US006549882B1
a2 United States Patent (10) Patent No.: US 6,549,882 Bl
Chen et al. 45) Date of Patent: Apr. 15, 2003
(54) MECHANISMS FOR PROVIDING AND 5,954,829 A * 9/1999 McLain, Ir. et al. 714/712
USING A SCRIPTING LLANGUAGE FOR 6,041,041 A * 3/2000 Ramanathan et al. 370/241
FLEXIBLY SIMULATIONG A PLURALITY 6,134,690 A * 10/2000 Ivaturi et al. 714/736
OF DIFFERENT NETWORK PROTOCOLS 6,269,330 B1 * 7/2001 Cidon et al. 704/43

— * cited by examiner
(75) Inventors: Huei-Ping Chen, San Jose, CA (US);

Ting Chuan Tan, San Jose, CA (US) Primary Examiner—Hugh Jones
Assistant Examiner—W D Thomson
(73) Assignee: Cisco Technology, Inc., San Jose, CA (74) Attorney, Agent, or Firm—Beyer, Weaver & Thomas,
(US) LLP
(*) Notice: Subject to any disclaimer, the term of this (57) ABSTRACT

patent 15 extended or adjusted under 35

U.S.C. 154(b) by 0 days. Provided are test systems, methods, and media which allow

a user to script any type of test or model scenario based on
a particular type of network traffic (e.g., protocol

(21) Appl. No.: 09/217,012 interaction). In preferred embodiments, the script provides
(22) Filed: Dec. 21, 1998 for the generation of packets (stimuli) which are used to
provoke responses 1n order to model or test proper operation

(51) Imt.CL’7 ..o GO6F 13/10; GO6F 13/12; of one or more network protocols. The invention includes a
GO6F 9/44; GO6F 15/173 scripting language, also referred to as a stimulus/response

(52) US.CL .. 703/21; 703/20; 703/13; engine, which includes commands specifying a state change
703/17; 703/23; 709/223; 709/224 of a network device, and provides for the establishment of

(58) Field of Searchc............ 703/23, 24, 20, packet filters based on expected network traffic, receiving

703/21, 13, 22, 25, 17; 709/223, 224 and matching arriving packets with packet filters, and, where
there 1s a match, conducting actions specified by the user in

(56) References Cited the script.

U.S. PAIENT DOCUMENTS A stimulus/response engine (SRE) in accordance with the
5,394,540 A * 2/1995 Barrington et al. 3095/500 present invention 1s dynamic it that it accommodates pat-
5,680,585 A * 10/1997 Bruell ...ccooeveveueeenenn. 395/500 terns (packet filters) which are modified during test runs.
5,732213 A * 3/1998 Gessel et al. 709/224 The SRE 1s fully programmable by the user and thus can be
5,748,617 A * 5/1998 McLam, Jr. 370/244 used to design models and test scenarios for a variety of
5,862,362 A : 1/1999 Somasegar et al. 395/500 network protocols, including new protocols developed by
5,880,954 A * 3/1999 Gessel et al. 709223 pe user for which no testing packages exist.

5802947 A * 4/1999 Delong et al. 395/701
5,931,961 A * 8/1999 Ranganathan et al. 714/712
5,937,165 A * 8/1999 Schwaller et al. 709/224 28 Claims, 7 Drawing Sheets
300 tools 2-321 toois 3-301
\ STATE/STATUS PACKET TRAFFIC STATE/STATUS
SRE START toois 3
STATE TOOL3
INITIALIZE PACKET FILTER
% ——
302
304" | NEWSTATE
SRE STARTAools2 | TOOLS3 REGEIVE
2 oo | g, || s
MODIFY PACKET 394 MATCHING
ESTABLISH FILTER
SEND PACKET K]
' 306
NEWGSTATE
o 310._ TNEWSTATE
S ooLS2.RECEVE | ’ TOOLS3 RECEIVE
s to-to0iss
TosTERILIER | LSS R
MATCHING MATCHING
\-a08
528 INEWSTATE 31DJNEWSTATE
oo TD.C}LSZ M TDDLsa;F{ECEIVE_
] = : 306

U.S. Patent Apr. 15, 2003 Sheet 1 of 7 US 6,549,882 B1

100

ROUTER UNDER TEST | T'E(gg'g'/ﬁ oadiog
(NEW 105) \

+ STABLE 105)

|
106

o’ N\
N 4

108

FIG. 1

U.S. Patent Apr. 15, 2003 Sheet 2 of 7 US 6,549,882 B1

2<3TARD
_ J 200

202 —> e
" PACKET SEND (OPTIONAL)

I

204
\/\| PACKET ARRIVE

N

206 T ‘
\/‘\{- PACKET/FILTER HATCHING |?

CONFIGURABLE
IF MATCH ~" BY USER

208 -
T

ACTION (S) K —

SEND, NEWSTATE, ETC.

ool P

A4

210

FIG. 2

U.S. Patent Apr. 15, 2003 Sheet 3 of 7 US 6,549,882 B1

300 tools 2-321 tools 3-301

R STATE/STATUS PACKET TRAFFIC | STATE/STATUS
SRE START tools 3

STATE TOOL3
INITIALIZE PACKET FILTER

204/ NEWSTATE

SRE START/tools2 ’ TOOLS3 RECEIVE
322JT STATETOOLS2 | (100ls2-to.¢5, - REGISTER FILTER
N PACKET/FILTER |
MODIFY PACKET 2y MATCHING
ESTABLISH FILTER |
SEND PACKET | H
- 306
NEWSTATE 210/ INEWSTATE
328/
326
‘TOOLS2-RECEIVE 2 TOOLS3 RECEIVE |
2
REGISTER FILTER | |t00is3 T | RIEECID?(EE'TFII:LI'I}EERR
PACKET/FILTER o Al
MATCHING
| I < :
s/ |NEWSTATE 210/ |NEWSTATE
Lo L
TOOLS? 0015215, 40, TOOLS3-RECEIVE |
322}~ o S3(3) || .
| - || 324 o
. . | _306

U.S. Patent

Apr. 15, 2003

TOOLS3

352

350

354

TOOLS3-

RECEIVE

393
355

TOOLS3-

Sheet 4 of 7

366

SEND

306

FIG. 3B

TOOLSZ

US 6,549,882 B1

363

TOOLS2-

RECEIVE

362

364

360

U.S. Patent Apr. 15, 2003 Sheet 5 of 7 US 6,549,882 B1

P3
UuT El TESTER
404" NET | L3 1 {SRE‘] 4'—\“402
DATA| L2 SRE
= (.]
i PHY | r —% PHY
P2 - -
|
o . B I

FIG. 4A

U.S. Patent Apr. 15, 2003 Sheet 6 of 7 US 6,549,882 B1

[2 K
470 ///ffﬂ
_‘ED______ L 2-INIT
466 462
463
464
L2-
L2-ACTIVE (CONNECTING /] 2
455 468
454
(_474 _472
450 460
Y Y
Y

UUT-480

U.S. Patent Apr. 15, 2003 Sheet 7 of 7 US 6,549,882 B1

'iﬂ-----------------.-u-u———--————-.--—-“.q--.--—------a--------.-----ﬂ-.-—-.-----------.---

556— | TOKEN | ! /
510\‘ RING | |
554 el
i ~.| SERIAL 526 |
lN%)RMM- MULTIPORT
; | FACE 1 | ETHERNET
| MULTIPORT F;;‘ N
| COMMUNICATIONS 5 g
o INTERFACE (\-552 | |INTERFACE |_/"524
e e —
522— | CONTROLLER
PROCESSOR B
- \-563 |
l 56§’ _ 515

FIG. 5

US 6,549,852 Bl

1

MECHANISMS FOR PROVIDING AND
USING A SCRIPTING LANGUAGE FOR
FLEXIBLY SIMULATIONG A PLURALITY
OF DIFFERENT NETWORK PROTOCOLS

BACKGROUND OF THE INVENTION

The present invention relates to computer networks. More
particularly, the 1nvention relates the testing and simulation
of computer networks, and to a scripting language, also
referred to as a stimulus/response engine, for modeling state
machines used 1n the testing of computer network protocols.

Traffic on computer networks 1s composed of multiple
protocol 1nteractions which work 1n concert to provide
connectivity, bandwidth utilization, content provisioning,
security, and reliability. Often multiple protocols are
required in the course of a transaction to achieve a network
application objective. Emulating this behavior 1n the test lab
without 1nstalling and configuring all of the devices and
protocols involved in such a transaction 1s a significant
challenge facing network equipment vendors and consum-
€rS.

