(12) United States Patent

Reed

US006542971B1

US 6,542,971 B1
Apr. 1, 2003

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(21)
(22)

(51)
(52)

(58)

(56)

NO

4,115,854 A *

MEMORY ACCESS SYSTEM AND METHOD
EMPLOYING AN AUXILIARY BUFFER

Inventor: David Gerard Reed, Saratoga, CA
(US)

Assignee: Nvidia Corporation, Santa Clara, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 144 days.

Appl. No.: 09/841,057

Filed: Apr. 23, 2001

Int. CL7 ..o, GO6F 13/00

US.CL ..., 711/147; 710/52; 710/56;

710/57; 711/113

710/52, 56, 57;
7117113, 147

Field of Search

References Cited

U.S. PATENT DOCUMENTS

710/52

9/1978 Capowski et al.

6,219,745 B1 * 4/2001 Strongin et al. 711/100
6,324,599 B1 * 11/2001 Zhou et al. 710/26
6,412,030 B1 * 6/2002 Adusumilli 710/33

* cited by examiner

Primary Examiner—I. V. Nguyen
(74) Attorney, Agent, or Firm—Cooley Godward LLP

(57) ABSTRACT

A bulfering system attached to a memory for holding write-
once, read-once data that 1s accessed by one or more
peripheral devices. Data that 1s otherwise destined to be
written to main memory 1s written, 1nstead, into a storage
buffer. The buffer 1s written using an address contained 1n a
write pointer that 1s updated according to a predetermined
pattern after the write operation. After updating the write
pointer, 1f the address equals the read pointer, some or all of
the buifer 1s flushed to the memory. Data 1s read from the
buffer using an address contained in a read pointer that 1s
updated according to the same predetermined pattern after
the read operation. Any deviation from the pattern in either
writing or reading the buffer causes the some or all of the
buffer to be flushed to main memory and the read pointer to
be updated accordingly.

16 Claims, 7 Drawing Sheets

105

Address
In auxiliary
buffer?

No

Yes

Write auxiliary buffer ang
increment head pointer

i 103

Flush auxiliary
buffer to main
memory

116

Address
equal to tail
pointer?

Flush a portion of

y 115

Yes —»1the auxiliary buffer
to main memory

Write data to
maln memaory

— No
117 _I

/102

|
% Perform regular
memory access

110 109

Address Address
equal to tail No in auxiliary No
pointer?
111
Yes [Y/
Y /1 192 Read from
- - main
Read auxiliary bufier and memory
increment tail pointer

Flush part or all of
auxiliary buffer to
main memory

114

US 6,542,971 B1

Sheet 1 of 7

Apr. 1, 2003

U.S. Patent

5 N |
obplig 191depy 1o)1depy
/1 Arelixny a1 ~ jeleydusg resaydiiod
AJOWBIN
SHA ¢t soiydeln) 1007
Alowsp abpug WwoalsAsgng
HIEN SHq ¥9 HEN SNq 2¢ soydeIo
e > — Oc
g5 - Slg 9
JusWa|g UG
7l buissaooid 1ONUOW

US 6,542,971 B1

Sheet 2 of 7

Apr. 1, 2003

U.S. Patent

¢ Dld

19]|04JuU0N)
AIOWBN

142

¢l

Ot

aoell8)u|
a01na(O/l

¢t

aoBBU|

10SS920.4d

aoe)iolu|
181Se
solydelr)

8t

US 6,542,971 B1

Sheet 3 of 7

Apr. 1, 2003

U.S. Patent

¢ DId

4%

aung
ArelIxny

104JU0N)/SSBIPPY

18[|0A U0

AOWOSIN

A%

8V

|0413U0D

sng eleq

01007

Jng
XNy

/SSBIPPY -
_

aoeIa)u|

10d

aor Lol
10SS820.d

aJe U]
191SeN
sojyaelr)

US 6,542,971 B1

Sheet 4 of 7

Apr. 1, 2003

U.S. Patent

—-_—— = — = = = = = = — = — = =
|
| 0L
| la||jonuon
18)jng
|04JU0D Arelixny Anaa1n
01007
_ SSalppe di bs pe 19)uUlOd
diyoew

| dmyoeus
di dm usamloq

89

S— AINoND
di—dm usam)adg Jolesedwion

18(|0J1U0N
AloWwa N

|0JJUOD

ssalppe

v DId - T T T T T T

obuel ul

Sapoosp

uoniued

(M ‘pi ‘ssaippe) |

1senbal

09

18p023(]
SSaIppY

US 6,542,971 B1

Sheet 5 of 7

Apr. 1, 2003

U.S. Patent

06

88

98

¥8

23\ =T
aIn}xa|

23\=Tq
) CIIET)

sabew|

padde g

UoIbaYy SS90y
leaul

¢ Old

Alowaw urew 08

Alows|\ uley

alnuody
WoISAS
solyde.n)

