US006507813B2
a2 United States Patent (10) Patent No.: US 6,507,813 B2
Veditz et al. 45) Date of Patent: Jan. 14, 2003
(54) SYSTEM AND METHOD FOR NATIONAL 4,870,610 A * 9/1989 Belfercccocoviviinnnnnnn, 704/8
LANGUAGE SUPPORT 5,119,465 A * 6/1992 Jack et al. 717/137
5,200,042 A * 4/1993 Weisner et al. 704/8
(75) Inventors: Daniel Paul Veditz, Felton, CA (US); 5,251,130 A * 10/1993 Andrews et al. 704/8
David Brett Schnepper, Los Gatos, CA 5,307,265 A * 4/1994 Winansc.ccevvunnnnnn, 704/8
(US) 5,416,903 A * 5/1995 Malcolm 345/703
5,434,776 A F TF/1995 Jainoooiiiiiiiiiiiininnn., 704/8
(73) Assignee: Boland Software Corporation, Scotts 5615366 A * 3/1997 HANSEN weoveeveeeeeererrenns 707/7
Valley, CA (US)
. - .
(*) Notice: Subject to any disclaimer, the term of this cited by examiner
patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days. Primary Fxaminer—Patrick N. Edouard
(74) Attorney, Agent, or Firm—Darby & Darby
(21) Appl. No.: 10/116,180
(22) Filed: Apr. 3, 2002 (57) ABSTRACT
(65) Prior Publication Data The present mnvention comprises a National Language Sup-
port (NLS) system with Language Driver Identifiers
Us 2002/0177993 Al Nov. 28, 2002 (LDIDs) embedded as locale-specific descriptors within data
L objects. The Identifiers, which may be in the form of a
Related U.5. Application Data system-comparable ID (e.g., ID byte), are employed by the
y P g y ploycd DYy
(62) Division of application No. 08/050,957, filed on Apr. 21, ?(}1!8:[6111) 1 E?V;’ral placesdto Lecord th'e pal‘(’:[llclllarblianguage
1993, river) which was used when a given data object was
(51) Int. Cl. GOGF 17/20 created or modified. The LDID methodology of the present
(52) US. Cl 704/8 17137 invention allows the system to intelligently process data
5Q F'- l.d f S """" h """"""""""""""" 70 i 8'? 207/103 objects created or modified under one language driver with
(58) Field of Search 2 7 ’ those created or modified by a different language driver. In
707/536; 341/45; 717/136, 137, 116, 146; . eqele .
345/703. 746 the e‘:x*ent of .111001?:1pat1b.111t165, the Systfzm provides error
’ handling routines, including a preferred interface for warn-
(56) References Cited ing users of incompatibilities and receiving user choices in
response thereof.
U.S. PATENT DOCUMENTS
4595980 A ¥ 6/1986 INNES weoveeveeeeneeeeeeeeaaennns 704/8 12 Claims, 13 Drawing Sheets

200
vy = 'l"'” — - 230//235 Ve 215 1
HEADER 210
n) .| CONFIGURATOR /T , LOCAL{ 5D
; ACTIVE LDID| | «—— [PREFERENCES | | . — —————
] LASET[%EFL;]S - 220
o | 1
A=A 23/; LDCHECK =
l . " . ON [OFF]
L 80=5) — — —
= — DRIVER! |DRIVER . 241
] R R DRIVER| | DRIVER DRIVER
Ei C ’_‘5@ DRIVER| | DR VER-?/ LDID = << TYPE »>
— DRIVER[DRIVER | RESOURCE = XXX
SYSTEM SESSION ~—— —— CODE PAGE= YYY DATA OBJECT
L ANGUAGE CODE PAGE,= 777 201
DRIVERS
TRANSLATION CODE PAGES 247
RESOURCE FILES 245 (PRIMARY & SECONDARY)
_____.——-—"—"Fﬁ_ﬁ__q\“———‘__ _________._-—--"__'_-_-_'_“"—-—-_____
cotiion || oot || e = = Z
s, CONFIRURATION CHARACTER SET
FARURA FIRURA FIRURA CTER SF CHARACTER SET CHARACTER SET
TABLE |[TABLE TABLE |[TABLE | | [TABLE I TABLE
TABLE || TABLE TABLE || TABLE TABLE |[TABLE -
(DEFAULT) (DEFAULT)
STORED LDID

U.S. Patent Jan. 14, 2003 Sheet 1 of 13 US 6,507,813 B2
100
104
KEYBOARD
105
POINTING
DEVICE
106
102
DISPLAY
DEVICE
107
103 MAIN
MASS MEMORY
STORAGE
108 Te
CONTROLLER

PRINTING

DEVICE

101

CENTRAL

PROCESSOR

110
111
109
MEMORY

FIG. 1A

U.S. Patent Jan. 14, 2003 Sheet 2 of 13 US 6,507,813 B2

163 150
—— 7

INFORMATION

INFORMATION
- EMNM\\ f’f;if!f

APPLICATION
SOFTWARE DEMS v

OPERATING |»* USER
SYSTEM

1591

161

INFORMATION

162

INTERFACE

180
INDEX
; — 1
KEY VALUE; RECORD # RECORD
, (TUPLE, ROW)
173

183 185 \ T /
FIELDS
(COLUMNS)
175

FIG. 1C

Sheet 3 of 13

Jan. 14, 2003

o
aa .
- ve ‘Dl
% | - | Qi1 Q3HOLS]
= | (L1Nv430) (LINV430)
oy | _] _ : = _
\G& | -
s 31av. _ﬂm& _ r.m_._m<;_ Emﬁ_ ,m:m«L 378VL
- | == —| = :
| 37avL || 3eve | || | Tnave || 3nave 378vL _ 37avL |
S37gv. S37gvL S3T1v.
13S HALOVHVHO || 138 HILOVHVHO 138 HILOVHVHD NOLLYHNHIINOD NOLLYHNHIINOD NOLLVHNYIINOD |
Iy 0S8 LEF JFOVNONYT JOVNONVT JIOVNONYT
A - B _ X FIf.l A o .
(AHVYANOD3S ¥ AHVYNIH) Gbc S3714 30HNOSIY
l¥c SOV MHQOO NOLLYISNVH.
—> SYIAHJ
102 777 =236vd 3000 JOVNONVT
103rg0 viva MA ='39vd 3000 @ — NOISSIS W3LSAS
XXX = 30HNOS3Y | | HIAING —
<< Jdd4AL > = 4|q7 HIAIHAG || HIAIHO V i m (117 @\R
_ d3AHd [4IAIHA | [H3AIHC —
v — ENICEN: = ,
’ T 58] [
| [440] NO - _ B 7
= Y03HOAT A _ﬁ 2L Lo
40l N0
= S37EVIONY] v |
SAON3IHI4FHd | «——
SITHL R | N |/ HOLYHNOIINOD |
JOVNONY]] |
GEZ ~ %

U.S. Patent

US 6,507,813 B2

Sheet 4 of 13

Jan. 14, 2003

U.S. Patent

dc Il

(HSINVQ NI 318vL 3svavivg “b-s) (HSITON3 OL 13S W3LSAS “0°9)

14ogay (v
10 :JHONDI (€
'd1a7 JAILOV OLINI aId1 TvO01 JdvW (2)
‘aigl 1vOo01 OL Qidl JAILOV FONVHO (1) :NOILOY

HOLYWSIN H3AIHA 3DVAODNYT LINSIH <« dIa1 WO01 # AIa1 ALY

vi¥a NDI3H04 ()

(HSITON3 NI 31gvL 3svaviva “be) (HSITON3 OL 13S WILSAS “Dra)

INON -NOILOV
HOLVIN HAAIHQ 3DOVNONVT -LINS3H «—— QIdT TvOO01 = Qid1 JAILOV

viva o001 (B)

INIHOLVYIN
HIAIHA JOVNONY]

US 6,507,813 B2

Sheet 5 of 13

Jan. 14, 2003

U.S. Patent

998do
068d2
098d>
268d2
258d2

(P3 L4 LPOW) £LEYAD

£98d2

268d>

LEYAD

058d3

£98d2
[EydD
068d>
[EydD
A4,
LEHdD
068d>
[EydD
068dd

SIC-33LYsS

068d2
LEHAD
068d>
[EydD
058d>
[EydD
068d2
[EYdD
068d>
LE€pdD
G9g8do

obed apo)

8¢
LE
9¢
G¢
43
%3
¢t
[t
0¢
6
8¢
£
9¢
G2
Ve
td
¢
1l
0¢
61
81
L1
91
G1
4!
¢l
¢l
[T
01

6

8
[

NVISSNY |

¢353NINLY0d
3SANINLY 0
HST10d

NV IdVONNH
LEER
¢HIIZI
HJ3Z)
tNVIHINIYS
¢NYIHIONIY S
NYIHINIY 4
S
¢ AN

AN
HSINVdS
NYIDIMYON
¢HS TAIMS
HSTQAMS
cHSINVAS
3S3INYAV(
¢NVIIVLI
NVITVLI
¢NVYWY 19
NVWd 1Y
¢HINJY
HON3Y 3
¢HSINNIS
HSINNIS
¢HILNQ
HILN{

HS INV(
J1aVYY

9N BA QIQT °1qel sbenbuer
378V dNYOO1 QIaT

]