A tool that 1s useful in network protocol testing i1s a
network traffic analyzer (NTA). An example of a NTA is the
Pagent™ product developed by Cisco Systems, Inc.
(“Cisco”). Pagent is a version of the Cisco Internet Operat-
ing System (IOS®) which has been modified to generate and
receive network traffic for network simulation and testing
purposes. However, NTAs like Pagent have limited utility as
test systems since they are not able to respond to the content
of test packets (“stimuli”), and cannot be programmed to
provide test scenarios for a variety of protocols. Instead, an
NTA 1s only able to generate, send, receive and count
packets.

Network testing tools have been developed which address
sub-components of these protocols (individual protocol con-
formance test suites). For example, Midnight Networks, Inc.
has a tool, ANVL, which provides an application perfor-
mance interface (API) set that can be used to create indi-
vidual protocol conformance test suites. However, this tool
1s implemented 1n the computer language C, and requires a
C development environment in order to be used.

Alternative systems, such as a protocol analyzer available
from Hewlett-Packard, provide hard-coded N'TAs which are
able to provide responses to packet content, but only in a
very narrow, predefilned manner. Such systems cannot be
programmed to test a variety of protocols, and are not
capable of implementing dynamic test scenarios, that is,
scenarios 1n which packets are modified during the course of
the test.

Thus, current network test systems are limited to indi-
vidual protocols, unable to respond to packets other than to
count them (that is, they cannot respond to packet content),
or are hard-coded so that packets transmitted by a network
traffic analyzer have known content 1n a narrowly-defined
range with predefined responses. Moreover, conventional
network test systems are not dynamically configurable to
different protocols by the user, and are not dynamaic. This 1s
particularly a problem for newly-developed protocols since
dedicated test systems are expensive to construct and are
typically developed at a much later time.

Accordingly, what 1s needed 1s a test system which can
replicate the rich, dynamic protocol interactions and dia-
logues necessary to test and model behavior in network
protocol stacks.

SUMMARY OF THE INVENTION

The present invention meets this need by providing test
systems, methods, and media which allow a user to script

10

15

20

25

30

35

40

45

50

55

60

65

2

any type of test or model scenario based on a particular type
of network traffic (e.g., protocol interaction). In preferred
embodiments, the script provides for the generation of
packets (stimuli) which are used to provoke responses in
order to model or test proper operation of one or more
network protocols. The invention includes a scripting
language, also referred to as a stimulus/response engine,

which mcludes commands specifying a state change of a
network device, and provides for the establishment of packet
filters based on expected network traffic, receiving and
matching arriving packets with packet filters, and, where
there 1s a match, conducting actions specified by the user in
the script.

A stimulus/response engine (SRE) in accordance with the
present invention 1s dynamic 1n that 1t accommodates pat-
terns (packet filters) which are modified during test runs.
The SRE 1s fully programmable by the user and thus can be
used to design models and test scenarios for a variety of
network protocols, 1including new protocols developed by
the user for which no testing packages exist.

A SRE 1n accordance with the present invention 1s built on
a state machine model. Since many internet protocols are
also defined 1n terms of state machine models, these proto-
cols may be casily translated into a SRE script for testing
and simulation purposes. As noted, a SRE 1n accordance
with the present invention 1s scriptable, so that it may be
modified and extended to test a variety of network protocols.
A SRE 1n accordance with the present invention also uses a
send/expect model 1n 1ts scripting format.

In one aspect, the present invention provides a method,
implemented on a computing device, for stmulating one or
more network activities. The method involves providing
program code for generating a model of one or more
network devices. The program 1s written 1n a language that
includes commands speciiying a state change of a network
device. The program code 1s then converted, preferably
using an 1nterpreter, to machine executable instructions for
executing the model.

In another aspect, the invention provides a computer
program product including a computer-usable medium hav-
ing computer-readable program code embodied thereon for
effecting such a method.

In yet another aspect, the invention provides a system for
controlling the generation of a model of one or more
network devices, with the aid of a network device. The
system 1ncludes a converter that recognizes program code
commands specitying a state change of a network device
and converts such program code to produce a model of one
or more network devices, and a network device operating
system on which the program code runs.

These and other features and advantages of the present
invention will be presented 1n more detail 1in the following
specification of the invention and the accompanying figures

which 1llustrate by way of example the principles of the
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a block diagram 1llustrating an example of
network test system implementation in accordance with a
preferred embodiment of the present invention.

FIG. 2 illustrates a flow chart for a generic process of
testing a suite of network protocols on a send/expect model,

in accordance with a preferred embodiment of the present
invention.

FIG. 3A 1llustrates a flow diagram for a sample protocol
to 1llustrate the organization of a SRE script and its dynamic
scripting capacity, 1n accordance with a preferred embodi-
ment of the present mnvention.

FIG. 3B 1llustrates a state diagram for the sample protocol
of FIG. 3A, 1llustrating the organization of a SRE script and

US 6,549,852 Bl

3

its dynamic scripting capacity, 1n accordance with a pre-
ferred embodiment of the present invention.

FIG. 4A depicts a block diagram 1llustrating a sample test
system implementation for testing with layered protocol
stacks, 1n accordance with a preferred embodiment of the
present mvention.

FIG. 4B depicts a state diagram 1llustrating the organiza-
fion a SRE script for testing the layered protocol stacks
depicted in FIG. 4A, 1n accordance with a preferred embodi-
ment of the present invention.

FIG. 5 depicts a router hardware architecture that may be
used to implement the systems and methods of the present
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Reference will now be made 1n detail to a preferred
embodiment of the 1nvention. An example of the preferred
embodiment 1s 1llustrated 1n the accompanying drawings.
While the mvention will be described 1in conjunction with
that preferred embodiment, 1t will be understood that it 1s not
intended to limit the 1nvention to one preferred embodiment.
On the contrary, it 1s intended to cover alternatives,
modifications, and equivalents as may be included within
the spirit and scope of the invention as defined by the
appended claims. In the following description, numerous
specific details are set forth 1n order to provide a thorough
understanding of the present invention. The present inven-
fion may be practiced without some or all of these speciiic
details. In other instances, well known process operations
have not been described 1 detail 1n order not to unneces-
sarily obscure the present invention.

Introduction

The present invention provides test systems, methods, and
media which allow a user to write a script emulating any
type of network traffic (e.g., protocol interaction) and to
respond based on the stimuli provided (packets sent) by that
script. Various aspects of the present invention incorporate
an network device operating system (NDOS)-based script-
ing language, sometimes referred to as a stimulus/response
engine. A stimulus/response engine (SRE) in accordance
with a preferred embodiment of the present 1s programmable
and can respond based on the content a variety of stimuli
provided 1n a test scenario. A preferred SRE 1n accordance
with the invention 1s also dynamic, 1 that it accommodates
packets modified during test runs. Further, since a SRE in
accordance with the present invention is scriptable, it may be
modified and extended to test a variety of network protocols.

FIG. 1 1llustrates a block diagram of a simple network test
system 1n accordance with a preferred embodiment of the
present mnvention. The system 100 includes two routers. It
should be understood that a stimulus/response engine in
accordance with the present invention may be implemented
with a single router or with more than two routers, as
explained 1n more detail below. A two router system 1s a
particularly preferred test configuration since it offers the
opportunity to test inter-device network protocols while
minimizing the network structure required for testing.

The test system features a router 102 which 1s configured
fo run a new version of an operating system for a network
device. This router 102 may be referred to as the “router-
under-test.” The router-under 102 test 1s connected to a
second router 104 which 1s configured to run a stimulus/
response engine 1n accordance with the present invention,
together with a network traffic analyzer (NTA), such as
Cisco’s Pagent™, and a stable version of a NDOS, such as
Cisco’s IOS®, running on the router-under-test 102. The
two routers 102 and 104 are connected by any networking

10

15

20

25

30

35

40

45

50

55

60

65

4

medium 106. A particularly preferred network medium 1s
Ethernet (or Fast Ethernet or Gigabyte Ethernet). However,
the medium may also be a serial link, for example. Each
router 102 and 104 also normally has connected to it a
console line 108 used for controlling the router. Further
details relating to preferred implementations of the present
invention and discussed below with reference to FIG. 5.

In the preferred embodiment of the present invention
depicted 1n FIG. 1, SRE scripts are written and run on the
testing router 104 resulting in packets being sent from the
testing router 104 to the router-under-test 102. The SRE
establishes packet filters designed to match the response to
the stimulus (packet(s)) sent expected from the router-under-
test 102. When a packet comes back 1n to the testing router
104 from the router-under-test 102, the SRE matches against
the established filters. If there is a match, the action(s)
assoclated with the matching packet filter are taken.

