero. Index 1 indicates the
current 1nput terminal of the parasitic model or the cell
instance (“parent”) whose column 2 of the PV table is to be
filled. For example, if the parasitic model has three input
terminals, then index 1 runs from 0 to 2. Steps 1282, 1283
and 1284 step through each 1nput terminal of a parasitic
model or a cell instance to {ill in the rows of the PV table of
the mput terminal one by one. For each row to be propagated
from the PV table of the output terminal of parasitic model
or cell, the slacks of other mput terminals of the parasitic
model or cell are also considered. Index k, which 1s 1nitial-
1zed at step 1285, 1s another running index for traversing the
same 1nput terminals of the cell instance or parasitic model.
Thus, at step 1285, PV(row, 2) (i.e., the current row in the
PV table of the current input terminal) is initialized to zero.
For each input terminal k (kept track of by step 1286), the
slack s(k) of input terminal k and PV(row, 1) of output
terminal k times PI are summed to provide an improved

slack s' (k) (step 1287). If the improved slack s' (k) exceeds
0, the improved slack s' (k) is set to O (steps 1288 and 1289).

The total slack improvement r (i.e., r=s'-s) is obtained by
accumulating (step 1290) the slack improvements of all
input terminals. At step 1292, PV(row, 2) of input terminal
1 provided the ratio of its slack 1improvement to the total
slack improvement r (i.e., (s' (1)-s(1))/r). Thus, PV(row, 2)
represents a measure of the relative contribution of slack
improvement among the input terminals, given the propa-
gated PV(row, 2) of the output terminal.

FIG. 12d shows a flow diagram 1260 that 1llustrates the
steps for backward propagation of values of a PV table to a
merged point. As shown 1n flow diagram 1260, for row: 1 of
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the PV table of the input terminal of the cell instance or
parasitic model, entry PV(i, 2) i1s assigned the sum of all
corresponding PV(i, 2) in the PV tables of the output
terminals (“children”) of the cell instance or parasitic model,
as steps 1263, 1265 and 1266 1terate over all rows of the PV
table of the input terminal of the cell instance or parasitic
model.

Forward propagation of PV values step 1009 of FIG. 10
1s 1llustrated by flow diagram 1450 of FIG. 14a. In this
embodiment, forward and backward propagation steps are
substantially identical. Thus, flow diagram 1450 of FIG. 14a
1s substantially 1dentical to flow diagram 1250 of FIG. 12a4.
To avoid repetition, a detailed description of flow diagram
1450 1s omitted. For the same reason, the descriptions of the
following flow diagrams are also omitted: (a) flow diagram
1400 of FIG. 14b, which 1llustrates forward column 1nitial-
ization step 1453 of FIG. 144; (b) flow diagram 1460 of FIG.
14c, which 1llustrates forward propagation of PV values to
a divergence point; and (¢) flow diagram 1460 of FIG. 144,
which 1llustrates forward propagation of PV values to a
merge point.

Similarly, the examples of divergence points and merged
points 1n FIGS. 154, 15b and 15¢, which are substantially
similar to FIGS. 13a, 136 and 13c¢ above (except for the
direction of propagation) are also not described to avoid
excessive repetition. FIGS. 154, 156 and 15c¢ 1illustrate,
respectively, forward propagation (a) when a parasitic model
is driven by multiple input terminals, (b) when an output
terminal of a cell mstance has multiple input terminals, and
(¢) from multiple input terminals of a parasitic model to a
single output terminal (“merge point™).

