US006591269B1
a2 United States Patent (10) Patent No.: US 6,591,269 B1
Ponnekanti 45) Date of Patent: Jul. 8, 2003
(54) DATABASE SYSTEM WITH 5,265.244 A 11/1993 Ghosh et al. ...ceevenen...... 707/1
METHODOLOGY FOR ONLINE INDEX 5,430,869 A 7/1995 Ishak et al. 707/101
REBUILD 5,475,837 A * 12/1995 Ishak et al. 707/101
5493728 A 2/1996 Solton et al.ove....... 711/113
| : . - 5504,888 A 4/1996 Iwamoto et al. 707/200
(75) Inventor: gigf‘[}’g;““ Ponnekanti, Emeryville, 5555380 A 9/1996 Satoh et al. .oorvveenn.... 711/100
5,842,196 A * 11/1998 Agarwal et al. 707/1

(73) Assignee: Sybase, Inc., Dublin, CA (US) * cited by examiner

ofice: ubject to any disclaimer, the term oI this _
(*) Noti Sub;j y disclai h f thi _ _

patent is extended or adjusted under 35 {7imary Examiner—Greta Robinson

ssistant Examiner—Susan Rayyan
U.S.C. 154(b) by 0 days. Assistant k. —ousan Rayy
(74) Attorney, Agent, or Firm—John A. Smart

(21) Appl. No.: 09/574,662 (57) ABSTRACT
(22) Filed: May 18, 2000 A database system providing an efficient methodology for

performing an online rebuild of a B+-tree index 1s described.
From a high-level perspective, the method operates by
copying the mndex rows to newly-allocated pages 1n the key
order so that good space uftilization and clustering are

Related U.S. Application Data

(60) Provisional application No. 60/134,935, filed on May 19,
1999,

(51) Imt.CL7ccocovviiiinnnn, GO6F 17/00; GO6F 7/00 achieved. The old pages are deallocated during the process.
52) UL S, Gl e e ee e e e aans 707/100 1s approach differs from the previously-published online
(52) This approach differs f he previously-published onli

58) Field of Search 707/1, 3, 10, 102 Inaex rebuild algorithms 1n two ways. First, 1t rebullds
(58) /1, 3, 10, ? ind build algorith ' ys. Fi it rebuild

707/100 multiple leal pages and then propagates the changes to

higher levels. Also, while propagating the leaf level changes

(56) References Cited to higher levels, level 1 pages (i.e., the level immediately
above the leaf level) are reorganized, eliminating the need

U.S. PATENT DOCUMENTS for a separate pass. The methodology provides high

4606002 A 81986 Waisman et al. 707/13 concurrency, does minimal amount of logging, has good
4,677,550 A 6/1987 Fergusoncceceu...... 707/3 performance and does not deadlock with other index opera-
4,791,561 A 12/1988 Hubercccceeeeerennnne 707/1 tions. Performance study shows that the approach results in
4,805,099 A 2/1989 Huberccvvvvvnivninn.n. 707/102 Signiﬁcant reduction 1n logglng and CPU time. Also, the
4?947?320 A 8/1990 Cms et al- ------------------ 707/201 approaCh uses the Same Concurrency ContrOI meChanism aS
5,089,952 A 2/1992 Bozman 7107200 split and shrink operations, which made it attractive for
5,115,392 A 5/1992 Takamoto et al. 709/101 imblementation
5,123,104 A * 6/1992 Levine et al. 707/1 P '
5,163,148 A 11/1992 Walls .ocvvvivniiiiinnnnn. 7077204
5,204958 A * 4/1993 Cheng et al. 707/102 67 Claims, 6 DI'aWillg Sheets
700
f”1ﬂ4
KEYBOARD
150
r,105
POINTING
DEVICE
(“'1?U (*'155 fr'160
106
- RDBMS APPLICATION O
Eﬁ;ﬁiﬁ .f#102 CLIENT PR (S)
<~ | USER N 4
WINDOWS N INTERFACE
" 2 (AN ot OPERATING SYSTEM 145 AN
10
CONTROLLER -
108 ("'
CENTRAL
OUTPUT PROCESSOR
DEVICE

110
CACHE

MEMORY

il

109

U.S. Patent Jul. 8, 2003 Sheet 1 of 6 US 6,591,269 Bl

100
104
KEYBOARD
105
POINTING
DEVICE
106
SCREEN 102
DISPLAY
107 103 MAIN
MEMORY
MASS
STORAGE
/0
CONTROLLER

CENTRAL
PROCESSOR

QUTPUT
DEVICE

110

CACHE
MEMORY

109

FIG. 1A

US 6,591,269 Bl

Sheet 2 of 6

Jul. 8, 2003

U.S. Patent

145/

JOV4d4 NI
BRI

14!

dl Il

(SINVYHOOHJ

NOILYOI'lddV

GGl

051

NJLSAS ONILYH3dO

T13HS
SMOQNIM

IN3ITO
SWH0dd

0L}

Ov}

US 6,591,269 Bl

Sheet 3 of 6

Jul. 8, 2003

U.S. Patent

GG

0S¢

-
E

WILSAS
d3AH4S 35vav1vda

Ov¢

V¢ 9l
SQOHL3W SS3DIV 02
—
LINA NOILND3X3 692
|
HOLVHANID 3000~ T~ 192
H3ZIAILO _‘ 992
HINdWOONAcoz
|
H3ZITYWHON £92
—
H3S4dvd 192
INIONI ‘ 092
0£7
MINNTS

002

(S)1 NS T
AYIN0 -

N

(S)INLS T10S

Occ
AHIOMLIN

- ey wer wr Sk I TN SRR AU EpE SIS AN DN O EEE TSN NN BEF WS EEF WSS WS YeE mm mpe maa maa maa s s ol - A I I I I e e e e e v e e o wek e A B A R S A S S O O O e el W sl

L1

(S)TYNIWH3L

HO (S)0d

012
(S)INIITD

US 6,591,269 Bl

Sheet 4 of 6

Jul. 8, 2003

U.S. Patent

08¢
J441-4

18¢

d¢ Jld

HldY |SA |H1d1

JUON LO0

SUY0I3d Vivd OL
SHTINIOd 4¥401S

I | O 7% 3

U.S. Patent Jul. 8, 2003 Sheet 5 of 6 US 6,591,269 Bl

FIG. 3

P’ (parent of P)

~ .
- y Ol
\G
2!....,
= N
Y} B
\G
= _
9¢
$C

Z 1aA9] 01 Sunesedog | [0A9] 0) uonededog 144
< AN Id dd dN IN dd dN \¢d @m | JQXId
S 7 [T | 1 [][17]] | i
- O¢ 07
m . 9| |51 9C| |S1] | 77

St |50} (L 60 s€| ST |11 |60 ce| 9T] (1T 1l

0t 122] 101 |L oc| lzzl lo1] Lo oc| 1€zl loz m“__ Ol
e
= Y /Yy
% ~d
= _

0cy l\»

NOILOV dOL dINg3d FOVdIL NN

U.S. Patent
\.

US 6,591,269 Bl

1

DATABASE SYSTEM WITH

METHODOLOGY FOR ONLINE INDEX
REBUILD

RELATED APPLICATIONS

The present application 1s related to and claims the benefit
of priority of commonly-owned provisional application
serial No. 60/134,935, filed May 19, 1999 Expired, and
entitled, DATABASE SYSTEM WITH METHODOLOGY

FOR ONLINE INDEX REBUILD, the disclosure of which
1s hereby incorporated by reference.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which 1s subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure as 1t appears 1n the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND OF THE INVENTION

The present invention relates generally to information
processing environments and, more particularly, to mainte-
nance and processing of indexes (e.g., B+-tree indexes) in a
data processing system, such as a Database Management

System (DBMS).

Computers are very powerlul tools for storing and pro-
viding access to vast amounts of information. Computer
databases are a common mechanism for storing information
on computer systems while providing easy access to users.
A typical database 1s an organized collection of related
information stored as “records” having “fields” of 1nforma-
fion. As an example, a database of employees may have a
record for each employee where each record contains fields
designating specifics about the employee, such as name,
home address, salary, and the like.

Between the actual physical database itself (1.e., the data
actually stored on a storage device) and the users of the
system, a database management system or DBMS 1s typi-
cally provided as a software cushion or layer. In essence, the
DBMS shields the database user from knowing or even
caring about underlying hardware-level details. Typically,
all requests from users for access to the data are processed
by the DBMS. For example, information may be added or
removed from data files, information retrieved from or
updated 1n such files, and so forth, all without user knowl-
edge of underlying system implementation. In this manner,
the DBMS provides users with a conceptual view of the
database that 1s removed from the hardware level. The
general construction and operation of a database manage-
ment system 1S known 1n the art. See e.g., Date, C., An
Introduction to Database Systems, Volume I and 11, Addison
Wesley, 1990; the disclosure of which 1s hereby incorporated
by reference.

DBMS systems have long since moved from a centralized
mainframe environment to a de-centralized or distributed
environment. One or more PC “client” systems, for instance,
may be connected via a network to one or more server-based
database systems (SQL database server). Commercial
examples of these “client/server” systems include Power-
soft™ clients connected to one or more Sybase Adaptive
Server™ database servers. Both Powersoft™ and Sybase
Adaptive Server™ (formerly Sybase SQL Server™) are
available from Sybase, Inc. of Emeryville, Calif.

