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METHOD OF DEVELOPING RE-USABLE
SOFTWARE FOR EFFICIENT
VERIFICATION OF SYSTEM-ON-CHIP
INTEGRATED CIRCUIT DESIGNS

CROSS REFERENCE TO RELATED
APPLICATTONS

This application 1s related by common 1nventorship and
subject matter to co-pending applications titled “Method of
Controlling External Models 1n System-On-Chip
Verification”, Ser. No. 09/494,230 (BUR990253US1:1806/
00089); “Sinmulator-Independent System-On-Chip Verifi-
cation Methodology”, Ser. No. 09/494,465
(BUR990254US1:1806/00090); “Method for Efficient Veri-
fication of System-On-Chip Integrated Circuit Designs
Including an Embedded Processor”, Ser. No. 09/494,564
(BUR990256US1: 1806/00092); “Processor-Independent
System-On-Chip Verification for Embedded Processor
Systems”, Ser. No. 09/494,386 (BUR990257US1:1806/
00093); and “Method for Re-Using System-On-Chip Veri-
fication Software 1 an Operating System”™ Ser. No. 09/494,
236 (BUR990259US1:1806/00095). The listed applications
are assigned to International Business Machines Corpora-
fion and are enfirely incorporated herein by this reference.

BACKGROUND OF THE INVENTION

The present mvention relates to the testing of computer
system designs by software simulation, and more particu-
larly to a verification methodology for system-on-chip
(SOC) designs which develops verification software which
1s re-usable throughout the development of a system-on-chip
(SOC).

The complexity and sophistication of present-day inte-
grated circuit (IC) chips have advanced significantly over
those of early chip designs. Where formerly a chip might
embody relatively simple electronic logic blocks effected by
interconnections between logic gates, currently chips can
include combinations of complex, modularized IC designs
often called “cores” which together constitute an entire
“system-on-a-chip”, or SOC.

In general, IC chip development includes a design phase
and a verification phase for determining whether a design
works as expected. The verification phase has moved
increasingly toward a software simulation approach to avoid
the costs of first implementing designs 1n hardware to verily
them.

A key factor for developers and marketers of IC chips in
being competitive 1n business 1s time-to-market of new
products; the shorter the time-to-market, the better the
prospects for sales. Time-to-market in turn depends to a
significant extent on the duration of the verification phase
for new products to be released.

As chip designs have become more complex, shortcom-
ings 1n existing chip veriication methodologies which
extend time-to-market have become evident.

Typically, in verifying a design, a simulator 1s used. Here,
“simulator” refers to specialized software whose functions
include accepting software written 1n a hardware description
language (HDL) such as Verilog or VHDL which models a
circuit design (for example, a core as described above), and
using the model to simulate the response of the design to
stimuli which are applied by a test case to determine whether
the design functions as expected. The results are observed
and used to de-bug the design.

In order to achieve acceptably bug-free designs, verifica-
tion software must be developed for applying a number of
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2

test cases suflicient to fully exercise the design in simulation.
In the case of SOC designs, the functioning of both the
individual cores as they are developed, and of the cores
functioning concurrently when interconnected as a system
must be verified. Moreover, a complete SOC design usually
includes an embedded processor core; simulation which
includes a processor core tends to require an inordinate
amount of time and computing resources, largely because
the processor 1s usually the most complex piece of circuitry
on the chip and interacts with many other cores.

It can be appreciated from the foregoing that verification
of an SOC can severely impact time-to-market, due to the
necessity of developing and executing software for perform-
ing the numerous test cases required to fully exercise the
design.

However, inetfficiencies 1n current verification methodolo-
oles exacerbate time pressures. Individual cores which are
ultimately to be components of a SOC (“unit” cores) tend to
be tested on an ad hoc, inconsistent basis. Thus, when 1t
becomes necessary to test the cores interconnected as a
system, additional software must be developed or the exist-
ing software modified to do so.

Additionally, once a design 1s implemented 1n hardware,
it needs to be tested again. In existing verification
methodologies, this hardware testing phase typically utilizes
different software from that used i1n the simulation phase or
further requires new software to be developed, further
complicating and slowing verification.

A vertfication methodology 1s needed which addresses the
problems noted 1n the foregoing.

SUMMARY OF THE INVENTION

A method according to the present mvention develops
verification software which 1s re-usable at all developmental
phases of a system-on-chip design, from component core

development to testing of a hardware implementation of the
SOC.

A consistent coding methodology 1s used to develop
software for applying test cases to individual cores at a
component level. The software 1s hierarchical, implement-
ing a partition between upper-level test application code
which generates test cases and verifies results, and low-level
device driver code which interfaces with a core being
simulated, to apply the test case generated by the upper-level
code on a hardware level of operations. Then, higher-level
test control software 1s developed for controlling selected
combinations of the already-existing test applications and
supporting device drivers, to perform more complex test
cases which exercise combinations of the component cores.

The software developed according to the above method
may be used throughout the SOC development process,
including during simulation phases and hardware bring-up
of the SOC once physically implemented in silicon.

In a preferred embodiment, the verification software 1s
written 1n a high-level programming language to make it
portable across hardware platforms, including simulation
platforms and the target SOC once physically implemented.
A speed-up mode of operation 1s provided in which the
embedded processor 1n the SOC design 1s replaced by a bus
functional model which emulates the processor bus protocol
to drive signals to other cores 1n the design. This speed-up
mode allows the verification software to execute externally
to the simulator, reducing simulation cycles.

