US006529936B1
a2 United States Patent (10) Patent No.: US 6,529,936 B1
Mayo et al. 45) Date of Patent: Mar. 4, 2003
y ’

(54) OBJECT-ORIENTED WEB SERVER 6,139,177 A * 10/2000 Venkatraman et al. 700/83
ARCHITECTURE SUITABLE FOR VARIOUS 6,170,007 B1 * 1/2001 Venkatraman et al. 709/218
TYPES OF DEVICES 6,182,094 B1 * 1/2001 Humpleman et al. ... 709/218 X

6,198,479 B1 * 3/2001 Humpleman et al. 345/329

(75) Inventors: Glenna G. Mayo, San Jose, CA (US); OTHER PUBILICATIONS

Jeftrey Alan Morgan, Cupertino, CA _ _ ‘
(US); Jayarami A. Reddy, San Jose Dr. Rose Mazhindu—Shumba, Towards the Clarification of
CA (iJS) ’ ’ the Object—Oriented Concepts, The 1st Information Tech-

nology Conf., Dec. 1995, Nairobi, Kenya, 5 pages.™
(73) Assignee: Hewlett-Packard Company, Palo Alto, Richard A. Quinnell, Tech ed, Java Perks up Embedded
CA (US) Systems, EDN Access for Design, By Design, Aug. 1997, 7
pages.™
(*) Notice: Subject to any disclaimer, the term of this Ian Agranat, Enginecering Web Technologies for Embedded
patent is extended or adjusted under 35 Applications, IEEE Internet Computing, Jun. 1998, pp.
U.S.C. 154(b) by 0 days. 40-45.*

* cited by examiner
(21) Appl. No.: 09/219,272

(22) Filed: Dec. 23, 1998

Primary Examiner—Patrice Winder

(57) ABSTRACT
(51) Int. CL o, GO6F 15/16 | | o |
(52) U.S. Cl 709/202: 709/219 A web access mechanism 1n a device 1s described. The web
(58) Fi-el-d 01: Search340 /825 Oé' 700/83: access mechanism includes at least an object that includes a

plurality of functions of the device. The object includes a
unique name that 1dentifies the object and a web page that
provides an interface to the object. The object also includes

345/329; 709/201, 202, 217, 218, 219,
223, 203; 717/11

56 Ref Cited a plurality of properties, each of which can represent an
(56) CTETEees T interface to one of the functions of the object. The web
U.S. PATENT DOCUMENTS access mechanism also 1ncludes a web core engine that calls

one of the functions of the object to be loaded and executed

5,956,487 A * 9/1999 Venkatraman et al. . 340/825.06

5073.696 A * 10/1999 Agranat et al. 209/201 X 1n thn—:i web core engine in accordanc:e with a request that
5001802 A * 11/1999 Allard et al. .vo.......... 700219 ~ contains the unique name of the object and the property
5,996,010 A * 11/1999 TLeong et al. 709/223 ~ nhame of the function. A method of mvoking one of the
6,052,710 A * 4/2000 Saliba et al. 709/203 functions 1n the web access mechanism 1s also described.
6067558 A * 5/2000 Wendt et al.o......... 709/202

6,101,328 A * §/2000 Bakshi et al. 717/11 18 Claims, 13 Drawing Sheets

300

Server object (home page)

302

Performance Object

301

Diagnostic .
Object HP Object

www.hp.com 303

Web Tuner
Object

Disk
Object 306

CD-RW
Manager Object

US 6,529,936 Bl

/| 8inb/o
HIAYIS gIM o
o 8l
- Gl
- MHOM L3N
>
4%

=
= 77 HIAHIS gIM H
4-..,, —
— R AY1dSIa

HISMOYg g3Im O

001

U.S. Patent

2 84nbi-

US 6,529,936 Bl

J0IA3d

d3AH3S 9dM

Sheet 2 of 13

d3AHAS/1NITO

OF

Mar. 4, 2003

€0l

A1

Ol

U.S. Patent

d3SMO48
daM

gz 8.inbi-f

US 6,529,936 Bl

30IA3A 40IAd0

HIAYIS 9am HIAHIS FIM 7

S =10 &

Sheet 3 of 13

Mar. 4, 2003
m
L0
—
o
=

Gl

U.S. Patent

US 6,529,936 Bl

Sheet 4 of 13

Mar. 4, 2003

U.S. Patent

Gl

-

egl— 9. 4 |

~ 30IA3A

9l

ddAdd4S g93M V

o2 8.Inblo

)%

d4dSMO4df
gaM

AldVd ddiHLl

J0IAJ0

ddAddS ddM

US 6,529,936 Bl

Sheet 5 of 13

Mar. 4, 2003

U.S. Patent

MXHOMLAN
1VNH41X3

e oInbl

4400 93M

40V 4d4LNI

NHOMILAN

HIDVNYW |
23 l JOV4HILNI

0¢

€¢

qc¢

3OV 44d4LNI
J0IAI(d

104rgo > o o 104rdo ¢ o o 1204rdo
ECt ¢t

Ad1lINOYIO
30IA 30

US 6,529,936 Bl

Sheet 6 of 13

Mar. 4, 2003

U.S. Patent

00%

p aInbi-

1OV JHdVM140S ¥ JdVMAHVH

2l4103dS JOIA3d

OV INIHOVIA TVNLHIA

e0¥ JHOD 9IM
s103rgo a7 0y PYOY
/r\.\\w INGWNIDYNYIN —ZO_._.<W_DO_H_ZOO "
. opoy JERTEL g3IM 7
.| u3IL0N 4 HIAVOT _ — i_m:om_w_
Sq\