JOJRULWUST P3L} 3aY] SB HQOD

AeJdde 403d1J4dSap pIaLl4d Yded $314Q Z€ xxxU-2¢€

POAJISIY
- e-o - J 147

J0U 41 HOO

"9 L4 Xpw- uot3yonpoud e S 24yl
+LHTO *be3I 3| L) XpW* uoL3anpoud
HJ4OMI3U eIUP

B30 e U0 AT ISYYP 40} P3AUISOY
e} uoLq1dAuou3

uolLjoesuedl

939 [dwooul BuLleaLpul be
DIAJISIY

PJ033Jd 9y Ul S931AQ 40 JdQWNN
J3PB3Yy 9y] Ul S°93AQ 40 J3agquny
9L}

aseqejep ayj ul sSpJo2ad JO J3quny
JOWWAA

Se pajlewJo] fajepdn 3se| 40 33e(

(AT 3SV8p

40 SN1d TIT ISVEP J3y3ta) s L4
owswW Aue JO 32u3asaud 3yl SajedLpul

£ 3Lq *9|qe3 10S ue Jo 3au3saud ay3
93BJILPUL 9-% STL] "B L) OWdW A]
3SVYGP e 0 32uU3S3aud 3Yy3 SajedLpul
¢ 3LQ “daquNu UOLSJU3A 338D LpUL
2-0SILq -3 L} AL ISVYEP PLLeA

buLueay

91AQ T I+ u

$S93AQ 2 T1€-0€

91AQ T 6

91AQ T 82

S91AQ 2T [2-9T

91AqQ T GT

93AQ T Y1

S93AQ 2 €1-21
Joqunu 3tg-97 TT-0T
Jaqunu 319q-97 6-8
Ao(UNU 3 LQg-2¢ [-V
S93AqQ ¢ ¢-1

91AGQ 1 0
SJuajuo) 91314g

(49a° “6'8) H3aV3H F714 ISYIVLIVA

U.S. Patent Jan. 14, 2003 Sheet 6 of 13 US 6,507,813 B2
LANGUAGE-DEPENDENT
BEGIN FILE OPERATION
300
301

ACCESS MAY BE
READ-ONLY, NEE?D/WR!TE. "OFIE’EE?\IE'J%?ITE FV%?I'H
AND APPEND (EXISTING

DATA 12 READONLY) DESIRED ACCESS MODE

302 _ 306
LANG. DRIVER NO "GPEN FILE WITHOUT
CHECKING ENABLED? FURTHER CHECKING
YES 103

DONE

CHECK CHECK LDID IN DATA

LANG. DRIVER FILE (e.g., STORED IN
HEADER)

304
DOES DATA FILE STORE NO
(i.e., KNOW ABOUT) LANG.
DRIVER INFORMATION?
YES 305

CASE OF:
ZERO__LDIP_MSG ACCESS MODE

0 RIO
l. 0 i
1T | . RO

1 RW

SUPPRESS WARNING ("NO DRIVER")
MESSAGE; OPEN FILE R/O; LEAVE
LOCAL LDID IN DATA FILE AS ZERO

SUPPRESS WARNING MESSAGE:

OPEN FILE RW; SET LOCAL LDID IN
DATA FILE TO ACTIVE LDID

DISPLAY WARNING MESSAGE; IF
PROCEED, OPEN FILE R/O AND LEAVE
LOCAL LDID IN DATA FILE AS ZERO

DISPLAY WARNING MESSAGE; IF
PROCEED, OPEN FILE R'W AND SET

LOCAL LDID IN FILE TO ACTIVE LDID
——— (e

311

312

313

BACKWARDS COMPATIBILITY

314

U.S. Patent Jan. 14, 2003 Sheet 7 of 13 US 6,507,813 B2

AT THIS POINT, IT 1S
KNOWN THAT THE
FILE IS LANG. DRIVER

AWARE
FPROCESS

321
COMPARE LDID OF DATA
FILE TO ACTIVE LDID
AUTOMATICALLY (TRANSLATE)

322 OR MANUALLY (USER-DIRECTED)
NO
YES

EXCEPTION HANDLING

325
IF
PROSEED

OPEN FILE PER SPECIFIED
MODE

FIG. 3B

U.S. Patent Jan. 14, 2003 Sheet 8 of 13 US 6,507,813 B2

No Language Driver specified for the file.
Okay to view with current Language Driver?

420

No Existing Language Driver

No Language Driver specified for the file.
Okay to open file and assign the current
Language Driver to it?

Language Driver for the file is incompatible
with the current Language Driver.

‘? . ' e ';: a;

US 6,507,813 B2

Sheet 9 of 13

Jan. 14, 2003

U.S. Patent

(37gVL HOH 1HOd3H “0°9)
193080 Viva

£

08¢ CQz

(379vL HOd X3aNI “0°9)
S 19390 VIVa

Qla1 OO
H3av3IH

0L¢ G/Z

B (378vL 3SVavLva “b'e)
| ' 103090 VIVG
33 |
% '\
®
FUONOOIH

SHIAIHA
oz —
= NOISS3S WILSAS
~
)
Ny
)
=
\ =7 /
A *
4137 JAILOY— |
0E2 _

052

US 6,507,813 B2

Sheet 10 of 13

Jan. 14, 2003

U.S. Patent

FRENCH 296 GERMAN 298

ENGLISH 294

133rgo viva

Qa7 VOO0
662 — DVl

qig vo0l
162 — oyl

Qid1 vOoOT
Sbe OVl

S B A O EE E W W A e JE - A T TR W W A A W EE W N A O

g5 ol

ala1 OO
H3av3IH

cbe

(LINY+433)

)

HOLYW

aIa7 3AILDV—

Ote

682

NOISS3S WILSAS

US 6,507,813 B2

Sheet 11 of 13

Jan. 14, 2003

U.S. Patent

(379v1 HO4 X3aNI “6°9)
¢ 103rg0 viva

69¢

ala1 V001
89¢ el e

(3718vL “D9)
© 193190 wIvd

dId17 OO 1 ——
coe d30V3H

FHTONOOJY

0§ Ol

(374 WWHDOHd “08)
b 193r90 viva

e Byl

~ {HSImONT)
H...zo xm_oz_H

aig] wo01!
H3av3H

NOISS3S WHISAS

0s¢e

SHIAMA
ovz —/
=
=
5 Eo—
HaIgT ALY —
e0gz —

Caian 3nwov |

906z —’

00} —/

U.S. Patent Jan. 14, 2003 Sheet 12 of 13 US 6,507,813 B2

LANGUAGE-DEPENDENT
BEGIN INTERRELATED FILES
OPERATION

501 20

INDEX FILE ACCESS |5 " "
REQUEST TO "OPEN
TYPICALLY READ/WRITE, DEPENDENT FILE WITH

S0 THAT FILE MAY BE '
- oW er [DESIRED ACCESS MODE

506
LANG. DRIVER OPEN FILE WITHOUT
CHECKING ENABLED? FURTHER CHECKING

LANG. DRIVER | FILE (e.ﬂ., SE%FIED N

DOES DATA FILE STORE
(i.e.., KNOW ABOUT) LANG.
DRIVER INFORMATION?

CHECK CHECK LDID IN DATA m

CASE OF:
ZERO LDID MSG

11
SUPPRESS WARNING ("NO DRIVER") ?

MESSAGE; OPEN FILE RW; UPDATE LOCAL
LDID TO ACTIVE LDID (ON 1st WRITE OPER.)

DISPLAY WARNING MESSAGE: IF 513

PROCEED, OPEN FILE RW AND REBUILD
FILE; SET LOCAL LDID TO ACTIVE LDID

FIG. 5D

BACKWARDS COMPATIBILITY

U.S. Patent Jan. 14, 2003 Sheet 13 of 13 US 6,507,813 B2

No Language Driver specified for Index File. You may
rebuild the Index File under the current Language
Driver or use the current Index File.

- -
.. M L 4 A
-

1 - E E - - Ll
- o AL .o L PR L I ol
r L] L] rod s . L Far F F r -
.I"‘l 'fi’;"‘f;u l,l"-'II Fa l"n,.d".- P '{# " .Fff‘:r:”-llal;. .- .l"’. .af .,"_." .. _.p*
J a.j ’ ’ ' -d-r.-:r‘ ‘.- r .‘I.i a4

2 e HITG %
NG 52
gﬂﬁf;ﬂj J:'!"ﬁ :’A ; ﬂg

"

' |
L N -y _-"':-'_-' A L " o
,l'',. »,I_J:'Jrif‘,{.f{ﬁ.l_,.f.r}!_{.r .|_J',.|":,..|""‘_;I gl _lj.,.-_.i":. L e

620

> Language Driver Incompatibility

v

The Language Driver for the Index File does not match

your current Language Driver. Okay to rebuild the
Index File under the current Language Driver?

L e
'} ;- {rida J’fﬂ’ﬁc%
.j.?-' 7)’! ” J{y Frefy
e A

FIG. 6B

US 6,507,813 B2

1

SYSTEM AND METHOD FOR NATIONAL
LANGUAGE SUPPORT

The present application 1s a divisional of application Ser.
No. 08/050,957, filed Apr. 21, 1993,

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which 1s subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure as 1t appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rigchts whatsoever.

BACKGROUND OF THE INVENTION

For software publishers, overseas markets comprise an
ever-growing percentage of revenues for all major PC appli-
cations. Traditionally, however, software products have been
designed with little or no thought toward portability, let
alone translating software products for overseas markets. As
non-English speaking countries are buying more and more
software from U.S. publishers, there 1s keen interest in
improving the process of enabling or “internationalization”,
that 1s, designing and coding a software product so that it can
be made to function for international use.

In the past, the process of providing National Language
Support (1.e., accommodating a specific country’s language,
conventions, and culture) was done on a more or less ad hoc
basis—essentially retrofitting software to accommodate a
particular locale. Merely separating the text in a user 1nter-
face from one’s program 1s not an acceptable solution,
however. Even after translating software prompts, help
messages, and other textual information to the target
languages, one still has to address basic 1ssues of displaying
and printing characters in the target language.

For 1nstance, a target language will often 1nclude charac-
ters which are not defined by the default character set
provided by the computer’s operating system. IBM-
compatible PCs running MS-DOS, for example, can display
and print up to 256 different characters, the first 128 char-
acters of which include the well-known 7-bit ASCII char-
acter set. This, of course, 1s not enough characters to support
all languages. Some languages will obviously require a
different character set; thus, sufficient means must be pro-
vided for switching character sets.