The verification software developed may be stored and
re-used by other projects. The method provides for the
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eficient verification of SOC designs because as the verifi-
cation software 1s developed and stored, 1t becomes possible
fo test increasingly complex core combinations by creating
relatively few high-level test programs which re-use
already-existing lower-level software. Ultimately, the task of
verifying a complex SOC design may be simplified to
developing a single chip-specific test program which selects
from already-existing test application, device driver and test
control programs to perform a realistic test of a chip-speciiic
combination of cores. Consequently, time-to-market for
SOC products 1s significantly reduced.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example of a system-on-chip (SOC)
design;

FIG. 2A shows a test application and low-level device
driver (LLDD) applying a test case to a core;

FIG. 2B shows a core test master controlling a multi-core
test;

FIG. 2C shows a system test master controlling a multi-
core test,

FIG. 3 represents a LLDD “abstracting” core functions for
a test application,

FIG. 4 shows a flow of communication 1n a test operating
system (TOS) according to the present invention for con-
trolling a multi-core test;

FIGS. § and 6 show an example of a flow of operations
involved 1n executing a multi-core test;

FIG. 7 shows interrupt handling by the TOS,
FIG. 8 shows a full virtual mode of operation for the TOS;

FIG. 9 shows a bus functional model mode of execution
for the TOS;

FIGS. 10A and 10C show an application of the TOS to test
an actual physical implementation of a SOC;

FIG. 10B shows an external memory-mapped test device
used by the TOS; and

FIG. 11 shows a general purpose computer system for
practicing the 1nvention.

DETAILED DESCRIPTION OF THE
INVENTION

In a preferred embodiment of the mvention, a test oper-
ating system (TOS) is implemented in computer-executable
instructions. The TOS provides a framework for generating
test cases to test an imdividual core and combinations of
cores, Including core combinations which are speciiic to a
particular SOC design.

The term “core” as used herein refers to a module of logic
representing a circuit design of any degree of complexity,
which may be used as a component of a SOC. In its
developmental stages, a core 1s typically embodied as a
simulatable HDL program written at some level of
abstraction, or 1n a mixture of abstraction levels, which can
describe the function of the core prior to its actual physical
implementation 1n silicon. Major levels of abstraction that
are generally recognized include a behavioral level, a struc-
tural level, and a logic gate level. A core may be 1n the form
of a netlist including behavioral, structural and logic gate
clements. Ultimately, after verification, design logic repre-
sented by a core 1s physically implemented in hardware.

FIG. 1 shows an example of components of a SOC design
100; the representation 1s mtended to 1include embodiments
in any known form of logic design, including simulatable
HDL modules and netlists, and physical implementations.
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The SOC 100 includes a custom core 102 coupled to a
processor local bus (PLB) 103, a memory controller core
104 coupled to a memory core 101 and to the PLB, a Direct
Memory Access (DMA) core 105 coupled to the PLB, a
Universal Asynchronous Receiver Transmitter (UART) core
106 coupled to an on-chip peripheral bus (OPB) 107, a
second custom core 108 coupled to a core 109 which 1is
external to the chip, an iterrupt control core 110 coupled to
an embedded processor core 112 and a device control
register (DCR) bus 111 coupled to the embedded processor
core 112. Memory core 101 1s also external to the SOC 100.

Custom cores 102 and 108 represent design logic tailored
to a particular application of the SOC. Other cores, such as
the UART and DMA cores, may have well-standardized
embodiments (sometimes called Application-Specific Inte-
grated Circuits or ASICs) which are widely available from
vendors. Typically, the design of a SOC comprises a com-
bination of such custom cores and ASICs.

As shown 1n FIG. 2A, to enable verification of a compo-
nent core of a SOC design, the TOS 200 comprises at least
a test application 201 which generates a test case which 1s
applied by a low-level device driver (LLDD) 202 to a core;
for example, custom core 102 implemented as an HDL
module. Stmulator 203 interprets HDL descriptions in the
core 102 to simulate the behavior of a hardware device
corresponding to the core, 1n response to the test stimulus.

The test case generated by the test application 201 typi-
cally takes the form of computer-executable instructions
which generate stimuli to verify the core 102. The applica-
tion of the test case typically produces, as output, results data
representing the response of the simulated design which 1s
compared to expected results, to determine whether the
design functions as expected. The design may subsequently
be revised to 1improve performance or de-bug errors.

A more general depiction of the TOS 200 1s shown 1n
FIGS. 2B and 2C. The TOS 200 1s hierarchically organized.
An upper level of the TOS may comprise a core test master
210 and a plurality of test applications such as test applica-
tions 201, 211 and 214, or include a still higher level such
as a system test master 220 as shown in FIG. 2C. The
upper-level code performs such functions as decision-
making, test 1nitialization, test randomization, multi-tasking,
and comparison of test results with expected results.

FIG. 2B represents test applications 201, 211 and 214
executing under the control of a core test master 210 1n a
multi-tasking environment. Each test application corre-
sponds to a particular core 102, 105, 108 and 109 being
tested. As shown, the LLDDs may be, more particularly, I/0O
device drivers such as 202, 212 and 215 which perform
operations on cores internal to the SOC 100, and external

bus drivers such as 216 which perform operations on cores
external to the SOC.

FIG. 2C shows a system test master 220 controlling core
test masters 210 and 230, which 1n turn control their
respective test applications. The system test master also

controls a test application 233 paired with a core 106 via a
LLDD 235.

The LLDDs 202, 212, 215, 216, 217 and 235 of FIGS. 2B
and 2C represent a low level of the TOS 200. The LLDDs
provide an interface between the higher-level software such
as the system test masters, core test masters and the test
applications, and the core being simulated. Because the
cores being simulated correspond to target hardware (i.e.,
the physical elements which will ultimately implement the
design logic), operations on the cores occur on a hardware
level. These operations are performed by the LLDDs, and
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include register I/O and interrupt handling. In an
embodiment, the operations on the cores typically comprise
DCR read and writes (i.e., read and writes to the processor’s
DCR bus), memory-mapped [/O, and memory reads and
writes. A DCR bus 111 (see FIG. 1) is typically used in
Power PC® architected processors for programming regis-
ters 1n peripheral cores. Memory-mapped 1I/O refers to a
known technique of programming core registers using stan-
dard memory read and writes which are decoded to core

register addresses.

