US006538667B1
a2 United States Patent (10) Patent No.: US 6,538,667 Bl
Duursma et al. 45) Date of Patent: Mar. 25, 2003
(54) SYSTEM AND METHOD FOR PROVIDING 5,579,469 A 11/1996 Pikeoooeeeeeererinnnnnn.. 395/326
IMMEDIATE VISUAL RESPONSE TO USER 5,583,763 A * 12/1996 Atchenson et al. 345/812
INPUT AT A CLIENT SYSTEM CONNECTED 5,757,925 A 5/1998 Faybishenko 380/49
i 5,802,292 A * 9/1998 Mogulcoeiiiiiiin. 345/744
TO A COMPUTER SYSTEM BY A HIGH A ey
(List continued on next page.)
(75) Inventors: Martin Duursma, West Pennant Hills
(AU); Anatoliy Panasyuk, Thornleigh FOREIGN PATENT DOCUMENTS
(AU) EP 0836145 A2 4/1998 ... GOGF/17/30
| o TP 06125363 5/1994 o HO41./12/56
(73) Assignee: (Fjitl('%isiystemss Inc., Ft. Lauderdale, WO WO 97/28623 8/1997 ovven.. GO6F/9/455
OTHER PUBLICATIONS
(*) Notice: Sub]ect' o any dlsclalmer,: the term of thus “Mechanisms for Finding Substitute Fonts in a Conferen-
patent 1s extended or adjusted under 35 : e . .
USC 154(b) by 0 d ce—Enabled X—Windows Application,” IBM Technincal Dis-
T (b) by 0 days. closure Bulletin, IBM Corp. N.Y., vol. 41, No. 1, 1998, pp.
137-142.
(21) Appl. No.: 09/360,876
_ Primary Examiner—Steven Sax
(22) Filed: Jul. 23, 1999 (74) Attorney, Agent, or Firm—Testa, Hurwitz & Thibeaullt,
(51) T0te CL7 oo G09G 500 -HF
(52) US.ClL e 345/740; 345/812 (57) ABSTRACT
(58) Field of Search 345/744, 745, _ _ _
345/748. 749. 789. 790. 703. 708—713 A method and an apparatus for reducing perceived visual
760 740"‘_743’ 853?—854? 8123 316 780? response to user input at a client node are described. The
’ ’709 232 530. "‘707 /fO 12’ client node remotely executes an application program on a
’ ’ ’ server node wherein all execution of the application program
(56) References Cited occurs on the server node. The client node transmits user-
provided imput to the server node, and the user-provided
U.S. PATENT DOCUMENTS input elicits a response from the server node that 1s trans-
RE3 630 3/1988 Atkinson 340/709 mitted back to the client node for display. The client node
4 860247 A 8/1989 Uchida et al. 364/900 Teceives the user input to be transmitted to the server node.
4903218 A 2/1990 Longo et al. woove....... 364/521 The client node can obtain the user input through a keyboard
4937036 A 6/1990 Beard et al. 340/706 or a pointing device. In response to the user input, the client
4049 281 A 8/1990 Hillenbrand et al. 364/518 node produces a prediction of a server response to the user
4,958,303 A 9/1990 Assarpour et al. 364/521 input. The client node then displays the prediction. The
5,072,412 A 12/1991 Henderson, Jr. et al. ... 395/159 display of the prediction provides the client user with a faster
g 103,303 A 4/1992 Shojt Et L e, 35 85/ 7> visual response to the user input than could be obtained from
5’5;?’23 ﬁ gﬁggg zrzlzgd;um """"""""" gggﬁlig the server node. Upon receiving the server response, the
5300 555 A 5/1994 Akins ef A 305 157 client node displays the server response, overwriting the
5,351,129 A 9/1994 Lai .ocovcvviricneninnn, 348/584 Pprediction.
5,414,457 A 5/1995 Kadowaki et al. 348/14
5,469,540 A 11/1995 Powers, III et al. 395/158 20 Claims, 4 Drawing Sheets
y 0, 14
22 g "
38 A FONT
A CARET
DEFAULT DISPLAY axt e | | A B
INFO STORE X
31
CLIENT VIDEO
e e TR |
USER | |[*34 36 P‘W
INPUT l - 35
ICA DRIVER ICA DRIVER
33 43
PROTOCOL DRIVER PROTOCOL DRIVER
TRANSPORT DRIVER CLIENT TRANSPORT DRIVER
35 34
8 S_ SERVER

e

US 6,538,667 B1

Page 2
U.S. PATENT DOCUMENTS 6,182,125 B1 * 1/2001 Borella et al. 709/218
6,243,761 B1 * 6/2001 Mogul et al. 709/246
5,874,960 A 2/1999 Mairs et al. 345/340 6.282.542 Bl * 8/2001 Carneal et al. ..vo........... 707/10
5,982,351 A * 11/1999 White et al. 345/812 6,304,909 B1 * 10/2001 Mullaly et al. 709/232
6,078,740 A * 6/2000 DeTreville 345/740 6,353,452 B1 * 3/2002 Hamada et al. 345/825
6,108493 A * §/2000 Miller et al. 345/740
6,178,461 B1 * 1/2001 Chan et al. 7097247 * cited by examiner

