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(57) ABSTRACT

A system and method for predicting the forces generated 1n
the tire contact patch from measurements of tire
deformations, including separating the lateral force, the
vertical force, and the circumierential torque using measure-
ments of tire deformations. A system and method for using
a trained neural network or bilinear equations to determine
any combination or permutation of one or more of any of the
following from tire sidewall deformation sensors, €.g., mag-
netic tire sidewall torsion measuring (SWT) sensors: the
lateral force acting on the tire, the circumferential torque
acting on the tire, the longitudinal force acting on the tire,
the vertical force acting on the tire, and forces and/or torques

having any one or more of the foregoing as components
thereof.
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SYSTEM AND METHOD FOR PREDICTING
TIRE FORCES USING TIRE DEFORMATION
SIEENSORS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s believed to be related to the following
issued patents and pending applications: U.S. Pat. Nos.
5,895,854, 5,913,240, 5,926,017; 5,964,265; 6,161,431; and
6,308,758; and U.S. patent application Ser. No. 09/347,757
filed Apr. 11, 2002 and entitled TIRE STATUS DETEC-
TION SYSTEM AND METHOD.

FIELD OF THE INVENTION

The present mnvention relates generally to the field of tire
dynamics and more specifically to predicting the forces
ogenerated 1n the tire contact patch from measurements of tire
deformations, including separating the lateral force and the
circumferential torque using measurements of tire deforma-
tions.

BACKGROUND OF THE INVENTION

U.S. Pat. No. 5,895,854, which 1s incorporated herein by
reference, discloses a vehicle wheel that 1s provided with a
pneumatic (rubber) tire having at least at one predetermined
location a rubber mixture that 1s permeated with magnetiz-
able particles that have been magnetized. As stated in that
patent, the tire disclosed theremn can be used 1n a slip
regulation system. Preferably, the magnetized locations are
located 1n one or more annular bands 1n the sidewall of the
fire, 1.€., 1n the longitudinal or peripheral direction, and have
successive zones of different magnetization 1n one or more
rows disposed at different radui along the peripheral direc-
fion of the tire. It was an object of that patent to provide a
vehicle wheel having a pneumatic (rubber) tire, with the aid
of which the information required for operating a modem
vehicle, e.g. wheel rotational speed for ABS (Anti-lock
Brake system) and/or longitudinal forces (torsional forces)
that act upon the tire for regulating slipping, can be made
available.

According to that patent, the generated magnetization and
the spatial magnetization differences could be detected with
magnetic field sensors and can serve as SWT sensor 1nput
signals (sidewall torsion sensor input signals) for slip regu-
lating systems, especially also for SWT systems (sidewall
torsion measuring systems). As further stated in that patent,
it was previously thought that 1n order to be able to detect a
change of the time span between the passes of the two marks
(in one row for ABS or in two rows for SWT) as precisely
as possible, 1t was desired that the magnetization 1n the
peripheral direction be effected as quadrilaterally as
possible, 1.e. that the magnetization should be substantially
homogeneous within a cohesive region (code bars), and
above all at the boundaries of this region should change with
as great a gradient as possible. In contrast, it was stated that
for the conventional ABS systems that detected the wheel
rotations, 1t was suflicient if the magnetization in the periph-
eral direction of the tire be effected 1n a sinusoidal manner.

Thus, a primary function of the SWT system using the
SWT sensor has always been to measure the torsional
deformation 1n the tangential direction of the tire and use
that torsional deformation to calculate the applied driving or
braking torque. However, cornering maneuvers adversely
affect the calculation of driving torque or braking torque,
because the presence of lateral forces on the tire confounds
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2

the measurement of longitudinal torque using the SWT
sensor as originally envisioned (using phase differences
between the two sensors detecting the magnetic bands 1n the
tire sidewall to calculate torsional deformation).
Additionally, the presence of a vertical force on the tire
further confounds the measurement of longitudinal torque
using the SWT sensor as originally envisioned, although not
as severely as lateral force does.

SUMMARY OF THE INVENTION

The present invention provides a system and method for
not only decoupling the lateral and tangential forces to allow
the SW'T sensor to be used to effectively measure longitu-
dinal torque, but also predicting the lateral force and other
forces and torques acting on the tire using the SW'T sensors.

According to the present invention, a system and method
are provided for predicting the forces generated 1n the tire
contact patch from measurements of tire deformations,
including separating skewed forces, ¢.g., lateral force and
circumferential torque, using measurements of tire defor-
mations.

According to one aspect of the system of the present
invention, a trained processor, €.g., a trained neural network,
1s used to predict skewed forces, e.g., lateral force and
circumferential torque, using measurements of tire defor-
mations. In a first embodiment, a trained neural network 1s
used to predict at least one force acting on the tire, preferably
lateral force and circumferential torque. In a second
embodiment, a set of bilinear equations are used to predict
at least one force acting on the tire, preferably lateral force
and circumferential torque.

It 1s therefore an advantage of the present invention to
provide a system and method for determining circumieren-
fial torque using tire deformation sensors, €.g., SWT sensors.

It 1s also an advantage of the present invention to provide
a system and method for determining lateral force using tire
deformation sensors, ¢€.2., SWT sensors.

It 1s therefore another advantage of the present invention
to provide a system and method for decoupling lateral force
and circumierential torque 1n measurements from tire defor-
mation sensors, €.2., SWT sensors.

It 1s a further advantage of this invention to provide a
system and method for determining vehicle yaw rate from
tire deformation sensors, €.g., SWT sensors, thereby elimi-
nating the need for a separate yaw rate sensor.

It 1s yet another advantage of the present invention to
provide a system and method for determining vehicle speed
from tire deformation sensors, €.g., SW'T sensors, thereby
climinating the need for a separate speed sensor.

It 1s still another advantage of the present invention to
provide a system and method for using a trained neural
network to determine any combination or permutation of
onc or more of any of the following from tire deformation
sensors, €.2., SWT sensors: the lateral force acting on the
tire, the circumierential torque acting on the ftire, the longi-
tudinal force acting on the tire, the vertical force acting on
the tire, and forces and/or torques having any one or more
of the foregoing as components thereof.

It 1s further still another advantage of the present mnven-
fion to provide a system and method for using bilinear
equations to determine any combination or permutation of
one or more of any of the following from tire deformation
sensors, €.2., SWT sensors: the lateral force acting on the
tire, the circumierential torque acting on the tire, the longi-
tudinal force acting on the tire, the vertical force acting on
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the tire, and forces and/or torques having any one or more
of the foregoing as components thereof.

It 1s another advantage of the present invention to
decouple circumferential torque of a tire from lateral forces
and vertical forces acting on the ftire.

It 1s still another advantage of the present invention to
provide a system and method for determining any combi-
nation or permutation of one or more of any of the following
from tire sidewall deformation sensors, €.g., SWT sensors:
the lateral force acting on the tire, the circumierential torque
acting on the tire, the longitudinal force acting on the tire,
the vertical force acting on the tire, and forces and/or torques
having any one or more of the foregoing as components
thereof.

These and other advantages of the present mvention will
become more apparent from a detailed description of the
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The file of this patent contains at least one drawing
executed 1n color. Copies of this patent with color drawing
will be provided by the Patent and Trademark Office upon
request and payment of the necessary fee.

In the accompanying drawings, which are incorporated in
and constitute a part of this specification, embodiments of
the mvention are 1llustrated, which, together with a general
description of the invention given above, and the detailed
description given below serve to example the principles of
this mvention.

FIG. 1 1s a perspective view of a vehicle showing various
forces and torques;

FIG. 2 1s a schematic block diagram of a system of the
present mvention;

FIG. 3 1s a side view of a tire having magnetic bands of
alternating polarity and corresponding sensors used with the
system and method of the present invention;

FIG. 4 1s a perspective view of a mounting bracket fixed
to a suspension strut and holding two magnetic sensors 1n
close proximity to the magnetic sidewall of the ftire;

FIG. § 1s a close up view of the mounting bracket and
sensors shown 1n FIG. §;

FIG. 6 1s a front view of the tire, suspension strut, and
sensors showing the effects of a lateral force, with the tire
viewed 1n a section taken vertically;

FIG. 7 1s a close up view of the tire and sensors of FIG.
6,

FIG. 8 1s a data plot of SWT sensor amplitude taken in the
presence of lateral force and circumferential torque, show-

ing that 1n the presence of torque SWT sensor amplitude 1s
a relatively poor predictor of lateral force;

FIG. 9 1s a data plot of SWT sensor amplitude taken in the
presence of lateral force and circumferential torque, show-
ing that the presence of lateral force causes a cross-term
error when using SW'T sensor phase difference as a predictor
of circumferential torque;

FIG. 10 1s a flow chart showing the general procedure
used to train the neural network of the present invention,

FIG. 11 1s a flow chart showing the general procedure for
using the trained neural network of the present invention to
predict lateral force and circumierential torque;

FIG. 12 1s a data plot showing the lateral force and
circumferential torque applied to the tire during data acqui-
s1t10n;

FIG. 13 1s a schematic block diagram showing the struc-
ture of the neural network trained in Example 1;
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FIG. 14 1s a data plot showing measured lateral force and
the lateral force predicted by the trained neural network of
Example 1;

FIG. 15 1s a data plot showing measured circumiferential
torque and the circumierential torque predicted by the
trained neural network of Example 1;

FIG. 16 1s a data plot showing measured lateral force and
the lateral force predicted by the bilinear equations of
Example 2;

FIG. 17 1s a data plot showing measured circumferential
torque and the circumierential torque predicted by the
bilinear equations of Example 2;

FIG. 18 1s a data plot showing measured vertical force and
the vertical force predicted by the trained neural network of
Example 3;

FIG. 19 1s a data plot showing measured lateral force and
the lateral force predicted by the trained neural network of
Example 3;

FIG. 20 1s a data plot showing measured circumferential
torque and the circumferential torque predicted by the
trained neural network of Example 3;

[ '

FIG. 21 shows a plurality of coefficient of dynamic
friction (@) versus percent slip (u-slip) curves at various
steering angles showing the significant effect that even small
lateral forces can have on the location of the peak of the
u-slip curve;

FIG. 22 1s a data plot showing measured vertical force and
the vertical force predicted by the bilinear equations of
Example 4;

FIG. 23 1s a data plot showing measured lateral force and
the lateral force predicted by the bilinear equations of
Example 4; and

FIG. 24 1s a data plot showing measured circumiferential
torque and the circumierential torque predicted by the
bilinear equations of Example 4.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

“Circuit communication” as used herein 1s used to 1ndi-
cate a communicative relationship between devices. Direct
clectrical and optical connections and indirect electrical and
optical connections are examples of circuit communication.
Two devices are 1n circuit communication 1f a signal from
one 1s received by the other, regardless of whether the signal
1s modified by some other device. For example, two devices
separated by one or more of the following—transformers,
optoisolators, digital or analog buffers, analog integrators,
other electronic circuitry, fiber optic transceivers, or even
satellites—are 1n circuit communication if a signal from one
reaches the other, even though the signal 1s modified by the
intermediate device(s). As a final example, two devices not
directly connected to each other, but both capable of inter-
facing with a third device, e.g., a CPU, are 1n circuit
communication. As used herein, “input” refers to either a
signal or a value and “output” refers to either a signal or a
value.