The hierarchical structure of the TOS as outlined above,
and pairing of test applications with supporting LLDDs
corresponding to specific cores, provides for the reusability
of test cases developed for individual cores at succeeding
stages of development of an SOC; 1.e., from simulation to
real hardware. That 1s, as cores are developed, the TOS can
be used to first test the cores on an individual basis, as shown
in FIG. 2A, by developing a test application and LLDD pair
specific to the core. Then, as shown 1n FIG. 2B, multiple
cores can be tested 1n a chip-specific combination by devel-
oping a core test master to simulate interaction among
components of the SOC, re-using the test application and
LLDD pairs developed earlier. Ultimately, chip-speciiic core
combinations may be tested by developing a system test
master to control one or more core test masters and/or test
applications, as shown 1 FIG. 2C, with the system test
master generating randomized parameters to emulate the
usage of the physical SOC 1n the field. FIG. 2C shows an
example of a system-level exercise which re-uses core test
master 210 and its associated test applications and LLDDs,
and 1ncludes a second core test master 230 and a test
application 233 paired with I/O device driver 235 driving the
UART core 106. Core test master 230 controls test applica-
tions 231 and 232 paired with I/O device drivers 215 and

217, respectively.

To provide for their re-use, the elements of the TOS as
described above may be stored on a computer-usable
medium. In general, the elements of the TOS are coded 1n a
high-level programming language, such as “C”, to provide
for portability across hardware platforms and from simula-
fion to a hardware implementation of a SOC design. Test
applications, LLDDs, core and system test masters may be
re-executed on a physical SOC by implementing an optional
compile switch provided in the TOS.

The LLDDs are systematically coded 1n terms of core
function to support their general applicability and
re-usability. To this end, the details of the I/O operations of
the LLLDDs are “abstracted” by coding the LLDDs 1n terms
of high-level functions. “Abstraction” as used herein refers
ogenerally to detaching a higher level of software from the
details of implementing some function, which are instead
handled by a lower level of software 1n response to a general
request or directive from the higher level to perform the
function. Such abstraction enables the LLDDs to support an
API comprising a group of function calls which may be
casily used by higher-level software such as the test appli-
cations.

The foregoing may be 1illustrated by the following
example. A UART, for instance, such as core 106, has the
basic function of receiving and transmitting data, once
configured. Thus, a functional model of a UART might
consist simply of “Conifigure”, “Receive” and “Transmit”
functions. On an actual implementation level, however, a
UART serializes data, typically by using a clock and a shaft
register, and serial-in and serial-out pins. For example, 1n a
typical UART “Receive” operation, upon request from a
higher level of software, bits of data representing a character
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are shifted mto a receive buller through the serial-in bit at a
orven baud rate, and the UART generates an interrupt to
signal that the character has been received. In a typical
“Transmit” operation, the UART shifts bits of character data
out through a serial-out pin, and generates an interrupt to
signal that the receive bufler 1s empty.

Thus, the “Configure”, “Receive” and “Transmit” func-
tions mentioned above represent an abstraction of a UART
core, which may be presented by an LLDD 235 as an API
to a higher level of software such as a test application. That
1s, to use the UART, the test application would 1ssue a
one-time “Configure” function call to the LLDD, followed,
typically, by a sequence of “Receive” and/or “Transmit”
specifying the data to be received and/or transmitted. In
response, the LLDD would handle the details of configuring
the UART core to, for example, the appropriate baud clock
rate, parity and character size, 1nitiating a serial operation,
determining the cause of an interrupt, and the like.

The foregoing 1s illustrated conceptually 1n FIG. 3. Test
application 233, LLDD 235 and UART core 106 correspond

to the like-numbered elements of FIGS. 1 and 2C. LLDD
235 supports an API to higher-level software by correlating,
the high-level functions “Configure”, “Receive” and “Trans-
mit” with corresponding hardware-level operations such as
confliguration and interrupt handling on the UART core. This
enables the LLDD to translate a function call from a higher
level of software such as the test application 233 into the
appropriate hardware-level operations.

The foregoing represents a simplified view of a UART,
which would typically comprise more capabilities and func-
tions. However, in general, the LLDDs for each core,
whether a UART or some more complex core, are coded to
provide an API which abstracts core hardware capabilities
and protocols 1n terms of generalized function as described
above. From a programming perspective, this would entail,
for example, reviewing a technical specification of a core
design to determine its capabilities and functions, defining
an APl i terms of those functions, and then coding a
corresponding LLDD that included the necessary detail for
handling the core’s registers, programming bits, protocol,
memory 1nterface and the like to implement the API’s
functions.

Components of the TOS including test applications, core
and system test masters may be designated “tasks” in an
embodiment of the mvention. Testing of multiple cores to
simulate hardware interaction among SOC components 1s
enabled 1 the TOS by a multi-tasking system. The multi-
tasking system utilizes a hierarchically-organized commu-
nication and control system. Referring now to FIG. 4,
according to this system, information (represented by
directed lines) relating to a test is exchanged between a
top-level exerciser such as a core test master or a system test
master (in this example, core test master 210), and test
applications (for example, 201, 211 and 214 as shown);
between test applications; to LLDDs (for example, 202, 212,
215 and 216) from a test application or test master; and
between LLDDs. LLDDs communicate information related
to operations on the core to their associated test applications.

The TOS manages the dispatching of test applications and
LLDDs in response to the exchange of information. The
ogeneral flow of multi-tasking operations by the TOS pro-
ceeds as 1llustrated 1n FIG. 5. First, a top-level exerciser task,
for example, core test master 210 as shown in FIG. 2B, 1s
invoked by the TOS. The top-level exerciser task 1s user-
defined and specifies a list of tests to be executed, selecting
from available test applications and issuing user-specified
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control information for effecting a particular test case to be
applied to a group of cores 1n a particular simulation session.
It also configures the TOS for a given simulation session by
defining, for example, an interrupt configuration for cores
that support interrupts, and specifying randomization param-
cters and a default chip-specific mitialization sequence.