As discussed above with respect to FIG. 10, subsequent to
forward propagation of values 1n the PV tables 1n step 1010,
EPV values are computed. FIG. 16 shows flow diagram
1600 that illustrates the steps for computing EPV for each
cell 1n the cluster. As shown 1n FIG. 16, at step 1601, the PI
of a cell mstance C 1s 1dentified. From column 1 of the PV
table of each output terminal of cell instance C, at step. 1602,
the value PI i1s used to identily two rows containing the
closest values to PI. A backward PV (“BPV”) value 1s then
obtained by 1nterpolation between corresponding PV values
in column 2 of the PV table of the output terminal. Similarly,
at step 1603, a forward PV (“FPV”) value is obtained by
interpolation between PV values mm column 3 of the PV
table. At step 1605, the EPV for the output terminal of cell
instance C 1s provided by the product of PI and the sum of
BPV and FPV (i.e., EPV=BPV+FPV). Subsequent to com-
puting EPV for all cell instances, the cell mstances of the
cluster are ranked 1n decreasing EPV order, as discussed
above, at step 1011 of FIG. 10.

Returning to FIG. 9a, using the operating ranges com-
puted for the cells of the standard cell library above,
optimization steps 907, 908 and 909 in this embodiment
apply, when appropriate, to downsizing, upsizing and node-
offloading operations, respectively. FIG. 17 shows flow
diagram 1700, which 1llustrates the steps for optimization
step. 907 (i.e., cell downsizing). As shown in flow diagram
1700, at steps 1701 and 1702, the cell instances (“children”)
driven by a driver cell instance A are examined one by one.
Slacks SA and S denote the slacks at output terminals of
driver cell instance A and at child instance 1, respectively
(steps 1703, and 1714). The running index 1 keeps track of
which of children cell mstance 1s being examined. If the
slack S of child cell instance 1 (i.e., the slack on the output
terminal of child cell instance 1) is less than a predetermined
threshold value S, (step 1704), no further action on child
cell 1 1s performed. The running index 1 1s incremented at
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step 1712 to select the next child cell instance. Otherwise,
slack S of child cell instance 11s greater than threshold value
S _, the operating range of child cell mstance 1 1s checked
(step 1705). If the load driven by cell instance 1 is not within
cell mstance 1’s operating range, cell instance 1 1s replaced
by an 1nstance of a cell C_, of the function group of cell
instance 1 (step 1715). Otherwise, i.e., if the load driven by
cell instance 1 1s within cell instance 1’s operating range, no
further action 1s taken with respect to cell mstance 1. The
running index 11s incremented at step 1712 to select the next
child cell instance.

After replacement at step 1713 by an mstance of cell C_,,
STA 308 1s called at step 1707 to recompute timing 1n the
local cluster. The recomputed slacks SA'" and S’ of driver cell
instance A and replaced cell instance 1 are calculated at steps
1708 and 1716, respectively. A timing improvement 1n
driver cell instance A, denoted by AS=SA'-SA, 1s computed
at step 1709. If S' exceeds S, and AS exceeds a predeter-
mined minimum slack amount S, substitution of cell

instance 1 by the instance of cell C_,, 1s made permanent
(step 1711). The process returns to step 1702 for the next
child cell instance, until all children cell instances are
considered.

FIG. 18 shows flow diagram 1800, which illustrates the
operation of optimization step 908 (i.e., cell upsizing). As
shown 1 flow diagram 1800, at steps 1809, 1820, 1825 and
1821, for a given cell mnstance C with an output load of L,
the cell library 1s searched to determine whether there exists
(1) an optimal cell C_ in the same function group as cell
instance. C with an operating range encompassing load L
and (i1) a combination C_ within the same function group as
cell nstance C and buffer having an operating range encom-
passing load L (steps 1808—1809). If neither optimal cell C_
nor combination C_ exists, no transformation 1s available
(step 1826). Otherwise, if only one local transformation is
available (1.e., if either optimal C_ or combination C_ exists,
but not both exist), the local transformation is applied (steps
1822 and 1823).