QO

dep ssalppy WalSAS

US 6,542,971 B1

Sheet 6 of 7

Apr. 1, 2003

U.S. Patent

Alowiswi
urew

W04} pEaY

LEL

ON

SOA

(494NQ
Alelixne ul

SSaIPPY

AJowsaw ulew
0} Jayng Aleljixne
JO |1e 10 ued ysn|4

1e|nbal wiouad

¢OL

$S390e Alowaw

pu3

143

lajuiod |ie} Juawlaloul
pue Jayng Aleljixne peay

41!

SOA

¢ Jajulod
e} o1 jrenba

SSIPPY

OLlL— /Pm@f

ON

vOL

ON
001

7 SSO00L
Pe2Y

¢.abuel ul

Alowesw uiew

Alowasw urew 0]
1aynq Ateljixne ay)
JO uoinod e ysn|4

LEL

0} BJEp SN
GLL

SOA

¢,1o1ulod
ey] o0} [enba
SSa.ippY

ON

Alowaw
urew o) Jayng

QLI

Aleljixne ysnj4

£0l

Japulod pesy juswaloul
pue Jayng Aselixne ajlpA

80}

ON

SOA

¢,494NQ
Alejixne ul

SSaIPPY

901 oL
o) f

peay o) jrenbs ON

SOA

9 Dld

U.S. Patent Apr. 1, 2003 Sheet 7 of 7 US 6,542,971 B1

head_S1— Section 1 130
tail S1—
head S2——»
B Section 2 132
tail S1—

head SN-1—
Section N-1 134

tail SN-1—

head_SN—— |
tail SN——» Section N 136

44 auxiliary buffer

FIG. 7

US 6,542,971 Bl

1

MEMORY ACCESS SYSTEM AND METHOD
EMPLOYING AN AUXILIARY BUFFER

CROSS-REFERENCE TO RELATED
APPLICATIONS

1. Field of the Invention

The present invention relates generally to memory con-
trollers 1n a computing system and more particularly to a
memory controller in a computing system having an auxil-
l1ary bulfer for write-once/read-once data.

2. Description of the Related Art

FIG. 1 shows a current computing system hardware
platform 10 which employs an architecture in which a main
bridge 12 (acting as a central switch) connects the process-
ing eclement or elements 14, peripheral device adapters
(including an auxiliary bridge) 16—18 and graphics sub-
system 20 to the main memory 22, which 1s the primary
repository for data and instructions for the processing ele-
ment 14, the peripherals 16—18 and the graphics subsystem
20. A local memory 24 for storing graphics data 1s typically
connected to the graphics Subsystem 20. The main bridge 12
handles a large amount of data traffic because virtually all of
the data, which the processing element 14, the peripherals
16—18 and the graphics subsystem 20 need, must move
through the main bridge 12 to and from the main memory
22. In particular, not only does the main bridge 12 allow the
processing element(s) 14, the peripheral adapters 16—18 and
the graphics interface to access main memory, but 1t also
permits the processing element(s) 14, and the bus adapters
16—18 to access the local graphics memory 24.

A hardware platform embodying the architecture of FIG.
1 has been adequate for much of the computing that takes
place on such a platform. However, the processing element,
peripherals and graphics subsystem have each been
improved. Faster processing elements now demand
ogigabytes per second from the main memory; peripheral
systems transfer data at speeds of hundreds of megabytes per
second; and graphics subsystems are capable of rendering
more than 50 Million polygons (triangles) per second. The
combined load, which might be as high as 3.0 Gigabytes per
second, must be borne by the main memory system and the
bus that connects that system to the main bridge. As might
be expected, the main memory and main memory bus have
proved to be a barrier to further 1increases 1n system perfor-
mance for the above architecture.