A SRE m accordance with a preferred embodiment of the
present mvention 1s primarily based on two concepts: the
state machine and the send/expect model. Since many inter-
net protocols are also defined in terms of state machine
models, these protocols may be easily translated into the
SRE for testing and simulation purposes. ASRE model (e.g.,
a SRE script) defines states useful for testing protocol
interactions, for example in a new NDOS version, and
control 1s transferred between these states. The send/expect
model 1s an 1dea adapted from Unix tcl/expect script,
wherein a character string 1s sent, and another character
string with a specific pattern 1s expected to come back in
response. With an SRE, a packet filter 1s created and
registered based on a packet to be sent out. The packet 1s
then sent, and a packet (having a pattern) matching the filter
1s expected to come back. This send/expect model 1s adapted
in the SRE 1n this way so that a quick response to a packet
that has been sent by the router on which the SRE 1s running
will not be missed while the packet filter 1s being
established, as 1s discussed further below.

A SRE 1n accordance with the present invention 1s not
only able to verily proper operation against specifications to
demonstrate conformance, but also to create a generic state
machine-based, network-aware toolkit that can be used
anytime there 1s a need to determine correct or incorrect
operation of a set of network protocol interactions. The
present 1nvention provides a state machine engine and
primatives for a variety of networking protocols. As such it
does not constrain the user to create conformance validators.
A SRE 1n accordance with the present invention allows any

protocol or multi-protocol dialog to be replicated.
SRE Basics

A stimulus/response engine 1s a scripting language that
allows a user to script a logical representation of virtually
any network protocol. FIG. 2 depicts a flow chart for a
generic process of testing a suite of network protocols on a
send/expect model, 1n accordance with a preferred embodi-
ment of the present invention. The process 200 begins at
201, and at an optional step 202 a packet (stimulus) is sent
from an SRE state machine. This step 202 1s optional
because frequently a networking environment includes one
or more entities which act as “servers” and others that act as
“clients.” Servers wait for requests to come 1n from clients.
If a server 1s being tested, then the SRE script used to
conduct the test will typically begin with a the sending of a
request (stimulus) to the server. However, if a server 1s being
emulated (e.g., to test a client) will begin with waiting for a
request; 1 this circumstance, the sending of a stimulus 1s
unnecessary.

At a step 204, a packet arrives in the SRE state machine,
and at a step 206 the packet 1s matched against packet filters
for expected packets. If an incoming packet matches a
packet filter, one or more actions are taken at a step 208, for

US 6,549,852 Bl

S

example to indicate that the expected response to a stimulus
was recewved. Actions may include, for example, printing a
message, sending another packet, establishing a new packet
filter, and/or transferring control of the state machine to
another state. If no match 1s made, that also may be 1indicated

by printing a message or mvoking a timeout. The process
ends at 210.

A SRE uses a network traffic analyzer (NTA) to assist in
the construction and manipulation of packets and packet
filters (packets used as filters). In the description of a
preferred embodiment of a SRE herein, reference 1s made to
Cisco’s Pagent™ NTA for packet construction and manipu-
lation. In this regard, packets are referred to as originating or
existing 1n Pagent “workspace,” and certain Pagent com-
mands and invoked to construct or modity packets or load
SRE scripts. It should be understood, however, that Pagent
1s not an 1ntegral part of the SRE. A SRE merely interfaces
with a NTA for i1ts packet construction and manipulation
requirements. Any NTA has packet construction and
manipulation as primary functions. A description of the
Pagent NTA functionalities relevant to SRE 1s provided
herein. However, 1t should be understood that a SRE 1in
accordance with the present invention may be used 1n
conjunction with any compatible NTA.

As noted above, a SRE script 1s based on a state machine
model. Therefore, a SRE script defines one or more states
and transfers control between them. This 1s also referred to
as a SRE process. SRE state definition makes use of SRE
simple statements, SRE compound statements. In addition,
SRE router command line interface (CLI) commands are
used to assist in running a SRE script. These SRE commands
and their use are described below.

SRE State Definition

The following 1s a generic SRE state definition:

sre define <StateName>

<any number of SRE simple statements>

<optional expect compound statement>
<any number of packet compound statement>
<any number of SRE simple statements>
<opftional timeout compound statement>
<any number of SRE simple statements>

end

A SRE state definition 1s composed of an optional number
of SRE simple statements (zero or more), and optionally
followed by a SRE expect compound statement. The expect
compound statement 1s composed of an optional number of
packet compound statements, and optionally followed by a
fimeout compound statement. The packet compound state-
ment 1s composed of a packet filter, and an optional interface
parameter which specifies the iterface on which to expect
the response packet to be received. If no interface parameter
1s specified, SRE may use an interface defined 1n the packet
filter, and 1f not defined, may use the default interface. The
body of a packet compound statement, 1s composed of any
number of SRE simple statements, described below, includ-
ing preferably a newstate statement (specifying a transition
to a different state). The timeout compound statement speci-
fies a timeout value to wait for a packet to be received. If no
packet 1s recerved within the specified timeout value, the
statements 1n the timeout compound statement are executed.

When a packet comes 1n, 1t 1s matched against the packet
filter from the first packet compound statement to the last. If
it matches a filter, the statements 1n the packet compound
statement are executed, and the control will fall off the
expect statement. If there 1s no newstate statement 1n the
packet compound statement, the state machine will stop. If
there 1s a newstate statement in the packet compound
statement, the control follows the newstate.

An example of such a state definition i1s provided by the
following code segment:

10

15

20

25

30

35

40

45

50

55

60

65

sre define CLIENT 1
send request

expect
packet response
print “response received”
newstate CLIENT__2
end
fimeout
print “fimeout error”
exit
end
end
end
The sample state definition includes one simple send state-
ment up front in the CLIENT__1 state definition. As noted in
the generic script, 1t 1s possible to optionally have zero or
more simple statements. The send statement 1s followed by
an expect compound statement, which 1s also optional.
Inside the expect compound statement, there 1s one packet
compound statement, which again 1s optional, and 1n this
case includes print and newstate (transferring control to state
CLIENT __2) simple statements. It is also possible to have a
timeout compound statement inside a expect statement, as
here containing a print simple statement.

SRE CLI Commands

The following 1s a list of SRE CLI commands, 1in accor-
dance with a preferred embodiment of the present invention,
together with examples 1llustrating their use:

Define

This command 1s used to define a SRE state. The scope of
a state name 1s global. Thus, 1f the same state name has
previously been defined, the SRE clears the old definition 1n
favor of the new state definition. “StateName” may be any
character string. The syntax for the command 1s as follows:

sre define <StateName>
Undefine
This command 1s used to delete a SRE state. “StateName”

may be any character string. The syntax for the command 1s
as follows:

sre undefine <StateName>

Start

This command 1s used to start a SRE state machine, and
indicate that the 1nitial state should be “StateName.” A SRE
statc machine runs by default 1n the background, unless
“foreground” 1s specified. The syntax for the command 1s as
follows:
sre start [foreground] <StateName:>

Stop

This command 1s used to stop a SRE state machine. A
particular StateName, Process ID, or “*”, which means stop
all SRE processes, may be specified. The syntax for the
command 1s as follows:
sre stop {<ProcessID>|<StateName>|*}

Display Process

This command 1s used to display the SRE processes
currently running. A particular StateName, Process ID, or
“*”_ which means display all SRE processes, may be speci-
fied. The syntax for the command 1s as follows:
sre display process {<ProcessID>|<StateName>[*}

Display Runtime

This command 1s used to display runtime imnformation for
SRE processes currently running. A particular StateName,
Process ID, or “*”, which means display all SRE process
runtime information, may be specified. The syntax for the
command 1s as follows:
sre display runtime {<ProcessID>|<StateName>|*}

Display Workspace

This command 1s used to display SRE workspace infor-
mation. A particular StateName, Process ID, or “*”, which

US 6,549,852 Bl

7

means display all SRE process workspace information, may
be specified. The syntax for the command is as follows:
sre display workspace {<WorkspaceName>|*}

Trace

This command 1s used to turn SRE internal trace on or off.
The trace utility provides a status log of an SRE state
machine. In a preferred embodiment, SRE ftrace uses an
[OS® logging utility. In this embodiment, by default the
frace does not appear on the control console, but an IOS®
“show log” command may be used to display internal
logging 1nformation. The syntax for the command 1s as
follows:
sre trace {onl|off}

Source- Verbose

This command 1s used to turn on or off source-verbose
mode. “Source” 1s a IOS® command used to load a script
into a router. In a preferred embodiment of the present
invention, the SRE scripts that are being loaded are not
displayed. Turning on the source-verbose mode causes the
SRE scripts that are being loaded to be displayed. The syntax
for the command 1s as follows:
sre source-verbose {on|off}

SRE Statements

The following 1s a list of SRE simple and compound
statements 1n accordance with a preferred embodiment of
the present invention, together with examples 1llustrating
their use:

Send

The “send” command 1s used to send a packet over an
interface or internally to another SRE state machine. An
interface over which the packet 1s to be sent may optionally
be specified. In a preferred embodiment, the command has
the syntax:

I

send <packetname> [interface<interface>|

The “send” command directs packets created and stored by
a NTA, for example 1n a Pagent workspace. If no interface
1s specified either from the NTA or the send command, the
stimulus may retrieve the interface from the transaction
record or the command line.