However, if both transformations are available (i.e., if
both optimal C_ and combination C_ exists), steps
1801-1807 first examine every cell mstance (“parent cell
instance”) C,, that drives an input terminal of cell instance C.
Running index 1, which 1s initialized at step 1801, indicates
which parent cell nstance 1s currently under consideration.
At step 1803, the load L; driven by each parent cell instance
C, 1s examined to determine if load L; 1s within the optimal
operating range of parent cell instance C, (steps
1803-1806). If the load is not within the optimal operating
range of parent cell mstance C,, an optimal cell C' 1s
identified and substitutes for cell instance C,. The process
returns to step 1802 until all parent cell instances are
examined.

Then, at step 1812, the following quantities are computed:
(1) the sum S of worst negative slack WNSI1 at the input
terminals of cell instance C and “delta” slack S1 (i.e., the
slack between the input terminal of cell instance C having
the worst negative slack and the output terminal of cell
instance C), on the basis of an instance of cell C_ substituting
for cell instance C; (i1) the sum S_ of worst negative slack
WNS2 and delta slack S2, on the basis of an 1nstance of C_
substituting for cell instance C; and (ii1) the difference AS
between S_ and S_. S_ represents the slack at the output
terminal of cell instance C _, 1f cell C_ substitutes 1n cell
instance C. Similarly, S_ represents the slack at the output
terminal of the instance of combination C_ , if that instance
of combination C_ substitutes for cell instance C. The
difference AS=S_ -S _ 1s calculated at step 1812 to determine
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which of these substitutions minimizes negative slack at the
output terminal (steps 1814 and 1815). If AS>0, then cell C |
is selected to replace cell instance C (step 1815). Otherwise,
combination C_ is selected to replace cell instance C (step
1814). The selected transformation is applied at step 1816.
The transformations made to parent nodes (i.e., step 1806)
are then reversed at step 1819.

FIG. 19 shows flow diagram 1900, which illustrate the
operations for optimization step 910 (i.e., node off-loading).
Flow diagram 1900 provides for node off-loading of a cell
mstance C driving multiple input terminals as an output
load. At steps 1902—1904, the slack S_ of the output terminal
of cell instance C, the topology of the net N driven by the
output terminal, and the branches B on net N (i.e., the
parasitic models between the output terminal of cell instance
C and the input terminals of children cell instances) are
obtained. At step 19035, the impedance L, of each branch of
net N 1s computed and the resulting impedances are ranked
in decreasing order of load. At steps 1907, 1908, 1909, the
slack S of each branch B; (i being the running index
indicating the current branch) is examined. If S is greater
than or equal zero, that branch 1s not be off-loaded, and the
process returns to step 1907. Otherwise, the cell library 1s
searched for a buffer BUF (step 1913) whose operating
range matches load value L of branch B,. Timing 1s then
recomputed at steps 1914-1916 for cell instance C to obtain
an updated slack S_, assuming that buffer BUF 1s 1nserted to
drive branch B,. A slack improvement AS=S_ -S_ 1s com-
puted at step 1917. If slack improvement AS does not exceed
a predetermined threshold S .. no further processing 1s
needed (step 1921). Otherwise, at step 1919, BUF is inserted
into branch Bi and local timing at cell instance C 1s recom-
puted after the buifer insertion. The process then returns to
step 1903, after an incremental timing analysis on cell
instance 1s performed by STA 308 to determine if further
optimization of net N 1s possible.

At step 910, STA 308 performs a static timing analysis to
determine the effectiveness of the optimization steps. If
timing 1s improved by a predetermined threshold amount, at
step 911, the BCTNS algorithm of step 904 1s re-run to
rerank the cells in the cluster. Otherwise, 1.e., timing
improvement does not exceed the predetermined threshold
amount, no further optimization 1s attempted on the present
cluster. The next cluster 1s then selected upon return to step
903.