Referring now to FIG. 1, the forces referred to herein are
shown schematically. In that figure, a vehicle 10 1s shown
schematically along with the longitudinal force F_, the
longitudinal (circumferential) torque M,, and the lateral
force F, acting on the tires. Although not shown 1n FIG. 1,
another force of 1interest 1s the vertical force F, which 1s
perpendicular to the longitudinal force F_ and the lateral

force Fy.

Referring now to FIG. 2, a vehicle control system 20
according to the present invention 1s shown schematically. In
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the broadest sense, the vehicle control system 20 comprises
a force prediction unit 22 to be placed 1n circuit communi-
cation with at least one tire sidewall deformation sensor.
Preferably, the tire sidewall deformation sensor 1s a mag-
netic tire sidewall torsion (SWT) sensor. The force predic-
tion unit 22 has a preprogrammed processor (not shown) that
receives input from the at least one SWT sensor and at least
one other sensor mput and performs data analysis by imple-
menting preprogrammed equations having constants deter-
mined from previously collected data to determine from at
least the SWT input and the at least one other sensor 1nput
an output corresponding to a predicted circumierential
torque and/or longitudinal force and/or lateral force and/or
vertical force acting on the tire. The force prediction unit 22
may also perform any necessary signal conditioning and
data processing assoclated with the SWT sensor and the
other sensor.

With respect to FIG. 2, 1 a preferred embodiment, the
force prediction unit 22 1s placed 1n circuit communication
with a pair of magnetic SWT sensors 26, 28 for each tire 30
of the vehicle 20; however, the force prediction unit 22 may
be used with as little as one SWT sensor 26 on a single tire
30 and another sensor, €.g., another SW'T sensor 28 or an
ABS speed sensor (not shown) to provide force predictions
about that one tire 30. Preferably, the force prediction unit 22
1s placed in circuit communication with a control unit 32,
which 1s 1n circuit communication with and affects the
dynamic state of the vehicle 20 via one or more actuators 34.
Examples of control units 32 and actuators 34 known to
those 1n the art include combinations and permutations of
one or more of the following: an ABS control unmit with
braking actuators, a traction control system (TCS) control
unit with braking and throttle actuators, an electronic sta-
bility control (ESC) (also known as an integrated vehicle
dynamics (IVD)) control unit with braking and throttle
actuators, a locked differential control unit, a suspension
control unit, a brake assist control unit with braking
actuators, an intelligent cruise control unit with vehicle
throttle actuators, a steering assist control unit with steering
actuators, a deflation detection control unit, a navigation
control unit, a rollover prevention control unit, and a brake-
by-wire control unit with braking actuators. Significantly,
these exemplary control units 32 and actuators 34 require
one of more of the following sensors—a longitudinal accel-
erometer (for longitudinal force and/or acceleration), a lat-
eral accelerometer (for lateral force and/or acceleration), a
vertical load sensor, wheel speed sensors, and a yaw rate
sensor, all of which can be replaced by one or more SWT
sensors coupled with the teachings of the present invention.

The force prediction unit 22 can be implemented with
various combinations of analog and digital circuitry,
processors, and the like. The control unit can be 1mple-
mented with separate circuitry and/or processor(s) or with
circuitry and/or processor(s) used to implement the force
prediction unit 22. Preferably, the data processing and data
analysis portions of the force prediction unit 22 are imple-
mented 1n a single processor, with the signal conditioning
being performed 1n dedicated analog circuitry (not shown).

Referring now to FIG. 3, a pair of SWT sensors 26, 28 1s
shown schematically with the corresponding magnetic tire
30. As shown schematically in FIG. 3, the magnetic tire 30
used with the SWT sensors 26, 28 preferably has a number
of alternating bands 38 of magnetic polarity. The magnetic
fires can be made 1n any number of ways, €.g., as taught in
U.S. Pat. No. 5,895,854, as taught 1n U.S. patent application
Ser. No. 09/347.757, now U.S. Pat. No. 6,308,758, which 1s

incorporated herein by reference, or in any number of other
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ways, €.g., providing alternating bands of premagnetized
thin material, embedding adjacent alternating magnetic
bands into the sidewall of a green tire, and curing the green
tirc. The SWT sensors 26, 28 themselves are preferably
magnetic sensors, €.g., magneto-resistive (MR) sensors, Hall
effect sensors, or flux gate sensors, positioned close enough
to the magnetic regions of the sidewall of tire to interact
therewith. MR sensors have the advantages of allowing a
moderate air gap and have been extensively tested. Flux gate
sensors have the advantage of allowing an air gap of
between one to two inches. Hall effect sensors have the
disadvantage of requiring a relatively small air gap. If two
SWT sensors are used, one sensor 26 1s preferably posi-
tioned near the tread 40 and the other sensor 28 1s preferably
positioned near the bead 42. If only one SWT sensor 1s used
with another sensor, €.g., an ABS speed sensor, the SWT
sensor 26 1s preferably positioned closer to the tread 40 than
the bead 42 to provide greater sensitivity to torsional defor-
mation.

Referring now to FIG. 4 and FIG. 5, the mounting of the
sensors 26, 28 to a vehicle suspension strut 50 i1s shown.
Preferably the sensors 26, 28 are mounted to a suspension
strut 50 via a mounting bracket 52. In FIG. 4 and FIG. 5, the
sensors 26, 28 are model number KMZ10A magneto-
resistive (MR) sensors, available from Philips. Mounting
bracket 52 preferably 1s configured so that the flat end
portion of hall effect sensors 26, 28 are substantially parallel
to the sidewall of magnetic tire 30. Preferably, the flat end
portion of MR sensors 26, 28 are 12.5 mm from the surface
of the sidewall of magnetic tire 30 when there are no lateral
forces present acting on the tire 30. With lateral forces
present, the air gap can be expected to range from about 8
mm to about 25 mm. Because the sidewall of a tire typically
has a pronounced curvature, the mounting bracket 52 pref-
erably provides a pair of skewed (1.e., not parallel) surfaces
54, 56 for the sensors 26, 28 respectively. The mounting
bracket 52 may be secured to suspension strut 50 by any
suitable means, such as mtegrally forming mounting bracket
52 with strut 50, using suitable fasteners, ¢.g., bolts 58 and
nuts 60 as shown 1 FIGS. 4 and 5, or by any other suitable
means. The sensors 26, 28 may be secured to mounting
bracket 52 by any suitable means, such as using suitable
fasteners, €.g., bolts 62 and nuts 64 as shown 1n FIGS. 4 and
5, or by any other suitable means. Wires 66, 68 place sensors

26, 28 1n circuit communication with the force prediction
unit 22.

The mounting bracket also preferably secures sensors 26,
28 so that the line segment between them 1s as parallel as 1s
practicable to the magnetic interface line between successive
magnetic bands 38 of magnetic tire 30. In this way, in the
free rolling state, the sensors 26, 28 preferably detect the
transition from one band 38 to the next at the same time, 1.¢.,
there will be no or a small phase difference between the two
sensor signals. A torsional deformation, e.g., caused by
application of a brake, takes the form of the tire tread 40
rotating with respect to the tire bead 42, so that the tire
magnetic interface line 1s no longer parallel to the line
segment between sensors 26, 28. This torsional deformation
1s detected by the SWT sensors 26, 28 as a change 1n the
phase shift between the two signals, 1.e., the transition from
onc magnetic band 38 to the next will be detected by one
sensor sooner or later than it would otherwise be detected by
that sensor with respect to the other sensor. The signals from
the sensors 26, 28 in this configuration are sinusoidal
signals.

The sensors 26, 28 1in FIG. 4 and FIG. 5 are positioned at
the 180° location (at the 12 o’clock position), which pro-
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vides the most sensitivity for decoupling circumierential
torque and lateral force, F,. Additionally, it 1s preferable to
position a second pair of SWT sensors per tire (not shown)
at either the 90° or the 270° position (at the 3 o’clock or 9
o’clock position) to provide the most sensitivity for decou-
pling circumferential torque and vertical force, F_. However,
providing sensors at the 90° or the 270° position has proven
to be challenging because sensors in either of those positions
tend to be exposed to forces that misalign the sensors or
cause the sensor supports to bend or break off. In the
alternative, a single pair of SWT sensors positioned at 135°
1s believed to provide information to decouple circumfer-
ential torque from both lateral force, F , and vertical force,
F.. Also 1n the alternative, a single additional outer sensor
can be used at either the 90° or the 270° position rather than
using an additional pair of sensors in that position. In that
case, the phase of the sensor at the 90° or 270° position
would be taken with respect to the inner sensor at the 180°
position.

The force prediction unit 22 preferably accepts as mputs
at least (a) a phase difference input, relating to (and prefer-
ably representing) a change in phase between the signals of
the two sensors 26, 28 caused by torsional deformation 1n
the sidewall of the tire and (b) a peak amplitude input from
the outer sensor 26 relating to (and preferably representing)
the length of the changing air gap between the sensor 26 and
the sidewall. More preferably, the force prediction unit 22
also accepts as additional inputs (c) a value relating to (and
preferably representing) the speed of the vehicle (which can
be determined from the period of each region of one of the
SWT sensors, inverted and scaled by the radius of the tire)
and (d) a delta input relating to (and preferably representing)
the difference between the peak amplitude signal from the
outer sensor 26 and the peak amplitude signal of the 1nner
sensor 28. The speed 1nput allows the force prediction unit
to take 1nto account the effects on the sidewall of centrifugal
forces at higher speeds and the effects of relaxation phe-
nomenon on the tire the at lower speeds. Additionally,
certain cross terms such as phase difference mput multiplied
by peak amplitude input allow force prediction units to be
trained with a very low mean sum of squared errors. Thus,
force prediction units according to the present invention,
such as neural networks and bilinear equation sets, can have
as mputs any one or more of the following: one phase
difference input for each sensor pair, a peak amplitude input
for each sensor, preferably each outer sensor in the pair, a
speed 1nput, a delta peak mput for each sensor pair, and a
cross term (phase difference input multiplied by peak ampli-
tude input) for each sensor pair, among others, with sensor
pairs being located at 90° and/or 135° and/or 180° and/or
270°, depending on the force(s) and/or torque(s) to me
predicted.

Referring now to FIG. 6 and FIG. 7, the effect on the
positional relationship between the tire 30 and sensors 26, 28
by a lateral force 1s shown schematically. The tire 30 and rim
70 are shown 1n dashed lines in the free rolling state and in
solid lines under the influence of a lateral force. In short, the
lateral force causes the distance between the sensors 26, 28
and the tire 30 to be greater. A lateral force 1n the opposite
direction to the force shown 1n FIG. 6 will cause the distance
between the sensors 26, 28 and the tire 30 to be less. These
differences 1n distance are reflected 1in a change 1n amplitude
of the signals from sensors 26, 28.