10

15

20

25

30

35

40

45

50

55

60

65

2

For enhancing the speed imm which a database stores,
retrieves, and presents particular data records, DBMS sys-
tems employ one or more database indexes on database
tables. A database index, typically maintained as a B-Tree
data structure, allows the records of a table to be organized
in many different ways, depending on a particular user’s
needs. An index may be constructed as a single disk file
storing 1index key values together with unique record num-
bers. The former 1s a data quantity composed of one or more
fields from a record; the values are used to arrange
(logically) the database file records by some desired order
(index expression). The latter are unique pointers or identi-
fiers to the actual storage location of each record in the
database file. B-tree varnants also exist, including B+-tree
and B*-tree variants. In a B+-tree, the search keys are stored
twice; each of the search keys 1s found 1n some leaf nodes.

Today, B+-trees are one of the main indexing methods
used mm commercial database systems. B+-tree indexes or
similar to B-tree indexes. A primary B+-tree index has data
records 1n the leafl pages while a secondary B+-tree index
has only the 1ndex keys in the leal pages, where a key
consists of a key value and the row ID (ROWID) of the data
record. For an introduction to B-tree structures and general
methodology, see, e.g., Comer, D., The Ubiquitous B-Tree,
Computing Surveys, Vol. 11, No. 2, June 1979, the disclo-
sure of which 1s hereby incorporated by reference.

Over time, msertion and deletion database operations may
cause allocations and deallocations of i1ndex pages. As
mentioned by Gray et al., most practical implementations of
B-trees (e.g., Sybase Adaptive Server Enterprise™) do not
merge ndex nodes upon undertlow; see, e.g., Gray, J. et al.,
Transaction Processing: Concepts and lechniques, Morgan
Kaufmann Publishers, Inc., 1993, the disclosure of which i1s
hereby mncorporated by reference. Index pages may become
less than half full causing a drop 1n the space utilization and
also an 1ncrease 1n the number of disk reads required to read
the same number of index keys. Further, the index may
become “declustered” (i.e., index keys within a key range
may not be in contiguous disk space), thereby degrading the
performance of range queries. To restore the clustering,
users can drop and recreate the index. However, that typi-
cally requires holding a shared table lock on the table
thereby making the table mnaccessible to OLTP transactions,
which may not be acceptable. Accordingly, a better solution
1s sought.

Each day more and more businesses are run from mission-
critical systems which store information on server-based
SQL database systems, such as Sybase Adaptive Server
Enterprise™. As a result, increasingly higher demands are
being placed on server-based SQL database systems to
provide enterprise-wide decision support. Accordingly, there
1s much interest 1n i1mproving the performance of such
system, particularly 1n terms of execution speed and reli-
ability.

SUMMARY OF THE INVENTION

The present invention comprises a Client/Server Database
System with 1improved methodology for performing online
rebuild of indexes. In an exemplary embodiment, the system
includes one or more Clients (e.g., Terminals or PCs)
connected via a Network to a Server. The Server, operating
under a server operating system (e.g., UNIX) includes a
Database Server System, such as Sybase Adaptive Server. In
ogeneral operation, Clients store data 1in and retrieve data
from one or more database tables resident on the Server.
Each table itself comprises one or more horizontal rows or

US 6,591,269 Bl

3

records divided into columns or fields of information. For
enhancing the speed in which the Database Server stores,
retrieves, and processes particular data records, the Server
maintains one or more database indexes on each table. A
database index, which 1n an exemplary embodiment is
maintained as a B-Tree data structure (specifically, B+-tree
variant), allows the records of a table to be organized in
many different ways, depending on a particular user’s needs,
with the speed of retrieving any particular data record
significantly improved.

Methodology 1s provided which provides an efficient
methodology for performing an online rebuild of a B+-tree
index. From a high-level perspective, the method operates
by copying the index rows to newly-allocated pages 1n the
key order so that good space utilization and clustering are
achieved. The old pages are deallocated during the process.
This approach differs from the previously-published online
index rebuild algorithms 1n two ways. First, 1t rebuilds
multiple leal pages and then propagates the changes to
higher levels. Also, while propagating the leaf level changes
to higher levels, level 1 pages (i.e., the level immediately
above the leaf level) are reorganized, eliminating the need
for a separate pass. The methodology provides high
concurrency, does mimimal amount of logging, has good
performance and does not deadlock with other index opera-
tions. Performance study shows that the approach results in
significant reduction in logging and CPU time. Also, the
approach uses the same concurrency control mechanism as
split and shrink operations, which made 1t attractive for
implementation.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1s a block diagram 1illustrating a computer system
in which the present invention may be embodied.

FIG. 1B 1s a block diagram illustrating a software sub-
system for controlling the operation of the computer system

of FIG. 1A.

FIG. 2A 1s a block diagram of a client/server system 1in
which the present invention 1s preferably embodied.

FIG. 2B 1s a block diagram 1illustrating general structure
of a B-Tree.

FIG. 3 1s a block diagram illustrating key movement
across subtrees.

FIG. 4 1s a block diagram providing an example of
multipage rebuild top action, performed 1n accordance with
the present invention.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT

The following description will focus on the presently
preferred embodiment of the present invention, which 1s
operative 1n a network environment executing client/server
database applications. The present invention, however, 1s not
limited to any particular application or environment. Instead,
those skilled in the art will find that the present invention
may be advantageously applied to any application or envi-
ronment where optimization of index data structures 1is
desirable, mncluding those employed 1in non-SQL database
management environments. The description of the exem-
plary embodiments which follows 1s, therefore, for the
purpose of 1llustration and not limitation.

Standalone System Hardware

The mvention may be embodied on a computer system
such as the system 100 of FIG. 1A, which comprises a
central processor 101, a main memory 102, an input/output

10

15

20

25

30

35

40

45

50

55

60

65

4

controller 103, a keyboard 104, a pointing device 105 (e.g.,
mouse, track ball, pen device, or the like), a screen display
device 106, and a mass storage 107 (e.g., hard or fixed disk,
removable disk, optical disk, magneto-optical disk, or flash
memory). Processor 101 includes or is coupled to a cache
memory 109 for storing frequently accessed information;
memory 109 may be an on-chip cache or external cache (as
shown). Additional output device(s) 108, such as a printing
device, may be included 1n the system 100 as desired. As
shown, the various components of the system 100 commu-
nicate through a system bus 110 or similar architecture. In a
preferred embodiment, the system 100 includes an IBM-
compatible personal computer system, available from a
variety of vendors (including IBM of Armonk, N.Y.).
Standalone System Software

[llustrated 1n FIG. 1B, a computer software system 150 1s
provided for directing the operation of the computer system
100. Software system 15, which 1s stored 1n system memory
102 and on mass storage or disk memory 107, includes a
kernel or operating system (OS) 140 and a windows shell
145. One or more application programs, such as application
software 15§, may be “loaded” (i.e., transferred from storage
107 into memory 102) for execution by the system 100. The
system also includes a user interface 160 for receiving user
commands and data as input and displaying result data as
output.

Also shown, the software system 150 includes a Rela-
tional Database Management System (RDBMS) front-end
or “client” 170. The RDBMS client 170 may be any one of
a number of database front-ends, including PowerBuilder™,
dBASE®, Paradox®, Microsoft® Access, or the like. In an
exemplary embodiment, the front-end will include SQL
access drivers (e.g., Borland SQL Links, Microsoft ODBC
drivers, Intersolv ODBC drivers, and the like) for accessing
SQL database server tables 1n a Client/Server environment.
Client/Server Database Management System

While the present invention may operate within a single
(standalone) computer (e.g., system 100 of FIG. 1A), the
present mvention 1s preferably embodied in a multi-user
computer system, such as a Client/Server system. FIG. 2A
illustrates the general structure of a Client/Server Database
System 200 suitable for implementing the present invention.
As shown, the system 200 comprises one or more Client(s)
210 connected to a Server 230 via a Network 220.
Specifically, the Client(s) 210 comprise one or more stan-
dalone Terminals 211 connected to a Database Server Sys-
tem 240 using a conventional network. In an exemplary
embodiment, the Terminals 211 may themselves comprise a
plurality of standalone workstations, dumb terminals, or the
like, or comprise personal computers (PCs) such as the
above-described system 100. Typically, such units would
operate under a client operating system, such as Microsoft
Windows/MS-DOS for PC clients.

The Database Server System 240 , which comprises
Sybase Adaptive Server™ (formerly, Sybase SQL Server™)
(available from Sybase, Inc. of Emeryville, Calif.) in an
exemplary embodiment, generally operates as an indepen-
dent process (i.e., independently of the clients), running
under a server operating system such as Microsoft Windows
NT (Microsoft Corp. of Redmond, Wash.), NetWare (Novell
of Provo, Utah.), or UNIX (Novell). The Network 220 may

be any one of a number of conventional network systems,
including a Local Area Network (LAN) or Wide Area

Network (WAN), as is known 1n the art (e.g., using Ethernet,
IBM Token Ring, or the like). The Network includes func-
tionality for packaging client calls in the well-known SQL
(Structured Query Language) together with any parameter

US 6,591,269 Bl

S

information into a format (of one or more packets) suitable
for transmission across a cable or wire, for delivery to the
Database Server 240.