After all optimization steps (e.g., steps 907-909) shown
in flow diagram 900 are carried out, Phase 2B optimzation
steps can be run. Phase 2B 1s 1llustrated by flow diagram 950
of FIG. 9b. As shown 1 flow diagram 950, in Phase 2B,
optimization 1s performed on a timing-annotated netlist
partitioned into clusters (step 951). Processing is carried out
cluster by cluster (steps 952, 953, 961). For each cluster, a
backward sweep traverses the cluster Node by Node (steps
954-956). (As discussed above, a Node is a macro in the
physical design). For each Node with a negative output
slack, optimization steps 957, 958 and 959 are carried out.
Steps 957, 958 and 959 are respectively substantially 1den-
tical to the downsizing step 907, upsizing step 908 and node
off-loading step 909 discussed above. After all Nodes in the
cluster are traversed, timing in the cluster 1s recomputed
(step 960). The process then returns to step 952 for operation
on the next cluster, until all clusters are processed (step 961).

Phase 3 1s illustrated by flow diagram 2000 of FIG. 20. In
Phase 3, as shown 1n flow diagram 2000, optimization is
performed on a timing-annotated netlist partitioned into
clusters (2001). Processing is carried out cluster by cluster
(steps 2002-2003 ). A backward sweep traverses the iden-
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tified path Node by Node and a potential improvement (PI)
is calculated. The Nodes are then sorted by PI (steps 2004,
2005 and 2016). In ecach cluster, at step 2004, STA 308 is
called to identify a path with the worst negative slack (steps
2005-2007). For each Node, optimization steps 2008—2012
are carried out. Optimization steps 2008—2010 are respec-
fively substantially identical to the downsizing step 907,
upsizing step 908 and node off-loading step 909 discussed
above. Optimization steps 2011 and 2012, corresponding to
optimization 1nvolving “input swapping” and “logic dupli-
cation” are discussed 1n further detail below. After all Nodes
in the cluster are traversed, timing in the cluster 1s recom-
puted (step 2014), if a Node is optimized during the traversal
of the path. The process returns to step 2004 to i1dentify a
path 1n the cluster having the worst negative slack. However,
if no node 1s optimized during the last iteration within the
cluster, the process returns to step 2002 for operation on the

next cluster, until all clusters are processed (step 2015).
FIG. 21 shows flow diagram 2100 which illustrates “input
swapping~ optimization step 2011. Input swapping optimi-
zation step 2011 examines cell instances or Nodes whose
slack performance can be improved by swapping input
terminals. To consider a Node C for input swapping (step
2101), the slack S_ of Node C's output terminal is obtained
(step 2102). An input terminal I, of the Node C is
identified on a path that 1s being considered for optimization.
From the cell library, intrinsic input-to-output delay D,
between each equivalent input terminal of Node C and the
output terminal of Node C is obtained (step 2105). The least
D, . of these input-to-output delays, which 1s equivalent to
the mput-output pin pair and corresponding to input terminal
I .. 1s selected. At step 2109, D_. 1s compare to the
mtrinsic delay D, .., between mput terminal I, and the
output terminal of Node C. If D_ . substantially equals or
exceeds D, 00 optimization can proceed, since swap-
pmng 1, , with I, does not result in a significant
improvement (step 2119). The local timing on Node C,
children of Node C, and other cell nstances also receiving
signals from input terminals I, and 1, arc recomputed,
assuming input terminals I, and I, are swapped (steps
2110 and 2111). Under such an assumption, the slack S_ ' at
the output terminal of Node C 1s recomputed. A slack
improvement value AS=S_'-S _ 1s calculated at step 2113. It
AS 1s greater than predetermined threshold value S, . | input
terminals I, and I,,,.., are swapped (1.e., the driver that
previously drives mput terminal I . 1s now coupled to drive
and the driver that previously drives

input terminal I
input terminal I 1s now coupled to drive mput terminal

|

rargel

targel
FIG. 22 shows flow diagram 2200 that 1llustrates “logic

duplication” optimization step 2012 of Phase 3.