The relatively straightforward conceptual framework for
the SWT sensors set forth in the preceding two paragraphs
1s greatly complicated in application because the lateral
force and longitudinal force are coupled to some degree.
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This 1s 1llustrated by FIG. 8 and FIG. 9. FIG. 8 shows plots
of normalized lateral force (in the presence of circumferen-

tial torque) and normalized amplitude of the outer SWT
sensor 26 versus time (data from a Conti Sport Contact,
245/40 R18 magnetic sidewall tire collected with an MTS
Model 860 tread wear machine (available from MTS Sys-
tems Corporation) in accordance with the data collection
section of Example 1). As shown in FIG. 8, in the presence
of circumferential torque, the normalized amplitude of the
outer SWT sensor 26 1s a poor predictor of lateral force.
Similarly, FIG. 9 shows plots of normalized circum{ierential
torque (in the presence of lateral force) and normalized
phase-shift between the two SWT sensors 26, 28 versus time
(data from a Conti Sport Contact, 245/40 R18 magnetic
sidewall tire collected with an MTS Model 860 tread wear
machine 1in accordance with the data collection section of
Example 1). As shown in FIG. 9, the presence of lateral force
apparently causes a cross-term error when using the nor-
malized phase difference between the two SW'T sensors 26,
28 as a predictor of circumierential torque.

The present invention overcomes these drawbacks by
using the force prediction unit 22 of the present invention,
which uses 1nputs from both SWT sensors 26, 28 to deter-
mine both the circumiferential torque and the lateral force
acting on the tire.

In a first embodiment of the force prediction unit 22 of the
present mvention, the processor of the force prediction unit
22 mmplements a neural network either 1n software or in
hardware. Preferably the neural network 1s configured to
determine both the circumierential torque and the lateral
force acting on the tire; however, the neural network can be
configured to determine any combination or permutation of
one or more of any of the following: the lateral force acting
on the tire, the circumierential torque acting on the tire, the
longitudinal force acting on the tire, the vertical force acting
on the tire, and forces and/or torques having any one or more
of the foregoing as components thereof. Preferably, the
magnitude (amplitude) of the outer SW'T sensor 26 and the
phase difference between the signals of the two SW'T sensors
26, 28 are mput to the neural network, with the desired
parameters being output. Even more preferably, the differ-

ence in magnitude (amplitude) between the signal from the
outer SW'T sensor 26 and the signal from the mner SWT
sensor 28 1s used as an additional mmput. The neural network
of the force prediction unit 22 1s preferably a multi-layer
perceptron, and 1s even more preferably a multi-layer per-
ceptron having one input layer, one hidden layer (having,
e.g., 5—20 nodes), and one output layer. As to transfer
functions between layers, a nonlinear, hyperbolic tangent
sigmoidal transfer function 1s preferably used between the
input layer and the hidden layer, and a linear transfer
function 1s preferably used between the hidden layer and the
output layer. The hyperbolic tangent sigmoidal transfer
function 1s preferably implemented as follows:

2

2n_1_1

tansig =
=
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-continued

where

n=W-p+5b

W = a matrix of weights,

b = a matrix of bias values
p = a matrix of input values

W - p represents matrix multiplication

As expected, the neural network 1 the force prediction
unit 22 must be trained using previously collected data. This
training 1s exemplified by FIG. 10, which 1s a flowchart 100
showing generally how the neural network in the force
prediction unit 22 1s trained using previously collected data.
Initially, data must be collected, at step 102. In general, the
desired forces and torques are collected, e.g., from an
instrumented hub or from a dynamometer, along with the

raw SWT sensor data. In the preferred embodiment, the
circumferential torque and the lateral force acting on the tire,
and the raw SWT sensor data, are collected with an MTS
Model 860 tread wear machine (available from MTS Sys-
tems Corporation) with the frequency of the circumferential
torque and lateral force being different prime numbers to
provide a fall spectrum of measured and interacting torques
and forces. Data 1s collected, for example, at between 25,000
and 1,000,000 samples per second, and typically at 50,000
samples per second.

Next, at step 104, the raw sinusoidal SWT sensor data 1s
processed to calculate the inputs to the neural network. In
the preferred embodiment, the phase and two amplitudes are
calculated from the peaks and zero-crossings of the raw
SWT sensor data. More speciifically,

(a) the phase difference is determined as follows: (1) the
mean value 1s subtracted from all the data, (i1) at each
peak region and at each valley region a polynomial 1s
fit along the peak or valley, (iil) the maximum/
minimum of the resulting polynomial 1s determined
(by, e.g., setting the differential to zero to determine the
horizontal tangent), (1v) the time of a peak/valley of one
signal 1s subtracted from the time of the peak/valley of
the other signal, and (v) the resulting difference is
divided by the corresponding “half-period” (the time
from the previous peak/valley to that valley/peak) to
make the phase difference independent of vehicle
velocity;

(b) the amplitude of the signal from the outer SW'T sensor
26 is determined as follows: (i) the mean value is
subtracted from all data from sensor 26, (i1) at each
peak region and at each valley region a polynomial 1s
fit along the peak or valley, (iil) the maximum/
minimum of the resulting polynomial 1s determined
(by, e.g., setting the differential to zero to determine the
horizontal tangent), (iv) the processed signal is rectified
(by, e.g., taking the absolute value of each data point),
and (v) the amplitude of the fit polynomial at each
maximum 1s used as the amplitude of that signal;

(¢c) the peak difference between the two SWT signal
amplitudes 1s determined as follows: (a) the peak
amplitude of the signal from the inner sensor 28 is
calculated in accordance with step (b) above is sub-
tracted from the peak amplitude of the signal from the
outer sensor 26 as determined at (b) above.

The sinusoidal nature of the signals from the sensors facili-
tates using the fit polynomial 1n place of the actual sensor
data. Additionally, using the fit polynomial for the phase and
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amplitude 1mputs tends to smooth or remove any noise that
might otherwise cause erroneous calculations.

Having calculated the phase and two amplitudes, next
these 1nputs are corrected at step 106 using various correc-
tion methods. An exemplary correction method 1s as fol-
lows: For a tire magnetized so that there are 48 north and 48
south poles per circumference, the inner and outer SWT
sensor signals will be very much like sinusoidal waves with
a frequency of 48 wavelengths per tire revolution; 1.€., there
are 48 “peak” amplitudes and 48 “valley” amplitudes 1n
every tire revolution. If the mean 1s subtracted from the
signal, each revolution would produce 96 “zero” crossings.
In addition, if the signal 1s rectified, turning each valley 1nto
a peak, there would be 96 peak amplitudes. NumPoles
represents the number of North and South magnetic poles
around the circumference of the tire. Thus, for this particular
tire the parameter NumPoles 1s 96. For a uniform velocity,
1.€., for a constant speed with no torques or lateral forces
acting, the time difference between the zero crossings, or the
time difference between the peak amplitudes, defines the
pole pitch. I the pole spacing 1s unitorm, there would be 360
degrees/96=3.75 degrees or 2 P1/96=0.0654 radians between
cach pole. In practice, however, the pole spacing 1s rarely
perfectly uniform for a particular tire. Thus, there 1s some
error assoclated with each of the 96 pole spacing values. But
this error 1s due to the geometry and magnetization process
applied to the particular tire. The error for each pole spacing
value repeats 1tself with each revolution of the tire. These
errors affect not only the pole pitch values, but also the phase
differences between the inner and outer SWT sensor signals.
With no torques or lateral forces acting on the tire, the phase
differences between these two signals will consist of 96
constant values. Thus, the following method can be used to
correct the phase errors between poles:

First, (1) SWT phase data is collected at a uniform
velocity (no torques or lateral forces). Then, (2) from the
vector of phase data collected in (1), calculate the zero
crossings (or “mean” crossings) and the peaks and valley
amplitudes. Next, (3) rectify the data so that valley ampli-
tudes become peak amplitudes. Then, (4) partition the vec-
tored data into NumPoles sets and ensemble average N of
the sets, 1.e.:

Pole number 1 2 3 C. k NumPoles
set 1 P11 P12 P13 Pix PiNumPoles
set 2 P21 P22 P23 P2k PoNumPoles
set ] pjl pjg pj3 ij ijumPc::les
set N PN1 Px~2 P~3 PNk PNNumPoles

Average ave, ave, aves; avey, ... aVenumPoles

Next, (5) calculate the average (grand mean) of the ensemble
averages. Then, (6) subtract the grand mean from the Aver-
age vector to form a vector of correction values. Next, (7)
subtract the correction values from entire matrix of data
collected under the influence of various torques and forces,
1.€., correct all the data that has been previously collected.
Finally, (8) reshape matrix of data back into a vector.

In the alternative, (9) the data can be filtered data using a
running average where the number of points averaged 1is
between 2 and NumPoles.

The amplitude data 1s corrected 1n a stmilar fashion using,
a multiplicative error correction routine. Perform the same
steps 1 through 5 as described 1n the additive correction error
algorithm described above, but apply the steps to the vector
of SWT amplitude data. In step 6 however, instead of
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subtracting the grand mean from the Average, divide the
orand mean 1nto the Average to form the vector of correction
values. In step 7, multiply the entire matrix of data by the
vector of correction values, thereby correcting all the ampli-
tude data. Steps 8 and 9 are performed the same as for the
additive correction value.

Next, at step 108, the corrected phase data and two
corrected amplitudes are normalized, 1.¢., scaled to between
—1 and +1 by ordinary techniques known to those 1n the art.

Then the large data set 1s divided into various sets, €.g., a
fraining set, a validation set, and a test set, at step 110.

Next, the training data set 1s used to train the neural
network, at step 112. Preferably the neural network 1s trained
using the known Levenberg-Marquardt technique with early
stopping. Ordinary back-propagation could be used to train
the network, but might take a prohibitively long period of
fime to converge. Preferably the validation data set 1s used
to determine validation error (mean sum of squared errors),
which 1s used to determine when to stop training the neural
network so that the neural network properly generalizes and
does not fit noise. More preferably, the neural network 1is
trained until the validation error increases for a speciiic
number of iterations, preferably 5 iterations. The weights
from the training iteration immediately before the validation
error began increasing (6 iterations back) are used as the
final weights. In the alternative, the neural network 1s trained
until the mean sum of squared errors for the training data set
1s equal to or less than 0.0001.

Finally, the weights are tested using the test data set, at
task 116, by applying the test data set to the trained neural
network and calculating the mean sum of squared errors. It
the mean sum of squared errors 1s relatively low, preferably
on the order of about 0.0018, more preferably lower than
0.0018, then the weights have passed this last test. If the
mean sum of squared errors 1s relatively high, 1.e., signifi-
cantly higher than 0.0018, then an alternative neural network
structure should be used, e.g., more or fewer hidden neurons,
perhaps an additional hidden layer, etc.

Additionally, the neural network weights can be verified
and tested using SWT raw data and force and torque data
collected from a vehicle having at least one instrumented
hub, e.g., Model 242 electronics and Model 6613 wheel
sensor, both from GSE, Inc.