Client/server environments, database servers, and net-
works are well documented 1n the technical, trade, and
patent literature. For a discussion of database servers and
client/server environments generally and Sybase Adaptive
Server™ particularly, see, e.g., Nath, A., The Guide to SQL
Server, Second Edition, Addison-Wesley Publishing
Company, 1995. Additional documentation of Adaptive
Server™ 1s available from Sybase, Inc. as Adapiive Server
Enterprise 11.5 Documentation(e.g., at
//sybooks.sybase.com/cgi-bin/nph-dynaweb/asg1150¢).
Documentation for Sybase SQL™ Server 11.0.x 1s available
from Sybase, Inc. as Sybase SQL Server 11.0.x Collection
(c.g., at //sybooks.sybase.comlcgi-bin/nph-dynaweb/
asg1100e). For a discussion of a computer network employ-
ing Microsoft Networks/OpenNet File Sharing Protocol, see

METHOD AND SYSTEM FOR OPPORTUNISTIC
LOCKING IN A NETWORKED COMPUTER SYSTEM,
Intl. Application No. PCT/US90/0457 , Intl. Publication No.
WO 91/03024, Intl. Publication Date Mar. 7, 1991. For a
ogeneral introduction to a Local Area Network operating
under NetWare, see Freed, L. et al., PC Magazine Guide to
Using NetWare, Zift-Davis Press, 1991. A more detailed
discussion 1s available 1n NetWare 3.x and 4.x and accom-
panying documentation, which 1s available from Novell of
Provo, UT. The disclosures of each of the foregoing are
hereby incorporated by reference.

In operation, the Client(s) 210 store data in or retrieve
data from one or more database tables 250, shown 1n FIG.
2A. Typically resident on the Server 230, each table itself
comprises one or more horizontal rows or “records” (tuples)
together with vertical columns or “fields.” A database record
includes 1nformation which 1s most conveniently repre-
sented as a single unit. A record for an employee, for
example, may include information about the employee’s 1D
Number, Last Name and First Initial, Position, Date Hired,
Social Security Number, and Salary. Thus, a typical record
includes several categories of mnformation about an indi-
vidual person, place, or thing. Each of these categories, in
turn, represents a database field. In the foregoing employee
table, for example, Position 1s one field, Date Hired 1is
another, and so on. With this format, tables are easy for users
to understand and use. Moreover, the flexibility of tables
permits a user to define relationships between various items
of data, as needed.

In operation, the Clients 1ssue one or more SQL com-
mands to the Server. SQL commands may specily, for
instance, a query for retrieving particular data (i1.e., data
records meeting the query condition) from the table 250. The
syntax of SQL (Structured Query Language) is well docu-
mented; see, e.g., the abovementioned An Iniroduction to
Database Systems. In addition to retrieving the data from
Database Server tables, the Clients also include the ability to
msert new rows of data records into the table; Clients can
also modily and/or delete existing records 1n the table.

In operation, the SQL statements received from the one or
more Clients 210 (via network 220) are processed by Engine
260 of the Database Server System 240. The Engine 260
itself comprises a Parser 261, Normalizer 263, Compiler
265, Execution Unit 269, and Access Methods 270.
Specifically, the SQL statements are passed to the Parser 261
which converts the statements 1nto a query tree—a binary
free data structure which represents the components of the
query 1n a format selected for the convenience of the system.
In this regard, the Parser 261 employs conventional parsing
methodology (e.g., recursive descent parsing).

10

15

20

25

30

35

40

45

50

55

60

65

6

The query tree 1s normalized by the Normalizer 263.
Normalization includes, for example, the elimination of
redundant data. Additionally, the Normalizer performs error
checking, such as confirming that table names and column
names which appear in the query are valid (e.g., are avail-
able and belong together). Finally, the Normalizer can also
look up any referential integrity constraints which exist and
add those to the query.

After normalization, the query tree 1s passed to the
Compiler 265, which includes an Optimizer 266 and a Code
Generator 267. The Optimizer 1s responsible for optimizing
the query tree. The Optimizer performs a cost-based analysis
for formulating a query execution plan. The Optimizer will,
for instance, select the join order of tables (e.g., when
working with more than one table); it will select relevant
indexes (e.g., when indexes are available). The Optimizer,
therefore, performs an analysis of the query and picks the
best execution plan, which in turn results in particular ones

of the Access Methods being 1nvoked during query execu-
tion.

The Code Generator, on the other hand, converts the
query tree 1nto a set of nstructions suitable for satisfying the
query. These instructions are passed to the Execution Unait
269. Operating under the control of these instructions, the
Execution Unit 269 generates calls into lower-level routines,
such as the Access Methods 270, for retrieving relevant
information (e.g., row 255) from the database table 250.
After the plan has been executed by the Execution Unit, the
Server returns a query result or answer table back to the
Client(s).

For enhancing the speed in which the Database Server
stores, retrieves, and processes particular data records, the
Server maintains one or more database indexes 245 on the
table. A database index, typically maintained as a B-Tree
data structure (specifically, B+-tree variant), allows the
records of a table to be organized in many different ways,
depending on a particular user’s needs. An 1index may be
constructed as a single disk file storing index key values
together with unique record numbers. The former 1s a data
quantity composed of one or more fields from a record; the
values are used to arrange (logically) the database file
records by some desired order (index expression). The latter
are unique pointers or 1identifiers to the actual storage
location of each record in the database file. Both are referred
to internally by the system for locating and displaying
records 1n a database file.

As clients mnsert more and more data into the table 250,
the index 245 continues to grow. Two parts of the Database
Server System 240 play a central role in the processing and
maintenance of the index: Access Methods 241 and Page
Manager 243. For example, the Access Methods mnclude an
index manager module which can be viewed as comprising
two submodules: B-tree insert and B-tree search. The B-tree
scarch submodule functions to find a particular key value in
a tree. All B-tree operations can be viewed as starting with
a B-tree search, starting from the root node or page of the
B-tree. The B-tree insert submodule serves to insert a new
entry into a B-tree. Both employ a B-tree traverse module to
traverse a tree. Once the leaf level 1s reached, 1f enough
space does not exist (e.g., for insertion), then the B-tree split
module 1s mvoked for splitting a B-tree page. The splits
propagate bottom up; traversal operations, on the other hand,
proceed from top to bottom (with care taken to ensure that
the two processes do not deadlock).

Indexes and B-Trees

A. B-Trees

B-Trees are fundamental to the maintenance of indexes.
FIG. 2B 1llustrates a sitmple B-Tree 280, which comprises a

US 6,591,269 Bl

7

Root Node 281, Internal Nodes 283, 285, and Leaf
(terminal) Nodes 291, 292, 293, 294. As shown, therefore, a
B-Tree consists of a plurality of nodes arranged in a tree.
Each node may, 1n turn, be thought of as a block of records.
As shown by the Root Node 281, each node stores one or
more key values (“keys”) together with pointers to children
nodes (e.g., Nodes 283, 285 for Root Node 281).

Searching for a particular record 1n the B-Tree occurs by
traversing a particular path in the tree. To find a record with
a particular key value, one would maneuver through the tree
comparing key values stored at each node visited with the
key value sought. The results of each comparison operation,
in conjunction with the pointers stored with each node,
indicate which path to take through the tree to reach the
record ultimately desired. Ultimately, a search will end at a
particular leaf node, such as leaf node 291. The leaf node
will, in turn, point to (i.e., store a pointer to or identifier for)
a particular data record for the key wvalue sought.
Alternatively, the leal nodes may for “clustered indexes”
store the actual data of the data records on the leafl nodes
themselves.

In contrast to the B-Tree approach, a sequential or linear
scan from the beginning of a database table, comparing each
record along the way, 1s exceedingly slow. There, all of the
blocks of records would have to be visited until the record
sought 1s finally located. For a table of even moderate size,
such an approach yields unacceptable performance. As a
result, virtually all modern-day relational database systems
employ B-Tree indexes or a variant.

General techniques for the construction and operation of
B-Trees are well documented in the technical, trade, and
patent literature. For a general description, see Sedgewick,
R., Algorithms in C, Addison-Wesley, 1990. For a survey of
various B-Tree implementations, see the above-mentioned
Comer, D., The Ubiquitous B-Tree, Computing Surveys,
Vol. 11, No. 2, June 1979, pp. 121-137. For a description of
B-Tree indexes implemented in a PC DBMS system, see
Baker, M., B-tree indexing: A look at indexing tradeoffs in
dBASE, Clipper, and FoxPro, Programmer’s Journal, Vol.
8.6, November/December 199, pp. 42—-46. Also, see System
and Methods for Information Retrieval, International Appli-
cation No. PCT/US91/0726 , International Publication No.
WO 92/0644 , Apr. 16, 1992, which describes B-Tree
indexes for Fox® PC DBMS software. Multiple index files,
including dBASE’s .mdx files, have also been described 1n
the technical literature; see e.g., Freeland, R., Fxploring
MDXs, Data Based Advisor, February 1991, pp. 85-87. The
disclosures of each of the foregoing references are hereby
incorporated by reference.

B. B-Tree Maintenance

Maintenance of B-Trees 1s fundamental to the operation
of mdexes m a relational database system. As new data
records are loaded in a database table, the index (and
corresponding in-memory B-Tree) for that table grows, to
accommodate the new records. As a new record 1s added to
a table, a corresponding index entry (typically, index key
value plus record identifier) is added to an appropriate slot
in the appropriate B-Tree node (i.e., the node which is
appropriate for the key value expressed by the record). Since
each node of the B-Tree has a fixed size (generally, limited
by the size of the database page employed), when an update
operation occurs which exceeds the capacity of a particular
node, an “overflow” condition exists at the node.