H4Ad4S
gdM

v

OLv

X

U.S. Patent Mar. 4, 2003 Sheet 7 of 13 US 6,529,936 B1

o1

52
52n

51

OBJECT
o
INTERFACE

PROPERTIES

US 6,529,936 Bl

Sheet 8 of 13

Mar. 4, 2003

U.S. Patent

¢Ok

=N/glo]

9

ddd. ddAl HIDVNVIN JOVIHILNI

o

40V 4ddLNI
«d3d. HLIM

00l 104rdo

US 6,529,936 Bl

Sheet 9 of 13

Mar. 4, 2003

U.S. Patent

3400 d3IM
ANOH4/01

«JN189s 3dAL

d4DVNVIN JOV4H3LNI

JOV4H3LNI
3N 146

JdO0V44ddLNI
dN19 HOJ
S4l143d0Hd

00¢

Zz

8./nbI-

4400 gdM
WOYH4/01

d3d. 3IdAl

d3OVNVIN J0V4H3 LN

107 JOV4HILNI
a3y

30V 4ddLNI

d34d 404

S31ld3d04d

Q o/nbi-

US 6,529,936 Bl

—
= 00
—
E G8
s 98 _
28 losn aoellaly
l1asn 19|ddy—-uoN v
e [qOINie|ddyuoN/Janlas//:du
S 108140 |18 JoS) ©99Jv}Id|
M 1aAI8S ele(] , 1930 1e|ddy v 151
m [qOeleq/iaAlas//dlly [qOINleiddy 7ienlag//:d)y SeljJedod
aweNl}oslqoisuleluon/Janlas//:diy moom_ﬂ_ﬂ_m__\m,__%_%

08

U.S. Patent

103rdo
/LNAI'TO

US 6,529,936 Bl

Sheet 11 of 13

Mar. 4, 2003

U.S. Patent

401>

199(q0

Jaun] gom

€0t

100[q0 eouewlo}lad

¢0¢

00¢

6 8/nDi

108[q0 Jabeuepn

Md-dOo

woo'dy mmm

}08lq0 dH

101> GOt

(obed swoy) 109lqo JaAlILS

90¢

}08[q0
olpsoubeiq

US 6,529,936 Bl

0L 8inb|o
- NHNL3Y
3 v —
— 0Z¢ TNLH
=
NHNL13Y
=
= HISMOY4
< 0V gam
m. 052
>
1S3NO3Y

U.S. Patent

103rg0
d1d1iNg

‘- I

¢9¢

|

19¢

09¢

14N 1S3N03Y

US 6,529,936 Bl

|
" m
" 31gv1 379vL 3IHL NI 3dAl !
" dNMOO01 123rd0 3HL HOA |
" eO0E 3dAl 103r€o 378YL 103rg0 AaNId “
" m
: _) N "
| |
= “ AHIN AlH3dOHd AONI *
. | 13d !
3 _ oL 103r80 te dad 318v. "
S " ~193rgo "
- _ ULLe edA} XX HE odA] 00} |
A o
o \r 778 A14H3d0Hd
= 1€
= £Z6
o ¥4>
~
>
193rgo 40
17 Q.SQ\“\ 02€ —{NOILVLNIWI TdWI

104rdo

U.S. Patent

US 6,529,936 B1

1

OBJECT-ORIENTED WEB SERVER
ARCHITECTURE SUITABLE FOR VARIOUS
TYPES OF DEVICES

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention pertains to web access functional-
ity. More particularly, this invention relates to an object-
oritented web server architecture for different kinds of
devices.

2. Description of the Related Art

An Internet network system typically includes an Internet
Service Provider (ISP) system and an interconnect network
that connects the ISP system with remote user terminals and
other ISP systems. An ISP system typically includes a set of
servers that provides Internet applications, such as electronic
mail, bulletin boards, news groups, and World Wide Web
access, to provide data accesses and services to users via
their user terminals. Each of the user terminals includes a
web browser that allows the user to access the content hosted
in the web servers of the ISP systems.

The rapid growth of the Internet, widespread use of the
World Wide Web, and a trend toward deployment of broad-
band residential networks have also led to the development
of embedding the web server into electrical and electronic
devices such as home appliances (e.g., washing machines),
peripheral devices (€.g., scanners and printers) of a computer
system, and measurement instruments (e.g., blood pressure
analyzers). This means that a web server can be either
implemented 1n one or several physically separate computer
systems, or embedded within an electrical or electronic
device.

Disadvantages are, however, associated with the prior art
web server technology. One disadvantage associated 1s that
the prior web servers mostly support static HIML (Hyper
Text Markup Language) pages. The static HTML pages
provide links that lead to the related pages. The links are
hard coded text strings. When embedding a static web server
into a device, the only way to modily the static pages is by
editing these pages physically.

There have been some prior proposed solutions to this
problem. One prior solution uses a common gateway inter-
face (CGI) which enables the gathering and passing of user
input to executable. programs (e.g., perl scripts, C programs)
using a “forms” interface. In this case, the executable
programs return the results to the caller in the form of a
dynamically generated web page. One disadvantage of this
prior proposal 1s that 1t was designed for traditional com-
puting platforms and requires significant amount of compu-
tation and system resource to complete the task. Another
disadvantage 1s that the web server cannot dynamically
download executable programs for execution.

Another prior solution to the above problem 1s the Jeeves
web server architecture proposed by the Sun Microsystems
Inc. of Mountain View, Calif. which provides a program-
ming environment for developing mteractive web software.
This solution allows creation of flexible, graphical user
interfaces and powerful back-end interfaces to other system
software (e.g., operating system, network, database manage-
ment system). The web server could also dynamically down-
load executable bits of code known as “servlets”. The
servlets are ftransient executable programs that can be
executed locally.