The control nformation 500 from the top-level exerciser
directs the test applications to apply a particular set of test
cases, typically for simulating the interaction of a combina-
tion of cores. The TOS dispatches the test applications, in
turn, and passes the control information to them.

When dispatched, each test application executes the spe-
cific test cases for 1ts corresponding core as directed by the
top-level exerciser, by passing control information to the
LLDD that supports it. In FIG. 5, test application 201 1s the
first to be dispatched. Function block 501 shows test appli-
cation 201 passing control information to its corresponding
LLDD 202. Typically, executing a test case comprises
applying a range of stimuli to simulated hardware design
clements 1n the core. These stimuli are expressed at a high
level in the control information passed by the test
application, as directives to the LLDDs to perform some
speciflied operation on the core, the LLDDs handle the detail
of 1implementing the corresponding hardware-level opera-
fions on a core to apply the stimuli. Thus, a directive from
a test application to an LLDD typically results 1n an opera-
fion on the simulated core hardware being 1nmitiated by the

LLDD, as shown 1n block 502.

Once the LLDD begins 1ts operation on the core, the test
application gives up control, or yields. Typically, the yield-
ing 1s done to allow another test application to be dispatched
by the TOS and start up an overlapping operation on a core.
Block 503 shows test application 211, dispatched by the
TOS once test application 201 yields, 1ssuing a directive to
its corresponding LLDD 212, then yielding. The LLDD
begins the operation as directed, as shown 1n block 504.
Once test application 211 yields, test application 214 1s

dispatched, imitiates an LLDD operation, and yields as
shown 1n blocks 505 and 506.

In an embodiment, once a test application has yielded as
described above, there are two basic mechanisms for inform-
Ing a test application of the completion of an operation by its
corresponding LLDD: polling, and waiting for interrupts.
Which mechanism 1s used depends upon the particular core.
Custom core 102, for example, may require polling by the
test application 201 as shown 1n block 501, while test
application 211 waits for an mterrupt from DMA core 105 as

shown 1n block 503.

Polling for completion of an LLDD operation by the test
applications 1s typically done by a DCR or memory read to
a status register in the corresponding core (via the LLDD).
Waiting for interrupts is performed by a program loop 1n the
test application to check a status flag which 1s set by an
interrupt as further discussed below.

As shown 1n FIG. 6, once a test application 1s notified that
an operation by its supporting LLDD has completed, the test
application checks the result and passes 1t back to the
top-level exerciser for some user-specified usage, for
example, tracing and logging for comparison with expected
results. FIG. 6 shows test applications 201 and 211 having
received completion i1nformation from their respective
LLDDs, and returned results to the top-level exerciser. Test
application 214 1s sti1ll in a yield and poll loop, as 1ts LLDD
continues it operation on its associated core.

The yielding mechanism described above supports multi-
tasking by the TOS. When an LLDD has started a low-level
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operation on a core, the corresponding test application yields
to allow another test application to start. This enables
overlapping operations, so that a realistic mix of activity,
including complex interactions among the cores, may be
simulated. For example, FIG. 5 represents four cores, cores
102, 105, 108 and 109 being exercised concurrently.
Because the test applications are controlled by the same
top-level exerciser, communication between the cores can be
simulated.

As shown 1 FIG. 10B, synchronization of test applica-
tions with cores which are external to the SOC design, such
as core 109, 1s accomplished with an External Memory-
Mapped Test Device (EMMTD) 1005. The external
memory-mapped test device (EMMTD) is coupled between
a SOC design 100 being tested in simulation, and cores
external to the SOC design. The EMMTD 1s coupled to the
SOC via a chip-external bus 1006, and coupled to external

cores, or to the external interfaces of cores internal to the
SOC, via an EMMTD bi-directional bus, represented by

connections 1007 and 1008.

The EMMTD 1005 processes signals received over the
chip external bus 1006 and applies them to an external core
such as 109, or to an 1nternal core with an external interface
such as UART core 106, coupled to the EMMTD
bi-directional bus. Internal logic in the EMMTD provides
for control and status monitoring of a core coupled to the
EMMTD bi-directional bus by enabling functions including
driving data on the bus, reading the current state of data on
the bus, and capturing positive and negative edge transitions
on the bus.

The TOS 200 being executed for SOC verification by the
simulated embedded processor 112 1n the SOC can commu-
nicate with and control elements external to the SOC, by
using the EMMTD to perform such functions as initiating
external core logic which drives test signals to an internal
core such as core 108, directly controlling an internal core
such as core 106 via 1ts external interface, or determining the
status of an external core.

The EMMTD may be embodied as an HDL module used
in simulation with a simulated SOC design, or synthesized
into a physical embodiment 1n the form of, for example, an
FPGA (Field Programmable Gate Array) or an ASIC
(Application Specific Integrated Circuit) usable with real
hardware, as described below.

In an embodiment, the communication and control system
for enabling mulfi-tasking may comprise “message” and
“callback” functions as described below. It 1s noted that the
function names described hereinafter are arbitrary and
merely representative of functionality which could be imple-
mented 1n a wide variety of computer instruction sequences
invoked by arbitrarily-assigned mnemonics.

WAIT _MESSAGE, for example, 1s a function used by
tasks to receive a message which may include control
information from a higher level relating to the performance
of a test. When a task has called WAIT MESSAGE, 1t 1s
considered available, and 1s not called again until a message
1s to be delivered to 1t. When a message 1s delivered, the task
1s re-activated and performs the work required by the
message.

A YIELD directive causes a task to give up control when
issued. The directive 1s typically used by a test application,
once 1t has directed 1ts corresponding LLDD to perform
some hardware-level operation on a simulated core, to give
up control to another test application. This enables multi-
tasking for realistic stmulation of multiple core interaction.
Yielded tasks stay on the TOS dispatch schedule and are
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re-invoked periodically to poll for completion of an opera-
tion by their corresponding LLDDs.

Additional messaging and control functions provided by
the TOS i1nclude a POST MESSAGE function, which
schedules a specified task to run. When the task does run, 1t
1s passed specified messages and test parameters from a
top-level exerciser. POST__MESSAGE 1s typically used by
the top-level exerciser to schedule many simultancous tests
fo begin executing.