Other 1ssues to consider when developing a system for
foreign users 1nclude keyboard layout and various format
conventions applicable for a particular country. Any use of
currency, date, time, and the like within one’s software must
take 1nto account these factors. For example, keyboards sold
for European languages must include additional characters,
such as letters with diacritics, and symbols, such as the
British pound (£) sign.

Another potentially serious problem for localizing a pro-
oram 1S the set of assumptions with which the underlying
source code for the program was written. Assumptions made
by English-speaking programmers, which were quite valid
for the once-ubiquitous ASCII character set, often break
down when dealing with a foreign language. For instance,
the common programming technique of converting a char-
acter to uppercase by simply adding the number 32 to the
character (numeric code) is often inappropriate for non-
ASCII characters. Similarly, one cannot rely on standard C
functions either. For mstance, one cannot use simple string

comparison functions like the C programming language’s

5

10

15

20

25

30

35

40

45

50

55

60

65

2

TORL
d

strcmp() function. Does an “a” (i.e., an “a” with a diacritic)
sort before or after a normal “a”?

One of the first serious attempts at providing National
Language Support (NLS) for PCs was Microsoft’s MS-DOS
version 3.3. Since MS-DOS accommodates different sets of
256 characters for displaying and printing text, one may
employ different characters by swapping 1n new character
sets. Each such character set 1s referred to as a “code page”;
the code page 1n use at any given time 1s called the “active
code page.” When 1nstalling operating system software,
typically, a user may select a code page appropriate for his
or her national language.

MS-DOS also includes an API (Application Programming
Interface) having a variety of functions related to interna-
tionalization. Included are functions for inspecting code
pages for determining and controlling how the keyboard,
display, and printer handle characters. The API include
functions, for instance, for inspecting and changing the
current country code and obtaining information about the
conventions associated with a current country code (e.g.,
how to display dates, currency, and the like).

Newer versions of MS-DOS also include support for
character comparisons, through use of language-
independent tables for sorting strings. Still, this 1s by no
means a complete solution to the problem. Arabic languages,
for 1nstance, remain problematic. For one, Arabic 1s read and
written right-to-left, not left-to-right. Also, Arabic characters
require contextual analysis in order to determine which of
four different shapes the Arabic characters should have
(depending upon location in a word or phrase). Thus, a
language may have 1ts own special set of problems which
must be addressed before international use.

To date, efforts at localization have been largely limited to
ensuring that a particular program, such as an operating
system or application software, 1s 1tself enabled for a par-
ticular country. When installing Microsoft® Windows, for
instance, a user 1s asked to select a country from a list of
supported countries. Windows, 1n turn, installs various
keyboard, display, and print drivers appropriate for the
selected country. This “program centric” approach 1s only a
partial solution, however.

Consider the scenario of a corporation based 1n the U.S.
receiving sales information from several foreign subsidiar-
ies. Typically, such information would be transmitted as data
files, such as spreadsheet or database files. In this instance,
the information management system in the U.S. may be
required to process data files created from a variety of
foreign data processing systems, ones having character sets
and conventions peculiar to a particular country. converting,
such data files from one language to another inevitably
results 1n the loss of language-specific information. Once
converted, the information cannot be processed (e.g., adding
and deleting information records, generating reports, and the
like) and then simply reconverted back to its original form.
Moreover, should that information be 1mappropriately pro-
cessed (e.g., sorting German information according to an
English sort order), valuable data may be corrupted.

One approach to averting this problem 1s to agree, 1n
advance, on a single data format (e.g., code page 437—the
vartant used 1n the United States and many European
countries) to be used by all foreign offices of the corporation.
However, this solution 1nvites another problem: the foreign
offices must forego their own National Language Support,
thus compromising their own data processing needs all for
the convenience of the U.S. office. And even with such an
approach, the risk remains that an office may madvertently

US 6,507,813 B2

3

mix data from 1ts locale with the agreed-upon format,
leading to corruption or loss of data. Needless to say, the
approach 1s undesirable at best.

System and methods are needed which allow users of
computer systems to create and freely exchange data files,
irrespective of National Language Support requirements. In
particular, such a system would permit a user to create an
information file 1n his or her own locale without regard to the
requirements of other systems which may need access to the
very same data from that file. The present invention fuliills
this and other needs.

SUMMARY OF THE INVENTION

The present invention comprises a National Language
Support including a language configurator, for processing
data objects 1n a manner which 1s appropriate for the
language configuration of each object. The language con-
figurator provides necessary support for a data object (which
typically stores information in a particular language) so that
the data object may be appropriately processed by the
system.

The system of the present invention continually checks
and maintains correct language configuration. A descriptor
or Language Driver Identifier (LDID) (e.g., in the form of a
system-comparable unit) 1s employed for storing in desired
location(s) of a data object information specifying the lan-
cuage driver that was in use when the data object was
created or modified. The LDID, which may be in the form
of an ID byte, references a set of language driver values
(e.g., lookup table of locales). This allows the system of the
present 1nvention to intelligently process data objects cre-
ated or modified under one language driver with those
created or modified by a different language driver. In the
event of incompatibilities, the system provides error han-
dling routines, including facilities for warning users of
incompatible or otherwise 1llegal operations.

A data object 1s preferably constructed so that 1t embeds
or stores the Language Driver Idenfifier directly within the
object 1itself, so that the object 1s self-contained. In an
exemplary construction of the data file, for instance, the file

may 1nclude a header region for storing a Local Language
Driver ID (“Local LDID”). This is followed by the actual

information or data for the object.

The language configuration which the system currently
operates under (i.e., during the current session) is also
identified by the language configurator, which maintains an
Active Language Driver ID (Active LDID) for referencing
a Language Driver currently employed by the system (i.e.,
for the current session). In this manner, the Local LDID may
be compared against the Active LDID, thus enabling the
system to determine instances where the system 1s 1nappro-
priately configured for a data object about to be processed.

Actual language configuration 1s effected through one or
more Language Drivers which, mn turn, select the most
appropriate language configuration table(s). Each driver is
of a particular type (identified with an LDID value) and
references an appropriate resource file and an appropriate
character set or code page for achieving National Language
Support.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1s a block diagram of a computer system 1in which
the present invention may be embodied.

FIG. 1B 1s a block diagram of a software system of the
present invention, which includes operating system (OS),

5

10

15

20

25

30

35

40

45

50

55

60

65

4

database management system (DBMS) and application
software, and user interface components.

FIG. 1C 1s a block diagram 1llustrating data objects for the
system of FIG. 1B, which includes a database table and its
index.

FIG. 2A 1s a block diagram 1llustrating a National Lan-
guage Support (NLS) system of the present invention, which
includes a language identifier embedded within each data
object.

FIG. 2B 1s a diagram 1illustrating the overall operation of
language driver mapping i1n the system of the present
invention.

FIG. 2C 1s a diagram 1llustrating the embedding of the
language 1dentifier of the present invention within the header
of a data file (.DBF file), whereby the file may be associated
with a particular language driver (referenced through a

lookup table).

FIGS. 3A-B comprise a flowchart illustrating a language-
dependent file operation method of the present 1invention.

FIGS. 4A—C are bitmap 1llustrations of exemplary dialog
interfaces for reporting language driver information and
rece1ving user choices in response thereof.

FIGS. 5A-C are block diagrams 1illustrating the applica-
tion of language driver 1dentification to more-advanced data
objects (e.g., interrelated files).

FIG. 5D 1s a flowchart illustrating a method of the present
invention for language-dependent interrelated file operation.

FIGS. 6 A—B are bitmap dialog iterfaces illustrating the
reporting of language driver information (from the method
of FIG. 5) and receiving user choices in response thereof.

GLOSSARY

ASCII: American Standard Code for Information Inter-
change; a sequence of 128 standard characters.

Code page: A character set, such as available in MS-DOS
versions 3.3 and later, that provides a table for relating the
binary character codes used by a program to keys on a
keyboard or to the appearance of characters on a display.

Database: An organized collection of information.

Database Management System (DBMS): System that con-
trols the organization, storage, and retrieval of informa-
tion 1n a database.

Enabling or Internationalization: Designing and coding a
product so that 1t can be made to function for international
use. A product 1s enabled if a national language version
can be created at minimal expense and if 1t does not
interfere with current or planned national language sup-
port of other products.

File: A collection of information stored under one name on
a disk. For example, the system tables are stored 1n files.

Index: A file that determines an order in which the system
can access the records 1n a table.

Glyph: A graphic representation of a single character.

Localization: Translating and adding functions to an enabled
product to accommodate a country’s languages,
conventions, and cultures.

National Language: A language or dialect spoken by any
group of people.

National Language Support: The features of a product that
accommodate a specific country, national language, local
convention, culture, and the like.

National Language Version: A variant of an original product
that implements National Language Support and 1s tar-
ogeted to a particular market.

Retrofitting: Redesign and modification of a product that has
not been enabled.

US 6,507,813 B2

S

Table: A structure made up of rows (records) and columns
(ficlds) that contains information.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT

For clarity, the following description will focus on an
embodiment of the present invention operative 1n a database
environment. Specifically, since most readers will have at
least some exposure to database systems, 1t 1s helpful to
describe the present invention as implemented 1n such
systems. The present invention 1s, however, not limited to
any particular exemplary embodiment. Instead, the teach-
ings of the present mnvention may be advantageously applied
to a variety of applications (e.g., spreadsheets,
wordprocessors, CAD programs, and the like), operating on
a variety of architectures (e.g., Macintosh, MS-DOS,
Windows, NextStep, UNIX, and the like). Application of the
principles of the present invention 1s particularly advanta-
geous 1n those systems where information must be shared
internationally. Therefore, the following preferred embodi-
ment and certain alternatives are offered for purposes of
illustration and not limitation.