The following 1s an example of the use of a “send”
command to send a packet out of an ¢0/0 interface, where the
packet “ping_ request” 1s defined by an NTA 1n accordance
with an SRE script, for example with the Pagent “add”
command:

send__ping request interface ¢0/0

Expect

SRE “expect” 1s a compound statement. The command
may be composed of multiple pattern/action pairs. The
actions associated with a pattern (packet/filter) will be
carriecd out when a stimulus and response matches the
pattern specified. In a preferred embodiment, the stimulus
and response pattern may contain one of the following
formats:

packet: A packet filter/pattern that can be used to match
the incoming packets. Multiple packet filters may be
specified by users.

timeout: The action associated with the timeout 1s invoked
when a timer expires before all other conditions are
met. Only one “timeout” clause 1s allowed.

When an “expect” command 1s 1ssued, 1t starts the timer
and waits for the incoming packets to match the patterns
specified. If the pattern 1s matched, the timer will be turned
off and the actions specified 1n the pattern will be executed.
If no incoming packets match the patterns before the timer
expire, the actions 1n the timeout clause will be mnvoked.

5

10

15

20

25

30

35

40

45

50

55

60

65

3

An “expect” command” has the following syntax, with
the bracketed (|])items being optional:
expect

<any number of packet compound statement>
<any number of SRE simple statements>

<optional timeout compound statement>
<any number of SRE simple statements>

end

where, the keyword “expect” by itself indicates the start of
an expect compound statement. The statements inside an
expect compound statement can be an optional number of
packet compound statements, and an optional number of
timeout compound statements.

The following example counts the number of IP packets
and displays the result after 10 seconds has expired:
expect

packet any__ 1p
set a=a+1
continue

end

timeout 10000
print “a=%$a”

end
end

Packet

A packet pattern/filter allows a SRE to pick up the
incoming packets that match the pattern. For example, users
can define a pattern to match any IP packets or match any
packet destined for certain IP address. “Packet” 1s a sub-
command to the “expect” command used to register the
pattern/filter. “Packet” 1s a compound statement and, 1n a
preferred embodiment, has the following syntax, with the
bracketed (|])items being optional:
packet <filtername> [saveto <packetname>] [interface

<interfacename>] [from internal]
where “filtername” 1s a packet in Pagent (NTA) workspace.
“Packetname” 1s a dummy packet defined i Pagent work-
space. The purpose of the dummy packet 1s to reserve name
space under Pagent workspace so the received packet can be
saved 1nto Pagent workspace for future access. The “inter-
face” parameter specifies the interface to monitor for the
specified filter pattern. The “from internal” parameter speci-
fies that you are looking for packet internally from another
sre state machine.

The following 1s an example of the form of a packet

command. The first two lines of code are for the NTA to
construct the desired packets.

add $$ name filter select on byte 0 1234
add $$ name request
sre define state

expect
packet filter saveto request
print “received request”
end
timeout 1000
print “timeout”
end

end
end

Timeout

The “timeout” command allows users to specily actions 1n
the event that no pattern 1s matched. The syntax of the
fimeout subcommand 1s:
timeout <time 1n milliseconds:>

Newstate

This command 1s used to transfer the control flow to
another state. Certain applications require multiple states to

US 6,549,852 Bl

9

perform a transaction. “newstate” provides the ability to
change the state by immvoking another transaction record.
Once the transaction record 1s ended, the control will return
back and proceed to execute the body.

The following example shows two states, SEND and
RECEIVE, where command “newstate” 1s used to transfer
control between two states:

sre define RECEIVE
expect

packet requset
print “request recerved”

newstate SEND
end

timeout
print “timeout error”
exit
end
end

end
sre define SEND

send response

newstate RECEIVE
end

Print

This command 1s used to send print out information on the
console. The syntax for the command 1s as follows:
print “<character strings>"
The “character strings” may contain a variable (e.g.,
“${variablename }”’), which will be replaced with the content
of the variable.
The following 1s an example of print a message with “count”
information 1in 1it.
print “current count=$ {count}.”

Patch

A patch statement takes the value of a variable and
patches 1t to a packet, starting from a specified ofiset with a
specifled length. The syntax for the command in a preferred

embodiment of the present invention is as follows:
patch from <variablename> to <packetname> |[start-at

[network|datalink]] [offset #] [length #]
The following example takes the value of a variable “d” and
patches it to the packet “ping_ pak™ starting from offset 6 of
the packet and modifing 6 bytes. Essentially, this operation
overwrites the source MAC address of the packet.
patch from d to ping_ pak offset 6 length 6

Extract

The “extract” statement extracts a value from a packet and
puts the extracted value into a variable, starting from a
speciflied offset with a specified length. The syntax for the
command 1n a preferred embodiment of the present inven-
tion 1s as follows:
extract from <packetname> to <variablename> |[start-at

[network|datalink]] [offset #] [length #]
The following example extracts the source MAC address of
a packet and out into a variable s starting from offset 6 of the
packet and modiling 6 bytes.
extract from ping_ pak to s ofiset 6 length 6

Delay

The “delay” statement delays the control flow for the
specified milliseconds. The syntax for the command 1n a
preferred embodiment of the present invention 1s as follows:
Delay <#milliseconds>
The following 1s an example of a command to delay 100

milliseconds before sending out a packet.
delay 100

send ping_request
Continue

The “continue” command 1s used 1nside a packet com-
pound statement. It 1s used to establish a loop, so that when

10

15

20

25

30

35

40

45

50

55

60

65

10

an event occurs (€.g., a packet comes in or timeout expires),
a process 1s returned to the expect statement to repeat the
process again. “Continue” 1n SRE has the same function as
the “continue” 1 Unix Tcl/Expect.

The following example illustrates the use of a continue
command 1n a portion of SRE code, 1n accordance with a
preferred embodiment of the present invention, which
counts the number of incoming packets:

sre define COUNT
set a=0

expect
packet packet_ filer
set a=a+1
continue
end

end
end

Set

The “set” command supports simple arithmetic
operations, 1ncluding addition, subtraction, multiplication,
division, module, and and/or operations. The syntax for the
command 1n a preferred embodiment of the present inven-
tion 1s as follows:
set <variablename>=<variablename> [operator

<variablename> |
where operator is one of +, -, *, /, %, &, and |.
The following examples show some simple arithmetic
operations using the set command:
set count=0
set sequence=sequence+1
set a=a—1
set b=c * d
set d=d/5

It

The “1f” command provides a mechanism for a condi-
tional branch. It contains a condition and an action statement
which 1s executed 1f the condition 1s true. The condition
supported 1s a simple arithmetic comparison, and the action
1s a “newstate” command. The syntax for the command 1n a

preferred embodiment of the present invention 1s as follows:
if [<variablename>|<constant>] <operator>

[<variablename>|<constant>] newstate <statename>
where the operator 1s one of <, <=, < >, =, >, and >=.
The following example 1illustrates the use of an “if” com-
mand 1n a portion of SRE code:
sre define statel

set count=count+1
1f count==5000 newstate donestate

end
sre define donestate

print “done”
end

Exit

This command 1s used to end the control tlow of a state
machine. The following code segment shows the “exit”

command used to exat out of a state machine 1f timeout error
OCCUrs.

sre define statel

expect
packet requset

print “request received”
newstate state2

end

fimeout
print “timeout error”
exit

US 6,549,852 Bl

11

end

end
end

Send/Expect Model

The send/expect model 1s used to establish a packet filter
before 1ts corresponding packet 1s sent. When an SRE sees
a “send” statement while an SRE script 1s running, it
assumes that a packet 1s expected to come back in response,
so 1t looks forward to search for an “expect” statement. If 1t
finds one, 1t takes all of the “packet” statement, and builds
an appropriate filter for each packet sent. This filter 1s then
applied to incoming packets. In this way, it 1s guaranteed that
no matter how fast the response to a particular packet may
come back the SRE will be ready for 1it.

This benefits of this approach impose a constraint on the
programming style of SRE scripts, 1n that it 1s unadvisable
to patch a packet filter after a packet 1s sent. Therefore, 1n
preferred embodiments of the present invention, if a packet
filter 1s patched after a packet 1s sent, the SRE will 1ssue a
warning to the user.