The conventional approach to handling node overtlow 1s
ogenerally to split the particular node 1nto equal parts—that
is, “down the middle”—for storing the new information (i.c.,
for storing the additional key value/record identifier for the

10

15

20

25

30

35

40

45

50

55

60

65

3

new data record which 1s being inserted). Instances where
the data record to be inserted (i.e., “insert row”) belongs at
the end of a page (or node) are treated as a special case,
however. In those instances, the conventional approach 1s to
split the page at 1ts end, rather than 1ts middle; this optimizes
sequential/batch loading of data which 1s in sorted order. For
data insert operations which are random, the conventional
approach yields good, if not optimal, results. An 1mproved
approach to handling node overflow which splits the par-
ticular node at the point of insertion i1s described 1n
commonly-owned application Ser. No. 08/497,663, filed
Jun. 28, 1995, now U.S. Pat. No. 5,644,763, the disclosure
of which 1s hereby 1ncorporated by reference.

Of particular interest to the present ivention 1s the
optimization of database system performance by implement-
ing an 1mproved methodology for online index rebuilds.
Modification of the Engine 260 for implementing this meth-
odology will now be described in further detail.

Improved Online Index Rebuilding Methodology

A. Introduction

In accordance with the present invention, an eificient
methodology for performing an online rebuild of a B+-tree
index 1s provided. The following discussion will focus on
the rebuilding of a secondary index. However, if the primary
key value 1s used as data ROWID 1 the secondary indices,
then the same approach can be used to rebuild a primary
index as well. It 1s assumes that the leaf pages of the index
are doubly linked and the non-leaf pages are not linked.

From a high-level perspective, the method operates by
copying the index rows to newly-allocated pages in the key
order so that good space uftilization and clustering are
achieved. The old pages are deallocated during the process.
This approach differs from previously-published online
index rebuild algorithms in two ways. First, 1t rebuilds
multiple leaf pages and then propagates the changes to
higher levels. Also, while propagating the leaf level changes
to higher levels, level 1 pages (i.e., the level immediately
above the leaf level) are reorganized, eliminating the need
for a separate pass. This method, which 1s implemented in
the commercial embodiment of Sybase Adaptive Server
Enterprise™ (ASE) Version 12.0, available from Sybase,
Inc. of Emeryville, Calif., provides high concurrency, does
minimal amount of logging, has good performance and does
not deadlock with other index operations. Performance
study shows that the approach results 1n significant reduction
in logeing and CPU time. Also, the approach uses the same
concurrency control mechanism as split and shrink
operations, which made it attractive for implementation.

B. Index Concurrency Control

1. General

The following describes implementation of concurrency
control mechanisms 1n the i1ndex manager. For this
discussion, 1t 1s assumed that assume row level locking is
employed. Insert, delete and scan operations acquire logical
locks on rows as needed. Logical locks are meaningfiul only
on rows at the leaf level. Logical locking 1s not discussed
further, as split, shrink, and rebuild operations do not acquire
logical locks.

“Latches” are used for physical consistency at the page
level. To read or modify a page, an S (shared) or X
(exclusive) latch is acquired on the buffer that contains the
page. Latch deadlocks are prevented by requesting the
latches 1n top-down order or left-to-right order. An insert
may cause a split operation which consists of adding a new

US 6,591,269 Bl

9

leaf page to the chain, possibly moving some keys to it and
updating the parent and possibly higher levels. Shrink opera-
fion consists of removing a leaf page from the chain and
updating parent and possibly higher levels. A page 1s shrunk
when the last row 1s removed from 1it. Split and shrink
operations are performed as nested top actions (see, ¢.g.,
Gray et al. above), which means that once the operation is

complete, 1t 15 not undone even if the transaction performing
it rolls back.

The following presents an overview of insert, delete, split,
shrink and scan operations. Pseudocode for tree traversal
routine 1s also presented.

2. Insert and Delete

Insert and delete database operations invoke a traversal
module to retrieve the appropriate leaf page X latched. If no
split or shrink 1s needed, the latch 1s released after perform-
ing the insert or delete. Traversal uses the familiar crabbing
strategy with latches (see, €.g., Gray et al. above). An S latch
1s suflicient, except at the leaf level, where an X latch 1s
acquired. However, 1f a page in the path traversed 1s under-
ogoing a split or shrink by another transaction, traversal may
need to release its latches and block for the split or shrink to
complete, as explained 1n further detail below.

3. Leaf Splt

To split a leaf page P,, both P, and the new page, say N,
are X latched and address-locked in X mode. In addition,
SPLIT bits are set on both of them. The X lock acquired by
the split 1s called an address-lock to distinguish 1t from
logical locks. For the discussion which follows, a “lock™
refers to an address lock, unless otherwise specified. While
the X latches are released soon after the modification of P,
and N, the X locks and the SPLIT bits are retained until the
end of the top action. The purpose of setting the SPLIT bat
on a page 1s to block writes to that page by concurrent
transactions after the splitter has released its X latch. (SPLIT
bit does not block a writer that just wishes to modity its
previous page link. This optimization allows two adjacent
leaf pages to be split concurrently.) The writers block by
releasing any latches held and requesting an unconditional
instant duration S lock on the page. Thus the writers are
blocked t1ll the top action 1s complete. However, readers can
still access P, or N, 1f they have successtully acquired an
S latch on it. To read or modify a page, an S (shared) or X
(exclusive) latch is acquired on the buffer that contains the
page. No locks or latches are held on higher level pages by
the splitter when 1t 1s splitting the leaf page. They are
acquired during the propagation phase, as explained below.

The SPLIT bit 1s similar to the SM bit described by C.
Mohan et al.; see, ¢.g., Mohan, C. et al., ARIES/IM: An
Efiicient and High Concurrency Index Management Method
using Write-Ahead Logging, Proc. of ACM SIGMOD Cont,
pages 371-380 , 1992, the disclosure of which 1s hereby
incorporated by reference. However, SM bit 1s accompanied
with a tree latch (rather than an X lock on the page), which
increases the likelihood of blocking. Also, in the present
approach, the bit 1s only an optimization of calls to the lock
manager (checking for the bit can be replaced with a request
for a conditional instant duration S lock).

4. Propagation of Split to Higher Levels

The split 1s propagated bottom up. The latches held on the
pages at the current level are released before moving to the
next higher level. To propagate the split to level 1, the split
operation calls traversal (operation) to retrieve the appro-
priate non-leaf page P at level 1 latched in X mode.
(However, traversal may not start from root in this case, as
described below.) The page returned by traversal is guaran-

10

15

20

25

30

35

40

45

50

55

60

65

10

teed not to have SPLIT (or SHRINK) bit set on it. Here 1is
the action to be taken on P:

(1) If P needs a split, both P and the new page, say N, are
X latched, X locked and SPLIT bits are set on them
(just as 1n leaf split). Suppose that keys greater than or

equal to K are moved to N. The page P 1s also marked
with OLDPGOFSPLIT bit and entry [K, N]1s stored on
page P as a side entry 5. Once the side entry 1is
established, both P and N are unlatched and the propa-
gation continues to the next level. In case a concurrent
traversal visits page P from 1its parent before the split
propagates to the parent, the traversal uses the side
entry to decide which of P or N 1s the correct target
page.

(2) If no split is needed, no X lock or SPLIT bit is needed
on P. The insert 1s performed, and the top action 1is
completed and P 1s unlatched. The SPLIT bits and the
OLDPGOFSPLIT bits are cleared and the X locks are
released. Recall that setting SPLIT bit on a page blocks
writes to that page but not the reads. Thus a concurrent
insert, delete, split or shrink operation that wants to
traverse through P (or N) to a lower level page can
access P (or N) after splitter has released its X latch on
P (or N).

5. Shrink

Shrink 1s also performed as a nested top action and 1s

propagated quite similar to split operation, except that
SHRINK bits are set on the affected pages instead of SPLIT
bits. Also, note that setting SHRINK bit on a page blocks
both read and write operations on the page.

0. Scan

The scan operation calls traversal module to retrieve the

starting page for the scan S latched. The scan qualifies the
index keys under S latch. The page 1s unlatched before
returning a qualifying key to query processing layer and 1s
latched again to resume qualification. Also, note that
depending on the 1solation level, the scan may need to
acquire logical locks on qualifying keys.

7. Traversal Pseudocode

The following presents sample pseudocode for traversal.

Note that a page 1s latched in X mode only 1f it 1s at the target
level and the traversal was called 1n writer mode. In all other
cases, the page 1s latched 1n S mode.

traverse (searchkey, searchmode, targetlevel)
{
refraverse:
p = get root page latched;
while (level of p > target level)
{
Search p to identify the child to chase;
c = get child page latched;
if (¢ has SHRINK bit set)
{
Unlatch ¢ and p;
Watit for instant duration S lock on ¢;
goto retraverse;

h

if (OLDPGOFSPLIT bit is set in ¢)

1
if (searchkey >= key in side entry)

1
sibling = Get right sibling latched;
Unlatch c;
c = sibling;
;
h

/* Now we are on the correct child */

US 6,591,269 Bl

11

-continued

Unlatch p;
P =5
h
/* Target level 1s reached */
if ((searchmode == writermode) and

(p has SPLIT bit set))

{

Unlatch p;
goto retraverse;

h

return p;

8. Retraversing

In the above approach, “retraversal” starts from the root
page. However, the commercial embodiment (ASE) actually
uses a more efficient strategy. While traversing down the
tree, the pages encountered in the path are remembered.
When there 1s a need to retraverse, rather than starting from
the root, it starts from the lowest level page m the path that
1s safe. Apage 1s safe if 1t 1s still at the same level as expected
and the search key 1s within the range of key values on it.
The same strategy 1s used by traversal during the propaga-
tion of split and shrink to avoid starting from root. Below, 1t
will be shown that the propagation phase of online index
rebuild also uses traversal and benefits from this strategy.