It is currently believed that because each type of tire (e.g.,
a Conf1 Sport Contact, P245/40 R18 as compared to an
AmerinG4S P205/70 R15 as compared to an Contitrac AW
P275/65 R17) has different static and dynamic
characteristics, each type of tire will require separate data
collection and training. Additionally, specific variations in
specific tires of the same type might have different enough
characteristics to warrant individualized parameters being
used by the force prediction unit 22. Accordingly, the
processor 1n the force prediction unit 22 will need to have
some means for using the proper neural network weights
with the particular type of magnetic tire 30 on the vehicle 10
or specific tire on the vehicle 10. For example, the force
prediction unit 22 might have a plurality of pre-loaded
welghts, number of layers, number of hidden nodes, etc. for
a plurality of different types of tires, 1n which case the force
prediction unit 22 need only be apprised of the particular
type of tire 30 mounted on the vehicle 10. The force
prediction unit 22 can be apprised of the particular type of
fire 30 mounted on the vehicle 10 by a number of means,
¢.g., having one of the SW'T sensors read a magnetic code
(e.g., a preselected series of magnetic transitions in the form
of a bar code or the like embedded into the tire sidewall)
directly from the tire sidewall, communicating with an
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external device 120 (FIG. 2) such as a selectably connect-
able computer or interface pendant through which the tire
type 1s selected, etc. so that the force prediction unit 22 can
assoclate the proper weights, number of layers, number of
hidden nodes, etc. with the tire mounted on the vehicle. In
addition, or 1n the alternative, the force prediction unit 22
can have communication circuitry to directly or indirectly
receive neural network parameters such as weights, number
of layers, number of hidden nodes, etc. from an external
device 120 (FIG. 2) such as a selectably connectable com-

puter or an interface pendant.
In addition, the neural network 1s preferably dynamically

trained to optimize its weights 1n real-time. To optimize 1n
real time, the presence of valid traiming data must be
determined. Valid SWT sensor data could be determined
using various sensors on the vehicle. For example, ESP
systems typically have lateral force accelerometers, which
could be used to measure lateral force data correlated with
collected SWT sensor data. Additionally, engine torque
sensors and other sensors could be used to measure circum-
ferential torque correlated with collected SWT sensor data.
Such validated data could be used to retrain the neural
network to optimize or otherwise alter the neural network
weilghts.

Referring now to FIG. 11, and also back to FIG. 2, once
the neural network 1s trained and the force prediction unit 22
has loaded and/or associated the weights, number of layers,
number of hidden nodes, etc. with the mounted tire 30, the
force prediction unit 22 predicts forces acting on the tire 30
as generally set forth 1n routine 200.

After system initialization, as known to those in the art,
data must be collected, at step 202. The raw SWT sensor
data 1s collected 1n a real-time manner. The raw sensor data
1s collected, for example, at a rate of at least 100,000
samples per second and input to the processor (e.g., a DSP)
in the force prediction unit 22. In the alternative, and
preferably, the raw sensor data 1s collected by analog cir-
cuitry that determines mean-crossings (for phase) and peak
amplitudes, which are sent to the processor (e.g., a DSP) in
the force prediction unit, e.g., by a CAN protocol commu-
nications link to be mput mnto the neural network.

Next, at step 204, the raw SW'T sensor data 1s processed
to calculate the 1nputs to the neural network. In the preferred
embodiment, the phase and two amplitudes are calculated
from the peaks and zero-crossings of the raw SWT sensor
data using analog circuitry. For example, the analog circuitry
can determine the phase difference with a phase-locked loop
(PLL). The analog circuitry can determine the amplitude of
the signal from both SW'T sensors 26, 28 by integrating each
signal, holding at peak values, and returning the peak values.
These phase and both peaks are sent to the processor in the
force prediction unit, e.g., by a CAN protocol communica-
tions link. The processor determines the difference between
the two SWT signal amplitudes by subtracting one peak
from the other.

Having calculated the phase and two amplitudes, next
these 1nputs are corrected at step 206 using various correc-
tion methods. Preferably, the phase data 1s corrected using
the additive correction algorithm discussed above.
Preferably, both amplitudes are corrected using the multi-
plicative error correction algorithm discussed above.

Next, at step 208, the phase data and two amplitudes are
normalized, 1.e., scaled to between -1 and +1 by ordinary
techniques known to those in the art, using the same
normalization parameters used to normalize the data at step
108 of FIG. 10.

Finally, the force prediction unit 22 determines the pre-
dicted forces using the scaled, corrected data. In general, the
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force prediction unit 22 determines any combination or
permutation of one or more of any of the following: the
lateral force acting on the ftire, the circumierential torque
acting on the tire, the longitudinal force acting on the tire,
the vertical force acting on the tire, and forces and/or torques
having any one or more of the foregoing as components
thereof. These determined forces and torques are referred to
herein as “predicted.” Preferably, the force prediction unit
22 determines the predicted circumferential torque on the
fire. Preferably, the force prediction unit 22 determines the
predicted lateral force acting on the fire. Even more
preferably, the force prediction unit 22 determines the pre-
dicted lateral force acting on the tire and the predicted
circumferential torque acting on the tire.

Finally, at task 212, the control unit 32 alters the dynamic
state of the vehicle 20 via actuators 34 responsive to the
force(s) and/or torque(s) predicted by the force prediction
unit 22. In addition, or 1n the alternative, the control unit can
produce a qualitative or quantitative display of any desired
parameter on a display unit (not shown). Qualitative dis-
plays can be made by comparing predicted forces and/or
torques to baseline or threshold forces and/or torques and
displaying an appropriate display based on the results of the
comparison. Quantitative displays can be numeric displays
of predicted force(s) and/or torque(s), and/or values derived
therefrom.

In a second embodiment of the force prediction unit 22 of
the present invention, the processor of the force prediction
unit 22 implements a bilinear equation 1n software or in
hardware. Preferably there are two bilinear equations—one
for lateral force and one for circumierential torque.
However, the force prediction unit 22 can be configured to
determine any combination or permutation of one or more of
any of the following using one bilinear equation for each
predicted force or torque: the lateral force acting on the tire,
the circumferential torque acting on the tire, the longitudinal
force acting on the tire, the vertical force acting on the tire,
and forces and/or torques having any one or more of the
foregoing as components thercof. Preferably, the magnitude
(amplitude) of the outer SWT sensor 26 and the phase
difference between the signals of the two SWT sensors 26,
28 are used 1n each bilinear equation. Even more preferably,
the difference in magnitude (amplitude) between the signal
from the outer SW'T sensor 26 and the signal from the 1nner
SWT sensor 28 1s used as an additional variable in each
bilinear equation. Thus, the bilinear equations are preferably
of the form:

M},=k1+k2'p+k3'ﬂ+k4' d"‘kﬁ'p'ﬂ
F =kotky ptkgatky d+k,gpa
Where,

p=SWT Phase at 180 degree position, 1n radians

a=SWT Amplitude of outer sensor 26 at 180 degree
position, 1n mm

d=Difference between SWT outer and inner amplitudes,
In mim

M, =Circumferential torque, KN-m

F =Lateral force, kKN

k,—k, =constants from bilinear fit

The constants k,—k,, are determined using standard mul-
tiple linear regression techniques, which are known to those
in the art. More specifically, the bilinear equations are
determined as follows. First, steps 102 through 108 are
performed as discussed in the text accompanying steps
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102-108, resulting 1n a set of corrected, normalized data.
Then the constants k,—k,, are calculated in MATLAB by
regressing Y on X as follows:

X=|ones(n,1)X];

XTXI=inv(X"*X);
COEF=XTXI*X'*Y;

where:
n 1s the number of samples

X 15 a matrix containing all the phase data, amplitude data,
delta data, and phase * amplitude data

Y 1s the vector of predicted forces/torques

Using the bilinear equation embodiment of the force
prediction unit of the present invention 1s identical to the
flowchart of FIG. 11, except at step 210, the force(s) and/or
torque(s) are predicted using the bilinear equations rather
than using a neural network.

Although the bilinear equations do not appear to perform
as well as the trained neural network (see examples below),
the predictions from the bilinear equations might well suffice
under certain circumstances.

In addition to the forces and torques described above, the
present 1nvention can be applied to derive or determine
various calculated values that are useful for vehicle control
systems. For example, coefficients of friction can be calcu-
lated from F_, F_, and F_ determined by the present invention
(¢.g., by using F_/F, and F_F,). As another example, yaw
rate for the vehicle can be determined by solving the
appropriate vehicle dynamics equations that involve inte-
orating the predicted force equations to calculate the appro-
priate angular rate or angular velocity associated with the
yaw moments, determined by the present invention.

EXAMPLE 1

Neural Network

First, a Cont1 Sport Contact, 245/40 R18 magnetic side-
wall tire was prepared as generally described mn U.S. Pat.
No. 5,895,854 and copending U.S. patent application Ser.
No. 09/347,757, with 200 phr (arts per hundred) of strontium
ferrite powder embedded 1n the sidewall prior to curing. The
embedded strontium ferrite was magnetized to magnetic
saturation using 96 electromagnets providing 48 North poles
alternating with 48 South poles.

Next, the Conti Sport Contact tire was mounted on an
MTS Model 860 tread wear machine (available from MTS
Systems Corporation) as follows: The magnetic sidewall tire
was mounted to a precision rim. Two pairs of SWT sensors
(Philips KMZ10A magneto-resistive sensors) were mounted
to a strut fixed to the MTS machine, with one outer and inner
pair at 180° and one outer and inner pair at 90°, with each
sensor pair using the bracket shown i FIGS. 4 and §
positioned approximately 12.5 mm from the surface of the
sidewall with the tire at rest.

With the Conti Sport Contact tire mounted 1n the MTS
Model 860 tread wear machine, lateral force, F  and Torque,
M,, were varied sinusoidally as shown 1n FIG. 12, with the
lateral force being varied sinusoidally at 0.1667 Hz and the
torque being varied sinusoidally at 0.100 Hz. The tire was
rotated at a fixed, simulated speed of 50 miles per hour.

Under these circumstances, 30 seconds (750,000 samples)
of data, 1.¢., the circumferential torque, the lateral force, and

the vertical force acting on the tire, the inflation pressure,
and the raw SWT sensor data, were collected at 25,000
samples per second.
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Next, the raw SWT sensor data was processed to calculate
the mputs to the neural network, 1.e., the phase difference
between the two sensor signals 1n radians, the amplitude of
the signal from the outer sensor 26 1 millimeters, and the
difference 1 amplitude between the two sensors 26, 28 1n
millimeters were calculated from the peaks and zero-
crossings of the raw SWT sensor data. More specifically, the
phase difference was determined using the polynomial fit
method described above, the amplitude of the signal from
the outer SW'T sensor 26 was determined using the peak of
the polynomial fit described above, and the difference
between the two SWT signal amplitudes was determined
using the difference between peaks found using the polyno-
mial fit described above.

Having calculated the phase and two amplitudes, next
these mput were corrected using the additive correction
algorithm described above and both amplitudes were cor-
rected using the multiplicative error correction algorithm
described above.

Next, the phase data and two amplitudes were normalized,
1.€., scaled to between -1 and +1 by subtracting the maxi-
mum value from the minimum value for each parameter, and
dividing by the minimum value, and multiplying the result-
ing value by each data set.

Then the large data set was divided into three sets, 1.€., a
training set, a validation set, and a test set.