U.S. Patent Mar. 25, 2003 Sheet 1 of 4 US 6,538,667 Bl

18

US 6,538,667 B1

Sheet 2 of 4

Mar. 25, 2003

U.S. Patent

4"

oV

Ov

4y

d3AIdd 10001048a

d3IAIA YOI

NYHO0ad

NOILVOl 1ddV

LA It
1NO

2%

¢ Old

ddAIEA LHOaSNVal

FE Gt

0l

/
—

INSIO HIAIEQA LIOdSNYYL
¥3AI™A 100010¥d
e¢
G ~—d
I 0F Ve

T M o

O3dIA ze] AN

€ 0¢

34018 O4NI

AV 1dSId 11Nv43d

V' o8
4

1MNdNI
ASM

142

U.S. Patent Mar. 25, 2003 Sheet 3 of 4 US 6,538,667 Bl

CLIENT SERVER
LAUNCH START APPLICATION u
40 APPLICATION EXECUTION
PROVIDE APPLICATION |, .
INFORMATION
- RECEIVE INPUT
CHARACTER "T"

- +| GENERATE/DISPLAY
96— PREDICTED RESPONSE

A0 TRANSMIT INPUT
CHARACTER "T"
TO SERVER .

Y TYPE IN
CHARACTER "E’

a8 GENERATE/DISPLAY
PREDICTED RESPONSE
TO IIEH

TRANSMIT INPUT

[CHARACTER "E'
TO SERVER

PRODUCE RESPONSE
TO CHARACTER 76
INPUT T

a0 UPDATE DISPLAY WITH "T"
SERVER RESPONSE

PRODUCE RESPONSE
TO CHARACTER 84
INPUT "E”

a8 UPDATE DISPLAY
WITH SERVER
RESPONSE TO "E”

FIG. 3

U.S. Patent Mar. 25, 2003 Sheet 4 of 4 US 6,538,667 Bl

CLIENT SERVER
LAUNCH
100 APPLICATION START APPLICATION =104

112 POINTING DEVICE

116 GENERATE/DISPLAY
MENU REPRESENTING

PREDICTED RESPONSE

190 TRANSMIT INPUT
TO SERVER

194 TRACK CURSOR
POSITION WITHIN
DROP-DOWN MENU

PRODUCE RESPONSE 198
TO USER INPUT

PROVIDE APPLICATION 108
INFORMATION
RECEIVE INPUT FROM

139 UPDATE DISPLAY WITH
SERVER RESPONSE

FIG. 4

US 6,538,667 Bl

1

SYSTEM AND METHOD FOR PROVIDING
IMMEDIATE VISUAL RESPONSE TO USER
INPUT AT A CLIENT SYSTEM CONNECTED

TO A COMPUTER SYSTEM BY A HIGH-
LATENCY CONNECTION

FIELD OF THE INVENTION

The 1nvention relates generally to client-server computer
networks. More specifically, the mnvention relates to a sys-
tem and method for providing feedback to user mput at a
client system.

BACKGROUND OF THE INVENTION

Typical computer networks include client systems that
communicate with server systems over communication
links. Often a user of the client system formulates and
delivers queries to the server system through a user interface
operating on the client system. The server system evaluates
the queries and delivers responses to the client system for
display on the client user interface.

Over the past decade, a wide variety of computer
networks, such as local area networks (LANs), wide area
networks (WANSs), Intranets, and the Internet, have adopted
remote application processing. In a remote application pro-
cess system, all application program execution occurs on the
server system, and only the control information for the client
user 1nterface, keystrokes, and mouse movements travel
across the network. As a result, less resources of the client
systems are needed to run applications.