As mentioned above, the graphics subsystem has played
a significant role 1n the increasing traffic load to and from the
main memory. In particular, if a graphics subsystem 1ntends
to render 50 Million triangles per second, wherein each new
triangle 1s defined by a single vertex of 30 bytes, the load on
the memory 1s approximately 1500 Megabytes per second to
store the data 1n memory and 1500 Megabytes per second to
retrieve the data from memory, for a total of 3 Gigabytes per
second, just for the graphics system.

Even 1f the memory system has a wide bus, say 16 bytes,
the memory system must produce at least 187.5 Million
cycles per second to handle a data transfer of about 3
Gigabytes 1in one second. Currently, main memory systems
designed for this type of platform cannot deliver this data
transfer requirement and, as a result, each device that is
connected to the main bridge suffers a larger latency and
lower overall transfer rate.

Thus, there 1s a need to 1improve the performance of such
systems having a main bridge without radically altering the

10

15

20

25

30

35

40

45

50

55

60

65

2

architecture that 1s already 1n place for these systems. The
need 1s particularly acute with respect to the graphics
subsystems which will need even more bandwidth to handle
3D graphics applications.

BRIEF SUMMARY OF THE INVENTION

The present invention meets the above need. A method of
accessing a memory with an auxiliary buifer, 1n accordance
with the present invention, includes the following steps.

First, a memory request having an address specilying a
location 1n memory 1s received. The memory request has a
type which 1s either ‘read” or ‘write’, and the write request
includes write data. Next, the address of the memory request
1s tested to determine whether it 1s within a predetermined
range of addresses in the memory. It the request 1s 1n-range
and 1if the request 1s a write request and the address 1n the
write request matches the write pointer, then the buifer 1s
written with the write data at the location specified in the
write pointer and the write pointer 1s altered after writing the
buflfer to point to the next location for writing 1n the bulifer.
If the request 1s 1n range and the request 1s a read request and
the address 1n the read request matches the read pointer, the
buffer 1s read from the location specified 1n the read pomter
and the read pointer 1s altered after reading the buffer to
point to the next location for reading the buffer.

A buffering system for a memory that receives memory
requests, the memory request having an address specilying
a location 1n memory and a type being either a read or a
write, a write request including write data, 1n accordance
with the present invention, includes a decoder for determin-
ing whether the memory request 1s within a predetermined
range of addresses 1n the memory based on the address of the
request and generating an in-range indicator.

Further included 1s comparison circuitry for indicating
when the address 1n the request matches either the read
pointer or write pointer 1n response to the m-range indicator,
for indicating when the address and the read pointer are
equal, and for indicating when the address of a request is
between the write pointer and read pointer.

An auxiliary buffer controller 1s included for performmg
read and write operations on the auxiliary buffer. The
auxiliary buifer controller includes means for writing the
buffer with the write data at the location specified in the
write pointer and for reading the buffer from the location
specified 1n the read pointer in response to a write-pointer
match or a read pointer match, and means for making
available some or all of the contents of the auxiliary buffer
for writing to the memory 1n response to an indication that
the address of a request 1s between the write pointer and read
pointer, and 1n response to an indication that the address
equals the read pointer after a bufler write operation.

Also 1included 1n the buffering system 1s pointer circuitry
for updating the write pointer after writing the buffer to point
to the next location for writing 1n the buffer 1n response to
a write-pointer match, and for updating the read pointer after
reading the buifer to point to the next location for reading the
buffer in response to a read-pointer match.

Finally, an auxiliary buffer 1s included. The auxiliary
buffer 1s connected to the memory and to auxiliary bufler
controller means, for holding write-once, read-once data.

One advantage of the present invention 1s that data that 1s
ordinarily written once to memory only to be read once
thercafter need never be stored 1 main memory. This
prevents the data from tying up the main memory bus twice,
once when written and once when read, thereby freeing up
the main memory bus for other memory data that 1s more
useful to store 1n main memory.

US 6,542,971 Bl

3

Another advantage of the present invention 1s that periph-
eral subsystems, utilizing write-once, read-once data, are not
required to change because the addition of the auxiliary
buffer does not affect the operation of those subsystems,
except to provide lower latency access to the data.

Yet another advantage of the present invention 1s that
other parts of the computing platform are sped up because
some or all of the write-once, read-once trafhic 1s removed
from the memory bus. This enables other peripherals to have
access to the main memory when they would otherwise wait.