C. Online Index Rebuild Overview

Online rebuild runs as a sequence of transactions, with
cach transaction performing a series of nested top actions
and each top action rebuilding multiple contiguous leaf
pages 1n the page chain. The top actions are called “multi-
page rebuild” top actions. The number of pages to rebuild in
a single top action 1s denoted by “ntasize” and the number
of pages to rebuild 1n a transaction 1s denoted by “xactsize”.
Rebuilding multiple pages in a single top action reduces
logging and CPU time. An ntasize of 32 1s chosen based on
observed performance. The significance of xactsize 1is
explained below.

At the end of each transaction, the new pages generated
in the current transaction are flushed to disk and then the old
pages that were removed from the tree are made available
for fresh allocations. Flushing new pages to disk before
making old pages available for fresh allocations allows
rebuild not to log full keys during the key copying. Instead,
the log records contain only the PAGEIDs and the times-
tamps of the source page and the target page and just the
positions of the first and the last key that were copied. Redo
(operation) may have to read the source page to redo the key
copying. On the other hand, if the source page 1s made
available for allocation before the target page 1s flushed to
disk, then the new contents of the source page could reach
the disk before the target page reaches the disk. If a crash
occurs after the new contents of the source page reach the
disk, but before the target page reaches the disk, the target
page cannot be recovered. While rebuilding several pages in
a transaction has the advantage of delaying the forced write
of new pages, 1t also delays the availability of the old pages
for reuse. It 1s desirable to rebuild a few hundred pages in a
fransaction.

D. Multipage Rebuild Top Action

1. Introduction

Consider the rebuild of contiguous pages P,, P, ..., P,
in a single nested top action. Suppose that PP is the previous

10

15

20

25

30

35

40

45

50

55

60

65

12

page of P,. and NP 1s the next page of P,. The top action
involves a copy phase and a propagation phase, which will
now be explained 1n turn.

2. Copy Phase
a. General

The index keys are copied from P,, P, ..., P_to PP and
zero or more newly allocated pages, say N,,N,, . . ., N,
where k>=0. Note that k could be greater than n (i.e., k>n)
if the user has specified that the new leaf pages be filled only
up to a desired fill factor, so that some space 1s left free for
future 1nserts. Copy phase also includes fixing page linkages
and deallocating the old pages.

b. Locking

X locks are acquired and SHRINK bits are set on PP, P,,
P,, ..., P_1n that order. For 1>1, if P, has the SPLIT or
SHRINK bit set on 1t, rebuild does not wait for lock. Instead,
only pages P,, P,, . . . ,P., are rebuilt 1n the current top
action. On the other hand, if PP or P, has the SPLIT or
SHRINK bit set, then rebuild waits for the split or the shrink
to complete.

c. Logging

The copy phase generates a single keycopy log record to
capture all the key copying that has occurred from pages P,
P, ..., P to PP and the newly allocated pages. It has
multiple entries of the form: [source pageno, target pageno,
position of the first key copied, position of the last key

copied]. It also generates allocation and deallocation log
records and a “changeprevlink” log record for NP.

d. Page Deallocations

A page can be 1n one of “allocated”, “deallocated”, or
“free” states. Only a page 1n free state 1s available for fresh
allocations. When the page manager 1s called to deallocate
a page, 1t logs a deallocation record and takes the page to
deallocated state. The page manager 1s called again to free
the page. The transition from deallocated state to free state
1s not logged by the page manager and 1t cannot be undone.
In the event of a crash, after the redo and undo phases,
recovery Irees up pages that are still in deallocated state. In
the case of a shrink top action, deallocated pages are freed
when the top action commits. However, in the case of
multipage rebuild topaction, the deallocated pages are freed
only when the current transaction commuts. It uses log scan
to determine what pages need to be freed up. Also, note that
if rebuild needs to abort due to lack of resources or internal
error or a user interrupt, during rollback, 1t needs to free up
the pages deallocated 1n completed top actions. Before

freemng up the old pages, the new pages need to be flushed
to disk.

2. Propagation Phase

The changes are propagated to level 1 by deleting the
entries for P,, P,, . . . , P_ and inserting the entries for N,
N,, . . ., N, in the parent(s) of P,, P,, . . ., P,. The
propagation may continue above level 1. The propagation of
split (shrink) can be thought of as passing of an insert
(delete) command from one level to the next. The propaga-
tion of rebuild top action can be thought of as passing
multiple commands from one level to the next, where each
command could be an insert, delete or an update. At each
level several pages could be affected. At a given level, the
alfected pages are modified in left to right order. Also, all
modifications at the current level are finished before moving
to the next higher level. For each affected non-leaf page, no
more than one “batchdelete” log record and one “batchin-
sert” log record are generated. These log records contain the
entire keys that were inserted or deleted. The propagation
phase 1s described 1n detail below.

US 6,591,269 Bl

13

3. Advantages of Rebuilding Multiple Pages 1n a Single
Top Action

Insert and delete log records in ASE have not only the key
being deleted or mserted but also a lot of additional infor-
mation such as transaction ID, old and new timestamps for
the page, position of delete or insert, and the like. The
amount of such additional information 1s as high as 60 bytes
and 1s amortized by batching multiple inserts or deletes 1n a
single batchinsert or batchdelete log record. Similarly, the
overhead 1n other log records 1s amortized by rebuilding
multiple pages 1in a single top action. Besides saving log
space, 1t has also been observed that rebuilding multiple
pages 1n a top action reduces the number of visits to level 1
pages significantly, reducing the calls to lock manager, latch
manager, and the like.

E. Propagation Phase of Rebuild

5 1. General

The following discussion focuses on how the rebuild of
multiple leal pages 1s propagated to higher levels. The
propagation 1s bottom up and the modifications to be done
at the next higher level are specified 1n the form of propa-
gation entries. Before describing propagation entries, 1t 1s
helptul to review what an index entry 1s. It 1s assumed that
a nonleaf page 1n the B+-tree that has n child pointers has
only n—1 key value separators. An imndex entry 1s of the form
| key value, child pageid], except for the index entry for the
first child, which does not have the key value. An 1ndex
page having n children has n index entries C,, [K,, C,], [K,,
C,l, ... K. _;, C,] For O<i<=n-1, C, has index entries
oreater than K. and for O<=1<n-1, C,; has index entries less
than K. ,. With this understanding, 1t 1s now appropriate to
define propagation entries and explain what propagation
entries are passed from the leaf and the nonleafl pages, as
well as described how the propagation phase proceeds from

one level to the next.

2. Propagation Entries

A propagation entry specifies the following:

(1) the page P that is sending the propagation entry.

(2) operation that must be performed at the next higher

level. The possible operations are DELETE, UPDATE
or INSERT of an index entry.

(3) INSERT propagation entry specifies the entry to be
inserted at the next level. UPDATE propagation entry
specifles the entry to replace the existing entry for that
page. UPDATE and DELETE propagation entries do
not specily the contents of index entry to delete
(pagelD uniquely identifies the index entry).

3. Propagation Entries Passed From a Leafl Page

Consider the rebuild of leaf pages P,, P,, ..., P_1n a

single top action. Let PP be the previous page of P, and NP
the next page of P,. The follow represents the rules that
determine what propagation entries are passed from a single
page P

Suppose that k, where k>0, new allocations are needed to
accommodate the keys from P,. The entry for P, needs
to be deleted from parent and entries for the k new
pages need to be mserted 1n the parent. So an UPDATE
propagation entry followed by k-1 INSERT propaga-
tion entries are passed. It all the keys from P, could be
copied into the last newly allocated page (1.€., no new
allocation was needed to accommodate the keys from
P), it passes DELETE propagation entry.

Thus, each page that was rebuilt passes one or more propa-
cgation entries. All the propagation entries from P,,
P.,...,P, are accumulated before the propagation proceeds
to level 1.

10

15

20

25

30

35

40

45

50

55

60

65

14

4. Propagation Entries Passed From a Non-leaf Page
A non-leaf page P passes propagation entry(s) in the
following cases:

P is becoming empty (in this case P needs to be shrunk)
P 1s split
P 1s not becoming empty but there was some key move-

ment from the subtree under P to the subtree under its

left sibling.
These three cases are discussed 1n more detail below. Note
that the last two cases are not mutually exclusive.

(a) Shrink of P

If all children pass DELETE propagation entries, then
page P needs to be shrunk. In this case, there 1s no need to
perform the deletes. Page can directly be deallocated. It
passes DELETE propagation entry. This means that all the
leaf rows 1n the subtree under P have been moved to the
subtree under 1ts left sibling.

(b) Split of P

The inserts to be performed on page P (as a result of
UPDATE/INSERT propagation entries coming from chil-
dren of P) may cause P to be split. If so, P is split in such a
manner that all the remaining inserts go to the old page or
all of them go to the new page. Note that one split may not
be suificient to accommodate all such inserts . If the inser-
tions cause k splits, then k siblings are generated for P and
k INSERT propagation entries are setup for inserting entries
for these new pages at the next higher level.