Next, a specific structure was selected for the neural
network. For this particular example, a single hidden layer
having nine hidden nodes was used, as shown 1 FIG. 13. A
hyperbolic tangent sigmoidal function was used between the
inputs and hidden layer. A linear function was used between
the hidden layer and outputs. The “180” 1n the three inputs
(Phase 180, Amp 180 Out, and Amp Delta 180) in FIG. 13
refer to the fact that the sensors 26, 28 were mounted at, and
thus the data was collected from, the “12 o’clock™ position
of the tire, 1.€., the top of the tire sidewall as viewed on the
vehicle. The 90° data could be used to determine the vertical
force, F..

Next, the traming data set was used to train the neural
network with Matlab using the following Matlab neural
network object:

Neural Network object:
architecture:
numlInputs: 1
numlayers: 2

biasConnect: [1; 1]
inputConnect: [1; O]

H1

My

¥

layerConnect: [0 0; 1 0]
outputConnect: [0 1
targetConnect: [0 1]
numQutputs: 1 (read-only)
numTargets: 1 (read-only)
numlInputDelays: O (read-only)
numlayerDelays: 0 (read-only)
subobject structures:

inputs: {1x1 cell} of inputs
layers: {2x1 cell} of layers
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outputs: {1x2 cell} containing 1 output
targets: {1x2 cell} containing 1 target
biases: {2x1 cell} containing 2 biases
inputweights: {2x1 cell} containing 1 input weight
layerweights: {2x2 cell} containing 1 layer weight
functions:
adaptFcn: ‘adaptwb’
initFen: ‘nitlay’
performFcn: ‘mse’
trainFcn: ‘trainlm’
parameters:
adaptParam: .passes
initParam: (none)
performParam: (none)
trainParam: .epochs, .goal, .max,;fail, .mem;reduc,
.1min, sgrad, .mu, .mu, dec, .mu,,Inc, .mu,,Mmax,
show, .time
welght and bias values:
IW: {2x1 cell} containing 1 input weight matrix
LW: {2x2 cell} containing 1 layer weight matrix
b: {2x1 cell} containing 2 bias vectors
other:
userdata: (user stuff)

The neural network was trained with Matlab using the
Levenberg-Marquardt technique with early stopping. More
specifically, the neural network was trained until a validation
stop (validation set error increased for five consecutive
epochs) occurred at epoch 104. The mean sum of squared
errors for the training set at epoch 99 was 0.00176. The mean
sum of squared errors for the validation set at epoch 99 was
0.00178.

Using this procedure, the following weights between the
inputs and the hidden layer were determined:

Phasel80 Amp1800ut AmpDeltal80
H1 7.5750 -0.3542 0.1623
H2 5.1831 —7.7037 -0.7410
H3 -2.4434 5.5960 0.8778
H4 -0.1242 0.9222 -1.3954
H5 5.4329 -7.8189 -1.0483
Ho6 -0.1375 0.6883 -0.3193
H7 5.6597 3.0346 -0.9307
HS8 0.8117 1.3816 —-0.5938
HOS 1.0578 -1.2053 1.1388

Additionally, the following weights between the hidden
layer and the outputs were determined:

H2 H3 H4 H5 Ho6 H7 HE HY
0.2565 -0.0748 0.2405 -0.2624 -1.2731 0.2896 0.6869 0.7063
0.0085 -1.0817 1.3245 4.5544 -0.1567 -0.1339 0.1094

The following bias weights between the mputs and the
hidden layer were determined:

H1 -7.8421
H2 -0.9515
H3 1.5128
H4 -0.1678
H5 -0.9816
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-continued
H6 —(0.7893
H7/ -4.8751
HE 0.3697
H9 0.5579

Finally, the following bias weights between the hidden layer
and the outputs were determined:

-1.2825
3.2547

H L

These particular weights are considered to be wvalid
because the training set, the validation set and the test set all
had a mean sum of squared errors that were below 0.002 (all
were about 0.00178).

FIGS. 14 and 15 show a graphical representation of the
closeness of the predictions as compared to measured data 1n
the validation set. Using these weights, the lateral force
predicted by the neural network 1s very close to the mea-
sured lateral force in the validation set. Similarly, the cir-
cumiferential torque predicted by the neural network 1s very
close to the measured circumferential torque 1n the valida-
fion set

EXAMPLE 2

Bilinear Equations

In this example, the data from Example 1 was used to
determine a pair of bilinear equations to predict lateral force
and circumferential torque.

The constants for the two equations were calculated with
Matlab using the multiple lincar least squares regression
technique.

Using the above procedure, the following bilinear equa-
fions were determined to predict lateral force and circum-
ferential torque:

M =-5.9835+7.4517p-0.7741a+0.3313d+0.7102pa

F =-39.6433+7.7312p+6.2483a+9.7348d-2.8222pxa

Where,
p=SW'T Phase at 180 degree position, 1n radians

a=SWT Amplitude of outer sensor 26 at 180 degree
position, 1n mm

d=Difference between SWT outer and inner amplitudes,
In min

M, =Circumferential torque, kKN-m

F =Lateral Force, KN

FIGS. 16 and 17 show graphical representations of the
closeness of the predictions as compared to measured data in
the validation set. Using these bilinear equations, the pre-
dicted lateral force 1s close to the measured lateral force in
the validation set. Similarly, the predicted circumferential
torque 1s close to the measured circumferential torque 1n the
validation set. Although the predictions made by the bilinear
cequations are not as close as the predictions made by the
neural network, as can be seen by inspection of FIGS.
14-17, the bilinear equations provide reasonably accurate
predictions, which can be useful and usable for various
applications. Additionally, the greatest deviation between
predicted and measured values appears to be when there 1s
no force or torque being applied.
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EXAMPLE 3

Neural Network

An Contitrac AW P275/65 R17 magnetic sidewall tire was
prepared as generally described in U.S. Pat. No. 5,895,854
and copending U.S. patent application Ser. No. 09/347,757,
with 200 phr (parts per hundred) of strontium ferrite powder
embedded 1n the sidewall prior to curing. The embedded
strontium ferrite was magnetized to magnetic saturation

using 96 electromagnets providing 48 North poles alternat-
ing with 48 South poles.

Next, the Contitrac AW P275/65 R17 tire was mounted on
an MTS Model 860 tread wear machine (available from
MTS Systems Corporation) as follows: The magnetic side-
wall tire was mounted to a precision rim. Two pairs of SWT
sensors (Philips KMZ10A magneto-resistive sensors) were
mounted to a strut fixed to the MTS machine, with one outer
and inner pair at 180° and one outer and inner pair at 90°,
with each sensor pair using the bracket shown in FIGS. 4 and
S positioned approximately 12.5 mm from the surface of the
sidewall with the tire at rest.

With the Contitrac AW P275/65 R177 tire mounted 1n the
MTS Model 860 tread wear machine, vertical force, F_,
lateral force, F, and Torque, M,, were varied sinusoidally
similar to Example 1, with the vertical force being varied
sinusoidally at 0.25 Hz, the lateral force being varied
sinusoidally at 0.15 Hz, and the torque being varied sinu-
soidally at 0.100 Hz. The ftire was rotated at a fixed,

simulated speed of 50 miles per hour.

Under these circumstances, 20 seconds (500,000 samples)
of data, 1.¢., the circumferential torque, the lateral force, and
the vertical force acting on the tire, the inflation pressure,
and the raw SWT sensor data, were collected at 25,000
samples per second.

Next, the raw SW'T sensor data was processed to calculate
the eight inputs to the neural network, 1.e., (1) the phase
difference between the two 180° sensor signals in radians
(Phase180), (2) the amplitude of the signal from the outer
180° sensor 1n millimeters (Amp 1800ut or Amp180), (3)
the difference in amplitude between the two 180° sensors in
millimeters (AmpDeltal80 or Deltal80), (4) the phase dif-
ference between the two 90° sensor signals in radians
(Phase90), (5) the amplitude of the signal from the outer 90°
sensor in millimeters (Amp900ut or Ampl180), (6) the
difference in amplitude between the two 90° sensors in
millimeters (AmpDelta90 or Delta90), (7) Phasel180x
Amp1800ut (after the correction routine was performed)
(pxA180), and (8) Phase 90x Amp900ut (after the correction
routine was performed) (pxA90) were calculated from the
peaks and zero-crossings of the raw SWT sensor data. More
specifically, the phase differences were determined using the
polynomial fit method described above, the amplitudes of
the signals from the outer SWT sensors were determined
using the peaks of the polynomial fit described above, and
the differences between the two signal amplitudes were
determined using the differences between peaks found using
the polynomial fit described above.

Having calculated the eight phase and two amplitudes,
next these mputs were corrected using the additive correc-
tion algorithm described above and both amplitudes were
corrected using the multiplicative error correction algorithm
described above.

Next, the eight inputs were normalized, 1.€., scaled to
between—1 and+1 by subtracting the maximum value from
the minimum value for each parameter, and diving by the
minimum value, and multiplying the resulting value by each
data set.
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Then the large data set was divided into three sets, 1.€., a
training set, a validation set, and a test set.

Next, a specific structure was selected for the neural
network. For this particular example, a single hidden layer
having six hidden nodes was used. A hyperbolic tangent

20

stop (validation set error increased for five consecutive
epochs) occurred at epoch 81. The mean sum of squared
errors for the training set at epoch 76 was 0.00023. The mean
sum of squared errors for the validation set at epoch 76 was

. . . . . 5
sigmoidal function was used between the inputs and hidden 0'000;5' _ ‘ '
layer. A linear function was used between the hidden layer Using this procedure, the following weights between the
and outputs. inputs and the hidden layer were determined:
Phase180 Ampl80  Deltal80 Phase90 Amp90 Delta90 pxA180 pxA90
Hl -3.1924 0.1511 -0.2810 0.0578 -2.4559 1.3095 2.6048 -0.1632
H2 0.2276 0.1292 0.0095 -0.0452 -0.1124 0.1021 -0.5314 0.0715
H3 4.0264 —2.7292 6.4593 -1.7411 -0.9765 0.2611 -4.0561 1.8814
H4 -3.4893 1.6882 -0.4483 -0.5887 -0.6309 -0.4819 3.8759 0.3948
H5 0.1973 0.0347 —-0.3096 0.2210 -0.4999 0.5343 -0.4009 -0.0815
Ho6 -0.3868 -1.3459 1.1311  -0.2410 3.6300 -2.9317 0.7292 0.3695
Next, the training data set was used to train the neural 2 Additionally, the following weights between the hidden
network with Matlab using the following Matlab neural layer and the outputs were determined:
network object:
Neural Network object:
architecture: 25 H1 H2  H3 H4 HS H6
numlnputs: 1 M, -0.1101  -3.4672 0.0003 0.0521  0.5608 0.9396
IlumLayerS: 2 F, —-0.0784 3.3440 0.0104 -0.5603 -3.7565 0.1112
biasConnect: [1; 1] F, -4.7038 8.4356 0.3594 1.6993 11.3365 5.3866
inputConnect: [1; O]
layerConnect: [0 O; 1 O] U The following bias weights between the inputs and the
outputConnect: [0 1° hidden layer were determined:
targetConnect: [0 1]
numQutputs: 1 (read-only)
numTargets: 1 (read-only) .y Hi | 4653
numlInputDelays: O (read-only) H2 0.3718
numlayerDelays: 0 (read-only) H3 -1.3782
subobject structures: He 05840
YOV - H5 0.2758
inputs: {1x1 cell} of inputs 6 07870
layers: {2x1 cell} of layers 40
outputs: {1x2 cell; cont£f11?1ng 1 output Finally, the following bias weights between the hidden layer
targets: {1x2 cell} containing 1 target and the outputs were determined:
biases: {2x1 cell} containing 2 biases
inputweights: {2x1 cell} containing 1 input weight
layerweights: {2x2 cell} containing 1 layer weight 45
. M 0.7171
functions: F: 00399
adaptFcn: ‘adaptwb’ E. _6.2700
initFen: ‘initlay’
peyformen: e < These particular weights are considered to be wvalid
trainken: “tramlm because the training set, the validation set and the test set all
parameters: had a mean sum of squared errors that were below 0.002 (all
adaptParam: .passes were about 0.0003 or less).
initParam: (none) FIGS. 1820 show graphical representations of the close-
performParam: (none) ness of the predictions as compared to measured data in the
trainParam: .epochs, .goal, .max;,fail, .mem,,reduc, >3 validation set. Using the§e weights, the v:ertical force, lateral
min, erad, .mu, .mu, dec, .mu,sinc, .mu,,max, force, angi mrcumff-::rent}al torque predicted by the I}eural
‘ network 1s nearly identical to the measured values i the
show, .time C
: . validation set.
weight and bias values:
IW: {2x1 cell} containing 1 input weight matrix EXAMPLE 4
LW: {2x2 cell} conita.ining 1 layer weight matrix Bilinear Equations
b: 12x1 cell} containing 2 bias vectors In this example, the data from Example 2 was used to
other: determine bilinear equations to predict vertical force, lateral
userdata: (user stuff) | | | force, and circumierential torque.
The neural network was trained with Matlab using the 65 The constants for the two equations were calculated with