Yet another advantage 1s lower power consumption in the
system because the external memory interface, whose I/0
interface consumes appreciable power, and the internal
circuitry of the memory devices connected to the external
memory 1nterface, are less active.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects and advantages of the
present invention will become better understood with regard
to the following description, appended claims, and accom-
panying drawings where:

FIG. 1 shows the architecture of current hardware com-
puting system platforms which include a main bridge
device;

FIG. 2 shows the internal data path architecture of the
main bridge;

FIG. 3 shows internal data path architecture of the main
bridge 1n accordance with the present mvention;

FIG. 4 shows an embodiment of auxiliary buffer logic
circuitry;

FIG. § show an example of how a graphics aperture 1s
employed 1n current computer systems;

FIG. 6 shows a flow chart depicting the operation of the
auxiliary buffer system in the modified main bridge in
accordance with the present invention; and

FIG. 7 shows an alternative embodiment 1n which the
auxiliary buffer 1s partitioned 1nto a number of fixed sized
sections.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention requires that the hardware of the
main bridge be modified 1n two areas. First, an auxiliary
bufifer 1s added to the memory controller of the main bridge.
Second, an auxiliary buffer controller 1s added which
includes an address decoder for determining when a request
1s made for the auxiliary buffer. Each of these modifications
1s described below.

FIG. 2 shows the internal data path architecture of the
main bridge 12. The main bridge includes a processor
interface 30 for connecting the processor bus to the mternal
bus 32 of the main bridge 12, a memory interface 34 for
connecting the main memory to the internal bus 32, an I/0
device interface (such as a PCI interface) 36 for connecting
peripheral adapters to the internal bus 32 and a graphics
interface 38 (such as AGP) for connecting the graphics
subsystem to the internal bus 32. Trafhic flows within the
main bridge are complex. Typically, data travels between
cither the processor interface, the I/O device interface or the
graphics interface and main memory. The 1nternal bus 32 of
the main switch 1s typically 128 bits wide but the actual
width of the bus 1s not essential to the present 1nvention.

FIG. 3 shows the architecture of the main bridge 42 in
accordance with the present invention. In FIG. 3, an auxil-

10

15

20

25

30

35

40

45

50

55

60

65

4

1ary buffer 44 has been added to the main bridge and the data
paths 46 are altered to permit the processing element, the
ographics subsystem and the bus adapters to have access to
the auxiliary buifer 44. The auxiliary buifer 44 has a data bus
48 whose width preferably matches the width of the internal
bus 1 the main bridge. However, the auxiliary buifer may
have other widths and employ packing and unpacking logic
to match the width of the internal bus without departing from

the spirit and scope of the present invention. The auxiliary
buffer data bus connects to the 1nternal data bus of the main

bridge which permits certain data to be stored 1n the main
bridge rather than in the main memory as will be described

below. Auxiliary buffer logic circuitry block 50 1s added to
receive address information from the various interfaces so
that data may be captured by the auxiliary buifer or sent to
the main memory. Devices connected to the main bridge are
not affected by the addition of the auxiliary buffer 44 and
auxiliary bufler logic circuitry 50.

FIG. 4 shows an embodiment of auxiliary buffer logic
circuitry 50. The circuitry includes (1) an address decoder 60
which receives the address contained i1n the request and
indicates, via an in__range signal, whether a request 1s within
a predetermined range, (i) pointer logic circuitry 62 that
includes a write pointer register 64 and a read pointer
register 66 and logic (not shown) for updating the pointers
in response to the decoder output and the request, (iii)
comparison circuitry 68 for comparing the request against
the pointers to determine if there 1s a match and for com-
paring the pointers with each other to determine 1if they are
equal to each other, and (iv) an auxiliary buffer controller 70
for performing read and write operations on the auxiliary
buffer 44 using the read pointer register 66 or write pointer
register 64. The auxiliary buffer 44 has a data bus that
connects to the main bridge internal bus as described above
and address and control signals that connect to an auxiliary

bufter controller 70.

The address decoder 60 determines whether the request 1s
within a prescribed range of addresses. The address decoder
uses either standard combinational logic, comparators or
other equivalent circuitry to make this determination. The
address decoder receives a size mput to determine the size
of the prescribed range and, in the case where multiple
partitions are used, decodes partition boundary signals for
the pointer logic circuitry.

The pointer logic circuitry 62 updates the pointers by
incrementing the pointers 1n the case of a linear access
pattern or by adding a constant to the pointers, in the case of
a more complex pattern. The constant, in one version of the
invention, 1s dertved from a predetermined table of offsets.
The addition function 1s performed by an adder, an alu or
other equivalent circuitry. In the case of multiple partitions,
the pointer logic circuitry includes a read pointer and a write
pointer for each partition.