The following example 1llustrates this concept:
sre define TEST1

set a=a+1

patch from a to request oifset 20 length 1
send request
print “send request sequence number $a”

patch from a to response offset 20 length 1

expect
packet response
print “response receive”
newstate TEST1
end
timeout 1000
print “timeout”
exit
end
end
end
In the example, the state TEST1 sends out a packet with
sequence number of a, and expect to receive a response of
sequence number a. However, 1t sends out the request and
patches the response to sequence number a before setting up
the packet filter. This opens up a window during which, it

the response comes back too fast, the response may be lost.
Therefore, the preferred programming style 1s as follows:

sre define TEST1
set a=a+1

patch from a to request offset 20 length 1

patch from a to response ofiset 20 length 1
send request
print “send request sequence number $a”

expect
packet response

print “response receive”
newstate TESTI

end
timeout 1000

print “timeout”
exit
end

end
end

EXAMPLES

SRE scripts representing virtually any network protocol
may be written using the commands and generic forms

10

15

20

25

30

35

40

45

50

55

60

65

12

described above 1n accordance with the present invention.
Two examples which 1llustrate the use of the commands and
forms to script network protocols for testing or simulation
purposes 1n accordance with preferred embodiments of the
present mvention are described below. It should be under-
stood that the following 1s representative only, and that the
invention 1s not limited by the details set forth 1n these
examples.

Pingpong Example

This example uses a script which passes a packet back and
forth between two routers 1n order to i1llustrate basic features
of a preferred SRE. The sample script 1s called “PING-
PONG.SRE”. The PINGPONG.SRE SRE script involves
two routers, tools2 and tools3, both of which are running a
SRE. In an actual two-router test scenario, only one router
(testing router) typically runs a SRE to test the response of
the other (router-under-test (or unit-under-test, UUT)), as
described with reference to FIG. 1. This example has SREs
running on both routers 1n order to illustrate the command
structure of a SRE 1n a simplified manner.

Tools2 operates 1n two states, TOOLS2 and TOOLS2__
RECEIVE. State TOOLS sends a packet, and state
TOOLS2__RECEIVE waits for a packet to come back.
Toolsd operates 1n three states, TOOLS3, TOOLS3
RECEIVE and TOOLS3__SEND. State TOOLS3 initializes
the packet filter, TOOLS3_RECEIVE waits for a packet,
and TOOLS3_SEND sends out a packet. The extra
TOOLSJ state 1s included 1n state machine tools3 since it 1s
the first to receive a packet, and there 1s no prior send
statement form which to establish a packet filter for the
initial incoming packet.

The packets required for the example SRE script are
constructed by a network traflic analyzer prior to starting the
script. In this case, two packets, tools2_ to_ toolsd and
toolsd to_ tools2, are created 1n accordance with the fol-
lowing NTA commands which clear any packets having
those names and establish the parameters of the packets.
clear tools2_ to_ tools3
add $$ name tools2_ to_ tools3 select on length 80 length 80

byte 0
00000COES8C1 00000CO9F3CE 12340000
quit
clear tools3__to__tools2
add $$ name tools3_ to_ tools2 select on length 80 length 80

byte 0
00000CO9F3CE 00000COE58C1 12340000
quit

The example, 1s 1llustrated 1n a flow diagram 300 1n FIG.
3A. The state machine of router toolsd 301 is started first 1n
initial SRE state TOOLS3 302. In state TOOLSJ3, a packet
filter (tools2_to_tools3) is initialized. The script portion
defining state TOOLS3 1s as follows:
sre define TOOLS3

set a=a+1
patch from a to tools2_ to_ toolsd offset 16 length 2

newstate TOOLS3 RECEIVE
end

From the foregoing explanation of SRE commands, in may
be understood from this code that state TOOLS3 302 1s
defined to increment a variable a, in this case a packet
sequence number, and then modily a packet tools2_to__
toolsd with a patch to reflect the incremented sequence
number (initially to equal 1 for the first packet to be
received). Control is then transferred, as illustrated by arrow
304, to a state TOOLS3 RECEIVE 306 with a newstate

command.

US 6,549,852 Bl

13

State TOOLS3 RECEIVE 1s defined as follows:
sre define TOOLS3 RECEIVE

expect
packet tools2_ to_ tools3
extract to b offset 16 length 2
print “received $b”
delay 1000
newstate TOOLS3__SEND

end

end

end

In this state 306, the state machine (tools3) is expecting
(expect statement) an incoming packet matching the packet
filter tools2 to tools3 initialized in state TOOLS3 302, and
registered by the packet statement 1n this state 306. If a
packet tools2 to_ toolsd (b) (initially tools2 to tools3
(1)) 1s received (that is, there is a packet/filter match), its
sequence number “b” is extracted (extract statement) and
“received [b]” 1s printed (print statement). After a delay of
1000 milliseconds, control 1s transferred by a newstate
command to a new state, TOOLS3 _SEND 308, as 1illus-
trated by arrow 310.

In the meantime, the state machine on router tools2 321
1s started with SRE state TOOLS2 322. State TOOLS2 1s

defined as follows:
sre define TOOLS2

set a=a+1
patch from a to tools2_ to_ tools3 ofiset 16 length 2
print “send $a”

set a=a+1

patch from a to tools3_ to_ tools2 offset 16 length 2
send tools2__to__tools3

newstate TOOLS2 RECEIVE

end

TOOLS2 mcrements a variable “a,” the packet sequence
number, and then modifies a packet tools2_ to_ tools3 with
a patch to reflect the mmcremented sequence number, and
prints “send [a]” to the console to indicate that a packet with
sequence number “a” (initially 1; tools2_to_ tools3 (1)) is
being sent. Next, a filter 1s established for the packet
expected 1n response to the packet being sent. The expected
packet will be a tools3__to_ tools2 packet having the next
sequence number. Therefore, the sequence number variable
“a” 1s mmcremented using a set command, and a tools3__to
tools2 packet 1s modified using a patch command to contain
the next sequence number (e.g., 2). The packet (initially
tools2_to_tools3 (1)) is then sent to router/state machine
toolsd 301, as 1llustrated by arrow 324 using a send com-
mand. Control 1s then transferred, as illustrated by arrow
306, to a state TOOLS2 RECEIVE 328 with a newstate
command.

As noted previously, state machine tools3 301 was started
before state machine tools2 321, and when a packet tools2__
to_ tools3d (initially tools2 to_ tools3 (1)) is sent, it 1s in
state TOOLS3_RECEIVE 306. When the packet 1s
received, 1t 1s matched with the registered filter tools2_ to
tools3 (b) (initially tools2 to_ tools3 (1)). If there is a
match, as 1n this case, the actions prescribed by state
TOOLS3_RECEIVE 306 (described above) are carried-out.

As noted above, once a tools2__to_ tools3 packet has been
sent, control for state machine tools2 321 1s transferred to a
state TOOLS2 RECEIVE 328. State TOOLS2 RECEIVE

1S defined as follows:
sre define TOOLS2 RECEIVE

cxpect
packet toolsd__to_ tools2

10

15

20

25

30

35

40

45

50

55

60

65

14

extract to b ofiset 16 length 2
print “received $b”

delay 1000
newstate TOOLS2

end
timeout 3000
print ""G**** timeout **** °G"
exit
end
end
end
In this state 326, the state machine (tools2) is expecting

(expect statement) an incoming packet matching the packet
filter tools3 to tools2 established 1n state TOOLS2 322,

and registered by the packet statement 1n this state 326. If a
packet tools3_to_ tools2 (b) (initially tools2 to_ tools3 (2

(derived from incremented sequence number a from state
TOOLS2))) is received (that is, there is a packet/filter

match), its sequence number “b” is extracted (extract
statement) and “received [b]” is printed (print statement).
After a delay of 1000 milliseconds, control 1s transferred by
a newstate command back to state, TOOLS3 SEND 308, as
illustrated by arrow 310. In this example, 1if no matching
packet 1s received over a period of 3000 milliseconds,
“EEEEImeout™* **” 1s printed, as directed by timeout and
print commands.

Meanwhile, 1n state machine tools3 301, control 1s trans-
ferred from TOOLS3 RECEIVE to TOOLS3-SEND 308,
as noted above. State TOOLS3 SEND 1s defined as fol-

lows:
sre define TOOLS3 SEND

set a=a+1

patch from a to tools3_ to_ tools2 offset 16 length 2
print “send $a”

set a=a+1

patch from a to tools2_ to_ toolsd offset 16 length 2
send toolsd_ to_ tools2

newstate TOOLS3 RECEIVE

end

TOOLS3__SEND increments the packet sequence number
variable “a,” then modifies packet toolsd__to_ tools2 with a
patch to reflect the incremented sequence number, and prints
“send [a]” to the console to indicate that a packet with
sequence number “a” (now tools2 to_tools3 (3) at this
point in the example) is being sent. Next, as in TOOLS2_
SEND, a filter 1s established for the packet expected in
response to the packet being sent. The expected packet will
be a tools2_to_ tools3 packet having the next sequence
number. Therefore, the sequence number variable “a” 1is
incremented using a set command, and a tools2_to_ tools3
packet 1s modified using a patch command to contain the
next sequence number (e.g., 4). The packet (tools2_ to_
tools3 (3) at this point) is then sent to router/state machine
tools2 321, as illustrated by arrow 330 using a send com-
mand. Control 1s then transferred, as illustrated by arrow
332, back to state TOOLS3 RECEIVE 306 with a newstate
command.