A SEND__MESSAGE function also schedules a task to
run, but unlike the case with POST MESSAGE, the send-
ing task may not run until the receiving task processes the
message specified in SEND__ MESSAGE and returns to
WAIT__MESSAGE. This guarantees that the specified mes-
sage will be processed before other work 1s done by the
receiving task.

A TASK__AVAILABLE function 1s used by a top-level

exerciser to determine 1f a task 1s available to receive a
message or whether 1t has completed 1ts work.

Tasks use a DRIVER__MESSAGE function to invoke
LLDDs, and LLLDDs use an APPL._ CALLBACK function
to return from some hardware-level operation on a stmulated

core to the test application which invoked them. LLDDs use
a DRIVER__CALLBACK or DRIVER__MESSAGE func-
fion to communicate with each other.

It 1s noted that the above-functions typically take, as
arcuments, parameters and associated data type definitions
which have not been explicitly shown. Thus, a complete
specification of a POST__MESSAGE directive might appear
as, for example, POST_ MESSAGE(TOSTASK task,
TOSMSG message, TOSPARMS parameters), where the
TOSTASK specification indicates that the value which fol-
lows 1s a task 1dentifier, and TOSMSG denotes that the value
which follows 1s a message 1dentifier. TOSPARMS 1ndicates
a pointer-to-message structure. Message structures are asso-
clated with specific messages to carry supplemental data.
Messages and message structures are user-defined and
specily the capabilities of a test application and the param-
cters needed to execute tests. A top-level exerciser typically
creates as many message structures as needed to communi-
cate with each test application 1n a given simulation session.

The TOS supports a tracing and logging mechanism to
help track the execution of the components that are inter-
acting. Messages, Callbacks, Yields, dispatches, 1/O opera-
fions and the like are traceable 1n real time to help track
progress and find problems. Tracing may to done to memory
for post-processing and to a component called the external
messaging unit (EMU) similar to the EMMTD described
above, which will display trace messages in a simulation
window. The EMU 1s also capable of controlling a simula-
fion session on command from the TOS, by, for example,
stopping the simulation clocks or ending the simulation.
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In view of the above description, interrupt handling by the
TOS may now be described with greater particularity in
terms of the functions 1nvoked. Referring now to FIG. 7, a
top-level exerciser 210 configures an interrupt controller
device driver (ICDD) 701 with an interrupt configuration for
those cores being exercised which support hardware
interrupts, for example, DMA core 1035. The top-level exer-
ciser 1ssues POST __MESSAGE to post control messages to
test application 201 and then YIELDs. The top-level exer-

ciser may subsequently 1ssue a TASK__AVAILABLE func-
tfion to determine when the test application has completed its
work.

In response to the message from the top-level exerciser,

the test application 211 i1nvokes 1ts corresponding LLDD

212 by 1ssuing a DRIVER__ MESSAGE function to invoke
some operation by the LLDD on the associated core 1085,
and YIELDs so that the TOS may dispatch other tasks.

The LLDD 212 performs the specified hardware-level
operation on the core 105 by issuing function calls to
perform reads or writes to the DCR bus, memory-mapped
I/0, or a memory access. In the meantime, the test applica-
tion loops to check an 1nternal status flag set by an interrupt
to mdicate completion of the operation.

When the operation by the LLDD 1s complete, a hardware
interruption 1s posted by the core which causes the embed-
ded processor device driver 700 to be invoked through a
corresponding interrupt vector. The embedded processor
driver then mvokes the ICDD 701 to determine which core
posted the interrupt.

LLDDs for cores that support interrupts include an inter-
rupt handler function which 1s mnvoked by the ICDD using
DRIVER__CALLBACK. The interrupt handler function
reads registers 1n the core, for example DMA core 1035, to
determine what kind of interrupt occurred (typically,

completion of the operation initiated by the test application),
and 1ssues APP_ CALLBACK to notif 1ts controlling test

application 211 of the interrupt. APP_ CALLBACK sets the
status tlag which 1s being checked by the test application 1n
its wait-for-interrupt loop. The test application checks the
result of the hardware-level operation and returns the result
to the top-level exerciser 210.

To support reusability of core tests throughout the SOC
development process, the TOS 1mposes uniform coding
rules for tasks so that they will work effectively 1 the
multi-tasking system described above. The following
pseudo-code represents a possible implementation 1n
computer-executable instructions of a TOS task, for
example, a test application, conforming to a uniform meth-
odology. Test case parameters for applying a unique test case
to the corresponding core are user-defined and not shown:

BEGIN__TASK(task name)

/* BEGIN__TASK generates a function prototype which is recognized by the TOS
/* dispatcher. “Task__name” may be a numerical II) which is used in messages to
/* denote the recipient.

{

One-time 1nitialization code, including registering the task callback with the
LLDD (for use with APP CALLBACK)
Forever

{

WAIT_MESSAGE
switch (msg)
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-continued

/* Wait for control messages from the top-level excerciser; perform
/* work assigned in “msg”
case SOME__KIND__OF WORK:
Direct LLDD to perform some hardware-level operation on
corresponding core
While (operation is not complete) poll for core status
or loop to test interrupt status flag

YIELD
Check for completion of LLDD operation
break
End__switch
1
End-Forever
h
END__TASK

LLDDs should also follow basic structural conventions to
support reusability. An example of LLDD pseudo-code 1s
shown below (the unique driver code corresponding to a
particular core is not shown):

BEGIN_DRIVER(driver__name, TOSMSG msg, TOSPARMS parms)

20

/* BEGIN_DRIVER generates a TOS prototype known to the TOS driver

/* dispatcher.
/* “Driver_name” denotes the recipient of a driver message.