The comparison circuitry 68 employs comparators, an alu
or other equivalent circuitry to compare the address of the
request to the read and write pointers. An equality compari-
son to either the write pointer or read pointer causes the
comparison circuitry to assert a match_ wp or match_ rp
signal, respectively. If the read pointer and write pointer
have the same value, the comparison circuitry asserts a
ad__eq_ rp signal. If after a write access the read pomter and
the write pointer have the same value then some or all of the
buffer should be flushed to main memory to guard against a
possible overflow condition. If the address of the request 1s
between the read pointer and the write pointer, the compari-
son circultry asserts a between_ wp_ rp signal.

A memory controller 72 1n FIG. 4 provides address and
control signals to the main memory. It 1s activated to

US 6,542,971 Bl

S

perform a memory cycle when the request 1s not within the
prescribed range, when a flush of the auxiliary buffer to
memory must occur or when the access must be directed to
the main memory because the access 1s within the prescribed
range but the address does not reside in the auxiliary buffer.

The auxiliary buffer controller provides address and con-
trol signals to the auxiliary buffer. It 1s activated to perform
buifer cycles when the request matches one of the pointers
or when there 1s a flush of the auxiliary buffer to main
memory.

FIG. 5 show an example of how a graphics aperture in
address space 80 of main memory 1s employed 1n current
computer systems. In the current main bridge architecture,
the graphics subsystem 1s assigned a range of address space
for 1ts use. This area of memory 1s called a graphics aperture
82 and 1s typically located above the top of the main
memory, employing a facility in the main bridge (a reloca-
tion table) to map the aperture to actual pages in the main
memory. A portion of that space 1s marked as a linear access
region 84. The address decoder 60 of FIG. 4 decodes this
region so that the auxiliary bufler 1s accessed when an access
falls within this region. As an example, if the total address
space 1s 2.0 Gigabytes, the aperture that 1s set aside may be
500 Megabytes for the graphics subsystem. Some of the
region contains bit maps 86, vertex data 88 and texture data
90, but one special region 1s allocated as the linear access
region 84.

Data for this linear access region has the desirable
attributes that each location 1n the region 1s written once and
read once and that the entire region is written linearly (or
with a known access pattern) and read linearly (or with a
known access pattern). For a graphics subsystem there are
many kinds of data that have this access pattern, such as
dynamic texture data, vertex data for 3D graphics, bit
mapped 1mage data and large command lists for the graphics
master. For a peripheral, such as a disk or network, stored or
transferred 1mages may have this access pattern. Even a
peripheral such as an audio output device may have such an
access pattern.

In any event, this linear access region 1n the address space
1s the region that 1s dedicated to being stored 1n the auxiliary
buffer and the auxiliary buffer relies on data in this region
having the attributes described above.

Operation of the auxiliary buffer system 1n the modified
main bridge 1n accordance with the present invention 1is
depicted 1n the flow chart of FIG. 6. A request to access the
main memory 1s made and before the access 1s started, a test,
in step 100, of the address for the access 1s made by the
decoder 60 of FIG. 4 to determine whether the request is
within the allocated range for linear accesses. If not, a
regular memory access 1s performed in step 102. If the
request 1s within the linear access region, as determined 1n
step 100, then an 1n range signal 1s asserted, and another test
1s made, 1n step 104, 1n the comparison circuitry of FIG. 4
to determine whether the access 1s a read or a write.

Write Accesses

Assuming that the write access 1s within the allocated
range, there are three cases to consider for write accesses
based on whether or not the address of the request matches
the head pointer and whether or not data at the address of the
request resides 1n the auxiliary buiffer.

Write Case 1: The address of the write matches the head
(write) pointer, in step 106. The comparison circuitry 68
asserts a match wp signal, the auxiliary buffer 44 is written,
in step 108, at the head pointer location by the auxiliary
buffer controller 70 and the head pointer 64 1s then incre-

10

15

20

25

30

35

40

45

50

55

60

65

6

mented by the pointer logic circuitry 62 of FIG. 4 by an
amount equal to the size of the access. For example, 1if the
access size 15 8 bytes then, the pointer 1s incremented to the
next 8-byte location. Next, in step 116, the comparison
circuitry 68 tests again to determine whether the. address 1s
cequal to the tail pointer mn order to detect a possible
impending overflow condition. If not, the flow ends. If the
address 1s equal to the tail pointer, the comparison circuitry
asserts the ad__eq_ rp signal, indicating that the buffer 1s full
and, 1n step 117, a portion of the auxiliary buffer i1s flushed
to the main memory to prevent an overflow and the flow
ends. The entire buffer need not be flushed, only enough of
the bufler to make room for new write data. The amount that
1s flushed can be optimized based on system considerations.