One disadvantage of this prior solution is that the down-
loaded executable programs could not persist in the web

10

15

20

25

30

35

40

45

50

55

60

65

2

server. This means that the downloaded code will disappear
in the web server after execution. Another disadvantage 1s
that the web server cannot dynamically download non-web
executable content. This means that images, drivers,
firmware, and other packages cannot be dynamically down-
loaded 1nto the web server. Another disadvantage 1s that
servlets cannot invoke a method within a servlet. The entire
servlet must be downloaded and run. A further disadvantage
1s that because a servlet 1s a program that can perform a
completely predefined set of tasks, there 1s no support for
accessing one of the tasks. This makes 1t ditficult with
servlets to support a much richer information model as
required by devices.

SUMMARY OF THE INVENTION

One feature of the present mvention 1s to provide an
object-oriented web server architecture that allows 1ts capa-
bilities to be easily extended with new objects.

Another feature of the present 1nvention 1s to provide a
web server architecture that 1s an object-oriented environ-
ment to reduce content development time and to enable rich
run-time relationships between distributed web objects.

A further feature of the present invention 1s to provide a
web server architecture that enables creation of new objects
by building on existing objects and promoting code reuse.

A still further feature of the present invention 1s to provide
a web server architecture that allows automatic selection of
the user mterface appropriate for a given type of device.

A still further feature of the present invention is to provide
an object-oriented web server architecture that supports
object-based communications via web messages at the
method granularity.

A still further feature of the present invention is to provide
a web server architecture that allows dynamic downloading
of both executable and non-Web executable content (e.g.,
images, drivers, firmware) and dynamical organization of
the downloaded content.

A further feature of the present mvention 1s to provide an
object model that maps onto device functionality 1n terms of
the functions and events of the device.

A web access mechanism 1n a device 1s described. The
web access mechanism includes at least an object that
includes a plurality of functions of the device. The object
includes a unique name that 1dentifies the object and a web
page that provides an interface to the object. The object also
includes a plurality of properties, each of which can repre-
sent an interface to one of the functions of the object. The
web access mechanism also includes a web core engine that
calls one of the functions of the object to be loaded and
executed 1n the web core engine 1n accordance with a request
that contains the unique name of the object and the property
name of the function.

In a device embedded with a web access mechanism, a
method of mvoking a function of the device remotely
includes the step of providing an object that implements a
plurality of functions of the device. The object includes a
unique name that identifies the object, a web page that
provides an interface to the object, and a plurality of
properties embedded 1n the web page, each of which rep-
resents an interface to one of the control functions of the
object. The function 1s then called to be loaded and executed
in a web core engine of the web access mechanism 1in
accordance with a request that contains the unique name of
the object and the property name of the function.

Other features and advantages of the present invention
will become apparent from the following detailed

US 6,529,936 B1

3

description, taken in conjunction with the accompanying
drawings, 1llustrating by way of example the principles of
the 1nvention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a data access network system that imncludes
a number of devices, each of which icludes a web server
that implements one embodiment of the present invention.

FIGS. 2A through 2C show various communication
arrangements among the devices and web browser of the
data access network system of FIG. 1.

FIG. 3 shows the structure of the web server of FIG. 1,
wherein the web server includes a web core and a number of
objects.

FIG. 4 shows one example of the structure of the web
server embedded 1n a device.

FIG. § illustrates the structure of one of the objects shown
in FIG. 3.

FIG. 6 shows an object with one interface.

FIG. 7 shows an object with multiple interfaces.

FIG. 8 shows the web object containment scheme in
accordance with one embodiment of the present invention.

FIG. 9 shows an example of a simple web object link
graph.
FIG. 10 shows an example of a builder object.

FIG. 11 shows how an object 1s accessed through the web
core of FIG. 3.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 shows a data access network system 100 that
includes a number of devices (e.g., the devices 10 and 15),
each having a web server (e.g., the web server 11 or 16) that
implements one embodiment of the present invention. The
devices 10 and 15 are both connected to a network 18 and
can be accessed by web browser 40 via the network 18.

In one embodiment, the data access network system 100
1s an Internet network system. In another embodiment, the
data access network system 100 1s an Intranet network
system. In a further embodiment, the data access network
system 100 1s a combination of Internet and Intranet network
systems. Thus, the network 18 i1s an Internet/Intranet net-
work and one or more open standard communication pro-
tocol 1s used for communications within the data access
network system 100. The other way of accessing the
Internet/Intranet could be through a dial-up virtual private
network or an ad hoc wireless network.

Each of the devices 10 and 15 can be universally accessed
and controlled by the web browser 40 via their respective
web server 11 or 16 and the network 18 using an open
standard protocol (see FIGS. 2A and 2C). In addition, each
of the devices 10 and 15 can also access or communicate
with the other device via the respective web servers 11 and
16 and the network 18 (see FIG. 2B). The open standard
protocol can be, for example, the HTTP (Hyper Text Trans-
port Protocol) protocol.

As described above, the network 18 1s enabled to carry
Internet/Intranet communications. In this case, the open
standard protocol is the HTTP (Hyper Text Transport
Protocol) Protocol. The network 18 can be implemented
with a variety of Internet/Intranet network technologies. The
network 18 may include connections to the World Wide Web
of the Internet for world-wide communications between one
of the devices 10 and 15 and the browser 40. The network

10

15

20

25

30

35

40

45

50

55

60

65

4

18 may include one or more communication bridges
between the World Wide Web and local area networks and
home-based networks. The network 18 may include a num-
ber of Internet/Intranet Service Provider (ISP) systems con-
nected together via mterconnect network. Alternatively, the

network 18 may simply be a conventional communication
network.