As noted previously, prior to sending packet toolsd__to__
tools2 (3), control of state machine tools2 321 was trans-
ferred to state TOOLS2_RECEIVE, and 1s expecting a
tools3 to_ tools2 (3) packet. When the packet 1s received,
it 1s matched with the registered filter tools3 to_ tools2 (b).
If there 1s a match, as in this case, the actions prescribed by
state TOOLS2_ RECEIVE 326 (described above) are
carried-out.

Once the script 1s written 1t may be loaded mto each of the
routers by a NDOS command, such as the IOS® command
“source”, for example, as follows:

US 6,549,852 Bl

15

tools3#source pingpong.sre

Loading huchen/pingpong.sre from 192.1.1.2 (via
Ethernet3/0):!

|[OK—1511/65535 bytes]

sre define TOOLS2

sre define TOOLS2__ RECEIVE

sre define TOOLS3

sre define TOOLS3__RECEIVE

sre define TOOLS3__SEND

toolsd#

tools2#source pingpong.sre

[LLoading huchen/pingpong.sre from 192.1.1.2 (via
Ethernet0/0):!

|OK—1511/65535 bytes]

sre define TOOLS2

sre define TOOLS2 RECEIVE

sre define TOOLS3

sre define TOOLS3 RECEIVE

sre define TOOLS3__SEND

tools2#

Then TOOLSJ 1s started on router tools3, for example as
follows:

tools3#sre start TOOLS3
state TOOLS3 started

process 1D: 17

before TOOLS2 1s started on router tools2, for example as
follows:

tools2#sre start TOOLS2

state TOOLS2 started

process 1D: 17

As soon as TOOLS2 i1s started, the two state machines
start passing the packet back and forth between each other.
This example will continue along these lines, with the two
state machines alternating between send and receive, so that
a packet being “pingponged” back and forth between the
two routers according to the SRE script. The print out
generated by the script for each router over nine iterations 1s

as follows:
tools2#

send 1
received 2
send 3

received 4
send 5

received 6
send 7
received 8
send 9
tools3#
received 1
send 2
received 3
send 4
received 5
send 6
recerved 7
send 8
received 9
FIG. 3B depicts a state diagram 1illustrating the relation-

ships of the states of the two state machines, and the

interrelationships of the two state machines. State machine
tools3 350 has three states: TOOLS3 352, TOOLS3

RECEIVE 354, and TOOLS3 SEND 356. State machine
tools2 360 has two states: TOOLS2 362 and TOOLS2
RECEIVE 364. The arrows within the state machines indi-
cate the changes of state that take place during the running

of the state machines.
The arrows 353 and 355 between TOOLS3 352 and

TOOLS3__RECEIVE 354, and TOOLS3__RECEIVE 354

10

15

20

25

30

35

40

45

50

55

60

65

16

and TOOLS3__ SEND 356, respectively indicate that control
1s transferred from TOOLS3 352 to TOOLS3 RECEIVE
354 when the state machine 350 1s started, and thereafter
moves back and forth between TOOLS3 RECEIVE 354
and TOOLS3__SEND 356. Similarly, the arrow 363 between
TOOLS2 362 and TOOLS2 RECEIVE 364 indicates that
control 1s transterred back and forth between TOOLS2 362
and TOOLS2 RECEIVE 364 in state machine 360.
Arrows 366 and 368 illustrate the interrelation of the two
state machines 350 and 360. Arrow 366 shows that packets

are sent from state machine tools2 360 to state machine
tools3 350 when tools2 1s 1n state TOOLS2 362 and tools3

1s 1n state TOOLS3__RECEIVE 354. Similarly, arrow 368
shows that packets are sent from state machine tools3d 350 to
state machine tools2 360 when tools3 1s 1in state TOOLS3__
SEND 356 and tools2 1s m state TOOLS2__RECEIVE 364.

Layered Protocol Stack Example

This 1s a more realistic example of an application of a
SRE. It provides for the sending of packets between state
machines, and includes passing packets between protocol
stacks and layers in protocol stacks. This example illustrates
how an SRE may be used to represent and test complex
network protocol interactions.

The example involves testing packet transmission
between addresses on two protocol layers, Layer 2 and
Layer 3. As 1llustrated in FIG. 4A, such transmission may
occur, for example, for network communication between
layers L3 of a Tester router 402 and unit-under-test (UUT)
404 1in simulated network 400. In order for packets to be
passed between Layers L3 according to protocol P3, Layers
[.2 must be effectively communicating according to protocol
[.2. In addition, internal layers L2 and L3 for each router
must be able to communicate effectively.

This example focuses on the internal protocol interaction
between Layer 3 and Layer 2 1n the tester router 402, both
of which are running SRE state machines. Layer 2 protocol
1s a much simplified version of the LLC2 protocol, and has
three states. Layer 3 protocol state machine 1s composed of
two states.

The state machine of layer L2 on the tester router 402 1s
started first 1n initial SRE state 1.2 INIT 422. In state
[.2_INIT packet filters are registered (expect and packet

commands) for the internal packet CONNECT and the
packet SABME_I. The action associated with the internal

filter CONNECT (to be taken if a matching packet is
received) 1s to send a packet SABME_ o and then transfer

control to a new state (newstate command)
[.2 CONNECTING. The action associated with the filter

SABME_ 1 1s to send a packet UA_o and then transfer
control to a new state (newstate command) .2 ACTIVE.

The script portion defining state L2 INIT 1s as follows:
sre define 1.2 INIT

cxXpect
packet CONNECT from internal
start make a connection
send SABME_ o
newstate 1.2 CONNECTING
end

packet SABME_ {
received a SABME, accept the connection

send UA o
newstate [2 ACTIVE
end
end

end

Once state machine 1.2 has been started 1n statel.2_ INIT,
state machine L3 1s started 1n state L3 INIT. L3 INIT 1s

defined as follows:

US 6,549,852 Bl

17
sre define 1.3 INIT

send CONNECT to internal

newstate .3 CONNECTING
end
A packet CONNECT is sent internally (i.e., within the
protocol stack of the I3 state machine) and then control of

the LL3 state machine 1s transferred to state
.3 CONNECTING.

State L3 CONNECTING 1s defined as follows:
sre define .3 CONNECTING

expect
packet CONNECTED from internal
print “CONNECTED”

end
end

An 1nternal packet filter CONNECTED 1s registered. If a
packet matching the CONNECTED filter 1s received, the
action taken 1n state L.3_ CONNECTING 1s to print “CON-
NECTED” to the console, indicating that a connection
between Layers .3 and L2 has been made.

When the CONNECT internal packet has been sent 1n
state L3 INIT, 1t 1s received in L2, which 1s 1n state
[.2 INIT. As described above, when 1.2 receives a CON-
NECT internal packet, it matches with the CONNECT

internal packet filter, resulting in the sending of a
SABME _ o packet (to .2 of the UUT). Control of the 1.2

state machine 421 1s then transferred to state
[.2 CONNECTING.

State .2 CONNECTING 1s defined as follows:
sre define 1.2 CONNECTING

expect

packet UA_{
print “Link Up”
set vr=(
set vs=(
set nr=0
set ns=0
set count=0
patch from ns to RR__{ offset 13 length 1
delay 1000
send RR_ o
send CONNECTED to internal
newstate 1.2 ACTIVE

end

timeout 3000
print “Link Establishment Failed”
newstate 1.2 INIT

end

end

end

Apacket filter UA__{f1s registered and the actions to be taken
if a matching packet comes 1n include printing “Link Up,”
setting a variety of variables, modifying a packet (RR__f) to
update its sequence number (ns) and establish a filter,
sending a packet RR__o, and sending an internal packet
CONNECTED. Following these actions, control of the 1.2
state machine is transferred to a new state (newstate
command) L2 ACTIVE. If no matching packet is received
within 3000 milliseconds “Link Establishment Failed” 1s

printed and control 1s transferred back to state L2_ INIT.
The third state of state machine 1.2 1s 1.2 ACTIVE.

[.2 ACTIVE is defined as follows:
sre define 1.2 ACTIVE

expect
packet RR__{ saveto RR__1
print “$ {count}”
set count=count+1

5

10

15

20

25

30

35

40

45

50

55

60

65

138

extract from RR__1 to vr offset 1 length 1
delay 1000
patch from ns to RR__{ offset 13 length 1
patch from ns to RR__o offset 13 length 1
send RR_ o
newstate [.2_ ACTIVE

end

timeout 3000
print “Link Down”
newstate 1.2 INIT

end

end
end
Packet filter RR__{ 1s registered, and anything matching it 1s
saved as packet RR__1. The count 1s printed and the count

variable incremented. Variable vr 1s extracted from packet
RR_ I and a delay of 1000 milliseconds 1s invoked. Packets

RR-f and RR__o are modified to update there sequence
numbers (ns), packet RR_ o is sent, and control is retained
in state 1.2 ACTIVE for the expect statement to be fol-
lowed through again. If no matching packet 1s received
within 3000 milliseconds “Link Down™ 1s printed and con-
trol 1s transferred back to state L2__INIT.