General Architecture

The present 1nvention may be embodied on a computer
system such as the system 100 of FIG. 1A, which includes
a central processor 101, a main memory 102 (e.g., random-
access memory or RAM), an input/output controller 103, a
keyboard 104, a pointing device 105 (e.g., mouse, track ball,
pen device, or the like), a display device 106, and a
non-volatile or mass storage 107 (e.g., hard or fixed disk,
optical disk, magneto-optical disk, or flash memory). Pro-
cessor 101 includes or 1s coupled to a cache memory 109 for
storing frequently accessed information; memory 109 may
be an on-chip cache or external cache (as shown). System
100 may also be provided with additional input/output
devices, such as a printing device 108, as desired. The
various components of the system 100 communicate through
a system bus 110 or similar architecture, as shown.

[lustrated in FIG. 1B, a computer software system 150 1s
provided for programming the operation of the computer
system 100. Software system 150, which 1s stored 1n system
memory 102 and on disk memory 107, includes a kernel or
operating system 151 and a database management system
(DBMS) 154. OS 151 i1s the executive or supervisor for the
system 100, directing both task management and data man-
agement.

DBMS 154, on the other hand, 1s a software subsystem for
storing, retrieving, and manipulating information i1n data-
base tables (e.g., tables 161, 162, 163). Under the command
of DBMS 154, the system 100 receives user commands and
data through user interface 152. Interface 152 includes a
built-in query surface or editor for accessing and processing,
database information. Additional application programs, such
as DBMS application software 153, may be “loaded” (1.e.,
transferred from storage 107 into memory 102) for execu-
tion by the system 100, particularly for further controlling
the operation of DBMS 154.

In a preferred embodiment, the system 100 1s an IBM-
compatible personal computer system, available from a
variety of vendors (including IBM of Armonk, N.Y.), and
operating system 151 1s MS-DOS operating system
software, available from Microsoft of Redmond, Wash.
DBMS 154 is preferably a PC database management system
(PC DBMS). More preferably, DBMS 154 includes
dBASE® Database Management System (available from
Borland International of Scotts Valley, Calif.). As interface
152, dBASE provides a worksurface or “canvas” and com-

10

15

20

25

30

35

40

45

50

55

60

65

6

mand menus; a QBE query worksurface 1s also provided.
Application software 153, i1n turn, i1ncludes database
command-language applications (e.g., dBASES®
applications), which may be executed or otherwise acted
upon by the DBMS 154. For further description of the
ogeneral operation of dBASE, the reader should refer to
dBASE IV manuals: Gerting Started, Using dBASE IV,
Language Reference, and Programming in dBASE IV, all
available from Borland International, and the disclosures of
which are hereby incorporated by reference.

At the outset, 1t 1s helpful to understand general tech-
niques for storing information in DBMS 154. In a relational
database management system, information 1s organized 1nto
tables, such as table 170 of F1G. 1C. As conceptually shown,
table 170 typically includes horizontal rows or records
(tuples) 173 and vertical columns or fields 175. A database
record includes information which 1s most conveniently
represented as a single unit. A record for an employee, for
example, may include information about the employee’s 1D
Number, Last Name and First Initial, Position, Date Hired,
Social Security Number, and Salary. Thus, a typical record
includes several categories of information about an indi-
vidual person, place, or thing. Each of these categories, 1n
turn, represents a database field. In the foregoing employee
table, for example, Position 1s one field, Date Hired 1is
another, and so on. With this format, tables are easy for users
to understand and use. Moreover, the flexibility of tables
permits a user to define relationships between various items
of data, as needed.

By employing one or more database indexes, the records
of a table can be organized 1n many different ways, depend-
ing on a particular user’s needs. As shown by index 180 of
FIG. 1C, for example, an index may be constructed as a
single disk file which is referred to internally by the system
for locating and displaying records in a database file (e.g.,
table 170). Index 180 stores two types of information: index
key values 183 and unique record numbers 185. An index
key 1s a data quantity composed of one or more fields from
a record; keys are used to arrange (logically) the database
file records by some desired order (index expression).
Record numbers, on the other hand, are unique pointers to
the actual storage location of each record 1n the database file.
In this manner, an index for a database file 1s similar to the
index of a book, which lists subject keys and page numbers
that point to where the actual information 1s located 1n the
book. Specifically, an index organizes (logically not
physically) the records in a database file according to the
values 1n one or more fields of interest. As such, an index
may greatly speed up searching (querying) for and sorting of
information.

In addition to tables and indexes, DBMSs typically pro-
vide electronic “forms” and “reports”—design documents
for entering and retrieving information of interest. A form,
for 1nstance, 1s created for simplifying data entry by pre-
senting a user with a screen facsimile of a real-world
document which the user 1s already familiar with, such as a
purchase order. A report, on the other hand, extracts infor-
mation of interest from one or more information tables and
presents 1t 1n a desired format.

Tables, indexes, forms, reports, and other user-created
objects are all data-dependent components. Specifically,
cach component contains information 1 a particular lan-
cuage. For components to interrelate in a meaningful
fashion, they must “speak the same language,” or at least be
compatible with a given language scenario. A database table
storing 1nformation in Danish, for instance, should not be
sorted by an index file which expects information to be in

US 6,507,813 B2

7

English. Thus, it 1s desirable to provide a means by which
these user-created objects may interact with one another
appropriately.

Preferred Configuration for National Language
Support

A. Language Configuration

The problem of configuring a system, such as system 150,
to operate with National Language Support 1s multifaceted.
For instance, the problem of accurately representing the
language 1tseli—the characters which are needed for dis-
playing and printing the written language—is by no means
trivial. Moreover, many countries have specific formats for
dates, currency, and the like.

Referring now to FIGS. 2A-B, a preferred system con-
figcured for National Language Support will now be
described. NLS system 200 includes the system 100 oper-
ably coupled to a language configurator 230 of the present
invention. More particularly, the language configurator 230
includes means whereby the system 100 may process data
objects 1n a manner which 1s appropriate for the language
conilguration of each object.

As shown 1 FIG. 2A, the language configurator 230
provides necessary support for a data object 201 (which
typically stores information in a particular language) so that
the data object may be appropriately processed by the
system 100. In general, data objects must rely upon a code
page (from code pages 247) and a translation resource file
(from resource files 245) 1n order for its language-specific
information to be interpreted properly.

As shown, the data object 201 1s preferably constructed so
that 1t embeds or stores a Language Driver Identifier 215 for
indicating the language support under which the file was
created (or last modified). In an exemplary construction of
the data file, for instance, the file may include a header
region or section 210 for storing a Local Language Driver 1D
(“Local LDID”); other general “housekeeping” information
may be stored 1n the header 210 as well. Actual information
or data for the data object 201, on the other hand, 1s stored
in a data region 220, such as in the form of a plurality of
sequential data records.

The language configuration which the system 100 cur-
rently operates under (i1.e., during the current session) is
identified by the language configurator 230, which maintains
an Active Language Driver ID (Active LDID) 235 for
referencing a Language Driver currently employed by the
system (i.e., for the current session). In this manner, the
Local LDID 215 may be compared against the Active LDID
235, thus enabling the system 200 to determine instances
where the system 1s mappropriately configured for a data
object about to be processed. As shown by the FIG. 2B, an
instance where a data object was created with a language
driver currently employed by the system (e.g., Active LDID
and Local LDID are set to English) requires no action. If, on
the other hand, there is a driver mismatch (e.g., Active LDID
set to English and Local LDID set to Danish), corrective
action 1s required. Appropriate action may include recon-
figuring the system, reconﬁgurmg the data object (e.g., effect
a new character mapping), ignoring the condition, or abort-
ing the requested operation. In a preferred embodiment, a
preferred 1nterface 1s provided for allowing a user to
(optionally) select the desired course of action.

Actual language configuration 1s effected through one or
more Language Drivers 240 which, 1n turn, selects the most
appropriate language configuration tables (from translation
resource files 245) and most appropriate character set(s)

10

15

20

25

30

35

40

45

50

55

60

65

3

(from code pages 247). As shown in particular detail, each
driver 241 of the language drivers 1s of a particular type
(identified with an LDID value) and references an appro-
priate resource file and an appropriate character set or code
page (including primary and secondary code pages). These
components of the system 200 will now be described in
oreater detail.

1. Code Pages

No one character set suffices for all data objects. For
instance, many European languages require more letters
than the standard 26 characters (A to Z) provided by English.
One approach to supporting additional letters 1s to store
them 1n the “extended” part of a computer’s character set. In
the IBM-standard PC character set, the “extended” portion
occupies character values from the numbers 128 through
255. Thus, these extended characters (for simplification,
referred to herein as the “extended ASCII” characters) may
be used for foreign language characters (such as an umlauted
“a”), as well as for other characters (e.g., box-drawing or
other special symbols).

Different collections of these character mappings are
arranged 1nto separate character sets. Also referred to as a
“code page,” “character repertoire,” or “character glyph
mapping,” a character set provides a table for relating the
binary character codes (including both single and multi-byte
ones) used by a program to keys on a keyboard or to the
appearance of characters on a display. (For simplicity of
description, the foregoing terms will be used
interchangeably.) Each code page is assigned an agreed-
upon identifier, such as a number (¢.g., 437). The computer’s
operating system and its hardware (computer, keyboard,
console, printer) are configured to operate properly with
certain code pages. In order for all these pieces of equipment
to function correctly, each needs to use the same code page
(at a given instance of time). Otherwise, a user might press
a key (keyboard device) and see a different character on the
screen (display device), or print information from the screen
only to see different characters printed on paper.

Under MS-DOS 5.0 (available from Microsoft Corp. of
Redmond, Wash.), the following three countries use code
page 437 as their default code page:

SECONDARY
COUNTRY PRIMARY CODE PAGE CODE PAGE
[nternational 437 850
English (U.K.) 437 S50
English (U.S.) 437 850

The following countries use code page 850 as their default
code page under DOS 5.0. (In previous versions of DOS, all
these countries used a different code page as their default.)

SECONDARY
COUNTRY PRIMARY CODE PAGE CODE PAGE
Belgium 850 437
Brazil 850 437
Denmark 850 865
Finland 850 437
France 850 437
Germany 850 437
[taly 850 437
Latin America 850 437
Netherlands 850 437

US 6,507,813 B2

9

-continued

SECONDARY
COUNTRY PRIMARY CODE PAGE CODE PAGE
Norway 850 865
Portugal 850 860
Spain 850 437
Sweden S50 437
Switzerland S50 437

The following countries do not use code page 437 or code
page 850 as their primary code page with DOS 5.0. They do,
however, all use 850 as their secondary code page.