The web browser 40 includes a display 42 for generating,
visual objects including text, images, multimedia objects,
and graphical user interface objects. The web browser 40
includes a web page 44 that enables a user of the browser 40
to select objects and URL (Universal Resource Locator)
links rendered on the display 42 and to enter information
into forms rendered on the display 42. The web browser 40
may also include an audio capability that enables rendering
of audio information to the user of the browser 40. The web
browser 40 can be 1mplemented by any known commer-
cially available web browser such as the Netscape Navigator
web browser of Netscape Communications Corporation of
Mountain View, Calif. or the Internet Explorer web browser
of Microsoft Corporation of Redmond, Wash.

The web browser 40 can be embodied 1n a computer
system that executes a set of web browser software. Such a
computer system with web browser functionality may be
realized by any one of a variety of commercially available
computer system platforms including Windows® platiforms,
Macintosh® platforms, Unix™ platforms as well as any
other platforms capable of executing web browser software.

The web browser 40 may also be embodied 1n a variety of
other devices that provide HT'TP client functions and that
render HIML files. Such devices include specialized hard-
ware designed for television or telephone systems as well as
low cost dedicated web browser devices and network com-
puters.

Each of the devices 10 and 15 can be any kind of

clectronic or electrical device, or a computer-based device.
This means the web server 11 or 16 can be implemented for
different platforms. However, 1t 1s noted that 1t 1s not
necessary that each of the devices 10 and 15 1s a computer-
based device or an electronic device. Each of the devices 10
and 15 can simply be a device (e.g., a mechanical device)
with some data processing power.

In one embodiment, each of the devices 10 and 15 1s an
clectrical or electronic device such as a printer, a fax
machine, a copier, a scanner, a communication and tele-
phone device, a television, a video player, an audio player
device, a home appliance (such as a refrigerator, a washing
machine, a security system), and any other type of electrical
or electronic device. In another embodiment, each of the
devices 10 and 15 can also be a measurement instrument,
such as a blood pressure analyzer. Alternatively, each of the
devices 10 and 15 can be a computer system which can be
a personal computer system, a workstation computer system,
a server computer system, a mainiframe computer system, a
mini-computer system, a notebook computer system, palm-
top computer systems, network computer system, or any
other type of computer system.

As can be seen from FIG. 1, each of the devices 10 and
15 includes a web server (i.¢., the web server 11 or 16). Each
of the web servers 11 and 16 may be physically embedded
inside the respective device 10 or 15. In one embodiment,
the web server 11 or 16 1s physically embedded inside the
respective device 10 or 15. In another embodiment, the web
server 11 or 16 1s not physically embedded inside the device.
In this case, the web server 11 or 16 can be in a separate
container of the device. The web servers 11 and 16 share the

US 6,529,936 B1

S

same structure, which will be described 1n more detail below
and with reference only to the web server 11.

The web server 11 allows the device 10 to be umiversally
accessible by web clients such as the web browser 40 or the
web server 16 of the device 15 via the network 18 using, for
example, the HT'TP open standard protocol. HT'TP 1s an
open standard protocol that can be used to transfer multiple
information encodings between network elements (e.g.,
HTML). The web server 11 exchanges messages with the
web clients (such as the web browser 40) using the HTTP
protocol on the network 18. The web server 11 receives
HTTP commands or requests through the network 18. The
HTTP commands specify one of a set of predetermined URL
addresses for the device 10. The web server 11 i1s accessed
by a unique URL address for the device 10. When the device
10 supports multiple resources, the web server 11 of the
device 10 includes resource URL addresses to allow
accesses to those resources. Thus, the URL addresses for the
device 10 specity the web pages and application and control
programs 1n the web server 11.

In one embodiment, the web server 11 runs on a virtual
machine (not shown). The virtual machine provides logical
abstraction of the underlying physical system (i.e., hardware
and software) to the web server 11. This means that the
virtual machine provides an execution environment for the
web server 11. Alternatively, the web server 11 does not run
on a virtual machine. The virtual machine can be imple-
mented by known means. In one embodiment, the virtual
machine used by the web server 11 provides an interpreter
for Java code. The Java execution environment provided by
the virtual machine enables execution of a variety of widely
available web access code available for a wide variety of
processor platforms. Such web access code includes code for
web server and web client functionality as well as events
generation functionality.

The HTTP commands or requests are used by the web
clients (e.g., the web browser 40 or the web server 16 in the
device 18) to obtain information from the device 10 or to
invoke some control or application programs stored in the
device 10 to perform specified functions. In addition, HT'TP
commands are generated in the device 10 to perform file
transfers via the network 18 and to obtain new information
and software elements for loading mto the device 10 and for
updating software codes 1n the device 10. HT'TP commands
are also used by the device 10 to notify the users and external
software tasks of events associated with the device 10. The
web server 11 1s an object-oriented web server 1n accordance
with one embodiment of the present mmvention. The web
server 11 will be described in more detail below, also 1n
conjunction with FIGS. 3 through 11.

As can be seen from FIG. 3, the web server 11 includes
a device interface 24 that interfaces with the device circuitry
of the device 10. The device interface 24 1s used to provide
native access to various resources within the device 10 from
the web server 11. The physical aspects of the device
interface 24 are dependent on the device implementation of
the device 10 which may vary significantly.