Levenberg-Marquardt technique with early stopping. More
specifically, the neural network was trained until a validation

Matlab using the multiple linear least squares regression
technique.
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Using the above procedure, the following bilinear equa-
tions were determined to predict vertical force, lateral force,
and circumferential torque:

F =—12.9336+-11.9139p180-4.44132180+9.99524180-
5.7197p90+4.1038490-5.5416490+0.1871(p180x2180)+
0.0676(p90x%a90)

F,=8.6908-79.1627p180-1.1944a180+1.4968d180+10.8531p90+
1.2659a90+0.0597d90+3.5677(p180=a180)+0.7880(p90=a90)

M =-0.9059+6.5357p180-0.6891a180+1.6094d180+0.0920p90+
0.4191a90-0.6654d90+0.3710(p180=a180)-0.0027(p90=a90)

Where,
pl80=SWT Phase at 180 degree position, radians

al80=SWT Amplitude of outer sensor at 180 degree
position, mm

d180=Difference between SWT outer and inner ampli-
tudes at 180 degrees, mm

p90=SWT Phase at 90 degree position, radians

a90=SW'T Amplitude of outer sensor at 90 degree
position, mm

d90=Da1iference between SW'T outer and inner amplitudes
at 90 degrees, mm

F =Lateral force in kKN
F_=Vertical (Normal) force in kN

M, =Circumferential torque, KN-m

FIGS. 2224 show graphical representations of the close-
ness of the predictions as compared to measured data in the
validation set. Using these bilinear equations, the predicted
vertical force, lateral force, and circumierential torque are
very close to the measured values. Although the predictions
made by the bilinear equations are not as close as the
predictions made by the neural network, with the additional
sensor pair, the bilinear equations 1n this example provide
very accurate predictions, which can be useful and usable for
many applications.

An additional example 1s attached hereto as Appendix 1
and incorporated herein by reference.

Referring back to FIG. 2, as mentioned above, exemplary
control units 32 benefiting from the present invention
imnclude but are not limited to ABS control units, traction
control system (TCS) control units, electronic stability con-
trol (ESC) control units, integrated vehicle dynamics (IVD))
control units, locked differential control units, suspension
control units, brake assist control units, intelligent cruise
control units, steering assist control units, deflation detection
control units, navigation control units, rollover prevention
control units, and a brake-by-wire control units.

ABS control units can benefit from the present invention
in at least two ways. First, the present invention can be used
to reduce ABS chattering. ABS chattering typically results
from the nature of slip data. Force data provided by the
present mvention 1s smoother than slip data. Accordingly, an
ABS controller using force data taken 1n accordance with the
present mvention will have less chattering.

Also, ABS control units can be made safer using the
lateral force predicted by the present invention. Referring
now to FIG. 18, a series of u-slip curves at various steering
angles (o) are shown. No steering results in no lateral force.
Curve 2001s a typical u-slip curve showing longitudinal
force (i.e., braking force) F. at a steering angle of 0, i.e.,
under no lateral force. As shown by that curve 200 and as
known to those 1n the art, the peak of that curve 200 1s at a
point 202 at about 13% slip. As also known to those 1n the
art, 1t 1s desirable for an ABS control unit to strive to control
the slip to provide peak braking force at about 10% slip or
SO.
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A steering motion causes a tire to rotate, which induces a
lateral force on the tire. Curves 210 and 220 in FIG. 18 are
u-slip curves showing longitudinal force F_ at a steering
angle of 5 and 10, respectively. The corresponding lateral
forces F,, are also shown. The peak of curve 210 is at a point
212 at about 20% slip and the peak of curve 220 1s at a point
222 at about 32% slip. That 1s, a lateral force on the tire, as
caused by a steering maneuver, causes the peak of the u-slip
curve to be moved.

The effect of this should be apparent. An ABS control unit
incapable of detecting lateral force would strive to control
the slip at about 10% slip or so, which would be effective for
maximum braking force as long as there i1s no steering
action. However, a slip at around 10% 1s not at the peak of
the curves 210 and 220. Therefore, a steering maneuver
would confound the ABS control unit incapable of detecting
lateral force, rendering 1t 1ncapable of generating a maxi-
mum braking force.

On the other hand, an ABS controller 32 modified to
accept a predicted lateral force from a force prediction unit
22 of the present invention (or even implemented with the
same processor) could vary the slip control point in accor-
dance with the predicted lateral force to provide maximum
braking force. For example, the ABS control unit 32 could
be modified to select a u-slip curve or other control param-
cter based on the predicted lateral force from the force
prediction unit 22. In the context of FIG. 18 a first predicted
lateral force would be used to trigger curve 210 to be used,
and the ABS control unit 32 would tend to control the slip
at about point 212 to provide maximum braking. A different,
oreater predicted lateral force would be used to trigger curve
220 to be used, and the ABS control unit 32 would then tend
to control the slip at about point 222 to provide maximum
braking. Changing the prediction of lateral force at any
instant would change the u-slip curve used the next instant.
Although only three wu-slip curves are described in this
example, one of ordinary skill in the art would understand
that more curves could be used, or the lateral force (or some
other parameter determined by the force prediction unit 22)
could be used 1n an equation or set of equations by the ABS
control unit 32 to vary the slip control point 1n accordance
with the predicted lateral force.

While the present invention has been illustrated by the
description of embodiments thereof, and while the embodi-
ments have been described 1n considerable detail, it 1s not
the intention of the applicant to restrict or in any way limait
the scope of the appended claims to such detail. Additional
advantages and modifications will readily appear to those
skilled 1n the art. For example, the SWT sensors described
herein have an analog current output; in the alternative,
sensors having outputs in the frequency domain might be
used 1n a system made 1n accordance with the teachings of
the present invention. In addition, the SWT sensors
described herein are magnetic sensors; other sidewall torsion
sensors might be used 1n a system made 1n accordance with
the teachings of the present invention. Therefore, the 1nven-
fion 1n 1ts broader aspects 1s not limited to the speciiic
details, representative apparatus and method, and 1llustrative
examples shown and described. Accordingly, departures
may be made from such details without departing from the
spirit or scope of the applicant’s general inventive concept.

I claim:

1. A vehicle control system, comprising: a force predic-
tion unit for being placed 1n circuit communication with a
tire deformation sensor and at least one other sensor, the tire
deformation sensor being separate from a tire and arranged
non-rotatingly with respect to the tire in the vicinity of the
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fire, said force prediction unit receiving a coupled tire
deformation mput from the tire deformation sensor, said
coupled tire deformation 1nput relating to a circumierential
torque applied to the tire and further relating to another force
acting on the tire that 1s skewed with respect to a longitu-
dinal force corresponding to the circumferential torque and
said force prediction unit receiving at least one other tire
sensor mput from the at least one other sensor, said force
prediction unit characterized by implementing prepro-
crammed equations having constants determined from pre-
viously collected data to determine from at least the coupled
tire deformation input and the at least one other sensor input
an output corresponding to a predicted circumierential
torque or longitudinal force acting on the tire, said determi-
nation of predicted circumfierential torque or longitudinal
force 1ncluding said force prediction unit decoupling a first
portion of said coupled tire deformation input relating to the
circumferential torque applied to the tire from a second
portion of said coupled tire deformation input relating to the
other, skewed force acting on the tire.

2. The vehicle control system of claim 1, wheremn said
force prediction unit comprises a preprogrammed processor
and further wherein said preprogrammed processor of said
force prediction unit executes code 1implementing a neural
network trained with previously collected data to determine
from at least the coupled tire deformation mput and the at
least one other sensor 1nput an output corresponding to a
predicted circumferential torque or longitudinal force acting,
on the tire.

3. The vehicle control system of claim 1, wheremn said
force prediction unit comprises a preprogrammed processor
and further wherein said preprogrammed processor of said
force prediction unit executes code implementing a multi-
layer neural network trained with previously collected data
to determine from at least the coupled tire deformation input
and the at least one other sensor mput an output correspond-
ing to a predicted circumierential torque or longitudinal
force acting on the ftire, said multi-layer neural network
having an input layer, at least one hidden layer, and an output
layer.

4. The vehicle control system of claim 3, wherein said
preprogrammed processor implements equations between
said mput layer and said at least one hidden layer 1n the form
of a hyperbolic tangent sigmoidal transfer function, and
wherein said preprogrammed processor implements equa-
fions between said hidden layer and said output layer in the
form of a linear function.

5. The vehicle control system of claim 1, wherein said
force prediction unit comprises a preprogrammed processor
and further wherein said preprogrammed processor of said
force prediction unit executes code implementing an equa-
tion using constants determined using multiple-linear-least
squares regression analysis of previously collected data to
determine from at least the coupled tire deformation 1nput
and the at least one other sensor 1nput an output correspond-
ing to a predicted circumfierential torque or longitudinal
force acting on the tire.

6. The vehicle control system of claim §, wherein the
cequation 1mplemented by the preprogrammed processor of
said force prediction unit 1s a bilinear equation.

7. The vehicle control system of claim 1, wherein said
force prediction unit determines from at least the coupled
tire deformation input and the at least one other sensor input
a phase 1put related to a phase difference between the at
least two sensors and further wherein said force prediction
unit determines from at least the coupled tire deformation
input an amplitude mnput related to a distance between the
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tire sidewall and the tire deformation sensor, and further
wherein said force prediction unit comprises a prepro-
crammed processor, said preprogrammed processor accept-
ing as mputs the phase mput and the amplitude input and
using at least the phase 1nput and amplitude 1nput to deter-
mine at least an output corresponding to a predicted circum-
ferential torque or longitudinal force acting on the tire.