A shortcoming of remote application processing,
however, 1s that the client system may experience an unac-
ceptable round-trip delay (1.e., latency) from when the client
system sends input to the server system until the client
system receives a response. Such delays can manifest them-
selves 1 remote computing environments, such as those
encountered on the Internet, WANSs, or satellite links, or with
multi-user server systems. Regarding remote computing
environments, the geographical separation of the client
system from the server system produces the delay. This can
be particularly troublesome to a user who 1s typing, for
example, at the client system. The time required for the
client 1nput to travel to the server system and for the server
response to return to the client system causes a palpable
delay that can disconcert the user and induce typing errors.
In multi-user server systems, the round-trip delay may
depend more upon the ability of a busy server system,
concurrently processing user interface data for multiple
active clients, to respond to 1nput received from a particular
client system.

Consequently, the benefits of current remote computing
and multi-user technologies are diminished for those imple-
mentations where the round-trip response time 1s greater
than the acceptable user interface response time. Thus, a
need exists for a system and a method that minimizes the
delay sensed by the user of a client system 1n remote
computing and multi-user computer system networks.

SUMMARY

The 1nvention features a method and an apparatus for
reducing perceived visual response to user input at a client
node that 1s remotely executing an application program on a
server node wherein execution of the application program
occurs on the server node. The client node transmits the user
input to the server node, and the user input elicits a response

10

15

20

25

30

35

40

45

50

55

60

65

2

from the server node that 1s transmitted back to the client
node for display.

In one aspect, the invention features a method that com-
prises receiving user 1nput to be transmitted to the server
node. In response to the user 1nput, a prediction of a server
response to the user mput 1s produced. This prediction 1is
then displayed at the client node. The prediction can be
determined based upon mformation about the applications
currently running on the server. Relevant information
includes cursor position, font, and other types of data.

In another aspect, the mvention features a client node
comprising an mput device that provides user mput to be
transmitted to a server node, a processor that produces a
prediction of a server response to the user input, and a
display device that displays the prediction. The input device
can be a keyboard or a pointing device.

In still another aspect, the 1nvention features a client-
server system comprising a server node and a client node.
The client node 1ncludes an 1input device for providing user
input, a processor, and a display device. The processor
transmits the user mput to the server node and produces, in
response to the user input, a client response that attempts to
anticipate a server response to the user input by the server
node. The client response provides a visual response to the
user 1nput before the client node receives the server
response. The displayed server response overwrites the
prediction.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention 1s pointed out with particularity 1n the
appended claims. The above and further advantages of the
invention may be better understood by referring to the
following description 1n conjunction with the accompanying
drawings, 1n which:

FIG. 1 1s a diagram of an embodiment of a client system
In communication with a server node over a network;

FIG. 2 1s a block diagram of a client-server system
showing the communication paths between the client and
server when performing the methods of the present 1nven-
tion;

FIG. 3 1s an exemplary flow diagram of an exemplary

process by which the client node generates a response to
keyboard input; and

FIG. 4 1s an exemplary flow diagram of an exemplary
process by which the client node generates a response to user
input provided through the pointing device.

DESCRIPTION OF THE INVENTION

FIG. 1 shows a first computing system (client node) 10 in
communication with a second computing system (server
node) 14 over a communications network 18 for remotely
executing an application program on the server node 14 1n
accordance with the principles of the imnvention. The network
18 over which the client and server nodes 10, 14 commu-
nicate can be a local area network (LAN) or a wide area
network (WAN) such as the Internet. The client and server
nodes 10, 14 can connect to the network 18 through a variety
of connections mncluding standard telephone lines, LAN or
WAN links (e.g., T1, T3, 56 kb, X.25), broadband connec-
tions (ISDN, Frame Relay, ATM), and wireless connections.
Connections can be established using a variety of commu-
nication protocols (e.g.,.TCP/IP, IPX, SPX, NetBIOS,
Ethernet, RS232, and direct asynchronous connections).
Other client nodes and server nodes (not shown) may also be
connected to the network 18.

US 6,538,667 Bl

3

In one embodiment, the client node 10 communicates
with the server node 14 using an Independent Computing
Architecture (ICA) protocol developed by Citrix Systems,
Inc. of Ft. Lauderdale, Fla. ICA 1s a general-purpose pre-
sentation services protocol that controls the input/output
between the client node 10 and server node 14. The design
of ICA 1s for the presentation services to run over industry
standard network protocols, such as TCP/IP, IPX/SPX, or
NetBEUI, using industry-standard transport protocols,
including but not limited to ISDN, frame relay, and asyn-
chronous transfer mode (ATM).