The web server 11 also includes a network interface 23
that provides interface to external network. The network
interface 23 enables communications to the web server 11
with the external network 18 (FIG. 1). The network interface
23 does not specily the physical medium of the network
interface 23 which 1s device specific of the device 10. Each
of the device interface 24 and the network mterface 23 can
be implemented by known interface technology and will not
be described 1n more detail below.

10

15

20

25

30

35

40

45

50

55

60

65

6

The web server 11 also includes a web core 20 that
provides web access functionality of the device 10. In
addition, the web server 11 includes a number of objects 32
through 32#x. The web core 20 also provides an execution
environment for the objects 32—32#x that represent resources
of the host device 10. The web core 20 1s the engine of the
web server 11. As can be seen from FIG. 3, the web server
11 has an object-oriented architecture 1 accordance with
one embodiment of the present invention.

The object-oriented architecture of the web server 11
allows for mnheritance. This means that two or more objects
of the web server 11 can share a common interface. The
common 1nterface only needs to be defined once, and then
other objects can provide or support the defined interface.
For example, two objects of the web server 11 can have the
identical interface which only needs to be defined once.

The object-oriented architecture of the web server 11 also
allows for containment. This means that an object can
encapsulate other objects (see FIG. 8). The object-oriented
architecture of the web server 11 also allows for polymor-
phism. This provides each object with the ability to have the
same property/method with different parameters and infor-
mation. For example, the same method (e.g., method “foo™)
that supports different parameters can have multiple imple-
mentations.

In other words, the distributed object-oriented web archi-
tecture of the web server 11 allows a client to access and
execute soltware or functions originating from anywhere of
a network system using standard protocols. The object-
oriented web server 11 also allows automatic selection of the
user interface appropriate for a given type of device, sup-
ports object communications, and allows dynamic down-
loading of both executable and non-Web executable content
(e.g., images, drivers, firmware), and then dynamic organi-
zation of the downloaded content. Furthermore, the object-
ortented web architecture of the web server 11 allows
inheritance of methods and functionality, and enables cre-
ation of new objects by building on existing objects and
promoting code-reuse. The object-oriented web architecture
of the web server 11 also allows self-modeling, linked
objects. FIG. 4 shows an example of the structure of an
object-oriented web server 410 embedded 1n a device 400.
As can be seen from FIG. 4, the web server 410 includes a
number of objects 404. These objects 404 may include a
loader object 404b, a notifier object 404c¢, a security object
404a, a web configuration object 404d, and a device man-
agement object 404e. The web server 410 also includes a
web core 403 that operates with objects 404. The device 400
includes device specific hardware and software 401 which 1s

coupled to a virtual machine 402 that 1s coupled to the web
core 403.

Referring back to FIG. 3, each of the objects 32-32n
represents a resource of the device 10. For example, if the
device 10 includes printing, scanning, and diagnosing
resources, the web server 11 can include an object repre-

senting the printing resource, an object for the scanning
resource, and an object for the diagnosing resource.

Each resource implements a collection of functions,
methods, or operations. They are hereinafter collectively
referred to as functions. The functions perform computation
and/or interact with the device circuitry of the host device 10
via the device interface 24. This means that each of the
functions 1s supported by the device 10. For example, the
printing resource can include the functions of printing
double sided pages, printing some pages of a document,
printing multiple copies of a document, and printing the

US 6,529,936 B1

7

document 1n the landscape format, etc. The functions can
also be referred to as operations, methods, or control pro-
orams. The functions may be carried out by control pro-
grams or data to mmvoke or control device circuitry of the
device 10 to perform the functions.

In accordance with one embodiment of the present
invention, each of the objects 32-32n representing a
resource of the device 10 has a web page (i.e., identifiable
via a URL address). This means that each of the objects
32-32n can be accessed by an external web browser or other
objects/resources using a URL address or link via the
network interface 23 of the web server 11. To access the
resource, HT'TP requests are made to the object’s URL
address. The web page of an object 1s the default operation
of the object that can be accessed by simply doing an HT'TP
GET or POST request on the URL that names the object. The
default operation does not require any input and returns its
results as, for example, MIME (Multipurpose Internet Mail
Extensions) encoded data.

In addition, each of the objects 32—-32# includes a number
of properties, each of which provides an interface to one of
the functions of the resource. Each property can also be
accessed via a URL address. The properties of an object
provide structured access to the resource represented by the
object. The structure of each of the objects 32-32xn will be

described 1n more detail below, also 1n conjunction with
FIG. 5.

As can be seen from FIG. 5, the functional structure of an
object 50 1s shown, which can be any one of the objects
32-32n. The object 50 provides an interface (i.e., interface
51) to the resources that the object 50 represents. The
interface 51 define a set of properties 52—52# for the object
50. The object 50 may include more properties than those
defined by the interface 51. The interface 51 provides access
to the object 50. The interface 51 lists the properties of the
object 50 that the object 50 decides to expose to outside
callers (i.e., objects or clients). The interface 51 is associated
with an object type (defined by MIME) contained in the
request URL address for the object 50. This means that the
properties 52—52xn of the object 50 may be classified into
various types 1f the object 50 includes more than one
interface.

Although FIG. § shows that the object 50 i1ncludes one
interface (i.e., 51), an object may have one or more inter-
faces. For example and as can be seen from FIGS. 6 and 7,
the object 100 includes one mnterface 101 that represents one
type (e.g., RED) of properties while the object 200 in FIG.
7 1ncludes two interfaces 201-202 that represent two types
(e.g., RED and BLLUE) of properties (i.e., 203-203n and
204-2047). The object type information is used to distin-
oguish the object’s implementation or instance so that the
correct executable code may be loaded when the object 1s
invoked. The object type string 1n the request URL address
1s used to determine which interface of the object the request
should be routed to. An object that has multiple interfaces
will essentially implement multiple types. A single instance
or implementation of an object can exist for each named
resource the device supports. This can also be done with a
method per resource in a single object.