(c) Key Movement Across Subtrees

Consider key movement across subtrees, as 1llustrated in

FIG. 3. P' is the parent of P and L is the left sibling of P. [K1,
L] and [K2, P] are the entries for L. and P in P'. Consider
some key movement from the sub-tree under P to the subtree
under L. If keys up to (but not including) K are moved to the
subtree under L, then the entry for P in P' needs to be
changed from [K2, P] to [K, P] to keep the index consistent.
So P needs to pass an UPDATE propagation entry [K, P] to

P'. Now consider how to detect such key movement and how
to find the value of K.

LetC,, C,, ..., C, bethe children of P. If C, did not pass
DELETE or UPDATE propagation entry, then no key move-
ment has occurred from the subtree under P to the subtree
under L. Otherwise, let C,, where O<=1<=n, be the leftmost
child of P that did not pass DELETE propagation entry.
(Such a child must exist. Else, all children must have passed
DELETE propagation entries and 1t 1s the shrink case
discussed above). Since the children C,, C,, . . . ,C,_; have
passed DELETE propagation entries, 1t means all the keys in
the subtrees under them have been moved and they have
become empty. The entries for all of them on P need to be
deleted and C, needs to become the first child of P. If C, has
passed an UPDATE propagation entry, say [K , C.], then
keys <K may have been moved from subtree under C,; to
that under 1ts left sibling. So, P passes UPDATE propagation
entry [K , P] i.e., K =K . Otherwise, C, must have passed
INSERT propagation entry(s) or no propagation entries. In
either case, no key movement has occurred from the subtree
under C,; to a subtree under its left sibling. If [K,, C.] is the
entry for C; on P, then P passes UPDATE propagation entry
| K., P] to its parent i.e., K=K..

Propagation From Level 1 to Level 1+1

(a) Methodology

A method of the present invention to apply a list of
propagation entries passed from level 1 to level 1+1 may be
constructed as follows.

Propagate_ to__level
Input: List L=[E,, E, . . ., E_] of all propagation entries
to be applied to level i+1 pages (these were passed from
level 1 pages)

US 6,591,269 Bl

15

Output: List L, of propagation entries passed to the next
higher level from level 1+1 if any

Side Effect: The modifications specified by the input
propagation entries are applied on level 1+1 pages

propagate_ to_ level (L, 1+1)
[nitialize L. 1 to empty list;
while (L is not empty)

{
e = first propagation entry in L;
C = page that propagated e¢;
K = Any key from page C;
/* Get the parent of C X latched. Note that
** fraversal uses same strategy as described in
** retraversal section earlier to avoid starting
** from root (See below)
*f
P = traverse (K, writer, i+1);
/* 1dentify all the propagation entries that
** were sent by children of P (they are
** guaranteed to be contiguous in L).
*f
e' = last propagation entry in L that was

passed by a child of P;

Delete propagation entries e through e’
from L;

/* apply the propagation entries e through
** ¢' on P(See below).

*f

Modity P;

Append the propagation entries passed by P
if any to L. 1

Release any latches held;

(b) Modification of Page P

The propagation entries passed by the children of P are
applied on page P in two phases, the delete phase followed

by the 1nsert phase. In the delete phase, the index entries for
all the children that passed DELETE or UPDATE status are
deleted. All such i1ndex entries will be contiguous. In the
insert phase, the immdex entries specified by the INSERT/
UPDATE propagation entries coming from children of P are

inserted. The 1index entries inserted will also be contiguous.
Traversal would have retrieved page P latched in X mode.
However, latch alone 1s not sufficient. The address locking

mechanism used by split or shrink top actions 1s used here
and the SPLIT and SHRINK bits are overloaded. P 1s locked

in X mode. A SHRINK bit 1s set on P 1if traversals through
P need to be blocked. If modifications to P need to be
blocked but not the traversals through P, a SPLIT bait 1s set
on 1t. The rules for deciding which bit needs to be set are as
follows.

If any delete 1s performed on a page (i.e., at least one child
passed a DELETE or UPDATE status), SHRINK bit is
set.

If only inserts are performed on a page (i.€., no deletes and
no splits), then SPLIT bit is set.

If P needs to be split, a SHRINK bit 1s set on it. The new
page 1s also X locked and SHRINK bit 1s set on 1t.

There 1s no need to establish a side entry as traversals
through P are being blocked anyway. X latch needs to be
retained only on the page where the rest of the 1nserts 1n the
insert phase need to be performed. These rules are very
conservative. Traversals are being allowed through the page
only 1n the 1nsert-only case, as no keys in the subtree under
the page would have been moved to the subtree under 1ts left
or right sibling in that case. (See below for a possible
improvement).

10

15

20

25

30

35

40

45

50

55

60

65

16

6. Reorganizing Level 1 Pages

Consider the propagation from leaf level to level 1. In the
propagation methodology described above, while applying
propagation entries on a level 1 page P, the insert phase

inserts the index entries specified in UPDATE/INSERT
propagation entries sent by the children of P. However, it 1s

better to perform as many of those inserts as permitted by
space on the immediate left sibling of P that 1s not being
shrunk in the current top action. Note that this can only be
done 1if the first child of P 1s getting deleted in the delete
phase (i.e., it passed a DELETE[UPDATE status).
Otherwise, 1t would violate the index key ordering at level
1. With this enhancement, level 1 pages are filled as much
as possible without requiring a separate pass.

An example of multipage rebuild top action with this
enhancement 1s shown 1 FIG. 4. At propagation stage 410,
Leaf pages P1, P2 and P3 are reorganized. Assuming five
rows {it 1into a leaf page, all of P1’s rows and some of P2’s
rows are moved to PP. The remaining rows from P2 are
moved to the new page N1. All of P3’s rows are moved to
N1. P1 passes a DELETE propagation entry as 1t did not
cause allocations. P2 passes UPDATE propagation entry
with [22, N1] as the index entry to replace the entry for P2
at the next higher level. P3 also passes DELETE propagation
entry. At propagation stage 420, the three reorganized pages
P1, P2, P3 all have the same parent P. In the delete phase, the
entries for all these pages need to be deleted. In the insert
phase, [22,N1] needs to be inserted. However, this insert is
performed on the previous page L. Since all the entries in P
need to be deleted and there are no inserts to perform on P,
DELETE propagation entry 1s passed. At propagation stage
430, the entry [15, P]is deleted. The propagation is complete
and the top action 1s committed.

F. Propagation Phase of Rebuild

The following evaluates the methodology with respect to
some relevant metrics.

1. Restoration of Clustering

When online index rebuild begins, the page manager tries
to allocate a new page from a chunk of large contiguous free
disk space. After all the pages 1n the chunk are used up, ita
cgain looks for a chunk of large contiguous free disk space.
As the mndex keys are moved to the newly allocated pages 1n
the increasing key order, the new leaf pages are expected to
be well clustered.

2. Concurrency

Although rebuilding multiple pages 1n a top action has the
disadvantage of keeping many leaf pages locked at a given
time, it significantly reduces the number of visits to a level
1 page and the total duration of exclusive access to it. It also
significantly reduces the CPU time for the rebuild operation
which 1n turn reduces the negative impact of the operation
on the throughput of the system. Some possible enhance-
ments to reduce the impact on concurrent index operations
include the following.

In the propagation phase, setting SHRINK bit on all
nonleal pages on which a delete was performed 1s
pessimistic. Rebuild deletes contiguous index entries
on nonleaf pages. Suppose that all index entries
between [K,, C,] and [K;, C;] are deleted. There is no
reason to block traversals through the page that are
looking for <K; or >=K;. Thus the positions of these
index entries could possibly be established on the page
(just as a split establishes a side entry) to benefit
concurrent traversals. This enhancement only helps 1n
those cases where the propagation continues above
level 1.

US 6,591,269 Bl

17

Consider the rebuild of P,, P,, . . ., P, 1n a single top
action. Let PP be the previous page of P, and NP be the
previous page of P, . As the address locks are acquired on the
pages being rebuilt, SPLIT bits (rather than the SHRINK
bits) could be set on them (except on PP) so that only writers
are blocked and not the readers. Once the contents of all the
n pages have been copied to PP and possibly one or more
newly allocated pages, the SPLIT bits could be modified to
SHRINK bits (under an X latch). Now the next page pointer
of PP and previous page pointer of NP can be set so that the
old pages are effectively unlinked and new pages are linked
into the chain.

3. Disk I/O

One scan of the old 1ndex is performed 1n the page chain
order and the new pages are written out to disk once. While
the page size 1s 2 KB, the buffer manager allows the user to
configure buffer pools with 4K, 8K or 16K buffer sizes.
Online rebuild requests buffer manager to use the largest size
buffers available for reading old pages and for writing new
pages to reduce disk I/0.

4. Logging and CPU Time

How the log space used and the CPU time consumed vary
with “ntasize” was tested under the following conditions:

The space utilization in the index being rebuilt 1s about
50% and the rebuild specified a fillfactor of 100%.

The cache is cold (i.e. all pages had to be read from disk).

The page size 1s 2 KB but the buffer pool 1s configured
with 16 KB buffers so that 16KB I/O size 1s used for
index page reads and writes as well as log writes.