FIG. 4B depicts a state diagram illustrating the relation-
ships of the states of the two state machines on the tester
router, the interrelationships of the two state machines, and

the 1nterrelationships between the tester router and the UUT
in this example. State machine L2 450 has three states:
[.2_ INIT 452,12 CONNECTING 454, and L.2_ ACTIVE
456. State machine 1.3 460 has two states: L3 INIT 462 and
[.3. CONNECTING 464. The arrows within the state
machines indicate the changes of state that take place during

the running of the state machines.
The arrows 453, 455 and 457 between L2 INIT 452 and

[.2 CONNECTING 454, and L2 INIT 452 and
.2 ACTIVE 456, and L2 CONNECTING 454 and
[L.2__ACTIVE 456, respectively, indicate that control may be
transferred back and forth between L2 INIT 452 and
.2 CONNECTING 454, and L2 INIT 452 and
L2 ACTIVE 456, and that control may be transferred from
[2 CONNECTING 454 to L2 ACTIVE 456 1n state
machine L2 450. Similarly, the arrow 463 between
[.3 INIT 462 and L3 CONNECTING 464 indicates that
control 1s transferred from L3 INIT 462 to
[3 CONNECTING 464 1n state machine 460.

Arrows 366 and 368 1llustrate the interrelation of the two
state machines 450 and 460. Arrow 466 shows that (internal)
packets are sent from state machine 1.3 460 to state machine
[.2 when L3 1s 1n state L3 INIT 462 and L2 1s in state
[.2 INIT 452. Similarly, arrow 468 shows that (internal)
packets are sent from state machine L2 450 to state machine
[.3 460 when .2 1s 1n state 1.2 CONNECTING 454 and L3
1s 1n state .3 CONNECTING 464.

In addition, arrows 470, 472, and 474 illustrate the
interrelation of the tester router on which the two state
machines 450 and 460 run with the UUT 480. Arrows 470,
472, and 474 illustrate that, in each of its three states, state
machine 450 may send packets to the UUT.

Implementation

Generally, a system 1n accordance with this invention may
be specially constructed for the required purposes, or it may
be a general-purpose programmable machine selectively
activated or reconfigured by a computer program stored 1n
memory. The processes presented herein are not inherently
related to any particular router or other network apparatus.
Preferably, the invention 1s implemented on a network
device designed to handle network traffic. Such network
devices typically have multiple network interfaces including

US 6,549,852 Bl

19

relay and ISDN interfaces, for example. Specific examples
of such network devices include routers and switches. For
example, the address translation systems of this mmvention
may be specially configured routers such as specially con-
figured router models 1600, 2500, 2600, 3600, 4500, 4700,
7200, and 7500 available from Cisco Systems, Inc. of San
Jose, Calif. A general architecture for some of these
machines will appear from the description given below. In
an alternative embodiment, the system may be implemented
on a generalpurpose network host machine such as a per-
sonal computer or workstation. Further, the 1nvention may
be at least partially implemented on a card (e.g., an interface
card) for a network device or a general-purpose computing
device.

Referring now to FIG. §, a router 510 suitable for imple-
menting the present invention includes a master central
processing unit (CPU) 562, low and medium speed inter-
faces 568, and high-speed interfaces 512. When acting under
the control of appropriate software or firmware, the CPU
562 1s responsible for such router tasks as routing table
computations and network management. It may also be
responsible for running a stimulus response engine. It pret-
erably accomplishes all these functions under the control of
software including an operating system (e.g., the Internet
Operating System (IOS®) of Cisco Systems, Inc.) and any
appropriate applications software. CPU 562 may include
one or more microprocessor chips 563 such as the Motorola
MPC860 microprocessor, the Motorola 68030
microprocessor, or other available chips. In a preferred
embodiment, a memory 561 (such as non-volatile RAM
and/or ROM) also forms part of CPU 562. However, there
are many different ways 1n which memory could be coupled
to the system.

The 1nterfaces 512 and 568 are typically provided as
interface cards (sometimes referred to as “line cards”).
Generally, they control the sending and receipt of data
packets over the network and sometimes support other
peripherals used with the router 510. The low and medium
speed interfaces 568 include a multiport communications
interface 552, a serial communications interface 554, and a
token ring interface 556. The high-speed interfaces 512
include an FDDI interface 524 and a multiport ethernet
interface 526. Preferably, each of these interfaces (low/
medium and high-speed) includes (1) a plurality of ports
appropriate for communication with the appropriate media,
and (2) an independent processor such as the 2901 bit slice
processor (available from Advanced Micro Devices corpo-
ration of Santa Clara Calif.), and in some instances (3)
volatile RAM. The independent processors control such
communications intensive tasks as packet switching, media
control and management. By providing separate processors
for the communications mtensive tasks, this architecture
permits the master microprocessor 562 to etfficiently perform
routing computations, network diagnostics, security
functions, etc.

The low and medium speed interfaces are coupled to the
master CPU 562 through a data, control, and address bus
565. High-speed interfaces 512 are connected to the bus 565
through a fast data, control, and address bus 515 which 1s 1n
turn connected to a bus controller 522. The bus controller
functions are provided by a processor such as a 2901 bit slice
ProCessor.

Although the system shown in FIG. 5 1s one preferred
router of the present invention, it 1s by no means the only
router architecture on which the present invention can be
implemented. For example, an architecture having a single
processor that handles communications as well as routing,
computations, etc. would also be acceptable. Further, other
types of interfaces and media could also be used with the
router.

10

15

20

25

30

35

40

45

50

55

60

65

20

Regardless of network device’s configuration, 1t may
employ one or more memories or memory modules
(including memory 3561) configured to store program
mnstructions for the network operations and SRE scripts
described herein. The program instructions may specily an
operating system and one or more applications, for example.

Because such information and program instructions may
be employed to implement the systems/methods described
herein, the present invention relates to machine readable
media that include program instructions, state information,
etc. for performing various operations described herein.
Examples of machine-readable media include, but are not
limited to, magnetic media such as hard disks, floppy disks,
and magnetic tape; optical media such as CD-ROM disks;
magneto-optical media such as floptical disks; and hardware
devices that are specially configured to store and perform
program 1nstructions, such as read-only memory devices
(ROM) and random access memory (RAM). The invention
may also be embodied 1n a carrier wave travelling over an
appropriate medium such as airwaves, optical lines, electric
lines, etc. Examples of program istructions include both
machine code, such as produced by a compiler, and files
contaming higher level code that may be executed by the
computer using an interpreter.

Preferably, a scripting language 1n accordance with the
present invention 1s distinguished from a compiled program
for testing network protocols 1n that it 1s configurable by the
user to test or simulate virtually any network protocol. Thus,
a SRE script 1s preferably interpreted by a SRE only after it
1s programmed by the user. This 1s to be contrasted with
network protocol test systems which are obtained by the user

in a compiled form and are not thereafter programmable by
the user.

In a preferred embodiment, a SRE script 1s written for a
particular testing scenario by a user. The script 1s loaded mto
a router running a SRE. The script then goes through two
phases of interpretation: 1 a first phase, the syntax of the
script 1s checked to ensure that 1t 1s correct and it 1is
converted 1nto internal OP codes. The interpreter 1s capable
of recognizing program code commands specilying a state
change of a network device. Then, 1n the second phase, when
the SRE script 1s run, it runs directly from these OP codes
so that it runs much faster than if 1t had to be interpreted
from 1its original character strings at run time. Interpreters
suitable for the interpretation of SRE scripts in accordance
with the present invention are well known to those of skaill
in the art.

It should also be noted that alternative embodiments of
the present invention may make use of a compiler to convert
SRE scripts into a format that can be run on a machine (e.g.,
a network device, such as a router). In such an alternative
embodiment, SRE scripts could be loaded 1nto a router, for
example, and then compiled nto machine language in its
entirety before being run.

Conclusion

The present invention obviates the need to model network
application behavior, which 1s a very expensive and time-
consuming task, by compiling the dialogues i1nto a single
tool which acts like the various protocols that participate 1n
a network application. As such, the behavior of multiple
devices may be simulated with one SRE.