FIG. 23 provides an example of an optimizing step using,
logic duplication. As shown 1n FIG. 23, 1n logic circuit 2300,
cell mstance 2301 drives input terminals of cell 1nstances
2302-2307. Logic duplication 1s applied to logic circuit
2300 to provide logic circuit 2350. In logic circuit 2350, an
additional cell instance 2308, which 1s 1dentical to cell
instance 2301, 1s provided. Cell instance 2308 1s driven by
the same 1nput signals as cell instance 2301. Cell instance
2308, however, drives cell instance 2307, which 1s severed
from the output terminal of cell instance 2301. If cell
instance 2307 1s a cell 1n a critical path, by duplicating cell
instance 2301 1n cell instance 2308 and appropriately sizing
cell instance 2308, the signal delay 1n the critical path can be
reduced.

As shown 1n flow diagram 2200, for each cell instance C
considered for logic duplication (step 2201), the slack S_ at
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the output terminal of cell instance C and the parasitic
network representing the net N at the output terminal of cell
instance C are obtained (steps 2202—-2204). Using STA 308,
a critical path Node N_ can be idenfified. At step 2205, a
circuit topology can be created 1n which Node N 1s severed
from net N. A new cell instance C', which 1s an instance in
cell mstance C's function group is then provided in this new
circuit topology to drive N_ (steps 2207-2208). At step
2210, local timing i1s then computed for this new circuit
topology, which includes cell instances C and C', their
“children” cell instances, and “sibling cell instances” (i.e.,
cell instances sharing common input terminals with cell
instances C and C'). After local timing is computed, at step
2211, the slack S ' at the output terminal of cell C' 1s
calculated (step 2211). A slack improvement value AS=S_'-
S _ 1s calculated at step 2212. It AS 1s less than predetermined
threshold value S, . (step 2213), no modification of net N is
performed (steps 2216 and 2217). Otherwise, the new circuit
topology replaces net N. Local timing 1s then recomputed
(step 2215).

While Phases 1, 2 and 3 described above optimize the
physical design from the point of view of meeting setup
time, Phase 4A addresses hold time wviolations. FIG. 24
shows flow diagram 2400, which 1llustrates a bufler inser-
tion technique for addressing hold time violations. Hold
time violations usually result from clock skews or phase
differences between common or related clocks. As a result of
a hold time violation, a new signal transition may arrive at
a state element before the previous signal can be latched. To
avold a hold time violation, the process of flow diagram
2400 1nserts one or more builers to lengthen the signal path.
The process of flow diagram 2400 begins at step 2401 with
a timing-annotated netlist that 1s cluster partitioned. The
clusters 1n the netlist are examined one by one. Within each
cluster, STA 308 is called to 1dentily one by one signal paths
with a hold time violation (steps 2402-2404). In a path
identified with a hold time violation, the amount H indicat-
ing the extent of the hold time violation is calculated (step
2406). From this value H, an equivalent number N of basic
driver delays is calculated (step 2407). A basic driver delay
1s the delay of the smallest driver 1n the cell library. The end
point P, of the signal path having the hold time violation 1s
then identified (step 2408). (P, is an input terminal to a state
element.) N serially connected basic buffers are then inserted
between P, and the input terminal of the state element at the
end of the signal path. Timing 1s then recomputed for the
cluster (step 2411). The process then returns to step 2404 to
process the next signal path with a hold time violation. Phase
4A completes when all paths with hold time violations 1n all
clusters are processed.

At Phase 4B, each cell instance 1s with positive slack 1s
examined to ensure that the required silicon area 1s reduced.
A process for implementing Phase 4B 1s illustrated in FIG.
25 by tlow diagram 2500. The process of flow diagram 2500
begins at step 2501 with a timing annotated netlist that 1s
partitioned 1nto clusters. The process of flow diagram 2500
traverses the netlist cluster by cluster and, within each
cluster computes PI for each cell mstance, traversing from
the output terminals of the cluster (steps 2503-2505. Each
Node with a positive slack 1s examine to determine if the
output load 1s within the operating range of the Node, by
identifying the cell N whose optimal operating range (e.g.,
using an ¢ that favors area over speed) encompasses the
output load (step 2506-2508). If the current Node is not
optimal, the current Node 1s replaced by an instance of No
(step 2509). The process then returns to step 2504 for the
next Node, until all Nodes in the cluster are traversed.
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Timing for the cluster 1s recomputed after traversal of all
Nodes in a cluster (step 2510). Phase 4B completes after all
clusters in the netlist are traversed (step 2512)

The above detailed description 1s provided to 1llustrate
specific embodiments of the present invention and 1s not
intended to be limiting of the present mnvention. Numerous
modification and variations within the scope of the present
invention are possible. The present invention 1s set forth in
the following claims.