With the ICA protocol, all application execution remains
on the server node 14, and only user interface information,
such as windows application screen presentation, full-screen
text presentation, and keyboard and pointing device updates,
are sent to the client node 10. The technique of the invention
operates as a feature that accelerates standard ICA keyboard
processing. If a particular application program or input
control cannot support the technique, the standard ICA
keyboard processing 1s used. Other embodiments can
employ other remote control protocols, such as
MICROSOFT RDP (Remote Desktop Protocol), to practice

the principles of the invention.

The client node 10 can be any personal computer (e.g.,
286, 386, 486, Pentium, Pentium II, Macintosh computer),
thin-client device, windows and non-windows based
terminal, network computer, wireless device, mformation
appliance, RISC Power PC, X-device, workstation, mini
computer, main frame computer, or any processor-based
device capable of displaying application data and operating
according to a protocol that transmits input data to an
application program executing remotely on the sever node

14.

The user 1nterface displayed at the client node 10 can be
text driven (e.g., the DOS operating system manufactured by
Microsoft Corporation of Redmond, Wash.) or graphically
driven (e.g., the WINDOWS operating system manufactured
by Microsoft Corporation of Redmond, Wash.). The oper-

ating system of the client node 10 can be one of a variety of
platforms including but not limited to WINDOWS 3.x,

WINDOWS 95, WINDOWS 98, WINDOWS NT 3.51,
WINDOWS NT 4.0, Macintosh, Java, and Unix, DOS,
Linux, and WINDOWS CE for windows-based terminals.
The client node 10 1ncludes a display screen 22, a keyboard
24, a pointing device (e.g., a mouse, trackball, touch-pad,
touch-screen, etc) 28, a processor (not shown), and persis-
tent storage (not shown).

The server node 14 can be any computing device that
controls access to other portions of the network (e.g.,
workstations, printers, etc.) and runs applications in
response to mput recerved from the client node 10. Like the
client node 10, the server node 14 can support a variety of
operating system platforms, such as, for example, WIN-
DOWS 3.x, WINDOWS 95, WINDOWS 98, WINDOWS
NT 3.51, WINDOWS NT 4.0, WINDOWS CE for windows-
based terminals, Macintosh, Java, and Unix. The server node
14 can include a group of server systems logically acting as
a single server system, called a server farm. In one
embodiment, the server node 14 1s a multi-user server
system supporting multiple concurrently active client nodes.

The server node 14 hosts one or more application pro-
orams that can be accessed by the client node 10. Examples
of such applications include browser software, e.g.,
MICROSOFT INTERNET EXPLORER™, word process-
ing programs such as MICROSOFT WORD® and
MICROSOFT NOTEPAD®, database programs such as

10

15

20

25

30

35

40

45

50

55

60

65

4

MICROSOFT ACCESS®, and spreadsheet programs such
as MICROSOFT EXCEL®, all of which are manufactured

by Microsoft Corporation of Redmond, Wash.

Such application programs call application program inter-
face (API) routines to direct the performance of the oper-
ating system running on the server node 14. Server-side
support may make use of the Active Accessibility API,
developed by Microsoft Corporation of Redmond, Wash., or
cquivalent proprietary APIs that allow information about the
contents of a window to be extracted from the application in
control of that window. For example, the Active Accessi-
bility API models user interface elements as Component
Object Model (COM) objects. A client is able to examine the
properties of an object using provided functions such as
Iaccessible::acclLocation and IAccessible::get _accName.
The foregoing examples are intended to be illustrative and
not exhaustive.

In brief overview, the client node 10 communicates with
the server node 14 to remotely execute an application
program on the server node 14. User imnput supplied at the
client node 10 serves as mput to the application program. All
execution of the application program occurs on the server
node 14 according to this user mput forwarded to the server
node 14 from the client node 10. Examples of user input,
typically submitted by a user of the client node 10, include
characters entered through the keyboard 24 or cursor move-
ments submitted using the pointing device 28.

In response to the user mput, the server node 14 produces
a server response that controls the content and appearance of
the screen display of the client node 10 when subsequently
transmitted to and received by the client node 10. The type
of the server response depends on the type of the user input
received and the application program that 1s processing the
user input. For example, 1 the application program 1s a word
processor and the input event 1s a keyboard input of the
character “T,” then the response from the server node 14 to
the client node 10 produces the character “T” when dis-
played on the client node 10. The response can include
information that defines the display of the character “1” on
the screen of the client node 10, including current input
position information and font information. Similarly, for
example, 1f the user mput 1s mstead a pointing device
operation (€.g., a cursor movement) that selects a toolbar
icon, then the server response can display a drop-down menu

assoclated with that icon on the screen 22 of the client node
10.