SECONDARY
COUNTRY PRIMARY CODE PAGE CODE PAGE
Canadian-French 863 850
Czechoslovakia 852 850
Hungary 852 850
Poland 852 850
Yugoslavia 852 850

Switching code pages 1n DOS does not automatically
crcate the correct language tables 1nside application

software, nor does 1t act to switch or otherwise update data
files and other data objects. Moreover, when extended ASCII
characters are used, messages which make sense under one
code page may not be readable under another code page. In
application software, for instance, switching a code page
does not change the messages displayed by the program.
Instead, special characters used by one code page are
typically mapped into some appropriate alternate character
drawn from the new code page. Using code page 850, for
example, the character code 229 represents the character

0”. When read under code page 437, however, the very same
code will instead be considered a Greek sigma (0) character
and will not be allowed to function as an alphabetic char-
acter. Thus 1n a database application, the character cannot be
used to name objects, will not be properly handled by
character functions (e.g., dBASE LOWER() function), and
will not be included in the sort order (except as a graphic
symbol).

In addition to the foregoing problem, there are numerous
other problems with operating application software with an
incorrect code page (i.e., one having alphabetic tables that
do not match the current OS code page). Users can, for
example, enter characters that the application software will
not be able to handle properly. In such an instance, the
application may consider the characters as invalid alphabetic
characters. As a result, the application may not calculate
character/text string operations (e.g., UPPER() or LOWER(
)) correctly. Moreover, the system may not know how to
arrange these characters in alphabetical order. Existing data-
base files, indexes, forms, reports, and labels may appear
and behave differently, even in an unpredictable fashion,
depending on how they were designed.

Sharing a common code page 1s no guarantee ol compat-
ibility either. Users from different countries may have dif-
ferent language tables stored 1n language resource files of
the application. Consider, for example, users in France,
Germany, and Italy all using code page 850, yet employing
different language tables; 1n such an instance, ordered lists
show different results. As another example, applications
often convert names of files, ficlds, memory variables, and
the like to corresponding uppercase versions when working

10

15

20

25

30

35

40

45

50

55

60

65

10

with and storing them; in such an instance, case 1s not a
factor. If users 1nclude extended ASCII characters in such
names, since the uppercasing rules differ from country to
country, two distinct names 1n one country may be seen as
the same name 1n another country. As a final example, in
France, “fred” and “fréd” (i.e., “fr’+CHR(130)+“d”) may be
seen by programs (e.g., dBASE) as “FRED”. In Italy,
however, “fred” 1s seen as “FRED”, while “fréd” 1s seen as

“FRED” (i.e., “FR”+CHR(144)+“D”); in the US, the “¢&”
character would be treated as non-alphabetic, with the result
that “fréd” would not be able to function as an 1dentifier. All
told, code page compatibility 1s but one of many consider-
ations.

B. Resources: Language Configuration Tables

System 200 includes one or more translation resource
(.RES) files. Within each resource file are appropriate lan-
cguage coniiguration tables and a complete set of messages
for the target code page and translation. During system set
up, these files serve to configure the system to match the
user’s primary or secondary code page, as defined by
operating system (e.g., DOS 5.0).

Each resource file includes an 1dentifier for the code page
and locale for which it 1s intended. For a system employing,
code pages 437 and 850 as primary and secondary code

pages, for example, one resource file will include an iden-
tifier for 437 and another will include one for 850. In this
manner, a development group (particularly one charged with
translating) can easily decide what messages to include in
cach source file. In the U.S., for example, messages written
for code page 437 work fine under code page 850. In other
countries, however, messages written for one code page
might not make sense under another code page. In such an
instance, the resource file may contain a different version of
the messages.

In an exemplary embodiment (using the specific example
of a DBMS embodiment), a translation resource file contains
the following set of tables: several alphabetic tables, a
box-drawing (optional) table, and a SOUNDEX (optional)
table. Each will now be described 1n turn.

Alphabetic tables provide five basic tasks:

(1) Determining if a character is alphabetic. This informa-

tion 1s helptul, for example, for functions which operate
on alphabetic data (e.g., ISALPHA(), ISUPPER(),

ISLOWER(), the “A” picture format function, alphabetic
picture template symbols, and the like found in dBASE).

(2) Mapping a lowercase character into its uppercase equiva-
lent (and vice versa). Functions which require this infor-
mation include, for instance, dBASE UPPER(),
LOWER(), the “!” picture function, as well as some
picture template symbols.

(3) Ordering of alphabetic characters. This is needed to
SORT and INDEX data, for example, as well as for string,
comparisons.

(4) Ordering of two-letter combinations. In Spanish, for
instance, the two-letter combination of “ch” 1s ordered
after other two-letter combinations with “c” (i.e.,
HCZ?? 44

<“ch”<*“d”). This information 1s stored 1n a “two-to-
one table” (1.e., multi-letter combinations which “col-
lapse” for purposes of ordering).

(5) Ordering symbols that can be expanded to two letters. In
German, for instance, the character § (char code 225 in
code pages 437 and 850; char code 223 on Windows
ANSI/Latin-1) is appropriately treated as “ss” (i.e., a pair
of lowercase “s” characters) when sorting. This informa-
tion is stored in a “one-to-two table” (i.e., single letters
which “expand” for purposes of ordering).

The other exemplary resources include box-drawing table

and SOUNDEX tables. The former tells the system which

US 6,507,813 B2

11

characters to use for drawing boxes and lines (e.g., for user
interface). The latter tells the system what SOUNDEX

values to assign to extended ASCII characters; this infor-
mation is useful, for instance, for IBASE SOUNDEX() and

DIFFERENCE() functions. By default, these tables are
always used.

C. Default configuration: LANGTABLES Setting

In an exemplary embodiment, the system includes a
configuration or preference file 231 (ABASE CONFIG.DB
file) where users may specify system settings or “prefer-
ences.” To tell the system to use the alphabetic tables, the
following setting 1s entered in the configuration file:
LANGTABLES=0ON. Conversely, LANGTABLES=0OFF
will tell the system to employ a default (e.g., employing US
tables). During system operation, users are alerted whenever
they employ a data object (e.g., file or index) created under
one setting of the language table (LANGTABLES), while
the system 1s operating under another setting of the language
table. In this manner, the LANGTABLES setting provides a
quick method for switching to a default language resource.

By defaulting to a particular setting (e.g., US), the system
1s always able to provide a lowest common denominator
(i.c., the ability to default to a common set of data). The
advantage of this approach may be seen, for instance, 1n a
single version intended for two separate markets: the United
States and the United Kingdom. For the US/UK version, the
LDID stored 1n the resource file 1s preferably set to the UK
language driver ID. The US language driver ID (27) is not
inserted 1nto the resource file but, instead, 1s indicated by a
LANGTABLES OFF flag. In other words, with language
tables off the US LDID 1s mserted into data objects which
are created or modified, just as 1f the US LDID had been
stored as a default in the resource file; the stored LDID is
ignored. Moreover, the system does not rewrite the stored
LDID kept 1n the resource file but merely overrules its value,
by setting the active LDID to the value of 27 during each
session of the system 1n which language tables 1s set to off.
The operation of assigning the active LDID (which in the
case of language tables being off is the value of 27) may be
summarized by the following table.

ILocal
LANGTABLES Stored LDID Active LDID LDID Value
ON <stored LDID> <«stored LDID> <stored LDID>
OFF <stored LDID> <default LDID> <default LDID>

where, for example, the default LDID 1s US (i.e., 27).

During a session of the system with language tables off,
when a database file or index with a local ID of 27 1s
encountered, there 1s no language driver mismatch; both the
active version of the system and the file or index have
matching LDID values of 27. When a session of the system
with language tables enabled encounters a database file or
index with a local LDID of 27, there 1s a language driver
mismatch (since it is not possible for the session to have an
active LDID of 27 and also to have language tables on).

D. Language Drivers
1. Introduction

“Language drivers” are provided to correctly handle char-
acteristics of a given language. The drivers reference a
character set and a collection of tables describing the rules
for that character set. For instance, language drivers include
information about character sets (code pages), sorting
orders, upper case and lower case rules, which characters are
alphabetic, and what double-letter combination 1t 1s to

10

15

20

25

30

35

40

45

50

55

60

65

12

accept. While the language driver for two countries may
actually use the same code page, they are not necessarily the
same. For mstance, French, German, and Italian may all use
code page 850 (or 437), yet employ different alphabetic
tables, since their sorting orders differ. Language drivers are
supported with language customization tables (described
above) and must be used with the correct code page (from
the operating system).

For those readers who may be unfamiliar with the intri-
cacies of translating information from one language to
another, the following will serve as an example. Characters
that are alphabetic in one code page XXX (e.g., 850) may
not be alphabetic in another code page YYY (e.g., 437).
Thus, a user trying to employ an index created under XXX,
while running under YYY, may see what looks like graphic
characters 1n the sorted list. Conversely, 1f the user creates a
new 1ndex under YYY, the odd looking graphic characters
end up (are sorted to) the end of the collation list, as they are
not considered alphabetic characters by code page YYY.

This can cause information records to be lost, particularly

if the user 1s employing a filter which 1s limited to a range
of character values (e.g., dBASE SET FILTER TO

command). For instance, under code page 850, character
code 229 plus “laf” falls within a range of records from

greater or equal to “O” and less than or equal to “P” (e.g.,
dBASE command SET KEY TO RANGE “0O”, “P”). Under

code page 437, however, 1t would no longer be 1n this range,
since 1t would be near the bottom of the ordered list.
Moreover, as users may include extended-ASCII characters
in the names of fields, files, memory variables, menus,
pop-ups, and the like, if these characters are no longer valid
in another code page, the program will no longer function
when a different code page 1s employed. For 1nstance, a field
name of character code 229 plus “laf” works fine under code
page 850; however, 1f this field 1s used 1n a key expression,
then when a 437 code page user attempts to load the
database {ile, the system will complain of an illegal key
expression (with a failure to open the database file).