{
switch(msg)
do the hardware-level core interaction as directed by msg”
End-switch
{
END _ DRIVER

To support re-usability, a uniform TOS methodology
requires, for example, that YIELD, SEND_ MESSAGE and
POST__MESSAGE must be executed from the main body of
a task as shown above, 1.e., between BEGIN__TASK and
END__TASK. Also, for example, 1n a preferred embodiment
LLDDs do not send, post or wait for messages, or yield
control, and consequently never 1ssue SEND__ MESSAGE
or POST_MESSAGE, WAIT_ MESSAGE or YIELD.
LLDDs typically use DRIVER_CALLBACK or APP__
CALLBACK for communication with other LLDDS and
test applications.

By applying the TOS methodology consistently, test
application and LLDD pairs may be re-used for verification
throughout the developmental stages of a SOC, as noted
above, by creating higher-level test control programs which
select from already-existing test application and LLDD pairs
to perform combination tests. In terms of code, a higher-
level test program (i.e., a core test master or system-level
test master) would typically comprise a list of test applica-
tions to be executed and directives for control of the test. A
control directive might specily that selected tests of, for
example, a DMA core such as core 105 are to run
sequentially, while others are to run at random. The higher-
level test program may select tests from pre-defined tables
created from list files which identify test applications avail-
able to the higher-level control program. Test biasing can be
accomplished, for example, by declaring multiples of spe-
cific tests 1n the list, or by placing a “bypass” marker 1n the
list. When randomly selecting, 1t 1s possible to bypass tests
in a task periodically, thereby changing the test mix.

As noted above, a chip-specific top-level exerciser may be
a core test master as shown 1n FIG. 2B or a system-level test
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master as exemplified 1n FIG. 2C. Chip-unique elements of
the TOS include files used for defining which cores are
included 1n a chip, for defining a chip-specific interrupt
confliguration, for address mapping, and for satisfying exter-

nal driver/monitor requirements. In general, a TOS system
verification environment 1s developed by creating the
address mapping and interrupt configuration file appropriate
for the selection of cores and chip configuration, selecting
the corresponding LLLLDDs and test applications, and pro-
cramming a top-level exerciser to exercise the system
accordingly.

It can be appreciated from the foregoing that the TOS
supports re-usability of code developed according to the
described methodology, by providing a uniform control and
support structure which requires test application and LLDD
writers to learn only one programming interface. As the
development of a system-on-chip design progresses, change
occurs at progressively higher control levels, requiring less
specialized software to be developed. The test applications
and LLDDs remain unchanged. Re-usability is also enabled
because the test applications and LLDDs are verified along
with their corresponding cores through the development
Process.

Because 1t 1s written 1n a high level language such as “C”,
the TOS wverification code 1s also fully portable across
execution domains, as described above. A compile switch 1s
used to compile the TOS to the appropriate mode of execu-
tion. In a full virtual mode, the TOS may execute entirely 1n
simulation, as shown 1n FIG. 8. FIG. 8 shows the TOS
verification software 200 loaded 1nto a memory core 101 and
being executed by a processor core 112 to stimulate cores
102 and 1035, all the foregoing cores being implemented as
HDL modules stmulated by stmulator 203. An instruction set
simulator may be used to increase execution speed.

FIG. 9 illustrates a bus functional model (BFM) mode of
execution 1n which the TOS runs entirely on a workstation



US 6,539,522 Bl

13

driving the simulation. Because the TOS executes externally
to the stmulator at workstation speed, execution 1s substan-
tially faster than in full virtual mode. In BFM mode, BFMs
900 are used as stand-1ns or replacements for an embedded
processor core to drive signals to components of the design
being simulated. This mode is useful for unit testing (i.e.,
testing of individual cores) and testing SOC designs which
do not include an embedded processor core. Also, because
execution of the TOS by a simulated processor can consume
a prohibitive amount of simulation time, BFMs are used 1n
its place 1n certain stages of development to generate spe-
cific processor bus cycles to emulate the behavior of the
processor which will eventually interface with the cores
under test, thereby verifying that cores can communicate in

that protocol.

The BFMs attach to the same buses that were attached to
the embedded processor 1n full virtual mode. There are a
plurality of BFM types, each corresponding to either a
master or slave of a hardware bus which may be internal or
external to the SOC design. A P-Bus (Processor-Bus) Master
BFM, a DCR Master BFM, and a PLB (Processor Local
Bus) Slave BFM are three examples. FIG. 9 shows the
BFMs 900 receiving high-level requests from the TOS and
converting them 1nto a processor-specific protocol to stimu-

late cores 102 and 105 via the PLB bus 103.

In an embodiment, the BFMs 900 are part of a Run Time
eXecutive (RTX) 901 implemented as computer-executable
instructions which interfaces between the TOS and the
simulator. The TOS and the simulator may execute as
separate UNIX® processes on a UNIX workstation. During
start-up of a stmulation session, the simulator 1nvokes the
RTX 901, which starts up an Inter-Process Communication
(IPC) layer for communication between the simulator and
the TOS. When the TOS executes a “C” macro that requires
access to the simulator, the IPC layer 1s invoked, performs
the request and waits for the RTX to indicate that the request
has completed.

In a final phase of SOC development, a SOC 100 physi-
cally implemented 1n silicon may be mounted on a printed
circuit board (PCB) and have diagnostic software run
against 1t to determine 1f 1t functions as expected. Diagnostic
software 1s often created for this phase independently of the
simulation verification software. This incurs additional time-
to-market delays.

As shown 1n FIG. 10A, 1n a hardware bring-up mode of
execution, the TOS may be compiled to execute on a
physical implementation of the SOC 100 verified as
described above, re-using the TOS verification software for
hardware diagnostics to avoid the above-described delays.
In an embodiment, the SOC 100 1s mounted on a PCB 1000
and connected to the EMMTD 1005 described above, imple-
mented as a physical FPGA or ASIC. External cores repre-
sented by core 109 will be similarly implemented, either in
FPGA or ASIC form, or using legacy hardware. The TOS 1s
booted (initialized) on the SOC, and a selection of test
applications and LLDDs used for verification in simulation
are re-executed on the physical SOC.