Referring back to FIG. 5, each of the properties 52-52n
provide an interface to one of the functions of the object 50.
Each of the properties 52—-52n can also be accessed via a
URL address. The property 1s the unit of distribution for the
object 50. This means the URL address for a property may
be distributed to other objects in other devices (e.g., the
device 15), or stored as a hyper-text link in the web page of

10

15

20

25

30

35

40

45

50

55

60

65

3

the object 50. This also means that an external web browser
or objects can access a particular function of a particular
function of a particular resource via the respective property
of the object using the URL addresses of the property and the
object. The general format of an object URL 1s shown
below:

http://machine-name.domain/object-name.object-
type?property-name=return-result-
encoding&arcument-name=argument-value . . .

The property-name 1n the request URL 1s used to deter-
mine which property (i.e., interface to a function) the request
should be routed to. The return-result encoding in the
request URL 1s used to specily the data format of the
returned operational result as, for example, MIME encoded
data (usually text/html). The argument-name and argument-
value provide data 1nputs to the function invoked.
Alternatively, a URL may include more than one argument
name and value.

The object 50 and its properties 52—-527n can be 1mple-
mented using known programming languages. For example,
the object 50 and 1ts properties 52—52#x can be written 1n the
Java language from Sun Microsystems, Co. of Mountain
View, Calif. Similarly, each of the functions of the resource
represented by the object 50 can be written 1n a known
programming language, such as perl scripts, C languages, or
C++. When a programming language 1s used to define both
(1) the object 50 and its properties 52-52n and (2) the
resource and 1ts functions, only a device native interface 1s
needed to access device capabilities. This also allows the
control functions of the device 10 to be 1nvoked without
requiring a traditional web technology (e.g., CGI) to connect
to each of the control functions from the web server.

The structure of object 50 allows the object 50 to com-
municate with other objects by invoking interfaces using, for
example, the HTML forms interface, Java’s RMI, sockets, or
event notification. Data 1s returned to the client as a dynami-
cally generated HIML stream, thus removing the need for
storage-consuming static web pages.

Moreover, the object 50 (FIG. §) also allows the web core
20 (FIG. 3) to support any of the communication schemes as
shown 1n FIGS. 2A—2C. In FIG. 2A, the client (e.g., the web
browser 40) invokes an interface of an object 10a in the
device 10 and the web server 11 1n the device 10 does the
task and returns results dynamically to the client 1n an
HTML stream. In FIG. 2B, the object (i.¢., either 10a or 15a)
in the web server (i.e., 11 or 16) of either device 10 or 15
initiates a request and exchange of messages. Data exchange
can be done 1n any form agreed upon by the devices. In FIG.
2C, the client (e.g., the web browser 40) can send a request
to two objects in two different devices (e.g., the devices 10
and 15) and the two objects process the request together. In
the above 1illustrated arrangements, there 1s no requirement
for a user interface to display results. Instead, the objects use
the “arcument-name”, “argument-value”, and “return-result-
encoding”’strings 1n the URL to define data passage.

Furthermore, the structure of the object 50 allows the web
access capabilities of the web server 11 (FIG. 3) to be
dynamically extended by creating and installing new
objects. This can be done at run time without stopping
operation of the web server 11. In addition, because an
object can access another object, an object can contain other
objects, thus inheriting their functions. This 1s referred to as
object containment. Through object inheritance of functions,
content development time for the web objects can be sig-
nificantly reduced.

FIG. 8 shows one arrangement of the object containment.

As can be seen from FIG. 8, each of the objects 80—83 has

US 6,529,936 B1

9

a unique URL address and can be mvoked separately. For
example, the Applet User Interface Object 81 has a “http://
Server/AppletUIOby” URL address included in the property
A of the object. The object 80 1s a container object which has
the properties 84-86. Each of the properties 84-86 provides
an 1nterface to one of the contained objects 81-83. The
container object 80 provides an opaque package, which
allows a request to mvoke one of the contained objects
81-83. This 1s done by having the container object 80 to
invoke the interface of the appropriately contained object to
serve the request. The object containment also allows cre-
ation of new objects by building on existing objects and
promote code-reuse.

The structure of object 50 of FIG. 5 also enables creation
of builder objects. FIG. 10 shows one example of a builder
object 250. As can be seen from FIG. 10, the builder object
250 provides linkage between the request or caller (e.g.,
browser 40) and other objects 260-262. The builder object
250 allows the object’s web page to aggregate results from
many web queries. This 1s especially useful when the request
or caller needs to view many properties at once. The builder
object 250 can save the results from multiple properties from
multiple linked objects in an HIML page 270 or provide the
result directly to the caller (e.g., the browser 40).

Referring back to FIG. 3, the objects 32-32n may be
stored 1n the device 10 (FIG. 1) and may be dynamically
downloaded 1nto the device 10 at run time. Thus, the objects
32-32n can be stalled or modified dynamically at any
time. The objects 32-32n may be loaded locally from the
device 10, or accessed via a URL address from a remote site,
thus enabling the web server 11 with little local memory or
storage capacity. Object installation 1s persistent across
server restarts and system boots.