The period of elapsed time for the user mput to traverse
the network 18 to the server node 14 and for the server
response to return to the client node 10 1s the latency of the
connection between the nodes 10, 14. When the client node
10 and server node 14 are communicating over a high-
latency connection, the user may experience a palpable
delay from the moment of entering the input until the
moment of receiving a server response. Such high-latency
connections are common 1 a WAN or Internet environment
and can occur in multi-user computer systems that are busy
responding to queries from multiple active clients.

To mitigate the effects of such latency, the client node 10
produces and displays a response to the iput event in
anticipation of the server response. According to the prin-
ciples of the mvention, the client node 10 response attempts
to anticipate the server response that substantially matches,
in content and appearance, the subsequent display of the
expected server response. Content, for example, includes the
specific text and graphical image that the server response 1s
expected to display, such as the capital letter ““I”” and the

US 6,538,667 Bl

S

drop-down menu of the above-described examples.
Attributes associated with appearance include, for example,
the color of the displayed character (e.g., blue), the font size
(c.g., 12), the font type (¢.g., Times New Roman), the font
style (e.g., italics), and current input position (i.€., (X, y)
coordinate) on the display screen 22.

Generating a Client Response

FIG. 2 shows an exemplary block diagram 1llustrating the
information used by a client response generator 30 to
produce a client response 32 to a user-supplied input 34. The
client response generator 30 includes the processor of the
client node 10 and the particular API routines that form and
display the client-generated response 32. Typically, the
client response generator 30 forms the client-generated
response 32 based upon that user-supplied imnput 34 and upon
server-supplied information 36, but if certain server-
supplied mmformation described below 1s unavailable, the
client response generator 30 can use default information 38
instead.

The user-supplied input 34 is one of at least two types: (1)
keyboard input or (2) a pointing device input. The user of the
client node 10 supplies keyboard input by typing in char-
acters using the keyboard and pointing device input by
clicking or double-clicking the pointing device 28. Another
type of pointing device input 1s the position of the cursor on
the display screen 22 of the client node 10. User-supplied
input 1s transmitted to the server 14 via a client-side trans-
port mechanism 33. In the embodiment depicted 1n FIG. 2,
the client-side transport mechanism 33 includes a transport
driver that handles low-level network communication (e.g.,
physical layer), a protocol driver that handles higher-level
network communication (e.g. data link layer), and an ICA
driver that handles formatting of data to conform to the ICA
protocol.

The type of server-supplied mmformation 36 depends on
the type of user mnput. As described above, the mput types
include keyboard input and pointing device input. For key-
board 1mput, the server-supplied information 36 includes a
current 1mput position and current font information. The
current 1input position 1s determined by current cursor posi-
tion. The font information defines the appearance (e.g., font
size, style, color, type, etc.) of the client-generated response
when displayed on the display screen.

For pointing device mput, the server-supplied information
36 includes current mput position information, as described
above, and current screen object information. For example,
if the current screen object 1s a menu, the screen object
information includes such information as menu size and
screen location, number of menu elements, and size of menu
clements. Here, the current mput position information cor-
responds to the cursor position determined by the pointing
input device.

The server node 14 obtains the current mput position,
font, and screen object information from the application
program 40 executing on the server node 14. To provide
current 1nput position, the application program can use a
standard operating system cursor handling routine or support
a particular query API that obtains the cursor information,
such as the “font info” API 41 or the “caret” API 42 depicted
in FIG. 2. Use of the standard operating system routine may
require some modification to that routine to obtain the cursor
information. For example, implementations using
MICROSOFT WINDOWS can accomplish this by installing
a hook procedure 1n the standard dynamic link library {ile
User32.dll.

To provide the font information, the application program
40 either uses text output functions to draw the text in

10

15

20

25

30

35

40

45

50

55

60

65

6

response to the keyboard 1nput or supports a particular query
API to obtain the font information. Should the application
program not support an API that can provide font
information, the client response generator 30 can use default
information 38 to produce the client-generated response 32.
For example, default information 38 for font can be prede-
termined or taken from the most recent, previous text output
generated by the application program.

The application program 40 provides screen object infor-
mation 1n a manner similar to providing current input
position, that 1s, by using a system-supported routine for
accessing such information or by supporting yet another
particular query API, such as laccessible::accLocation men-
tioned above. Such query APIs can be standard API, such as
APIs 1n the Active Accessibility interface developed by
Microsoflt, or proprietary APIs.