Forcing complex fault scenarios 1s facilitated by use of the
tool. Often to evaluate error handling behavior of protocols
and network applications a great deal of dialogue must occur
to set the context for the interaction of interest.
Conventionally, this 1s done indirectly with limited control.
With a SRE in accordance with the present invention (and
appropriate scripts) the exact desired dialogue sequence,

US 6,549,852 Bl

21

across multiple network connections can be created leading
up to an interaction of interest. At that point, the stimulus
(usually a packet) can be provided and the response
observed for correctness. Thus, the SRE makes 1t easier to
emulate complex fault case scenar1os.

The SRE may be used for protocol conformance, error
handling testing, protocol validation, and network applica-
tion behavior evaluation (e.g., for streaming video, IGMP,
etc). It may also be used to setup context prior to traffic tests
(e.g., for DHCP spoofing in cable modems). This tool has a
wide range of network testing, as well as diagnostic and
measurement applications. The present invention provides a
test system including hardware and software which can be
coniigured to test virtually any protocol without having to
build large networks, and 1t 1s more advanced than many of
the current tools offered by network test tool vendors.

The tool facilitates the design and testing of large scale
networks by eliminating the need to build a large network
(very costly for analyzers and network equipment) by
instead emulating networks, and it runs on a router.

Among the advantages of the present invention 1s the fact
that 1t 1s able to distinguish between operating states of a
network protocol under test. Therefore, 1t can match patterns
on a state by state basis. This 1s as opposed to conventional
test equipment which can only match all of the patterns 1n a
particular network protocol, independent of the state in
which the protocol 1s operating. As a result, conventional
protocol analyzers are unable to detect an error where a
ogrven pattern 1s detected 1n a state where it should not be.

Secondly, as a result of the fact that conventional test
systems must match all patterns 1n a protocol under test, they
are slower than the present invention which matches patterns
state specifically Oust those patterns in the current state).

Also, the invention allows a pattern (packet) to be modi-
fied during a test run 1n a dynamic fashion. This 1s as
opposed to conventional test systems 1n which test patterns
are fixed (static) once the test has begun. Conventional
systems would not have allowed changing of a pattern after
the test had been initiated.

The script language of the present invention 1s based on
a state machine model which 1s particularly usetul for this
application since implementation of test protocols 1s best
understood m terms of a state machine model. This 1s
because the language describes the protocol 1n states rather
than 1n a chronological flow pattern. In addition, since the
language 1s based on a state machine model, 1t can concur-
rently run multiples of the same or different models, that 1s,
the language 1s extensible.

Although the foregoing 1nvention has been described 1n
some detail for purposes of clarity of understanding, 1t will
be apparent that certain changes and modifications may be
practiced within the scope of the appended claims. It should
be noted that there are many alternative ways of implement-
ing both the process and apparatuses of the present inven-
tion. Accordingly, the present embodiments are to be con-
sidered as 1llustrative and not restrictive, and the mvention
1s not to be limited to the details given herein, but may be
modified within the scope and equivalents of the appended
claims.

What 1s claimed 1s:

1. A method, implemented on a computing device, for
simulating one or more network activities, the method
comprising:

providing a program code written 1n a scripting language,

the scripting language being usable for modeling a
plurality of different protocols, the scripting language
including commands for modeling individual and inte-
orated states of a state machine which represent at least

a portion of a protocol selected from the different

10

15

20

25

30

35

40

45

50

55

60

65

22

protocols, the commands including at least a command
for defining a state and a command for indicating a state
change, the program code specifying a model of at least
a portion of a protocol selected from the different
protocols; and

converting said program code to machine executable

instructions for executing said model.

2. The method of claim 1, wherein said language further
includes commands specifying a definition of a state and
registration of a packet filter.

3. The method of claim 1, wherein the language further
includes commands for generating a send/expect model
which has a control flow.

4. The method of claim 1, wherein the control flow
specifles:

defining a packet filter based on a packet to be sent to test

a network protocol;

sending the packet; and

matching a response to the packet with the packet filter;
and

where the response packet matches the filter, taking an
action associated with the packet filter.

5. The method of claim 4, wherein said packet 1s modified

during testing.

6. The method of claim 1, further comprising running the
program code to simulate the one or more network activities.

7. The method of claim 6, wherein the program code 1s run
on a router.

8. The method of claim 1, wherein the model tests an
operating system for a network device.

9. The method of claim 1, wherein the model simulates
the operation of one or more networking protocols.

10. The method of claim 1, wherein said language pro-
vides a user with the capability of writing and running
program code for generating models for testing a plurality of
different computer network protocols.

11. The method of claim 1, wherein said step of convert-
ing said program code to machine executable instructions
comprises interpreting said program code.

12. The method of claim 1, wherein said step of convert-
ing said program code to machine executable instructions
comprises compiling said program code.

13. A system for controlling the generation of a model of
one or more network devices, with the aid of a network
device, the system comprising:

a converter that recognizes program code commands
written 1n a scripting language and converts such
program code to generate a model of one or more
network devices, the scripting language being usable
for modeling a plurality of different protocols, the
scripting language including commands for modeling
individual and integrated states of a state machine
which represent at least a portion of a protocol selected
from the different protocols, the commands including at
least a command for defining a state and a command for
indicating a state change, the program code specilying
a model of at least a portion of a protocol interface

selected from the different protocols; and

a network device operating system on which the program

code runs.

14. The system of claim 13, wherein said converter 1s an
interpreter.

15. The system of claim 13, wherein said program code
commands further specily definition of a state and registra-
tion of a packet filter.

16. The system of claim 13, wherein said model has a
control flow comprising the steps of:

defining a packet filter based on a packet to be sent to test
a network protocol;

US 6,549,852 Bl

23

sending the packet; and

matching a response to the packet with the packet filter;
and

where the response packet matches the filter, taking an

action associated with the packet {ilter.

17. A computer program product comprising a computer-
usable medium having computer-readable program code
embodied thereon relating to simulating one or more net-
work activities, the computer-readable program code effect-
ing the following steps within a computing system:

providing a program code written 1n a scripting language,
the scripting language being usable for modeling a
plurality of different protocols, the scripting language
including commands for modeling individual and inte-
orated states of a state machine which represent at least
a portion of a protocol selected from the different
protocols, the commands including at least a command
for defining a state and a command for indicating a state
change, the program code specifying a model of at least
a portion of a protocol interface selected from the
different protocols; and

converting said program code to machine executable
instructions for executing said model.

18. The computer program product of claim 17, wherein
said language further includes commands specitying defi-
nition of a state and registration of a packet filter.

19. The computer program product of claim 17, wherein
said model has a control flow comprising the steps of:

defining a packet filter based on a packet to be sent to test
a network protocol;

sending the packet; and

matching a response to the packet with the packet filter;
and

where the response packet matches the filter, taking an
action associated with the packet filter.

20. The computer program product of claim 19, wherein
said packet 1s modified during testing.

10

15

20

25

30

35

24

21. The computer program product of claim 17, further
comprising running the program code to simulate the one or
more network activities.

22. The computer program product of claim 21, wherein
the program code 1s run on a router.

23. The computer program product of claim 17, wherein
the model tests an operating system for a network device.

24. The computer program product of claim 17, wherein
the model simulates the operation of one or more network-
ing protocols.

25. The computer program product of claim 17, wherein
said language provides a user with the capability of writing
and running program code for generating a model for testing,
a plurality of different computer network protocols.

26. The computer program product of claim 17, wherein
the computer-usable medium comprises at least one of a
magnetic medium, an optical medium, a hardware device
specially configured to store and perform program
mstructions, and a carrier wave.

27. An apparatus for simulating one or more network
activities, the apparatus comprising;:

means for providing a program code written 1n a scripting,
language, the scripting language being usable for mod-
celing a plurality of different protocols, the scripting
language 1ncluding commands for modeling individual
and 1ntegrated states of a state machine which represent
at least a portion of a protocol selected from the
different protocols, the commands 1ncluding at least a
command for defining a state and a command for
indicating a state change, the program code specilying
a model of at least a portion of a protocol interface
selected from the different protocols; and

means for converting said program code to machine
executable 1nstructions for executing said model.

28. The apparatus of claim 27, wheremn the language

includes commands for generating a send/expect model
which has a control flow.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,549,882 B1 Page 1 of 1
DATED . April 15, 2003
INVENTOR(S) : Chen et al.

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Title page, Item [54] and Column 1, lines 1-4,

Change “MECHANISMS FOR PROVIDING AND USING A SCRIPTING
LANGUAGE FOR FLEXIBLY SIMULATIONG A PLURALITY OF
DIFFERENT NETWORK PROTOCOLS” to -- MECHANISMS FOR
PROVIDING AND USING A SCRIPTING LANGUAGE FOR FLEXIBLY
SIMULATING A PLURALITY OF DIFFERENT NETWORK PROTOCOLS --

Signed and Sealed this

Twenty-sixth Day of August, 2003

JAMES E. ROGAN
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