The objects 32-32n are downloaded with a package. A
package 1s a file which contains the following required
information which includes the URL address to each object
type file. The required information also includes the infor-
mation of the object type, the object name, the object
hyper-text link ID, the number of threads to create or to
instantiate the object, a URL to each file or package that the
object depends on (executable or not), and an object descrip-
tion (including the unique object name). In addition, a
package may have some optional information that imncludes
the information of an icon (for a graphical representation)
and a list of object URLs and/or object property URLs to
which this object is related and should be linked (if these
objects exist). Packages can be edited by an administrator of
the web core 20.

If no optional lists of related URLs are included, then the
default config. object 1s notified of the existence of the new
object. This object provides a flat object link table for object
lookup.

If the related URL list 1s provided, then all objects on this
list will be notified so that they may provide links to the new
object as appropriate. These related links allow for the
creation of a self-modifying, graphical linked object space.
Graphs may be cyclical or acyclical (e.g., hierarchical). FIG.
Y shows an example of a possible object hyper-link struc-
ture. As can be seen from FIG. 9, the graph 1s a hierarchical
structure that contains a mix of object links, traditional
HTML web hyper-text links (i.e., the object 301), and web
invoked executable codes such as CGI scripts, ISAPI
programs, etc. A newly installed object (e.g., CD-RW man-
ager object 304) may also check other installed objects (e.g.,
300-303, 305 and 306) to determine which already loaded
objects should be linked into it. These links are, however,
not hard-coded 1nto a static web page. In this case, the object

10

15

20

25

30

35

40

45

50

55

60

65

10

decides how to place them at run-time. The link graph such
as the one shown in FIG. 9 may also be modified by the
administrator of the web server i1f needed. Modification
occurs by notifying the objects of the changes, not by
modifying or generating a web page as a CGI script might
do.

The web core 20 (FIG. 3) may include an interface
manager 31. The functions of each of the objects 32—-32# are
invoked by the web core 20 via the interface manager 31.
The web core 20 provides an execution environment for the
objects 32-32n. In one embodiment, the web core 20
enables communications using HI'TP GET and HTTP POST
methods.

The web core 20 may also 1nclude a loader and a notifier
(both are not shown). The loader loads new information into
the web core 20 and installs new software elements or
objects 1n the web server 11 in response to requests from the
external web clients such as the web browser 40 (FIG. 1).
The notifier provides the capability of notifying software
objects and users of events associated with the device 10. As
described above, the loader enables loading or installing of
other software objects or elements that perform specified
functions 1n the device 10. The web core 20 also provides an
application programming interface (API) (also not shown in
FIG. 3) for the loader, notifier, and other software elements
The web core 20 also provides a library of routines for use
by objects such as the loader, notifier, and other software
clements.

The loader and nofifier may also be implemented as
objects and export an API (application programming
interface). In one embodiment, each of the loader and
notifier 1s 1mplemented by a loader object and a notifier
object. Alternatively, the loader and notifier may not be
implemented by objects.

The basic function of the web core 20 includes a network
manager function, a configuration manager function, a
request manager function, and a content manager function.
The network manager function implements the networking
processing for the web core 20. The network manager
function recerves the HT'TP requests and sets up communi-
cation sessions to pass the HTTP requests to the request
manager function.

The configuration manager function maintains the local
state of the web core 20. The local state information 1is
managed 1n a persistent manner so that the web core 20
returns to a consistent state when restarted. In one
embodiment, the configuration manager function provides
the information indicating which objects need to be started
when the device 10 1s started. The information mncludes the
location of the code that implements the object, name of the
object and MIME type information relating to the object.
This mnformation 1s used to build the object table.

The request manager function handles the bulk of the
HTTP protocol processing. The content manager function
receives the requests from the request manager function and,
if the request 1s going towards one of the objects 32-32#,
locates the interface manager 1n the interface manager 31 for
the request. This 1s done based on the MIME type 1informa-
tion parsed from the request. Once the interface manager has
been found for the request, the content manager function of
the web core 20 will pass the request to the interface
manager for the request for further processing. If no inter-
face manager 1s found or located, an error message will be
sent to the requester or caller.

In addition, the web core 20 may also have a scalable
architecture. This means that the web core 20 packages some
basic web functionality and other functions into different

US 6,529,936 B1

11

functional modules. Each of the functional modules can be
packaged 1n a, for example, z1p file and can be dynamically
installed into the web core 20. This allows the web server 11

to provide different functionality with different configura-
fions to different platforms ranging from non-computer
clectrical devices to computer systems. In other words, the
scalable structure of the web core 20 allows dynamic and
customized configuration of the web server 11, which allows
the web server 11 to meet the functionality and memory
constraints of non-computer electrical devices as well as
general purpose computers. Moreover, the scalable structure
of the web core 20 also facilitates future functional expan-
sion of the web server 11 because when new web service
functions are implemented, they can be made available in
modular form and the new functions can be incorporated
into the web server 11 by adding the new functional modules
mto the web core 20. In addition, the new modular functions
can be delivered to the device 10 for upgrade of the web
server 11 via the network 18.

The mterface manager 31 includes a number of 1nterface
managers, cach for an object interface. In other words, a
single 1nterface manager exists for each unique object 1nter-
face exported by objects on the device 10. Each interface
manager supports all of the object interfaces that implement
the 1nterface associated with the interface manager for the
object. Objects with multiple interfaces will have an inter-
face manager for each interface. FIGS. 6 and 7 show the
relationship. The structure and the operation of the interface
manager 31 1s shown 1n FIG. 11, which will be described in
more detail below and employing the following request URL
as an example.

http://machineA.com/this.foo?propertyA=
HTML&argumentl=Foo

As can be seen from FIG. 11, the interface manager 31
receives the request URL from the web core 20 (FIG. 3) at
the step 300a. The interface manager 31 obtains the object
name, object type, property name, argcument name and
value, and return result format information from the request
URL. The interface manager 31 then uses the object type
information to look up the object instance 1n an object type
lookup table 301a. From the object type lookup table 3014,
the object table of a particular object type can be located. As
can be seen from FIG. 11, the search in the object type
lookup table 301a at the step 3004 indicates the object table
311 1s for the “foo” type. As can be seen from FIG. 11, each
object type has an object table (e.g., 311-311r).