We claim:

1. A method for post-layout optimization of an integrated
circuit, comprising:

providing a logic description of said mtegrated circuit;

synthesizing, from said logic description, a netlist of said
integrated circuit including instances from a standard
cell design library;

placing and routing said instances to provide a physical
design of said integrated circuit;

extracting, from said physical design, models of parasitic
impedance of 1nterconnect 1n said physical design; and

optimizing said physical design by modifying said physi-
cal design according to said models of parasitic imped-
ance.

2. A method as 1n claim 1, wherein said optimizing
COMprises:

identifying, using a static timing analyzer, locations in

said physical design where timing violations occur; and
when a timing violation 1s 1dentified:
(a) applying one or more local transformations to said
physical design to correct said timing violation; and
(b) returning to said identifying.

3. A method as in claim 2, wherein said static timing
analyzer computes a slack for each terminal of said physical
design.

4. Amethod as 1n claim 3, wherein, to compute said slack,
both a forward sweep and a backward sweep of said physical
design are performed.

5. A method as 1n claim 4, wherein said backward sweep
computes a required signal arrival time.

6. A method as in claim 4, wherein said forward sweep
computes a latest signal arrival time.

7. A method as 1n claim 2, wherein said local transfor-
mation comprises replacing an instance of a first standard
cell 1n said physical design by an instance of a second
standard cell within the function group of said first standard
cell, and wherein said second 1nstance 1s selected on the
basis of 1ts operating range of loads.

8. A method as 1n claim 2, wherein said identifying step
identifies 1nstances at which a driver mismatches with an
output load.

9. A method as 1n claim 2, wherein said 1dentifying step
ranks mstances according to a descending order of potential
fiming 1mprovement.

10. A method as i claim 2, wherein said local transfor-
mation comprises node off-loading.

11. A method as 1n claim 2, wherein said local transfor-
mation corrects a hold time violation.

12. A method as m claim 2, wherein said local transfor-
mation 1dentifies 1nstances along a critical, path.

13. A method as i claim 2, wherein said local transfor-
mation 1s performed only when a resulting timing 1mprove-
ment exceeds a predetermined threshold.

14. A method as 1n claim 4, wherein said i1dentifying
COMprises:

computing, for each of said instances, a potential
improvement value;
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during said forward sweep, based on said potential
improvement value, computing for each terminal of
cach instance a forward priority value; and

during said backward sweep, based on said potential

improvement value, computing for each terminal of
cach 1nstance a backward priority value; and

computing, for each terminal of each instance, an equiva-
lent priority value based on said forward and backward
priority values.

15. A method as in claim 4, wherein said forward sweep
begins at primary mput terminals of said physical design and
propagates said slack towards primary output terminals of
said physical design.

16. A method as 1n claim 4, wherein said backward sweep
begins at primary output terminals of said physical design
and propagates said slack towards said primary input ter-
minals of said physical design.

17. A method as 1n claim 1, further comprising analyzing
said standard cell library to provide, for each output driver
in said standard cell library, an operating range of loads for
which said output driver can optimally drive.

18. A method as 1n claim 17, wherein said analyzing step
includes applying a metric for trading-ofl speed performance
for silicon area.

19. A method as in claim 18 wherein said metric com-
prises a ratio between change of silicon area and change of
speed performance.