Write Case 2: The address of the write does not match the
head (write) pointer and the address of the request resides in
the auxiliary buffer. This 1s the case of an access that does
not meet the prescribed access pattern. Step 105 determines
whether the address of the request resides in the auxiliary
buffer, that 1s, whether the address 1s between the read and
write pointers. If so, then the data in the auxiliary buifer 1s
flushed to the main memory 1n step 103 via the auxiliary
buffer controller 70 and the main memory controller 72 and
the tail pointer 66 1s made equal to the head pointer 64 by
the pointer logic circuitry 62. In step 115, the write data
assoclated with the request 1s written to the main memory.

Write Case 3: The address of the write does not match the
head (write) pointer and the address of the request does not
reside 1in the auxiliary buffer. In this case, the write data
assoclated with the request 1s written to main memory, 1n

step 115, and the flow ends.
Read Accesses

Assuming that the read access 1s within the allocated
range, there are three cases to consider for read accesses
based on whether the address of the request matches the tail
pointer and whether or not the data requested i1s 1n the
auxiliary buffer.

Read Case 1: The address of the read matches the tail
(read) pointer. In step 110, the comparison circuitry 68
asserts a match_ rp signal, the auxiliary buffer 44 1s read at
the read pointer location via the auxiliary buffer controller
70 and the tail pointer 66 1s then incremented by the pointer
logic circuitry 62 by the size of the access, 1n step 112. If the
tail pointer becomes equal to the head pointer then the
auxiliary buffer is empty (this is the default state of the
auxiliary buffer pointers).

Read Case 2: The address of the read does not match the
tail pointer and the address in the request resides in the
auxiliary buffer. Step 109 determines whether the address
resides 1n the auxiliary builer, that 1s, whether the address 1s
between the read and write pointers. Because this request 1s
a request that does not conform to the prescribed access
pattern, some or all of the auxiliary bufler 1s flushed to main
memory, 1n step 114, the portion of the buffer being flushed
having an effect on the performance of the system. In a first
alternative, the enftire auxiliary buifer 1s flushed to main
memory and the read request 1s then directed to main
memory, 1n step 111. This alternative incurs a latency that
depends on the time to flush the entire buffer. A second
alternative 1s to flush the auxiliary buffer until the read
address 1s equal to the read pointer. This alternative can
reduce the latency significantly, depending on how far the
address of the read request 1s from the write pointer. For
example, suppose the address of the read i1s half-way
between the write pointer and the read pointer. Then, only
the locations from the read pointer to the read address are

US 6,542,971 Bl

7

flushed to main memory. This 1s half the number of locations
that would have been flushed 1n the first alternative. Also, 1n
the second alternative, the read request can be directed to the

auxiliary buffer instead of main memory, by proceeding
from step 114 to step 112 instead of step 111.

Read Case 3: The address of the read does not match the
tail pointer and the data requested does not reside 1n the
auxiliary buffer, as determined 1n step 109. The requested

data 1s read from main memory in step 111 and the flow
ends.

FIG. 7 shows an alternative embodiment in accordance
with the present invention 1n which the auxiliary buffer 44
1s partitioned 1nto a number of fixed sized sections 130-136.
Each of the sections has its own head pointer and tail pointer
and associated logic as described above for managing the
section. In the figure, one section 1s dedicated to a peripheral
such as a disk, and another 1s dedicated to audio while the
rest of the bufler 1s dedicated to the graphics subsystem. The
buffer 1s preferably partitioned on binary address boundaries
to keep the logic simple, and because the pointer logic and
address decoder determine the size of the partition, the
partition, 1n one version of the invention 1s dynamic, mean-
ing that the size of the partition 1s alterable during the
operation of the computing system, depending on the needs
of the system.

In yet another embodiment, the auxiliary buffer for a
particular peripheral or graphics device 1s speculatively
filled from the main memory based on the previous access
patterns of the peripheral or graphics device.