8. The vehicle control system of claim 2, wheremn said
force prediction unit determines from at least the coupled
tire deformation mput and the at least one other sensor input
a phase 1put related to a phase difference between the at
least two sensors and further wherein said force prediction
unit determines from at least the coupled tire deformation
input an amplitude 1nput related to a distance between the
tire sidewall and the tire deformation sensor, said neural
network accepting as inputs the phase mput and the ampli-
tude mput and using at least the phase mput and amplitude
mnput to determine at least an output corresponding to a

predicted circumierential torque or longitudinal force acting
on the tire.

9. The vehicle control system of claim 6, wherein said
force prediction unit determines from at least the coupled
tire deformation input and the at least one other sensor input
a phase mput related to a phase difference between the at
least two sensors and further wherein said force prediction
unit determines from at least the coupled tire deformation
input an amplitude input related to a distance between the
tire sidewall and the tire deformation sensor, said bilinear
equation being a function of at least the phase input and the
amplitude input to determine an output corresponding to a
predicted circumferential torque or longitudinal force acting,
on the fire.

10. The vehicle control system of any of claims 1-9,
wherein the tire deformation sensor comprises a magnetic
tire sidewall torsion (SWT) sensor, said SWT sensor includ-
Ing a magnetic sensor positioned proximate to a sidewall of
the tire that has been magnetized with alternating magnetic
poles.

11. A vehicle control system, comprising: a force predic-
tion unit for being placed 1n circuit communication with a
tire deformation sensor and at least one other sensor, the tire
deformation sensor being separate from a tire and arranged
non-rotatingly with respect to the tire in the vicinity of the
tire, said force prediction unit receiving a coupled tire
deformation input from the tire deformation sensor, said
coupled tire deformation 1nput relating to a circumierential
torque applied to the tire and further relating to a lateral
force acting on the tire and said force prediction unit
rece1ving at least one other tire sensor input from the at least
one other sensor, said force prediction unit characterized by
implementing preprogrammed equations having constants
determined from previously collected data to determine
from at least the coupled tire deformation mput and the at
least one other sensor 1nput an output corresponding to a
predicted lateral force acting on the tire, said determination
of predicted lateral force including said force prediction unit
decoupling a first portion of said coupled tire deformation
input relating to the lateral force acting on the tire from a
second portion of said coupled tire deformation 1nput relat-
ing to the circumierential torque applied to the tire.

12. The vehicle control system of claim 11, wherein said
force prediction unit comprises a preprogrammed processor
and further wherein said preprogrammed processor of said
force prediction unit executes code 1implementing a neural
network trained with previously collected data to determine
from at least the coupled tire deformation mnput and the at
least one other sensor 1nput an output corresponding to a
predicted lateral force acting on the ftire.
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13. The vehicle control system of claim 11, wherein said
force prediction unit comprises a preprogrammed processor
and further wherein said preprogrammed processor of said
force prediction unit executes code implementing a multi-
layer neural network trained with previously collected data
to determine from at least the coupled tire deformation 1nput
and the at least one other sensor mput an output correspond-
ing to a predicted lateral force acting on the fire, said
multi-layer neural network having an input layer, at least one
hidden layer, and an output layer.

14. The vehicle control system of claim 13, wherein said
preprogrammed processor implements equations between
said mput layer and said at least one hidden layer 1n the form
of a hyperbolic tangent sigmoidal transfer function, and
wherein said preprogrammed processor implements equa-
tfions between said hidden layer and said output layer in the
form of a linear function.

15. The vehicle control system of claim 11, wherein said
force prediction unit comprises a preprogrammed processor
and further wherein said preprogrammed processor of said
force prediction unit executes code implementing an equa-
fion using constants determined using multiple-linear-least
squares regression analysis of previously collected data to
determine from at least the coupled tire deformation input
and the at least one other sensor mput an output correspond-
ing to a predicted lateral force acting on the tire.

16. The vehicle control system of claim 15, wherein the
cquation 1mplemented by the preprogrammed processor of
said force prediction unit 1s a bilinear equation.

17. The vehicle control system of claim 11, wherein said
force prediction unit determines from at least the coupled
tire deformation input and the at least one other sensor input
a phase 1mput related to a phase difference between the at
least two sensors and further wherein said force prediction
unit determines from at least the coupled tire deformation
input an amplitude mnput related to a distance between the
tire sidewall and the tire deformation sensor, and further
wherein said force prediction unit comprises a prepro-
orammed processor, said preprogrammed processor accept-
ing as nputs the phase mput and the amplitude input and
using at least the phase input and amplitude 1nput to deter-
mine at least an output corresponding to a predicted lateral
force acting on the tire.

18. The vehicle control system of claim 12, wherein said
force prediction unit determines from at least the coupled
tire deformation input and the at least one other sensor input
a phase 1mput related to a phase difference between the at
least two sensors and further wherein said force prediction
unit determines from at least the coupled tire deformation
input an amplitude mnput related to a distance between the
tire sidewall and the tire deformation sensor, said neural
network accepting as inputs the phase 1nput and the ampli-
tude mput and using at least the phase mput and amplitude
input to determine at least an output corresponding to a
predicted lateral force acting on the fire.

19. The vehicle control system of claim 16, wherein said
force prediction unit determines from at least the coupled
tire deformation mput and the at least one other sensor 1input
a phase mput related to a phase difference between the at
least two sensors and further wherein said force prediction
unit determines from at least the coupled tire deformation
input an amplitude mput related to a distance between the
tire sidewall and the tire deformation sensor, said bilinear
equation being a function of at least the phase input and the
amplitude 1nput to determine an output corresponding to a
predicted lateral force acting on the ftire.

20. The vehicle control system of any of claims 11-19,
wherein the tire deformation sensor comprises a magnetic
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tire sidewall torsion (SW'T) sensor, said SWT sensor includ-
Ing a magnetic sensor positioned proximate to a sidewall of
the tire that has been magnetized with alternating magnetic
poles.

21. A vehicle control system, comprising: a force predic-
tion unit for being placed 1n circuit communication with a
tire deformation sensor and at least one other sensor, the tire
deformation sensor being separate from a tire and arranged
non-rotatingly with respect to the tire in the vicinity of the
tire, said force prediction unit receiving a coupled tire
deformation 1nput from the tire deformation sensor, said
coupled tire deformation input relating to a circumierential
torque applied to the tire and further relating to a vertical
force acting on the ftire and said force prediction unit
receiving at least one other tire sensor input from the at least
one other sensor, said force prediction unit comprising a
preprogrammed processor receiving the coupled tire defor-
mation mnput and the at least one other sensor input, said
force prediction unit characterized by implementing prepro-
crammed equations having constants determined from pre-
viously collected data to determine from at least the coupled
tire deformation input and the at least one other sensor input
an output corresponding to a predicted vertical force acting
on the tire, said determination of predicted vertical force
including said force prediction unit decoupling a first portion
of said coupled tire deformation input relating to the vertical
force acting on the tire from a second portion of said coupled
tire deformation input relating to the circumferential torque
applied to the tire.

22. The vehicle control system of claim 21, wherein said
force prediction unit comprises a preprogrammed processor
and further wherein said preprogrammed processor of said
force prediction unit executes code 1implementing a neural
network trained with previously collected data to determine
from at least the coupled tire deformation mnput and the at
least one other sensor 1nput an output corresponding to a
predicted vertical force acting on the fire.

23. The vehicle control system of claim 21, wherein said
force prediction unit comprises a preprogrammed processor
and further wherein said preprogrammed processor of said
force prediction unit executes code 1implementing a multi-
layer neural network trained with previously collected data
to determine from at least the coupled tire deformation 1nput
and the at least one other sensor 1nput an output correspond-
ing to a predicted vertical force acting on the tire, said
multi-layer neural network having an input layer, at least one
hidden layer, and an output layer.

24. The vehicle control system of claim 23, wherein said
preprogrammed processor implements equations between
said input layer and said at least one hidden layer in the form
of a hyperbolic tangent sigmoidal transfer function, and
wherein said preprogrammed processor implements equa-
tions between said hidden layer and said output layer in the
form of a linear function.

25. The vehicle control system of claim 21, wherein said
force prediction unit comprises a preprogrammed processor
and further wherein said preprogrammed processor of said
force prediction unit executes code implementing an equa-
tion using constants determined using multiple-linear-least
squares regression analysis of previously collected data to
determine from at least the coupled tire deformation 1nput
and the at least one other sensor mput an output correspond-
ing to a predicted vertical force acting on the tire.

26. The vehicle control system of claim 25, wherein the
equation 1mplemented by the preprogrammed processor of
said force prediction unit 1s a bilinear equation.

27. The vehicle control system of claim 21, wherein said
force prediction unit determines from at least the coupled
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tfire deformation mput and the at least one other sensor 1input
a phase mput related to a phase difference between the at
least two sensors and further wherein said force prediction
unit determines from at least the coupled tire deformation
input an amplitude mnput related to a distance between the
tire sidewall and the tire deformation sensor, and further
wherein said force prediction unit comprises a prepro-
crammed processor, said preprogrammed processor accept-
ing as mputs the phase mput and the amplitude input and
using at least the phase 1nput and amplitude input to deter-
mine at least an output corresponding to a predicted vertical
force acting on the tire.

28. The vehicle control system of claim 22, wherein said
force prediction unit determines from at least the coupled
tire deformation mput and the at least one other sensor 1input
a phase mput related to a phase difference between the at
least two sensors and further wherein said force prediction
unit determines from at least the coupled tire deformation
input an amplitude mput related to a distance between the
tire sidewall and the tire deformation sensor, said neural
network accepting as inputs the phase 1nput and the ampli-
tude mput and using at least the phase mput and amplitude
input to determine at least an output corresponding to a
predicted vertical force acting on the tire.

29. The vehicle control system of claim 26, wherein said
force prediction unit determines from at least the coupled
tfire deformation mput and the at least one other sensor 1input
a phase mput related to a phase difference between the at
least two sensors and further wherein said force prediction
unit determines from at least the coupled tire deformation
input an amplitude mnput related to a distance between the
tire sidewall and the tire deformation sensor, said bilinear
cequation being a function of at least the phase input and the
amplitude 1nput to determine an output corresponding to a
predicted vertical force acting on the ftire.

30. The vehicle control system of any of claims 21-29,
wherein the tire deformation sensor comprises a magnetic
tire sidewall torsion (SW'T) sensor, said SWT sensor includ-
Ing a magnetic sensor positioned proximate to a sidewall of
the tire that has been magnetized with alternating magnetic
poles.

31. The vehicle control system of claim 1, wherein said
force prediction unit 1s further characterized by implement-
ing preprogrammed equations having constants determined
from previously collected data to determine from at least the
coupled tire deformation input and the at least one other
sensor input (a) an output corresponding to a predicted
circumferential torque or longitudinal force acting on the tire
and (b) an output corresponding to a prediction of the force
acting on the tire that 1s skewed with respect to the longi-
tudinal force acting on the tire.