2. Language Driver Identifier (LDID)

The present mvention introduces the concept of a lan-
cuage descriptor embedded within objects which may be
language dependent. In a preferred embodiment, the descrip-
tor contains suificient mmformation to convey locale mfor-
mation for an object. Alternatively, particularly for those
embodiments having data objects constrained by downward
compatibility or storage space considerations, the descriptor
is a Language Driver Identifier (LDID) of the present
invention. The LDID may be embodied 1n the form of a
system-comparable unit, such as an ID byte which refer-
ences an agreed-upon set of values (e.g., locale lookup
table).

For purposes of clarity, the discussion which follows will
focus on use of the LDID descriptor embodied as a byte
identifier. Those skilled 1n the art will appreciate that a
descriptor or identifier of the present invention may be
embodied 1n other forms, such as a multi-byte i1dentifier, a
text string, or even as a variable-length data member (e.g.,
identifier data record having a record header and body).
Regardless of its particular form, however, the descriptor
need only be capable of being stored 1n desired locations to
convey Information about the language driver that was in
use when data objects were created or modified.

The LDID of the present invention allows the system to
intelligently process data objects created or modified under
onc language driver with those created or modified by a
different language driver. In the event of incompatibilities,
the system provides error handling routines, including facili-
ties for warning users of incompatible or otherwise illegal
operations.

US 6,507,813 B2

13

In the simpliest design, there 1s a one-to-one correspon-
dence between a language driver and 1ts LDID. For example,
the language driver for the United States (DB437US) may
be 1dentified with an LDID tag of 27. In a more complex
embodiment, it may be desirable to include subtypes and/or
some redundancy. In a preferred embodiment, LDIDs may
be defined for locales (having available language drivers) as
shown by the following header file (excerpt):

/f

// UNIQUE LANGUAGE DRIVER ID

/f

// Paradox

#define pxUS 1 // cp437

#define pxINTL 2 // cp437

#define pxJAPANESE 3 // Shift-JIS

#define pxNORDAN 4 // cp865

#define pxNORDAN4 5 // cp865

#define pxSWEDFIN 6 // cp437

// dBASE

#define dbARABIC 7 //

#define dbDANISH 8 // cp865

#define dbDUTCH 9 // cp437

#define dbDUTCH?2 10 // cp850

#define dbFINNISH 11 // cp437

#define dbFINNISH?2 12 // cp850

#define dbFRENCH 13 // cp437

#define dbFRENCH2 14 // cp850

#define dbGERMAN 15 // cp437

#define dbGERMAN?2 16 // cp850

#define dbITALIAN 17 // cp437

#define dbITATLIAN?2 18 // cp850

#define dbJAPANESE 19 // Shift-JIS

#define dbSPANISH?2 20 // cp850

#define dbSWEDISH 21 // cp437

#define dbSWEDISH2 22 // cp850

#define dbNORWEGIAN 23 // cp865

#define dbSPANISH 24 // cp437

#define dbUK 25 // cp437

#define dbUK2 26 // cp850

#define dbUS 27 // cp437

#define dbFRENCHCAN 28 // cp437

#define dbFRENCHCAN? 29 // cp850

#define dbFRENCHCAN3 30 // cp863

#define dbCZECH 31 // cp852

#define dbCZECH?2 32 // cp867

#define dbGREEK 33 // cp437 (Modified)
#define dbHUNGARIAN 34 // cp852

#define dbPOLISH 35 // cp852

#define dbPORTUGUESE 36 // cp860

#define dbPORTUGUESE?2 37 // cp850

#define dbRUSSIAN 38 // cp866

// Borland

#define BorlDANISH 39 // Latin-1 (ANSI/Windows)
#define BorlDUTCH 40 // Latin-1 (ANSI/Windows)
#define BorlFINNISH 41 // Latin-1 (ANSI/Windows)
#define BorlFRENCH 42 // Latin-1 (ANSI/Windows)
#define BorlCANADIAN 43 // Latin-1 (ANSI/Windows)
#define BorlGERMAN 44 // Latin-1 (ANSI/Windows)
#define BorlI[CELANDIC 45 // Latin-1 (ANSI/Windows)
#define BorlITALIAN 46 // Latin-1 (ANSI/Windows)
#define BorlJAPANESE 47 // Latin-1 (ANSI/Windows)
#define BorINORWEGIAN 48 // Latin-1 (ANSI/Windows)
#define BorlSPANISH 49 // Latin-1 (ANSI/Windows)
#define BorlSPANISH?2 50 // Latin-1 (ANSI/Windows)
#define BorlSWEDISH 51 // Latin-1 (ANSI/Windows)
#define BorlUK 52 // Latin-1 (ANSI/Windows)
#define BorlUS 53 // Latin-1 (ANSI/Windows)
#define BorlPORTUGUESE 54 // Latin-1 (ANSI/Windows)
#define dbUS2 55 // cp850

#define BorlINTL 56 // Latin-1 (ANSI/Windows)
// Paradox

#define pxINTL?2 57 // cp850

#define pxSPANISH 58 // cp437

#define pxICELAND 59 // cp861

// Paradox WIN

#define pxwINTL 60 // Latin-1 (ANSI/Windows)
#define pxwINTL2 61 // Latin-1 (ANSI/Windows)

10

15

20

25

30

35

40

45

50

55

60

65

14
-continued
#define pxwSPANISH 62 // Latin-1 (ANSI/Windows)
#define pxwSWEDFIN 63 // Latin-1 (ANSI/Windows)
#define pxwNORDAN4 64 // Latin-1 (ANSI/Windows)
// dBASE
#define dbNORWEGIAN?2 65 // cp850
#define dbDANISH?2 66 // cp850
#define dbICELANDIC 67 // cp861
#define dbICELANDIC2 63 // cp850
#define dbTURKISH 69 // cp853
// ROE 100-120
#define pxCZECH 100
#define pxCZECH2 101
#define pxPOLISH 102
#define pxRUSSIAN 103
#define pxHUNGARIAN 104
#define pxGREEK 105
#define pxGREEK2 106
#define pxHEBREW 107
#define pxARABIC 108
#define pxSLOVENE 109
#define pxI'URK 110
#define pxXTURK?2 111
#define pxI'URK3 112
#define pxBULGARIAN 113
#define pxFARSI 114
#define pxROMANIAN 115
#define pxwARABIC 116
#deline pxwHEBREW 117
#define pxHEBREW?2 118
#deline pxwHEBREW?2 119

As shown, a locale may be i1dentified with variations, such
as Turk, Turk2, and Turk3. Such variations or subtypes may
be needed because a given locale may use different code
pages or use different sort orders (e.g., dictionary sort versus
ASCII sort). There is no requirement that the identifier
information be of a particular format. The information may
be, for instance, embedded as a text string within a data
record or the like.

The preferred embodiment of the local LDID in the
header section of a data file 1s illustrated 1n FIG. 2C. As
shown (e.g., for a dBASE .DBF file), the Identifier may be

positioned at a known location(s) in the file (e.g., byte offset
29 for the .DBF file). The Identifier, in turn, references a
lookup table which identifies the appropriate language driver

for the file.
3. Uses of LDID

Each installed version of the system 200 includes a
preferred or default Identifier (e.g., ID byte), such as may be
stored in the above-described resource file (e.g.,
DBASE1.RES of dBASE). The Identifier, which is referred,
to as the “stored Language Driver ID (“stored LDID”),
specifles the language driver for which that version of
system has been configured. In this manner, it may be
distinguished from and compared to corresponding i1denti-
fiers embedded within data objects themselves.

When a session of the system is initiated (i.e., user
instructs system to load and begin operation), the stored
LDID 1s read from the resource file. Its value 1s assigned to
the “active Language Driver ID” for that session of the
system. The user may override the active Language Driver
ID (e.g., by setting LANGTABLES to OFF), whereupon the

stored LDID value 1s overridden with a special value of 27.

The active LDID, 1n turn, 1s written to data objects which
the system “touches” (i.e., creates or modifies). Again using
the present example of dBASE DBMS embodiment, the
system writes an LDID byte into the following database data
objects:

US 6,507,813 B2

15

File Type File Extension Location

Data table .DBF 0x 1D

Single index NDX 0 x OB

Multiple index MDX 0 x 1F 1n header

(0O x OB in each tag header)

In this fashion, the byte idenfifier indicates the exact lan-
guage driver which was employed when the file (or tag) was
created or modified. To distinguish it from the “stored
Language Driver ID” (“stored LDID”), this locally stored
identifier 1s referred to as the “Local Language Driver 1D”
or “Local LDID” 215.

In a preferred embodiment, the system provides for down-
ward compatibility for systems which may not be language

driver aware. In particular, a user-settable command (e.g.,
dBASE-style SET command) is provided for disabling

LDID checking. The default 1s for SET LDCHECK to be set
to ON. To disable the check, SET LDCHECK to be set to
OFF. The command may be issued at startup (e.g., in
CONFIG.DB of dBASE); alternatively, the command may
be specified as an argument to the system (e.g, a dBASE
SET command).

In a preferred interface of the system, the current state of
checking 1s displayable to the user and managed through use
of an internal flag (zero_ ldid_msg). Each development
group charged with translation may set this flag in the
resource file to tell the system whether to show error
messages when users load files that have a local LDID which
is not set (e.g., 1s set to zero). When the flag’s value is 0, for
instance, no message is displayed when a data object (e.g.,
database file or index file) has a local ID of zero. When the
value 1s 1, however, instances of a local ID of 0 1s 1dentified
for the user. Operation of the internal flag (zero_ 1did__msg)
1s described 1n further detail hereinbelow. Whether or not the
warning message appears, the local LDID of zero 1s pret-
erably updated (replaced by the active LDID).