The object table keeps track of all objects of the same type
that are currently running on the device 10. This table 1s used
by the interface manager 31, at the step 310, to map an object
name to an object instance and to find the appropriate
property 1n the object instance. The object instance infor-
mation will allow code entry points to be computed 1n order
to mvoke property requests or the object’s home-page.

Once the target object has been found or created, the
interface manager 31 then checks the request URL to
determine if property information has been specified 1n the
request. If there 1s no property information, the interface
manager 31 calls an entry point (e.g., 321, 322 or 323)
provided by the object implementation (e.g., 320) which will
return the object home page to the request. Here, the request
URL does specify property information (i.e., propertyA). In
this case, the interface manager 31, at the step 310, uses the
property imnformation 321 to determine which entry point on
the object implementation 320 to call.

In the foregoing specification, the invention has been
described with reference to specific embodiments thereof It
will, however, be evident to those skilled 1in the art that

10

15

20

25

30

35

40

45

50

55

60

65

12

various modifications and changes may be made thereto
without departing from the broader spirit and scope of the
invention. The specification and drawings are, accordingly,
to be regarded in an 1illustrative rather than a restrictive
SEense.

What 1s claimed 1s:

1. An object-oriented web access mechanism embedded
in a device, the object-oriented web access mechanism
comprising:

(A) at least an object that implements a plurality of
functions of the device, wherein the object further
COMPIISES:

(I) a unique name that identifies the object;

(IT) a web page that provides an interface to the object;
and

(III) a plurality of properties, each of which can rep-
resent an interface to one of the functions of the
object and are accessed via a URL; and

(B) a web core engine that provides an execution envi-
ronment for the object in accordance with a request that
contains the unique name of the object and a property
name of the function.

2. The object-oriented web access mechanism of claim 1,
wherein each of the properties 1includes an Internet address
such that each of the functions of the object can be accessed.

3. The object-oriented web access mechanism of claim 2,
wherein the address for one of the properties further com-
PIrises:

(I) an argument field that allows data input to the function;

and

(IT) a result field that allows the function, when executed,

to return results.

4. The object-oriented web access mechanism of claim 1,
wherein the object can be 1nstalled or modified dynamically
at run-time and organized relative to the other objects
without stopping the web core engine.

5. The object-oriented web access mechanism of claim 1,
wherein the object includes a plurality of types, each allow-
ing an external request to access one of a plurality of
properties belonging to the type.

6. The object-oriented web access mechanism of claim 1,
wherein some of the properties of the object provide inter-
face to other objects to allow the object to contain the other
objects such that functions of the other objects can be
inherited by the object.

7. The object-oriented web access mechanism of claim 1,
further comprising a plurality of objects, including a builder
object that links multiple properties from multiple objects
together.

8. The object-oriented web access mechanism of claim 7,
wherein builder object provides the results of the linked
multiple objects either through 1ts web page or directly to a
client.

9. The object-oriented web access mechanism of claim 1,
wherein the web core engine further comprises an interface
manager that calls the object based on the unique name of
the object, the Internet addresses of the object and the
corresponding property defined 1n a request for the object.

10. The object-oriented web access mechanism of claim
1, further comprising another object that shares the interface
provided by the web page.

11. The object-oriented web access mechanism of claim 1,
further comprising a plurality of objects, some of which can
be contained by other objects.

12. The object-oriented web access mechanism of claim
1, wherein one of the properties of the object has different
parameters and multiple implementations.

US 6,529,936 B1

13

13. In a device embedded with an object-oriented web
access mechanism, a method of 1nvoking a function of the
device, said method comprising:

(A) providing an object that implements a plurality of
functions of the device, wherein the object further
COMPIISES:

(I) a unique name that identifies the object;

(IT) a web page that provides an interface to the object;
and

(III) a plurality of properties embedded in the web
page, each of which can represent an interface to one
of the functions of the object and are accessed via a

URL; and

(B) executing the function in an execution environment
provided by a web core engine of the object-oriented
web access mechanism 1n accordance with a request
that contains the unique name of the object and a
property name of the function.

14. The method of claim 13, further comprising;:

(I) providing an argument field for the Internet address of
onc of the properties that allows data iput to the
corresponding function;

(II) providing a result field for the property that allows the
function, when executed, to return results;

(II1) providing a specification of the type of the returned
property; and

10

15

20

25

14

(IV) providing an Internet address to each of the proper-
ties such that each of the functions of the object can be
accessed, wherein the object only needs a URL address
to 1nvoke the property of another object.

15. The method of claim 13, further comprising:

dynamically 1nstalling or moditying the object at run-time
without stopping the web core engine.
16. The method of claim 13, further comprising:

containing multiple objects 1 the object by allowing
some of the properties of the object to provide interface
to the multiple objects such that functions of the
multiple objects can be inherited by the object.

17. The method of claim 13, further comprising;:

linking multiple properties of multiple objects together 1n
a builder object, wherein the builder object provides the
results of the linked multiple objects either through its
web page or directly to a client.

18. The method of claim 13, further comprising:

crouping the properties of the object into a number of
types, each type allowing an external request to access
one of the properties belonging to the type via an
interface of the type.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