20. A method as 1n claim 17, wherein said analyzing step
comprises grouping standard cells 1n said standard cell
library 1nto function groups, each function group consisting
of logically equivalent members made up of standard cells
in said standard cell library.

21. A method as 1n claim 1, wherein said models of
parasitic impedance are obtained using an asymptotic wave-
form evaluation technique.

22. Amethod as in claim 1, further comprising a clock tree
analysis.

23. A method as 1n claim 1, wherein said models of
parasitic impedance comprise a st-model.
24. A method as 1n claim 23, further comprising
computing, from said p-model, an effective load capacitor.
25. A method as 1n claim 24, further comprising
computing, from said p-model and said effective load
capacitor, an mput transition time at an input terminal of a
cell instance.
26. A method for post-layout optimization of a physical
design of a circuit, comprising:
extracting, from said physical design, parasitic models of
interconnect 1n said physical design;
applying a plurality of optimization steps, each of said
optimization steps transforming said physical design to
achieve a desired performance based on area or delay,
said optimization steps being applied 1n order of poten-
tial intrusiveness to said physical design.
27. A method as 1in claim 26, wherein one of said
optimization steps comprises:
1dentifying, 1in said physical design, a cell mstance mis-
matched to an output load driven by said cell instance;
and

replacing said cell instance by a second cell instance
matched to said output load.
28. A method as 1in claim 26, wherein one of said
optimization steps comprises:

computing a potential improvement 1n slack for each cell
instance 1n said physical design;

selecting, from said physical design, cell instances having,
potential improvement 1n slack exceeding a predeter-
mined value; and
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applying transformations to said selected cell instances to
achieve said potential improvement 1n slack.
29. A method as in claim 28, wherein said selecting
further comprises:

performing a forward sweep of said physical design to
provide for each cell instance a forward priority value;

performing a backward sweep of said physical design to
provide for each cell instance a backward priority
value;

calculating for each cell instance an equivalent priority
value based on a corresponding forward priority value
and a corresponding backward priority value; and

ranking cell mstances 1n said physical design according to

said equivalent priority value.

30. A method as 1n claim 28, wherein said transformation
comprises one or more of cell mstance downsizing, cell
instance upsizing, and node off-loading.

31. A method as 1n claim 26, wherein one of said
optimization steps selects circuits 1n said physical design for
optimization according to a metric based on a path-based
algorithm.

32. A method as 1in claim 31, wherein said circuits are
selected using a critical path algorithm.

33. A method as 1in claim 31, wherein said one of said
optimization steps applies one of cell instance downsizing,
cell 1instance upsizing, node off-loading, cell instance 1nput-
swapping, and logic duplication.

34. A method as 1in claim 26, wherein one of said
optimization steps provides a transformation of said physical
design to ensure said physical design meet hold time
requirements.

35. A method as 1 claim 34, wherein said transformation
comprises 1nserting buifers to increase signal arrival time at
a state element.

36. A method as i1n claim 26, wherein each optimization
step nvokes a timing analyzer for computing a slack value
at a terminal of a cell instance or an interconnect.

J7. Amethod as in claim 36, wherein said timing analyzer
comprises a static timing analyzer.

38. A method as 1n claim 37, wherein said static timing
analyzer performs incremental timing analysis.

39. A method as 1 claim 26, further comprising charac-
terizing a standard cell library from which cell instances of
said physical design were selected.

40. A method as 1n claim 39, said characterizing com-
prises assigning an operating range of output load to each
cell 1n said standard cell library.

41. A method as 1n claim 40, wherein said operating range
of output load being assigned based on a metric involving
arca and delay.

42. A method as 1n claim 41, further comprising, prior to
said extracting step, generating said physical design using a
layout directive that results 1n at least a predetermined
percentage of said cell instances not meeting timing
requirements, when computed under a wire load model.