Exemplary Uses for Language Configuration

The following describes exemplary uses of the tools
described 1n the previous section for managing language
configuration tasks. Again for purposes of illustration and
not limitation, the description will focus on techniques
operative 1n a database management system embodiment.

A. Install: Configure resource file

In an exemplary embodiment, application software 1s
“installed” on the system by INSTALL, which itself 1s a
program. In addition to configuring a system towards gen-
eral preferences of a user, installation may be employed for
coniiguring an application for the user’s choice of a default
code page.

The default language driver for the system may be estab-
lished by one of several ways. The system may allow the
user to select a preferred locale from a list of available
drivers, with a default selection provided. Alternatively, the
country configuration of the current operating system may
be determined (e.g., from looking at the active code page, or
from calling MS-DOS Get/set country information
services), with a language driver. appropriate for the country
being automatically selected. If an appropriate driver is not
available, the user 1s warned.

B. Checking for Correct Code Page
1. Reconciling Application and OS Code Pages

It 1s possible, on occasion, that upon execution of an
application, the code page for the application (as specified in
the application’s resource file) does not correspond to the

10

15

20

25

30

35

40

45

50

55

60

65

16

code page for the operating system. Thus, mm a preferred
embodiment, 1t 1s desirable to detect such instances and
notify the user (e.g., with the error message, “System is not
configured for current code page”). It is also desirable to
detect instances where users have switched to an alternate
code page for their country. If a user 1n the United States has,
for example, switched to code page 850, the situation should
be detected and (optionally) reported. When the active code
page does not match that of the application, therefore, a user
may be given the option of changing the code page of the OS
to match that of the application or, alternatively, change the
code page of the application (e.g., through an “install” or
“config” utility) to match that of the active OS code page.
2. Loading Application and Active LDID

When an application is loaded (from mass storage into the
system memory for execution by the processor), the appli-

cation first checks the LANGTABLES setting, 1if LANG-
TABLES 1s off, the application sets the active LDID to the
default value (e.g., a value of 27). Otherwise, the program
sets the active LDID for the current session to the value of
the stored LDID 1n the resource file. Employing the above-
described zero__ldid__msg flag, the application when loaded
may also check a status flag (byte) in the resource file for
determining whether to suppress error messages when a user
opens files with a local LDID of zero.

C. Example: Opening Database Files

The following example will 1llustrate application of the
principles of the present mvention for the operation of
opening a lile, such as a database file. Referring now to
FIGS. 3A-B, a preferred method 300 of the present inven-
tion for processing a request to open a file 1n a system having
National Language Support includes the following steps. At
step 301, a request 1s received by the system for opening a
file. For example, 1n the 1nstance of a database application,
an open or use (e.g., dBASE USE) command may be issued
for opening an existing database file. As 1s known 1n the art,
a request to open or otherwise obtain a handle to a disk file
1s typically done in conjunction with a particular access
mode, that 1s, a file can be opened 1n different ways. For
instance, a file may be opened for “read-only” access. In the
instance where one needs to both read to and write from a
file, a “read/write” access mode or type 1s appropriate. As
still yet another type of access, one may need to only append
information to an existing file (i.e., write new information to
the terminal portion of that file); “append” access may be
treated as if the existing data 1s read-only. Access mode 1s
important as 1t determines the ability of the system to touch
(create/modify) the data object.

After receiving a request to open a file 1n step 301, the
method proceeds to step 302 to determine whether language-
driver checking is enabled. If language-driver checking has
not been enabled (no at step 302), then the method proceeds
to step 306 to open the data file in a normal fashion (i.e.,
without further checking), using the specified access mode.
If, on the other hand, checking has been enabled (yes at step
302), then at step 303 the language driver identifier (LDID)
in the data file 1s read. In a preferred embodiment, the
identifier will be stored 1n the data file at a position where 1t
may be conveniently accessed upon first reading the file. The
identifier may be stored, for instance, within a header of the
data file. Those skilled 1n the art will appreciate, however,
that the 1dentifier may be positioned at a different location or
locations within the data file. In the mstance of a data file
comprising a plurality of data regions (either logically or
physically discrete), the language driver identifier may be
stored within any organizable unit of data where language
conflguration 1s important, including within selected records

US 6,507,813 B2

17

or fields (individually or by group) and the like.
Alternatively, the 1dentifier may be stored 1n a footer to the
file but 1n such a case should preferably be read before
processing other mnformation contained within that file 1s
undertaken.

At step 304, an optional step 1s added to maintain back-
wards compatibility (such as for data files created by sys-
tems (typically, older ones) which do not know about
language driver information. If meaningful information is
not stored by the LDID (e.g., LDID=NULL), then the
method proceeds to step 305 for special processing of what
is determined to be an non-language aware (older) data
object.

At step 305, one of four paths may be pursued. In the case
that the warning (“no driver”) message has been disabled
(zero__ldid__msg=0), and the specified access mode is read-
only, then the method proceeds to step 311 to suppress any
warning message, complete the file open operation as read-
only access, and leave the local LDID (i.e., the ones stored
in the data file) as zero. In the case of the message being
suppressed and the specified access mode 1s read/write, the
method proceeds to step 312 to suppress any warning
message, continue to open the file with read/write access,
and set the local LDID to the value of the active LDID (thus
updating the file for language configuration).

The remaining two case arms of step 305 proceed as
follows. In the case of the warning message being enabled
(zero__ldid__msg=1) and read-only access, the method pro-
ceeds to step 313 to display a warning message for the data
file. As shown by FIG. 4A, for example, a dialog box 410
may be displayed on the screen device for conveying this
information and asking the user whether to proceed with
viewing (i.e., read-only access) the file employing the cur-
rent language driver (i.e., the one specified by the active
L.DID). Thus as shown by the dialog box 410, the user may
clect to proceed at this point or cancel the operation
(whereupon the file is not opened). If, on the other hand, the
warning message is enabled (zero_ ldid msg=1) and the
specifled access mode 1s read/write, then the method pro-
ceeds to step 314 to display a warning message, such as
shown by dialog box 420 of FIG. 4B. As shown, the user 1s
informed that no language driver has been specified for the
data file. The user 1s queried whether he or she wishes to
open the file (with read/write access) and assign the current
language driver to it (1.e., update the local LDID in the file
to the active LDID). These operations may be summarized
by the following table:

zero__ldid__msg Mode Action

0 R/O Do NOT show the R/O no

driver message; open file R/O;
leave local LDID 1mn .DBF as
Zero

do NOT show the R/W no driver
message; open file R/W; set
local LDID 1n .DBF to match
active LDID

show the R/O no driver
message; 1f file 1s used,

leave local LDID 1n .DBF as
Zero

show the R/W, no driver
message; if file 1s used, set
local LDID 1n .DBF from active
LDID

1 R/O

If the LDID 1dentifier 1s set to a valid value, at step 304,
then the method proceeds to step 321. As shown 1n FIG. 3B,
at step 321 the method compares the LDID of the data file
(local LDID) to the current or active LDID. If the two are

10

15

20

25

30

35

40

45

50

55

60

65

138

identical or compatible at step 322, then the method may
proceed to step 323 to open the file per the specified mode;
thus at this step, the method has determined that the system
can process the language-dependent data file without error.
If, on the other hand, the LDIDs are incompatible (no at step
322), then the method branches to step 324 to handle the
exception. At step 324, for mstance, the system may auto-
matically translate the data file mto a format which 1is
compatible with that currently employed by the system;
alternatively, the system may be automatically set to a
language driver which is appropriate (compatible) for the
data file. If desired, the user may assume some responsibility
for the process. As shown by dialog box 430 of FIG. 4C, for
example, the user may manually instruct the system to abort
or cancel the operation. The user 1s also given the option to
change the existing setup (e.g., setting the system language
driver to one which is compatible with that of the data file).
Finally, the user may instruct the system to proceed, typi-
cally having changed the setup to compatible drivers, or
even leaving the drivers as incompatible (e.g., in the instance
where the user knows beforehand that the mnformation to be
processed within the data file 1s 1itself not language
dependent). If the system is to proceed (either automatically
or manually), then at step 325 the method branches to step
323 to open the file per the specified mode. Otherwise (no
at step 325), the method concludes without completing the
file open operation.

In the instance of a multi-national organization with
distributed database files, it 1s desirable to ensure that the
LDID replacing the zero-stored LDID 1s the one most useful
to the organization as a whole. For example, 1f the company
does ninety percent of 1ts business in France, Germany, and
Italy, 1t would be awkward 1if the first user of an important
pre-existing file (1.e., one having LDID=0) were a sales
representative from Poland. Specifically, if the zero-stored
LDID 1s replaced by the Polish LDID, then subsequent
multi-national users who attempt to open that file will
receive a warning that the language drivers do not match;
only Polish users would not get this warning. Moreover, 1t
would be awkward 1f this same organization let the first user
of the file be someone with language drivers disabled (i.e.,
LANGTABLES set to OFF), if most of the users of the
organization have enabled language drivers
(LANGTABLES set to ON). In such an instance, most users
would see a mismatched message. One approach to the
problem 1s to select the best common denominator—a code
page (such as 850) that contains most of the accented
characters needed. Each language driver includes not only a
code page but also the above-mentioned country-speciiic
tables. Whether a French 850 or an Italian 850 language
driver 1s more appropriate for its data processing needs as a
whole would be for the company to decide.

The action which the system undertakes when the local
L.DID has been previously set (i.€., is not equal to Zero) may
be summarized by the following table:

When Local LDID 1s not Zero

Active LDID
Matches Stored

LDID? Action
YES open file with no message
NO show mismatch message

if file 1s used, do not
change; local LDID 1n
.DBF

US 6,507,813 B2

19

D. Example: Interrelated Files

Referring now to FIGS. 5A-D, application of the prin-
ciples of the present mvention to the management of lan-
cuage configuration for interrelated files will now be
described. Often 1n the use of information or data files, one
file will be dependent upon information stored in another. As

shown 1 FIG. SA, for example, an index file 270 (e.g.,
dBASE MDX or .NDX file) must be compatible with its

target table file 260 (e.g., dBASE .DBF file). The problem is
compounded by additional interrelated data objects, such as
a report object 280 for the table 260.