The type of server-supplied information 36 also depends
on the operational state of the application program currently
executing on the server node 14. For example, 1f the server
node 14 1s executing a word processing application program
and the program 1s presently processing the 1input using Edit
control, the client response generator 30 can anticipate how
the server node 14 will process keyboard mput while oper-
ating according to this set of controls. For embodiments
implemented using the WINDOWS operating system, Edit
control 1s standard and well documented. The behavior of
the Edit control 1s generally determined by a set of flags
assoclated with the Edit control such as: ES MULTILINE,
which indicates that the control contains multiple lines of
text; ES NUMBER, which indicates that the control allows
only digits to be entered; ES_ CENTER, which indicates
that the entered text will be centered; or
ES LOWERCASE, which indicates that the entered text
will be converted to lower case. Other information can be
obtained by querying the Edit control, such as the current
size of the output rectangle, the currently selected font, the
current line, or the current text selection 1n the Edit control.
Thus, the client response generator 30 can anticipate a
number of characteristics associated with, for example, text
that 1s currently being edited in order to estimate the server
response. In one embodiment, the client response generator
30 monitors the control by using a hooking control proce-
dure. If the Edit control changes its state as a result of the
user mput or application request, the change 1s detected by
the 1nstalled hook procedure and the updated information 1s
communicated to the client.

It should be understood that the technique of estimation 1s
not limited to Edit control or any particular set of controls,
but that the technique can apply to any type of input control
as long as cursor (caret) information is available to the client
response generator 30. Optionally, the technique may
require that font information also be available to the client
response generator 30.

The server node 14 can send the server-supplied infor-
mation 36 to the client node 10 at various points during the
execution of the application program depending upon the
type of application program. In some embodiments, the
server node 14 periodically sends information to the client
10. In these embodiments, the server 14 may use a virtual
channel set up using the ICA protocol to transmit the
information. In other embodiments, the client 10 requests
information from the server 14 at opportune times, such as
periods of low network bandwidth usage or low processor
loading. One point at which the client 10 may request
information 1s when the server node 14 starts executing the
application program 40. Here, the latency of the connection
between the server 14 and client nodes 10 has minimal

US 6,538,667 Bl

7

impact upon client user behavior because the client user has
not yet begun to submit input to the application program 440.
Other points can occur during the execution of the applica-
tion program 40, such as, for example, when server node 14
fransmits a server response to the client node 14. Still other
points can be when certain trigger events occur during the
execution of the application program 40, such as, for
example, when the client user moves from one 1nput field to
another while entering data 1n a database record. Here, each
time the client user advances to a new 1nput field, the server
node 14 can transmit to the client node the imnformation 36
appropriate for that mput field.

FIG. 3 shows an exemplary process of the invention by
which the client node 10 and the server node 14 cooperate
to give a client user an 1immediate visual response for each
character typed 1n at the keyboard 24 by the client user. The
responses appear character by character. Accordingly, the
user should not visually discern any delay between the
moment of supplying input to the moment of observing a
response.

In brief overview, the client node 10 launches (step 40) an
application program, and in response, the server node 14
starts (step 44) execution of that application. For illustration
purposes only, the application program 1s MICROSOFT
NOTEPAD, which uses a Multi-line Edit box within which
characters typed 1n by the user appear. After starting execu-
tion of the application, the server node 14 transmits (step 48)
application-specific information to the client node 10. This
information includes at least font mnformation and current
input position mformation.

At the keyboard, the client user types in the capital letter
“T.” The client node 10 receives (step 52) this keyboard
input, and then, as described above, generates and displays
(step 56) a visual response that attempts to anticipate the
server response. The client-generated response 1s more than
a simple echo of the capital letter “T” because the client-
generated response may also anticipate the visual attributes
of the character, such as the font type, size, color, and current
input position on the display screen. All of such visual
attributes are obtainable from the information provided by
the server 1 step 48. The client node 10 can use default
information for any visual attributes not provided by the
server node 14 with such application-specific information.

The client node 10 transmits (step 60) the input character
“T” to the server node 14. Although shown here as occurring
after the generation and display of the client-generated
response, the transmaission of the character to the server node
14 can occur before such generation and display. The client
node receives (step 64) a second character typed in by the
client user, here character “e.” In a manner similar to the
client-generated response for the letter “1,” the client node
10 generates and displays (step 68) a response for the
character “e” on the client display screen. In step 72, the
client node 10 transmits the user mput of the character “e”
to the server node 14.