43. A method as 1n claim 26, wherein the last of said
optimization steps comprises:

1dentifying 1n said physical design a cell instance meeting
timing requirements and mismatched to an output load
driven by said cell instance; and

replacing said cell instance by a second cell instance
matching said output load and having a smaller silicon
arca than the silicon area of said cell instance.
44. A method for selecting a cell from a library to perform
a g1ven logic function and to drive a given load capacitance,
comprising:
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dividing cells m said library into a plurality of groups,
such that cells within each of said groups perform
substantially the same logic function;

within each of said groups, assigning to each of selected
ones of cells an operating range of loads;

selecting one of said groups by matching said given logic
function to the logic function performed by cells 1n said
selected group; and

selecting said cell from said selected group by matching
said given load capacitance to said operating range of
said cell.

45. A method as 1n claim 44, wherein said assigning step
assigns said operating range of loads to a cell in said library
according to a metric relating an area of said cell to a delay
of said cell.

46. A method as 1n claim 45, wherein said metric com-
pares two cells within one of said group according to a

difference between the areas of said cells and a difference
between delays 1n said cells.
47. A method as 1n claim 46, wherein said difference

between the areas of said cells 1s normalized by a mean area
of cells within the group of said two cells.

48. A method as 1n claim 46, wherein said difference
between the delays of said cells 1s normalized by a mean
delay of cells within the group of said two cells, under a
zero-load condition.

49. A method as 1n claim 44, wherein each said group
COMPriSEs:

™

a cell performing said logic function; and

a combination including a cell performing said logic
function and a buffer.
50. A method as 1n claim 44, wherein each said group
COmMprises:

a cell performing said logic function; and

a combination including a cell performing a logic function
complement to said logic function and an inverter.
51. A method for identifying in a post-layout circuit a cell
instance for optimization, comprising;:
computing, for each cell instance 1n said post-layout
circuit, a potential improvement value;

during a forward sweep of said post-layout circuit, based
on said potential improvement value, computing for
cach terminal of each instance a forward priority value;
and

during a backward sweep of said post-layout circuit,
based on said potential improvement value, computing
for each terminal of each instance a backward priority
value;

computing, for each terminal of each instance, an equiva-
lent priority value based on said forward and backward
priority values; and

selecting among 1nstances of said post-layout circuit the
cell instance having the highest equivalent priority
value.

52. A method as in claim 51, wherein said selecting step
sorts 1nstances 1n said post-layout circuit in descending order
of equivalent priority value.

53. A method as in claim 51, wherein 1n said forward
sweep, an output terminal of an mstance 1n said circuit arca
receives a forward priority value substantially equal to the
sum of forward priority values in input terminals of said
Instance.

54. A method as 1in claim 51, wherein 1n said forward
sweep, at each divergence point on an 1nterconnect
encountered, each output branch of said divergence point
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receives a forward priority value substantially equal to a
forward priority value of an input terminal of said intercon-
nect.

55. A method as 1n claim 51, wherein at a merged point
on an 1nterconnect encountered 1n said forward sweep, each
output terminal of said interconnect receives a forward
priority value substantially equal to the sum of forward
priority values 1n 1nput terminals of said interconnect.

56. A method as 1n claim 51, wherein 1n said backward
sweep, each input terminal of an mstance in said circuit area
receives a backward priority value substantially equal to a
backward priority value 1 an output terminal of said
instance.

57. A method as 1n claim 51, wherein 1n said backward
sweep, at each divergence point on an interconnect
encountered, each mnput branch of said divergence point
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receives a forward priority value substantially equal to a
forward priority value of an output terminal of said inter-
connect.

58. A method as 1 claim 51, wherein at a merged point
on an interconnect encountered in said backward sweep,
cach input terminal of said interconnect receives a backward
priority value substantially equal to a backward priority
value of an output terminal of said interconnect.

59. A method as 1mn claim 51, wheremn each of said
equivalent priority values 1s used to compute a slack value.

60. A method as 1n claim 59, wherein said slack value 1s
provided by interpolation procedure using a table of said
equivalent priority values according to the size of an output
load of said selected 1nstance.
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