32. The vehicle control system of claim 31, wherein said
force prediction unit 1s further characterized by implement-
ing preprogrammed equations having constants determined
from previously collected data to determine from at least the
coupled tire deformation input and the at least one other
sensor input (a) an output corresponding to a predicted
circumferential torque or longitudinal force acting on the tire
and (b) an output corresponding to a predicted lateral force
acting on the tire.

33. The vehicle control system of claim 31, wherein said
force prediction unit 1s further characterized by implement-
ing preprogrammed equations having constants determined
from previously collected data to determine from at least the
coupled tire deformation input and the at least one other
sensor input (a) an output corresponding to a predicted
circumferential torque or longitudinal force acting on the tire
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and (b) an output corresponding to a predicted vertical force
acting on the tire.

34. The vehicle control system of claim 10, wherein said
force prediction unit 1s further characterized by implement-
ing preprogrammed equations having constants determined
from previously collected data to determine from at least the
coupled tire deformation input and the at least one other
sensor 1nput (a) an output corresponding to a predicted
lateral force acting on the tire and (b) an output correspond-
ing to a prediction of the force acting on the tire that is
skewed with respect to the lateral force acting on the tire.

35. The vehicle control system of claim 34, wherein said
force prediction unit 1s further characterized by implement-
ing preprogrammed equations having constants determined
from previously collected data to determine from at least the
coupled tire deformation input and the at least one other
sensor input (a) an output corresponding to a predicted
lateral force acting on the tire and (b) an output correspond-
ing to a predicted vertical force acting on the tire.

36. The vehicle control system of claim 20, wherein said
force prediction unit 1s further characterized by implement-
ing preprogrammed equations having constants determined
from previously collected data to determine from at least the
coupled tire deformation input and the at least one other
sensor 1nput (a) an output corresponding to a predicted
vertical force acting on the tire and (b) an output corre-
sponding to a prediction of the force acting on the tire that
1s skewed with respect to the vertical force acting on the tire.

37. A vehicle control system comprising;:

(a) a force prediction unit for being placed in circuit
communication with a tire deformation sensor and at
least one other sensor, the tire deformation sensor being,
separate from a tire and arranged non-rotatingly with
respect to the tire 1 the vicinity of the tire, said force
prediction unit receiving a coupled tire deformation
input from the tire deformation sensor, said coupled tire
deformation input relating to a circumferential torque
applied to the tire and further relating to another force
acting on the tire that 1s skewed with respect to a
longitudinal force corresponding to the circumierential
torque and said force prediction unit receiving at least
one other tire sensor mput from the at least one other
sensor, said force prediction unit comprising a prepro-
crammed processor receiving the coupled tire defor-
mation input and the at least one other sensor mput,
said force prediction unit characterized by implement-
ing preprogrammed equations having constants deter-
mined from previously collected data to determine
from at least the coupled tire deformation 1nput and the
at least one other sensor 1nput an output corresponding,
to a predicted circumierential torque or longitudinal
force acting on a tire and outputting a predicted cir-
cumierential torque or longitudinal force output corre-
sponding to the predicted circumferential torque or
longitudinal force acting on the tire, said determination
of predicted circumferential torque or longitudinal
force including said force prediction unit decoupling a
first portion of said coupled tire deformation input
relating to the circumferential torque applied to the tire
from a second portion of said coupled tire deformation
input relating to the other, skewed force acting on the
tire; and

(b) a control unit in circuit communication with said force
prediction unit for receiving the predicted circumier-
ential torque or longitudinal force output and for being
placed 1n circuit communication with vehicle actuators,
said control unit characterized by altering the dynamic
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state of the vehicle via the actuators responsive at least
in part to the predicted circumierential torque or lon-
oitudinal force output from the force prediction unit.

38. A vehicle control system comprising:
(a) a force prediction unit for being placed in circuit

communication with a tire deformation sensor and at
least one other sensor, the tire deformation sensor being

separate from a tire and arranged non-rotatingly with
respect to the tire 1 the vicinity of the tire, said force
prediction unit receiving a coupled tire deformation
input from the tire deformation sensor, said coupled tire
deformation input relating to a circumferential torque
applied to the tire and further relating to a lateral force
acting on the tire and said force prediction unit rece1v-
ing at least one other tire sensor input from the at least
one other sensor, said force prediction unit comprising
a preprogrammed processor receiving the coupled tire
deformation input and the at least one other sensor
input, said force prediction unit characterized by imple-
menting preprogrammed equations having constants
determined from previously collected data to determine
from at least the coupled tire deformation input and the
at least one other sensor mput an output corresponding,
to a predicted lateral force acting on the tire and
outputting a predicted lateral force output correspond-
ing to the predicted lateral force acting on the tire, said
determination of predicted lateral force including said
force prediction unit decoupling a first portion of said
coupled tire deformation input relating to the lateral
force acting on the tire from a second portion of said
coupled tire deformation input relating to the circum-
ferential torque applied to the tire; and

(b) a control unit in circuit communication with said force

prediction unit for receiving the predicted lateral force
output and for being placed in circuit communication
with vehicle actuators, said control unit characterized
by altering the dynamic state of the vehicle via the
actuators responsive at least 1n part to the predicted
lateral force output from the force prediction unit.

39. The vehicle control system of claim 38, wherein said
control unit has associated therewith a plurality of u-slip
curves, each of said u-slip curves being associated with a

dit

‘erent lateral force, said control unit 1implementing an

anti-lock braking system based on a selected one of said
u-slip curves, and further wherein said control unit 1s char-
acterized by selecting the of said plurality of u-slip curves
responsive at least 1n part to the predicted lateral force output
from the force prediction unit and using the selected one of
said plurality of u-slip curves to implement anti-lock brak-
Ing.

40. A vehicle control system comprising:

(a) a force prediction unit for being placed in circuit

communication with a tire deformation sensor and at
least one other sensor, the tire deformation sensor being
separate from a fire and arranged non-rotatingly with
respect to the tire 1 the vicinity of the tire, said force
prediction unit receiving a coupled tire deformation
input from the tire deformation sensor, said coupled tire
deformation input relating to a circumferential torque
applied to the tire and further relating to a vertical force
acting on the tire and said force prediction unit rece1v-
ing at least one other tire sensor input from the at least
one other sensor, said force prediction unit comprising
a preprogrammed processor receiving the coupled tire
deformation input and the at least one other sensor
input, said force prediction unit characterized by imple-
menting preprogrammed equations having constants
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determined from previously collected data to determine
from at least the coupled tire deformation 1nput and the
at least one other sensor 1nput an output corresponding,
to a predicted vertical force acting on a tire and
outputting a predicted vertical force output correspond-
ing to the predicted vertical force acting on the tire, said
determination of predicted vertical force including said
force prediction unit decoupling a first portion of said
coupled tire deformation input relating to the vertical
force acting on the tire from a second portion of said
coupled tire deformation 1nput relating to the circum-
ferential torque applied to the tire; and

(b) a control unit in circuit communication with said force

prediction unit for receiving the predicted vertical force
output and for being placed 1n circuit communication
with vehicle actuators, said control unit characterized
by altering the dynamic state of the vehicle via the
actuators responsive at least 1n part to the predicted
vertical force output from the force prediction unit.

41. A method of predicting the circumferential torque or
longitudinal force acting on a tire, comprising the steps of:

(a) providing a force prediction unit for being placed in

circuit communication with a tire deformation sensor
and at least one other sensor, the tire deformation
sensor being separate from the tire and arranged non-
rotatingly with respect to the tire 1n the vicinity of the
tire, said force prediction unit receiving a coupled tire
deformation mput from the tire deformation sensor,
said coupled tire deformation input relating to a cir-
cumierential torque applied to the tire and further
relating to another force acting on the ftire that 1s

skewed with respect to a longitudinal force correspond-
ing to the circumferential torque and said force predic-
tion unit receiving at least one other tire sensor 1nput
from the at least one other sensor, said force prediction
unit comprising a preprogrammed processor receiving
the coupled tire deformation input and the at least one
other sensor input, said force prediction unit character-
1zed by implementing preprogrammed equations hav-
ing constants determined from previously collected
data to determine from at least the coupled tire defor-
mation nput and the at least one other sensor mnput an
output corresponding to a predicted vertical force act-
Ing on a tire;

(b) collecting tire deformation input from the tire defor-

mation sensor and the at least one other tire sensor input
from the at least one other sensor; and

(c) determining with the force prediction unit the circum-

ferential torque or longitudinal force acting on a tire
from the collected tire deformation mput and the col-
lected at least one other tire sensor input, said deter-
mination of predicted circumierential torque or longi-
tudinal force including said force prediction unit
decoupling a first portion of said coupled tire deforma-
tion 1nput relating to the circumierential torque applied
to the tire from a second portion of said coupled ftire
deformation 1nput relating to the other, skewed force
acting on the tire.

42. A method of training a neural network to determine
the circumierential torque or longitudinal force acting on a
tire from a tire deformation sensor and at least one other
sensor, comprising the steps of:

(a) collecting tire deformation input from a tire deforma-

tion sensor and at least one other tire sensor 1nput from
at least one other sensor, the tire deformation sensor
being separate from the tire and arranged non-
rotatingly with respect to the tire 1n the vicinity of the
tire;
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(b) collecting an input corresponding to the circumferen-
tial torque or longitudinal force acting on the tire;

(¢) training the neural network to predict the circumfer-
ential torque or longitudinal force acting on a tire using
as training data at least the collected tire deformation
input relating to the length of the changing air gap
between the tire deformation sensor and the tire, the
collected at least one other tire sensor input, and the
collected mput corresponding to the circumierential
torque or longitudinal force acting on the tire.

43. The vehicle control system of any of claims 1-9,
wherein the tire deformation sensor comprises a magnetic
tire sidewall torsion (SW'T) sensor, said SWT sensor includ-
Ing a magnetic sensor positioned proximate to a sidewall of
the tire that has been magnetized with alternating magnetic
poles, and further wherein the at least one other tire sensor
1s an ABS speed sensor.
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44. The vehicle control system of any of claims 11-19,
wherein the tire deformation sensor comprises a magnetic
tire sidewall torsion (SW'T) sensor, said SWT sensor includ-
Ing a magnetic sensor positioned proximate to a sidewall of
the tire that has been magnetized with alternating magnetic
poles, and further wherein the at least one other tire sensor
1s an ABS speed sensor.

45. The vehicle control system of any of claims 21-29,
wherein the tire deformation sensor comprises a magnetic
tire sidewall torsion (SW'T) sensor, said SWT sensor includ-

Ing a magnetic sensor positioned proximate to a sidewall of
the tire that has been magnetized with alternating magnetic
poles, and further wherein the at least one other tire sensor
1s an ABS speed sensor.




UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,550,320 B1 Page 1 of 1
DATED . April 22, 2003
INVENTOR(S) :James M. Giustino

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 21,
Lines 37-38, please delete “An additional example 1s attached hereto as Appendix 1 and
incorporated herein by reference.”

Signed and Sealed this

Twenty-third Day of September, 2003

JAMES E. ROGAN
Direcror of the United States Patent and Trademark Office




	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