After sending the character mput to the server node 14,
the client node 10 monitors for a server response. The server
node 14 produces (step 76) the response to the character
mput “T,” and transmits the response to the client node 10
over the network 18. In general, the latency of the connec-
tion between the client and server nodes 10, 14 1s longer than
the time needed for the client node 10 to produce and display
the client-generated response. Thus, the client-generated
response may appear on the screen before the server node 14
generates the server response or receives the user input.
Typically, the latency of the communications link between
the server and client nodes 1s such that responses from the

10

15

20

25

30

35

40

45

50

55

60

65

3

server node 14 lag behind responses displayed by the client
node 10 by multiple characters, as 1s illustrated by this
example.

The client node 10 receives the server response for the
letter ““I”” and updates (step 80) the display by overwriting
the client-generated response with the server response.
Because the server response overwrites the client response,
the server response does not need to exactly match the
client-generated response. Slight differences 1n appearance
between the client-generated response and the server
response are usually indiscernmible by the client user. In
another embodiment, the client node 10 can compare the
client-generated response with the server response and then
overwrite the client-generated response if the server
response differs.

The server node 14 produces (step 84) a response to the
character mput “e,” and returns the response to the client
node 10, which updates (step 88) the display screen with this
server response. In some embodiments, the client node 10
updates the display screen regardless of whether the server-
supplied response differs from the client-generated response.
In other embodiments, the client node 10 updates the display
with the server-supplied response only 1f the client-
ogenerated response was wrong. As noted above, along with
cach transmission of a server response from the server node
14 to the client node 10, the server node 14 can be providing,
new font and current input position information for use by
the client node 10 to update subsequently generated client-
ogenerated responses.

FIG. 4 provides another exemplary flow diagram of the
process by which the client node 10 generates responses to
user mput provided through the pointing device 28. As
described for FIG. 3 above, the client node 10 launches (step
100) an application program that starts executing (step 104)
on the server node 14. In this example, the server node 14
executes the MICROSOFT WORD application program.

As described in FIG. 3, the server node provides (step
108) application-specific information. Here, the application-
specific information describes screen objects, such as the
commands and toolbar 1cons that are displayed at the top of
the MICROSOFT WORD window and the menu structure
assoclated with each such screen object. The screen object
information includes the screen position and screen arca
covered by each command and 1con so that the client node
10 can generate, using the current cursor position, which
command or 1con 15 selected when the client user clicks the

pointing device 28. For example, a typical display of com-
mands at the top of the MICROSOFT WORD window 1s

File Edit View Insert Format Tools Table Window Help.
Activation of the Edit command, for example, occurs by
clicking the pointing device 28 while the cursor position
falls within the boundaries of the rectangular screen arca
covered by the Edit command. In step 112, the client node
10 rece1ves this pointing device input. In anticipation of the
server response, the client node 10 generates and displays
(step 116) a response, here a drop-down menu associated
with the Edit command, from the server-provided
application-specific information and the current cursor posi-
tion. The client node 10 transmits (step 120) the user input
to the server node 14. In one embodiment, the client node 10
tracks (step 124) the cursor movement within the drop-down
menu and highlights the menu item within which the current
cursor position falls. In step 128, the server node 14 pro-
duces the actual response to the pointing device mput and
returns the response to the client node 10. The client node 10
updates (step 132) the display with the server response.

The present mvention may be implemented as one or
more computer-readable software programs embodied on or

US 6,538,667 Bl

9

in one or more articles of manufacture. The article of
manufacture can be, for example, any one or combination of

a floppy disk, a hard disk, hard-disk drive, a CD-ROM, a
DVD-ROM, a flash memory card, an EEPOM, an EPROM,
a PROM, a RAM, a ROM, or a magnetic tape. In general,
any standard or proprietary, programming or interpretive
language can be used to produce the computer-readable
software programs. Examples of such languages include C,
C++, Pascal, JAVA, BASIC, Visual Basic, and Visual C++.
The software programs may be stored on or in one or more
articles of manufacture as source code, object code, inter-
pretive code, or executable code.

While the mvention has been shown and described with
reference to specific preferred embodiments, 1t should be
understood by those skilled 1n the art that various changes in
form and detail may be made therein without departing from
the spirit and scope of the invention as defined by the
following claims.

What 1s claimed 1s:

1. In a client-server system including a client node trans-
mitting user-provided imput to a server node having an
application program executing thereon wherein the user-
provided 1mnput elicits a response from the server node that 1s
transmitted back to the client node for display, a method for
reducing perceived response time to the user-provided 1nput
comprising the steps of:

(a) receiving user input at the client node from an input
device for input to the application program executing
on the server node;

(b) transmitting the user input to the application program
executing on the server node over a communication
link;

(c) generating at the client node a prediction of the server
response to the user input;

(d) displaying the generated prediction of the server
response on a display screen at the client node;

(e) receiving a server response to the user input from the
server node; and

(f) replacing the generated prediction of the server
response displayed on the display screen with the
server response received from the server node.