Sun Ultra-SPARC machine running SunOS 5.6 1s used.
For a given number of leaf pages 1 the old and the new
index, the log space required varies primarily with the
average nonleaf row size. The index manager 1n ASE uses
sulix compression which reduces the nonleaf row size
especially when the index 1s on multiple columns or on wide
columns. Experimentation with index key size (i.e., sum of
maximum column lengths of all index columns) of 4 bytes
and 40 bytes yielded the results shown below. L ratio is the
rat1o of log space required when “ntasize” of 1 1s used to the
log space required at the specified “ntasize”. “C ratio” 1s
defined similarly for CPU time. Although the experiments
were performed with 2K page sizes, the numbers for log
space are expected to be valid for a wide range of page sizes.
However, the ratio of log space required to that of the index
size 1s expected to be 1nversely proportional to index page
size. From Table 1, 1t 1s desirable to choose a large number
for “ntasize” (e.g., 32 to 64 pages).

TABLE 1

1L.OG SPACE AND CPU TIME

key avg non-leaf
S1Z€E I'OW SIZE nta-size Lo Clatio
1 10 32 7.3 2.4
4 10 64 o 2.4
40 20 32 4.9 3.7
40 20 64 54 4
5. Deadlocks

The concurrency control protocols employed in the sys-
tem are such that the operations never get into a deadlock
involving latches or address locks or both. The possible
deadlock 1s one that mvolves only logical locks. The fol-
lowing rules ensure this

While holding a latch, unconditional logical lock 1s never
requested and an unconditional address lock 1is

10

15

20

25

30

35

40

45

50

55

60

65

138

requested only on a page that 1s being allocated (and
hence not accessible from the tree) or a page that does

not have SPLIT/SHRINK bit set.

Latches are requested only 1n left to right order at a given
level and top down order across levels.

Address locks are requested only 1n bottom up order
across levels.

Address locks within a nonleaf level are acquired only 1n
left to right order.

Address locks within leaf level: Shrink acquires address
locks on two pages and they are acquired 1n right to left
order. Split acquires address lock on the old page and
then the new page. But since new page 1s not yet part
of the tree, this sequence does not cause a deadlock
with shrink. Rebuild acquires address locks 1n left to
richt order. However, as mentioned before, if rebuild
needs to wait, 1t releases all the locks that are acquired
already before waiting. After wakeup, it retries for all
the locks again.

G. Advantages Over Other Online Rebuild
Approaches

An early published article on online rebuild i1s from
Tandem; see, e.g., Smith, G., Online Reorganization of
Key-Sequenced 1ables and Files, Tandem Systems Review,
October 1990, the disclosure of which 1s hereby incorpo-
rated by reference. The approach of the present mmvention
has the following advantages over that approach. In Tan-
dem’s approach, when the page split and merge operations
are performed, the entire file 1s made 1naccessible to the
OLTP transactions, whereas 1n the method of the present
invention only access to the affected pages 1s restricted.
Further, 1n Tandem’s approach, although 1t 1s not explicitly
stated, 1t seems all the moved keys are logged where as in
our approach the key contents themselves are not logged.

A more-recently published work 1n this area 1s Sockut, G.
et al., A Method for On-Line Reorganization of a Database,
IBM Systems Journal, Vol. 36, No. 3, pages 411436, 1997
(e.g., at //www.research.ibm.com/jour-nal/sj/363/
sockut.html), the disclosure of which is hereby incorporated
by reference. This paper describes a comprehensive scheme
to reorganize a table and rebuild the associated indexes. That
scheme has several drawbacks. A separate copy of the table
1s made and the associated indexes are rebuilt thereby
doubling the storage requirement. User transactions must be
directed to use the new copy. If there are long-running user
sessions (with opened cursors), reorg (operation) waits for
them to complete. For the duration of the reorg, the log
should not be truncated because the reorg relies on the log
for any changes that need to be applied to the new copy.
Incremental reorganization i1s difficult. By doing inline
reorganization, the approach of the present invention avoids
the above problems.

Zou et al. also describe an approach for rebuilding an
index, see e.g., Zou, C. et al., On-line Reorganization of

Sparsely-populated B+trees, Proc. of ACM SIG-MOD Cont,
pages 115-124, 1996, the disclosure of which 1s hereby
incorporated by reference. The present invention has the
following advantages over that approach. The approach of
the present invention reorganizes level 1 pages without
requiring a sidefile. The sidefile mechanism adds a lot of
implementation complexity. It also adds overhead to splits
and shrinks happening in the index during the rebuild of
non-leaf levels. Logging 1s reduced 1n Zou et al. by assuming
“careful writing” mechanism 1n the buffer manager. The
approach of the present invention does not require such a

US 6,591,269 Bl

19

mechanism 1n the buffer manager. The system of the present
invention and just assumes “forced write”, which 1s different
from “careful writing”; the former just requests the buifer
manager to force a page to disk, while the latter assumes a
more 1nvolved mechanism of tracking the relative order in
which a certain set of pages need to be written to disk.
Unlike Zou et al., the approach of the present invention does
only one pass of the index. Also 1n Zou et al., only one new
page 1s rebuilt 1n each reorganization unit. However, it 1s
believed that it 1s important to build multiple new pages in
cach reorganization unit to reduce logging overhead and
CPU time. In Zou et al. switching to the new B+-tree
requires an X lock on the tree which may cause unbounded
walit. It 1s suggested that the transactions active in the tree be
aborted 1f lock cannot be acquired after certain timeout
interval. User transactions are never aborted 1in the approach
of the present invention.

However, the method of the present invention may incur
the following drawbacks when compared to Zou et al.
During the propagation phase of multipage rebuild, pages
above level 1 may need to be modified 1n which case X lock
1s acquired on the page being modified. Zou et al. does not
X lock pages above level 1 1n X mode (except for the X lock
on the tree in the switching phase). However, since propa-
gation 1s bottom up (as opposed to top down), the duration
of X lock on non-leaf pages 1s expected to be small. This 1s
because most of the time 1n the top-action 1s spent in reading,
old leaf pages and moving rows from old leaf pages to new
pages. Additionally, as mentioned before, to achieve good
clustering, the approach of the present invention employs a
large chunk of contiguous free space on disk to begin with.
However, since the amount of contiguous free space needed
1s small compared to the size of the index, this 1s not a
significant problem. At the end of each transaction, new
pages need to be flushed to disk. This disadvantage 1s
alleviated to some extent by using large buffers and building
a few hundred new pages 1n each transaction.

H. Conclusion

The online i1ndex rebuild methodology of the present
invention provides high concurrency, does minimal logging,
and has good performance. By rebuilding multiple leaf
pages 1n each top action, the updates to level 1 pages can be
batched resulting 1n significant reduction 1n logeing and
CPU time. The level 1 pages are reorganized while propa-
cgating the leaf level changes thereby eliminating a separate
pass for reorganizing level 1 pages. Moreover, as the
rebuilding 1s performed online, the table 1s available for
updates.

While the invention 1s described in some detail with
specific reference to a single-preferred embodiment and
certain alternatives, there 1s no intent to limit the mvention
to that particular embodiment or those specific alternatives.
For mstance, those skilled in the art will appreciate that
modifications may be made to the preferred embodiment
without departing from the teachings of the present inven-
fion.

What 1s claimed 1s:

1. In a database system, said database system storing a
plurality of data records as a data table having an index, said
index mncluding a B-Tree comprising a multi-level structure
having leaf-level and nonleaf-level pages for facilitating
access to the database table according to a particular key
order, a method for rebuilding the index comprising:

(a) receiving a request for online rebuilding of the index;
and

10

15

20

25

30

35

40

45

50

55

60

65

20

(b) rebuilding the index online by:

(1) allocating new pages for storing index pages;

(11) rebuilding the leaf-level pages by copying
information, 1n key order, from the leaf pages to the
new pages;

(i11) propagating the rebuilding of the leaf-level pages
to higher nonleat-level pages of the index; and

(iv) reorganizing the nonleaf-level pages that are at a
level directly above the leaf-level pages while propa-
gating the rebuilding of the leaf-level pages, so as to

climinate a separate pass for reorganizing pages of
that level.

2. The method of claim 1, wherein said B-Tree index
comprises a B+-tree index.

3. The method of claim 1, wherein said B-Tree index
comprises a plurality of pages storing a fixed number of key
values derived from said data records.

4. The method of claim 1, wherein each B-Tree index
comprises a root node, a plurality of internal nodes, and a
plurality of leaf nodes.

5. The method of claim 4, wherein said B-Tree index
comprises a clustered index, and wherein said leaf nodes of
said B-Tree store said plurality of data records.

6. The method of claim 4, wherein said leaf nodes of said
B-Tree store record identifiers, each record identifier
uniquely 1dentifying a particular one of said data records.

7. The method of claim 1, wherein the leaf pages of the
index are doubly linked.

8. The method of claim 1, wherein multiple leaf pages are
rebuilt 1n a single top action.

9. The method of claim 8, wherein the number of leaf
pages to be rebuilt 1n a single top action 1s conifigurable.

10. The method of claim 1, wherein multiple leaf pages
are rebuilt 1n a single transaction.

11. The method of claim 1, wherein the number of leaf
pages to be rebuilt 1n a single transaction 1s configurable.

12. The method of claim 1, wherein said copying of
information 1n key order includes acquiring selected ones of
exclusive and shared locks on the leaf pages to be copied.

13. The method of claim 12, wherein said copying of
information includes copying information only from leaf
pages on which exclusive locks are acquired.

14. The method of claim 1, wherein said copying of
information in key order further comprises:

generating a single log record of all key copying that has

occurred.

15. The method of claim 14, 1n which said log record
includes source page number, target page number, position
of first key copied, and position of last key copied.