Because executing the TOS software on a physical imple-
mentation of a SOC serves to exercise the processor, buses
and cores of the chip, a level of assurance 1s provided to the
customer that the chip hardware functions. Moreover,
because the same software 1s used to verify the hardware as
was used 1n simulation, if an error occurs 1n the hardware
test, the error may be observed and ecasily recreated and
debugged 1n simulation.

More generally, as shown in FIG. 10C, application-
specific hardware elements, e.g., 1001 and 1002, corre-
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sponding to a particular real-world application intended for
the SOC by a customer, could be connected to the SOC, and
a selection of test applications and LLDDs tailored to that
application could be executed.

FIG. 11 illustrates a general purpose computer system
which can be used to practice the ivention. The system
includes a computer 1100 comprising a memory 1101 and a
processor 1102 which may be embodied, for example, 1n a
workstation. The system further includes a user interface
1103 comprising a display device 1104 and user-input
devices such as a keyboard 1105 and mouse 1106 for
purposes of, for example, initiating and controlling a simu-
lation session and observing simulation status and results.

The TOS 200 and RTX 901, as noted above, may be
implemented as computer-executable instructions which
may be stored on a computer-usable medium such as disk
1107, tape 1108 or CD-ROM 1109. The instructions may be
read from a computer-usable medium as noted into the
memory 1101 and executed by the processor 1102 to etfect
the advantageous features of the ivention.

The simulator 203 may be any of a variety of
commercially-available simulators, including event
simulators, cycle simulators and instruction set simulators.
The stmulator may run on the same workstation 1100 as the
TOS. As described above in connection with the various
operating modes of the TOS, the TOS may be executed
entirely 1n the simulator or on the workstation entirely
externally to the simulator.

Typically, additional inputs to the computer 1102 would
include the SOC 100 being verified and external cores such
as the memory core 101 and external driver core 109,
embodied as simulatable HDL modules. The processor 1102
would execute the simulator (simulation software) 203,
which would use the mput simulatable modules to simulate
the behavior of corresponding hardware devices 1n response
to mstructions executed by the TOS 200.

As noted above, in a preferred embodiment, the
computer-executable mstructions which implement the TOS
200 are written 1n a high-level language such as “C”.
However, the programming structures and functionality dis-
closed herein for practicing the invention may find speciiic
implementations 1n a variety of forms using other program-
ming languages, which 1implementations are considered to
be within the abilities of a programmer of ordinary skill in
the art after having reviewed the specification.

The foregoing description of the invention illustrates and
describes the present invention. Additionally, the disclosure
shows and describes only the preferred embodiments of the
imnvention, but 1t 1s to be understood that the invention i1s
capable of use 1n various other combinations, modifications,
and environments and 1s capable of changes or modifications
within the scope of the inventive concept as expressed
herein, commensurate with the above teachings, and/or the
skill or knowledge of the relevant art. The embodiments
described hereinabove are further intended to explain best
modes known of practicing the invention and to enable
others skilled 1n the art to utilize the 1invention 1n such, or
other, embodiments and with the wvarious modifications
required by the particular applications or uses of the inven-
tion. Accordingly, the description 1s not intended to limait the
mvention to the form disclosed herein. Also, 1t 1s intended
that the appended claims be construed to include alternative
embodiments.

The mnvention claimed 1s:

1. A method for verifying a system-on-chip integrated
circuit design comprising a plurality of design components,
including the steps of:
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developing verification software which 1s partitioned 1nto
control and device driver levels of software;

said control level generating a test case to be applied to a
component of said design; and

said device driver level applying said test case to said
component in simulation under the control of said
control level.

2. The method of claim 1, said control level of software
comprising a first level of software developed to generate a
test case to be applied to a specilic component of said
design; and said device driver level being developed to drive
said specific component.

3. The method of claim 2, said control level of software
comprising a second level of software developed to control
said first and device driver levels to perform verification of
a combination of said design components.

4. The method of claim 3, wherein said combination of
said design components 1s specilic to said system-on-chip
design.

S. The method of claim 3, said second level of software
further being partitioned i1nto a third level which controls
said software at said first and device driver levels to perform
verification of a combination of said design components,
and a fourth level of software which controls software at said
third, first and device driver levels to perform verification of
a combination of said design elements.

6. The method of claim 1, further comprising the step of
re-using said control and device driver levels of software to
perform diagnostics on a physical implementation of said
system-on-chip design.

7. The method of claim 6, further comprising the step of
re-creating an error observed during said diagnostics in
simulation to de-bug said system-on-chip design.

8. A system for verifying a system-on-chip integrated
circuit design 1ncluding a plurality of design components,
comprising:

first means for generating a test case to be applied to a

specific component of said design using the code level
of software; and

second means controlled by said first means for applying
said test case to said speciiic component 1n simulation
using the device level of software.

9. The system of claim 8, further comprising:

third means for controlling a plurality of said first means
and second means to perform a test of a combination of
said components of said design.

10. The system of claim 9, further comprising:

fourth means for controlling a plurality of said first,
second and third means to perform a test of a combi-
nation of said design components.

11. A computer-usable medium storing computer-
executable instructions which, when executed, perform a
process ol verilying a system-on-chip integrated circuit
design comprising a plurality of design components:

said 1nstructions comprising a first and second level of
partitioned 1nstructions; and

said process comprising the steps of:
generating a test case using the first level of said
instructions, said test case to be applied to a specific
component of said design; and
controlling the second level of said mstructions using
said first level, said second level applying said test
case to a specific component 1in simulation.
12. The computer-usable medium of claim 11, said pro-
cess further comprising the step of:

controlling said first and second levels to perform verifi-
cation of a combination of said design components,
using a third level of said instructions.
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13. The computer-usable medium of claim 12, said pro-
cess further comprising the step of:

controlling said first, second and third levels to perform
verification of a combination of said design compo-
nents using a fourth level of said instructions.