2. The method of claim 1 wherein step (f) comprises
overwriting the generated prediction of the server response
on the display screen with the server response.

3. The method of claim 1 wherein the user input 1s first
user mput and further comprising the steps of:

(g) receiving additional user input to be transmitted to the
server node;

(h) generating a second prediction of the server response
to the additional user mnput; and

(1) displaying the second prediction of the server response
at the client node before receiving the server response
to the first user input.

4. The method of claim 1 further comprising the step of
receiving current iput position information from the server
node, and wherein step (c) comprises determining the pre-
diction of the server response 1n response to the current input
position 1mnformation.

5. The method of claim 4 further comprising the step of
providing font mformation for defining a visual character-
istic of the prediction of the server response, and wherein
step (c¢) further comprises determining the prediction of the
server response 1n response to the font mnformation.

6. The method of claim 1 further comprising the step of
providing font mformation for defining a visual character-
istic of the prediction of the server response, and wherein

10

15

20

25

30

35

40

45

50

55

60

65

10

step (¢) comprises determining the prediction of the server
response 1n response to the font mformation.

7. The method of claim 6 further comprising the step of
obtaining the font information from the server node.

8. The method of claim 6 wherein the step of providing
the font mnformation includes the step of obtaining default
font information.

9. The method of claim 1 further comprising the step of
receiving information about a screen object that 1s currently
being manipulated by the client node; and executing a
heuristic procedure responsive to the user mput and the
screen object information to generate the prediction of the
SEIVEr response.

10. In a client-server system including a client node
transmitting user-provided 1nput to a server node executing
an application program wherein the user-provided input
clicits a response from the server node that 1s transmitted
back to the client node for display, a method for reducing
perceived response time to the user-provided input compris-
ing the steps of:

(a) receiving user input at the client node from an input
device for subsequent transmission to the application

program executing on a server node;

(b) generating at the client node in response to the user
input a prediction of a server response to the user input
by the server node;

(c) displaying at the client node the prediction generated
by the client node; and

(d) replacing the generated prediction of the server node
response displayed on the display screen with a server
response received from the server node.

11. In a client-server system including a server node
executing an application program according to user input
supplied by a client node, wherein the user input elicits a
response from the server node that 1s subsequently trans-
mitted to the client node for display, a client node having
reduced perceived response time to user 1nput comprising:

an 1mput device for providing user input to the client node
for transmission to the application program executing,
on the server node;

a response generator 1n communication with the input
device, the response generator generating at the client
node and 1n response to the user input a prediction of
a server response to the user input by the server node;

a display device, in communication with the response

generator, for displaying the prediction generated by
the client node before the client node displays the

response by the server node;

a receiver receiving a server response to the user input
from the server node; and

a replacement module replacing the generated prediction
of the server node response displayed on the display
screen with the server response received from the
server node.

12. An apparatus comprising;:

a server node executing an application program; and

a client node 1n communication with the server node, the
client node including (a) an input device for receiving
user mput to be transmitted to the application program

executing on the server node, (b) a response generator
for generating, at the client node, a client response to

the user input that predicts a server response to the user

input by the server node; (c) a display device for
displaying the client response generated at the client to
provide a visual response to the user input before

US 6,538,667 Bl

11

displaying the server response; (d) a receiver receiving
a server response to the user input from the server node;
and (e) a replacement module replacing the generated
prediction of the server node response displayed on the
display screen with the server response received from
the server node.

13. The apparatus of claim 12, further comprising a
receiver receiving the server response to the user input from
the server node.

14. The apparatus of claiam 12, wherein the server
response received from the server node further comprises
current input position information.

15. The apparatus of claim 14, wherein the response
generator generates the client response 1n response to the
current input position mmformation.

16. The apparatus of claam 12, wherein the server
response received from the server node further comprises

10

15

12

font information for defining a visual characteristic of the
client response.

17. The apparatus of claim 12, wherein the response
ogenerator generates the client response 1n response to the
font mformation.

18. The apparatus of claim 12, wherein the server
response further comprises information about a screen
object that 1s currently being manipulated by the client node.

19. The apparatus of claim 18, wherein the response
generator executes a heuristic procedure responsive to the
user mput and the screen object information to generate the
client response.

20. The apparatus of claim 12, wherein the display device
further comprises displaying a second client response at the
client node before receiving the server response to the first
user nput.

	Front Page
	Drawings
	Specification
	Claims