16. The method of claim 1, wherein said copying of
information further comprises:

generating allocation and deallocation log records and a
previous link log record.
17. The method of claim 1, further comprising;:

writing the new pages generated by said index rebuilding
to persistent storage; and

after said new pages are written to persistent storage,
making the old pages available for fresh allocations.
18. The method of claim 17, wherein said step of making
said old pages available for fresh allocations includes the
substeps of:

first deallocating a page and logging a deallocation
record; and

after index rebuilding completes, scanning said dealloca-
tion log record and making available for fresh alloca-
tions the dellocated pages included in said index
rebuilding.

US 6,591,269 Bl

21

19. The method of claim 1, wherein said step of propa-
cgating the rebuilding of the leaf-level pages to higher
nonleat-level pages of the index comprises the substeps of:

deleting entries for old leaf pages in said higher nonleat-

level pages; and

inserting entries for the new leal pages in said higher

nonleaf-level pages.

20. The method of claim 19, wherein said insertions and
deletions are made by an update operation speciiying an
entry to replace an existing entry.

21. The method of claim 19, wherein all deletions to said
nonleaf pages are made before any insertions are made.

22. The method of claim 19, wherein all index deletions
are 1n configuous key order.

23. The method of claim 19, wherein all index insertions
are 1n contiguous key order.

24. The method of claim 19, wherein all insertions and
deletions to pages at the current level are completed betfore
any 1nsertions or deletions are made to index pages at a
higher level.

25. The method of claim 19, wherein log records are made
listing all deletions from and insertions to each affected
nonleat-level page.

26. The method of claim 25, wherein for each affected
nonleat-level page no more than one log record 1s made of
all deletions and no more than one log record 1s made of all
insertions.

27. The method of claim 19, wherein said step of deleting
entries for old leaf pages 1n said higher nonleaf-level pages
includes deallocating all nonleaf-level pages from which all
leaf page entries have been deleted.

28. The method of claim 19, wherein said step of inserting
entries for new leaf pages 1 said higher-level nonleaf pages
includes propagating a split of said higher-level nonleat
pages as necessary to mcorporate said inserting entries.

29. The method of claim 28, wherein said propagating a
split of said higher-level nonleaf pages comprises propagat-
ing all remaining 1nserts to one or more newly propagated
pages.

30. The method of claim 28, wherein said propagating a
split of said higher-level nonleaf pages comprises propagat-
ing all remaining 1nserts to an existing page.

31. The method of claim 1, wherein said propagating the
rebuilding of the leaf-level pages to higher nonleaf-level
pages mcludes propagating from nonleaf-level pages 1imme-
diately above the leaf-level pages to higher nonleaf-level
pages.

32. The method of claim 31, wherein said propagation to
higcher nonleat-level pages proceeds from the leaf-level
pages up the index tree from lower-level to higher-level
pages.

33. The method of claim 32, wherein said propagation up
the index tree includes, for each lower-level page for which
a delete, 1nsert, or update entry 1s made, propagating an
update entry to the higher-level page that 1s the parent of said
lower-level page.

34. The method of claim 32, wherein for each said level
of higher-level pages that are updated, corresponding
updates are also propagated to higher-level pages that are
their parents.

35. The method of claim 1, wherein said reorganization of
nonleaf-level pages includes, for each nonleat-level page
having 1ts first child index entry deleted or updated, the
substeps of:

inserting as many of the remaining successive index insert
or update entries in key order mto the immediate left
sibling of such page as permitted by space available on

10

15

20

25

30

35

40

45

50

55

60

65

22

such left sibling page, provided said left sibling page 1s
not being shrunk;

if there are any remaining index entries after insertion of
entriecs 1nto said left sibling page, including said
remaining entries 1 key order on said nonleaf page;
and

otherwise, 1f there are no remaining 1ndex entries on said
nonleaf page, propagating a delete entry to the parent of
said nonleaf page.

36. A data processing system comprising:

a database server connected to at least one client, said
database server storing a database table having a multi-
column 1ndex, said multi-column 1ndex comprising a
B-Tree index on one or more column(s) of said data-
base table; and

a module for rebuilding said B-Tree index including

program logic for:

(1) allocating new pages for storing index pages;

(i) rebuilding the leaf-level pages by copying
information, 1n key order, from the leaf pages to the
new pages;

(i11) propagating the rebuilding of the leaf-level pages
to higher nonleat-level pages of the index; and

(iv) reorganizing the nonleaf-level pages that are at a
level directly above the leaf-level pages while propa-
gating the rebuilding of the leaf-level pages so as to
climinate a separate pass for reordering pages of that
level.

37. The system of claim 36, wherein said B-Tree index
comprises a B+-tree index.

38. The system of claim 36, wherein each B-Tree index
entry comprises an index key value plus a record identifier.

39. The system of claim 36, wherein said B-Tree index
comprises a plurality of pages storing a fixed number of key
values derived from said column(s).

40. The system of claim 36, wherein each B-Tree index
comprises a root node, a plurality of internal nodes, and a
plurality of leaf nodes.

41. The system of claim 40, wherein said B-Tree mdex
comprises a clustered index, and wherein said leaf nodes of
said B-Tree store said plurality of data records.

42. The system of claim 40, wherein said leaf nodes of
sald B-Tree store record identifiers, each record identifier
uniquely 1dentifying a particular one of said data records.

43. The system of claim 40, wherein said leaf pages of the
index are doubly linked.

44. The system of claim 36, wherein the number of leaf
pages to be rebuilt 1n a single top action 1s configurable.

45. The system of claim 36, wherein the number of leaf
pages to be rebuilt 1n a single transaction 1s configurable.

46. The system of claim 36, wherein said copying of
information 1 key order includes acquiring a selected one of
exclusive or shared locks on the leaf pages to be copied.

47. The system of claim 36, wherein said copying of
information 1n key order further comprises generating a
single log record of all key copying that has occurred.

48. The system of claim 36, wherein said copying of
information further comprises generating allocation and
deallocation log records and a change previous link log
record.

49. The system of claim 36, wherein said copying of
information includes:

writing the new pages generated by said index rebuilding
action to said database server; and

after said new pages are written to said database server,
making the old pages available for fresh allocations.

US 6,591,269 Bl

23

50. The system claim 49, wherein making said old pages
available for fresh allocations includes:

first deallocating a page and logging a deallocation
record; and

alter the rebuild action completes, scanning said deallo-
cation log record and making available for fresh allo-
cations the dellocated pages included 1 said rebuild
action.
51. The system of claim 36, wherein said propogating the
rebuilding of the leat-level pages to higher nonleaf-level
pages of the index comprises:

deleting entries for old leaf pages in said higher nonleat-
level pages; and

inserting entries for the new leal pages in said higher

nonleat-level pages.

52. The system of claim 51, wherein said insertions and
deletions are made by an update operation speciiying an
entry to replace an existing entry.

53. The system of claim 51, wherein all deletions to said
nonleal pages are made before any insertions are made.

54. The system of claim 51, wherein all index deletions
are made 1n contiguous key order.

55. The system of claim 51, wherein all index insertions
arc made 1n contiguous key order.

56. The system of claim 51, wheremn all msertions and
deletions to pages at the current level are completed before
any 1nsertions or deletions are made to index pages at a
higher level.

57. The system of claim 51, wherein log records are made

listing all deletions from and insertions to each affected
nonleat-level page.
58. The system of claim 57, wherein for each affected

nonleaf-level page no more than one log record 1s made of
all deletions and no more than one log record 1s made of all
Insertions.

59. The system of claim 51, wherein said deleting entries
for old leaf pages 1n said higher nonleaf-level pages includes
deallocating all nonleat-level pages from which all leaf page
entries have been deleted.

60. The system of claim 51, wherein when said inserting
entries for new leaf pages 1n said higher-level nonleaf pages
causes 1ncludes propagating a split of said higher-level
nonleal pages as necessary to incorporate said inserting
entries.

10

15

20

25

30

35

40

24

61. The system of claim 60, wherein said propagating a
split of said higher-level nonleaf pages comprises propagat-
ing all remaining inserts to one or more newly propagated
pages.

62. The system of claim 60, wherein said propagating a
split of said higher-level nonleaf pages comprises propagat-
ing all remaining inserts to the existing.

63. The system of claim 36, wherein said propagating the
rebuilding of the leat-level pages to higher nonleaf-level
pages includes propagation from nonleaf-level pages 1mme-
diately above the leaf-level pages to higher nonleaf-level
pages.

64. The system of claim 36, wherein said propagation to
higher nonleaf-level pages 1s generated from the leaf-level
pages up the index tree from lower-level pages to higher-
level pages.

65. The system of claim 64, wherein said propagation up
the 1ndex tree to higher-level pages includes, for each
lower-level page for which a delete, insert or update entry 1s
made, propagating an update entry to the higher-level page
that 1s the parent of said lower-level page.

66. The system of claim 36, wherein for each said level of
higher-level pages that are updated, corresponding updates
are also propagated to higher-level pages that are their
parents.

67. The system of claim 36, wherein said reorganization
of nonleaf-level pages includes, for each nonleaf-level page
having its first child index entry deleted or updated:

inserting as many of the remaining successive index msert
or update entries 1n key order into the immediate left
sibling of such page as permitted by space available on
such left sibling page, and provided said left sibling
page 1s not being shrunk;

if there are any remaining index entries after insertion of
entries 1nto said left sibling page, including said

remaining entries i key order on said nonleaf page;
and

otherwise, 1f there are no remaining 1ndex entries on said
nonleaf page, propagating a delete entry to the parent of
said nonleaf page.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