In still yet another embodiment, the access pattern for the
set aside region within the graphical aperture 1s not linear,
but conforms to a different but known pattern. In this case
the pointer logic circuitry alters the current pointer, instead
of incrementing the pointer, according to the non-linear
access pattern after an access occurs. Therefore, instead of
employing pointers, other logic 1s used such as an adder that
adds a fixed offset. Alternatively, a lookup table or map,
which 1s accessed linearly, 1s used to determine the offset. In
this case, the address to the table 1s incremented and the
oifset 1s looked up and added to the read or write pointer to
determine the next pointer at which a read or write 1is
expected to occur.

Although the present mvention has been described 1n
considerable detail with reference to certain preferred ver-
sions thereof, other versions are possible. Therefore, the
spirit and scope of the appended claims should not be limited
to the description of the preferred versions contained herein.

What 1s claimed 1s:

1. A method of accessing a memory to which an auxiliary
buffer, addressed by a read pointer and a write pointer, 1s
connected, comprising:

receiving a memory request, the memory request having,
an address specilying a location in memory and a type
being either a read or a write, a write request including
write data;

determining that the memory request 1s within a prede-
termined range of addresses in the memory based on
the address of the request; and

if the request 1s a write request and the address 1n the write
request matches the write pointer, writing the buffer
with the write data at the location specified 1n the write
pointer, and altering the write pointer after writing the
buffer to point to the next location for writing in the
buffer; and

if the request 1s a read request and the address 1n the read
request matches the read pointer, reading the buffer

5

10

15

20

25

30

35

40

45

50

55

60

65

3

from the location specified in the read pointer, and
altering the read pointer after reading the buffer to point
to the next location for reading the bulifer.

2. A method of accessing a memory as recited 1in claim 1,
wherein, when the auxiliary buffer 1s empty, the read pointer
1s equal to the write pointer.

3. A method of accessing a memory as recited 1n claim 1,
further comprising: after altering the write pointer,

determining whether the address of the request equals the
read pointer; and

if the address of the request equals the read pointer,

flushing some or all of the auxiliary buffer to memory.

4. A method of accessing a memory as recited in claim 1,

further comprising, after the determining step, 1f the request

1s a write request, the address 1n the write request does not

match the write pointer, and the address 1s between the write
pointer and the read pointer,

er to main

flushing some or all of the auxiliary bu
memory; and

writing the data 1n the write request to memory.

5. A method of accessing a memory as recited 1n claim 1,
further comprising, after the determining step, if the request
1s a write request, the address 1n the write request does not
match the write pointer, and the address 1s not between the
write pointer and the read pointer,

writing the data in the write request to memory.

6. A method of accessing a memory as recited 1 claim 1,
further comprising, after the determining step, if the request
1s a read request, the address in the read request does not
match the read pointer, and the address 1s between the write
pointer and read pointer,

flushing some or all of the auxiliary bu
memory; and

™

er to main

reading the requested data from memory.

7. A method of accessing a memory as recited 1 claim 1,
further comprising, after the determining step, 1f the request
1s a read request, the address 1n the read request does not
match the read pointer, and the address 1s not between the
write pointer and read pointer,

reading the requested data from memory.

8. Amethod of accessing a memory to which an auxiliary
buffer, addressed by a read pointer and a write pointer, 1s
connected, comprising:

receiving a memory request, the memory request having
an address specitying a location in memory and a type
being either a read or a write, a write request including
write data;

determining whether the memory request 1s within a
predetermined range of addresses in the memory based
on the address of the request;

if the request 1s not within the predetermined range of
addresses, performing a memory access based on the
mMemory request;

if the request i1s within the predetermined range of
addresses:
if the request 1s a write request and the address in the
write request matches the write pointer, writing the
buffer with the write data at the location specified in
the write pointer, and altering the write pointer after
writing the buifer to point to the next location for
writing 1n the bulifer;
if the request 1s a read request and the address 1n the
read request matches the read pointer and the buffer
1s not empty, reading the buffer from the location
specified 1n the read pointer, and altering the read

US 6,542,971 Bl

9

pointer after reading the buifer to point to the next
location for reading the buffer;

if the request 1s a write request, the address 1n the write
request does not match the write pointer, and the
address 1s not between the write pointer and the read
pointer, writing the data in the write request to
Mmemory;

if the request 1s a read request, the address 1n the read
request does not match the read pointer, and the
address 1s not between the write pointer and read
pointer, reading the requested data from memory;
and

if the request 1s a write request, the address in the write
request does not match the write pointer, and the
address 1s between the write pointer and the read
pointer, flushing some or all of the auxiliary butfer to
main memory, and writing the data in the write
request to memory; and

if the request 1s a read request, the address 1n the read
request does not match the read pointer, and the
address 1s between the write pointer and read pointer,
flushing some or all of the auxiliary buffer to main
memory, and reading the requested data from
memory.