14. A method for verifying a system-on-chip integrated
circuit design comprising a plurality of design components,
including the steps of:

developing a verification program by selecting from pre-
existing test application and device driver pairs for
generating and applying test cases to specific ones of
said components 1n simulation;

executing said verification program to initiate a series of

overlapping operations on said components.

15. The method of claim 14 wherein said verification
program generates parameters for randomizing said test
cases.

16. The method of claim 14 wherein said verification
program controls a lower-level control program which con-
trols selected ones of said test application and device driver
pairs.

17. A method for concurrently testing a combination of
components of a system-on-chip design for verification of
sald design, comprising the steps of:

providing a computer system for executing simulation

software and wverification software, said wverification
software comprising a top-level control program and a
plurality of test application programs and device driv-
ers controlled by said top-level control program;

executing said top-level control program, said top-level
control program corresponding to a particular verifica-
tion test of said design and issuing top-level control
information relating to the test to a plurality of said test
application programs; and

initiating each of said test application programs serially,
cach of said test application programs when initiated
1ssuing control information corresponding to said top-
level control information to a device driver, to 1nitiate
an operation by said device driver on a component of
said design simulated by said simulation software, and
subsequently yielding to allow another test application
program to be 1nitiated.

18. The method of claim 17, wherein after yielding a test

application program performs the steps of:

polling a status register 1n said design for the completion
of said operation;

obtaining the result when said polling step indicates said
operation has been completed; and

returning the result to said top-level control program,
whereby 1t may be determined whether a design com-
ponent functions as expected.
19. The method of claim 17, wherein after yielding a test
application program performs the steps of:

waiting for an interrupt by executing an internal loop
which checks a status flag indicating a hardware inter-
rupt from said design;

obtaining the result when said waiting step indicates said
operation has been completed; and

returning the result to said top-level control program,
whereby 1t may be determined whether a design com-
ponent functions as expected.

20. A computer-usable medium storing computer-
executable instructions which when executed perform a
process ol verilying a system-on-chip integrated circuit
design comprising a plurality of design components, said
process comprising the steps of:
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executing a top-level control program corresponding to a
particular verification test of said design, said top-level
control program 1ssuing top-level control information
relating to the test to a plurality of test application
programs; and

initiating each of said test application programs serially,
cach of said test application programs when mitiated
1ssuing control mformation corresponding to said top-
level control information to a device driver, to 1nitiate
an operation by said device driver on a component of
said design in simulation, and subsequently yielding to
allow another test application program to be initiated;

whereby a plurality of design components 1s concurrently
tested.
21. The computer-usable medium of claim 20, wherein
after yielding a test application performs the steps of:

polling for the completion of said operation;

obtaining the result when said polling step indicates said
operation has been completed; and

returning the result to said top-level control program,
whereby 1t may be determined whether a design com-
ponent functions as expected.

22. The computer-usable medium of claim 20, wherein

after yielding a test application program performs the steps
of:

wailting for an interrupt by executing an internal loop
which checks a status flag indicating a hardware inter-
rupt from said design;

obtaining the result when said waiting step indicates said
operation has been completed; and

returning the result to said top-level control program,
whereby 1t may be determined whether a design com-
ponent functions as expected.
23. A method for verilying a system-on-chip integrated
circuit design comprising a plurality of design components,
including the steps of:

providing verification software comprising:

a collection of re-usable test application and device
driver programs corresponding to said design com-
ponents and comprising computer-executable
instructions for generating and applying test cases to
said design components 1n simulation; and

a collection of re-usable test control programs, said test
control programs comprising computer-executable
instructions for performing tests of combinations of
said design components by controlling selected com-
binations of said test application and device driver
programs;

providing a computer system for executing simulation
software and said verification software;

simulating said plurality of design components using
said simulation software; and

executing selected combinations of said test control
programs on said computer system to apply test
cases to a combination of said components 1n simu-
lation.

24. A method for verilying a system-on-chip integrated
circuit design as recited 1n claim 23 wherein at least one of
the test application programs 1s reusable.
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25. A method for verifying a system-on-chip integrated
circuit design as recited 1n claim 23 wherein at least one of
the test control programs 1s reusable.

26. A system for verifying a system-on-chip integrated
circuit design comprising a plurality of design components,
comprising:

storage means for storing veriication software, said veri-

fication software comprising:

a collection of re-usable test application and device
driver programs corresponding to said design com-
ponents and comprising computer-executable
instructions for generating and applying test cases to
sald design components 1n simulation; and

a collection of re-usable test control programs, said test
control programs comprising computer-executable
instructions for performing tests of combinations of
said design components by controlling selected com-
binations of said test application and device driver
programs;

simulation means for simulating said plurality of design

components;

execution means for executing said verification software
to apply test cases to said design components being
simulated by said simulation means.

27. The system of claim 26, wherein said verification
software utilizes bus functional models for receiving said
test cases and generating specific processor bus cycles to
stimulate said design, to emulate the behavior of an embed-
ded processor component of said system-on-chip design.

28. The system of claim 27, wherein said bus functional
models execute externally to said simulation means.

29. A system for verilying a system-on-chip integrated
circuit design comprising a plurality of design components
as recited 1in claim 26 wherein at least one of the test
application programs 1s reusable.

30. A system for verilying a system-on-chip integrated
circuit design comprising a plurality of design components
as recited 1n claim 26 wherein at least one of the test control
programs 1s reusable.

31. A method for verifying a system-on-chip integrated
circuit design comprising a plurality of design components
comprising:

developing verification software which 1s partitioned into

control and device driver levels of software;

said control level for generating a test case to be applied
to a component of said design;

said device driver level for applying said test case to said
component in simulation under the control of said
control level, and

using said control and device driver levels of software to
apply test cases to said design components at sequential
stages of development of said system-on-chip design,
said stages 1ncluding the stages of verifying individual
ones of said components and of verifying combinations
of said components.
32. The method of claim 29, wherein said combination of
said design components 1s speciiic to said system-on-chip
design.
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