9. A method of accessing a memory as recited in claim 8,
further comprising: after altering the write pointer,

determining whether the address equals the read pointer;
and

if the address equals the read pointer, flushing some or all

of the auxiliary buffer to memory.

10. A buffering system for a memory that receives
memory requests, the memory request having an address
specifying a location in memory and a type being either a
read or a write, a write request including write data, com-
prising:

a decoder for determining whether the memory request 1s
within a predetermined range of addresses in the
memory based on the address of the request and
generating an in-range indicator;

comparison circuitry, responsive to the m-range indicator,
for indicating when the address in the request matches
cither the read pointer or write pointer, for indicating
when the address and the read pointer are equal, and for
indicating when the address of a request 1s between the
write pointer and read pointer;

auxiliary buffer controller means for performing read and

write operations on the auxiliary buifer, including

means, responsive to a write-pointer match or a read
pointer match to the address, for writing the buifer
with the write data at the location specified 1n the
write pointer and for reading the buffer from the
location specified 1n the read pointer, and

means, responsive to an indication that the address of
a request 1s between the write pointer and read
pomnter, and responsive to an indication that the
address equals the read pointer after a buffer write
operation, for making available some or all of the
contents of the auxiliary buffer for writing to the
Memory;

polnter circuitry means, responsive to a write-pointer
match to the address, for updating the write pointer
after writing the buffer to point to the next location for
writing 1n the buffer, and responsive to a read-pointer
match to the address, for updating the read pointer after

10

15

20

25

30

35

40

45

50

55

60

10

reading the buffer to point to the next location for
reading the buffer; and

an auxiliary buffer connected to the memory and to
auxiliary buffer controller means, for holding write-
once, read-once data.

11. A buffering system for a memory that receives
memory requests as recited 1in claim 10, a memory controller
for performing read and write operations on the memory, the
memory controller,

operative, 1n response to lack of an in-range request, to
perform the memory request on the memory,

operative, 1n response to an in-range request from the
decoder and the address of the request being between
the write pointer and read pointer, to write some or all
of the contents of the buffer to memory and then to
perform a memory access based on the request, and

operative, 1n response to an 1n-range write request from
the decoder, the address of the request not matching the
write pointer, and the address not being between the
write pointer or read pointer, to write the write data to
the memory,

operative, 1n response to an in-range read request from the
decoder, the address of the request not matching the
read pointer, and the address not being between the
write pointer or read pointer, to read the requested data
from the memory, and

operative, 1in response to a match between the address and
the read pointer after a buffer write 1s performed, to
write some or all of the contents of the buffer to
memory.

12. A bulfering system for a memory that receives
memory requests as recited 1in claim 10, wherein the pointer
circuitry updates the read pointer or write pointer by incre-
menting the read pointer or write pointer.

13. A buffering system for a memory that receives
memory requests as recited in claim 10, wherein the pointer
circuitry updates the read pointer or write pointer by adding
a fixed offset to the read pointer or write pointer.

14. A buffering system for a memory that receives
memory requests as recited i claim 10,

wherein the pointer circuitry includes a lookup table
having a plurality of locations programmed with pre-
determined offsets; and

wherein the pointer circuitry updates the read pointer or
write pointer by selecting a location 1n the lookup table,
reading a predetermined read or write pointer offset
from the table and adding the offset to either the read
or write pointer.
15. A buffering system for a memory that receives
memory requests as recited i claim 10,

[

wherein the auxiliary buffer is partitioned 1nto a plurality
ol sections, each section having a speciiied size and
boundary location; and

wherein the pointer circuitry includes a read pointer and
a write pointer for each section.
16. A bulfering system for a memory that receives
memory requests as recited mn claim 15,

wherein the decoder generates signals to 1ndicate a section
boundary location within the auxiliary buffer; and

wheremn at least one of the sections has a boundary
location that 1s alterable.

	Front Page
	Drawings
	Specification
	Claims