Consider the following problem. When an index file 1s
created under one language driver and then employed under
another, for instance, the order of the data 1n the table as
specified by the index file may be erroneous (since the
collation tables of the two differ). Other features of the
system which depend upon a correct relationship between
the two files may also be corrupted. If a user attempts, for

instance, to view information in the table with a particular
filter condition in place (e.g., SET FILTER TO

LASTNAME=“SMITH”), the result obtained may not be as
expected. Other language-dependent operations (e.g., con-
vert to uppercase, convert to lowercase, Soundex, 1s alpha-
numeric character, and the like) may give unexpected results
under the active language driver. Finally, under such cir-
cumstances the system may not be able to correctly update
the index when a record 1s modified or added to the table,
especially 1n those 1nstances where the index key expression
contains special characters. Thus, 1t 1s desirable to 1dentily
such instances so that they may be correctly handled.

A general approach for dealing with such an 1nstance 1s as
follows. The mismatch between the interdependent files 1s
identified by comparing the LDIDs for each. For instance,
database table 260 may store a first Local LDID 2635, index
file 270 may store a second Local LDID 275, report file 280
may store a third Local LDID 285, and so forth. Before a
dependent file 1s employed, 1ts LDID 1s checked against that
of the data object for which the dependent file 1s employed.
In this manner, incompatibilities between interrelated files
may be trapped and processed accordingly.

For many dependent files, such as the index file, the file
may be regenerated or rebuilt from a master file (e.g., by
rebuilding the index file from the table according to the
indexing criteria); thus, the dependent (index) file may be
automatically converted into a file which employs a com-
patible language driver. Alternatively, the system may dis-
play manual options for the user to reindex the file, cancel
the operation, or the like.

FIG. 5B 1llustrates the use of separate regions for storing,
different language-dependent information within a single
file. In particular, system 285 includes a multi-region data
object 290. As before, the data object includes a header
region 291 and a data region 293, with the former storing
(optionally) a local LDID 292. The data region 293, in turn,
includes multiple logical files or data regions 294, 296, 298,
cach of which may store language-dependent information.
The first data region 294, for instance, may store information
created or modified using an English language driver; hence,
its local LDID 295 stores an identifier for that particular
driver. Similarly, the other regions 296, 298 may store
language-dependent information created with other lan-
cuage drivers. Region 296 may store information in French,
with 1ts local LDID 297 storeing a reference to the French
language driver. Region 298, on the other hand, may store
German information, with its local LDID 299 storing a
reference to the German language driver. Each region is

10

15

20

25

30

35

40

45

50

55

60

65

20

arranged (e.g., with record tags) so that it may be accessed
as a logically separate object. In this manner, the system 100
may select one or more data regions from the object 290 for
use with the active language driver of the system (as selected
from drivers 240 with the active LDID 230). Moreover, a
single file may store multiple copies of the same
information, with each copy storing the information under a
particular language driver.

In FIG. 5C, the concurrent use of multiple active language
drivers 1s 1llustrated. System 350 operates simultaneously on
data objects created or modified with different language
drivers. For 1nstance, a first data object 360 may be a set of
programming instructions (¢.g., dBASE .PRG file) which
were created under a first language driver (e.g., English).
The data object 360 may direct the system 100 to perform
some operation on the other data objects. The data object
360 may include, for example, the command to index a table
(data object 365) to a particular index file (data object 368).
Although the instructions (from object 360) are 1 a par-
ticular language, English in this example, there 1s no need
for the targets of these instructions to also be compatible
with that language. Instead, the system 100 need only
“understand” (i.e., apply the correct driver to) the data object
360 so that 1t may carry out the desired operations on data

objects 3635, 368.

This 1s achieved as follows. The data object 360 stores a
local LDID 361 which 1s matched to a first active LDID
230a. Data objects 365, 368 (which stored their respective
local LDIDs 366, 369) are matched with a second LDID
230b. In this fashion, the system 100 may correctly “talk to”
(i.e., process) each data object with its appropriate language
driver (selected from drivers 240 with the respective active
LDID). Although the system 350 illustrates the simultaneous
use of a pair of active LDIDs, those skilled in the art waill
appreciate that multiple active LDIDs may be employed 1n
the fashion just described to achieve concurrent processing
for a multitude of language-dependent data object, each of
which may have been created or modified with a different
language driver.

Referring now to FIG. SD, a method of the present
invention for processing language-dependent interrelated
files will now be described. The method 500, which empha-
sizes operation of system 250, includes the following steps.
At step 501, the system receives a request to “open” the
dependent file, such as when a user accesses a database file
having an associated index file. At step 502, the system
determines whether language-driver checking 1s enabled
(e.g., LDCHECK is ON). If checking has been disabled (no
at step 502), then the index file is opened without further
checking at step 506, and the method concludes. Otherwise
(yes at step 502), the method checks the value of the local
LDID stored in the index file (e.g., such as stored in the
header of an . MDX or .NDX file). At step S04, if the index
file is not language-driver aware (LDID=0), then the method
proceeds to step 5035 for providing backwards compatibility
(for indexes created under older systems). At step 505, for
the case of LDID message being disabled (zero_ Idid_ msg=
0), the method proceeds to step 511 to open and use the
index file but without a warning (“no driver”) message being,
displayed. Upon the first update (write operation) to the
index file, the local LDID 1s updated to the active LDID. An
index file may be written to, for instance, when its key
expression is modified, a tag’s key expression 1s modified (in
the 1nstance of a multi-tagged i1ndex file, such as
dBASE.MDX), a new tag is created, a tag is deleted, or the
user 1ssues a command to “reindex” the table. In the instance
of a multi-tagged 1ndex file, the value of the active LDID
also replaces the zero value of the LDID 1n each tag header.

US 6,507,813 B2

21

If, on the other hand, the zero_ ldid_ msg tlag 1s enabled
(indicating that warning messages are desired), then the
method proceeds to step 513. At step 513, the system 1ssues
a warning to the user that the index file about to be opened
does not have an assigned language driver. As shown 1n FIG.
6A, for example, a dialog box 610 may be displayed with
this information. As 1s also shown, the user 1s offered options
on how the system should proceed. If the user chooses
“cancel”, the index file 1s not opened; actual processing of
the corresponding table file (without applying the index)
may continue if desired. As a second alternative, the user
may sclect a “reindex” option, in which case the index file
is reindexed (rebuilt); at this point, the value of the active
LDID 1s written to the local LDID 1n the index file’s header.
The value of the active LDID i1s written to the header of each
index tag. In the instance of a multi-index file ((MDX), all
the indexes 1n the file are updated with the active language
driver. Any tag header which includes a zero value for the
LDID 1s updated with the value of the active LDID. As a
third alternative, the user may instruct the system to use the
existing 1ndex {ile. In a preferred method of the present
imnvention, the index file 1s not reindexed, but nevertheless
the value of the active LDID 1s still written to the local LDID
header and tags (as described above). This third option
provides flexibility for those users who know that the
existing indexes are acceptable and do not wish for the
system to take time to regenerate them. The easiest approach
1s of course to always choose “reindex”.

The behavior for local LDID values of zero 1s summa-
rized 1n the following table:

When Local Index LLDID 1s Zero

zero__ldid__msg Action

0 Do not show “no language driver”
message; set local LDID 1in .MDX or NDX
header to match active LDID; set all
local LDIDs 1n tag headers to match
active LDID

1 Show “no language driver” message; if
file used, set local LDID 1n .MDX or
NDX header to match active LDID, also
set all local LDIDs 1n tagheaders to
match active LDID

If the local LDID 1s not zero at step 504, then the index
file has already been modified by a language-driver aware
system. In such a case, the system may compare the local
LDID with the active LDID 1n a manner similar to that set
forth in FIG. 3B (steps 321-325 of the method 300). The
local LDID and the active LDID are compared (step 321). If
the two match (step 322), then the current session of the
system 1s running with the same language driver which was
used to create or modily the index file. In such a case, the
index file 1s simply opened and-employed with its corre-
sponding database table file at step 323.

If, on the other hand, the non-zero local LDID 1s not equal
to the active LDID, then an LDID mismatch results (no
match at step 322). An LDID mismatch results when the
language driver originally used to process the index file
differs from the language driver 1n the current session of the
system. Because this mismatch can cause several problems
(described above) it is trapped by the system (step 324). In
a preferred embodiment, a language driver incompatibility
dialog box 620 1s displayed to the user for indicating the
incompatibility. As shown 1n FIG. 6B, the user may instruct

10

15

20

25

30

35

40

45

50

55

60

65

22

the system 1n how to proceed. If the user chooses “cancel”,
then the mndex file 1s not opened and the operation terminates
(or optionally continues without an index) as described
above for step 513. If, on the other hand, the user selects the
“reindex’” option, the index file 1s regenerated, with the value
of the active LDID written to the local LDID 1n the index
file’s header. Again (as described above for step 513), the
value of the active LDID 1s written to the header of each
index tag. In the instance of a multiple index {ile, all of the
indexes 1n the file are updated with the active language
driver identifier. The behavior for local LDID values which
are not zero may be summarized by the following table:

When Local Index LDID 1s not Zero

Active Index LDID
Matches Stored

LDID? Action
YES open file with no message
NO show index mismatch message;

if file reindexed, set local
LDID in .MDX or .NDX header to
match active LDID, also set

all local LDIDs in tag headers
to match active LDID

While the invention 1s described in some detail with
specific reference to a single preferred embodiment and
certain alternatives, there 1s no intent to limit the mnvention
to that particular embodiment or those specific alternatives.
For instance, while the preferred embodiment employs a
byte-length 1dentifier, a variety data types may serve in the
manner of a descriptor of the present 1invention, mcluding
use of a self-contained locale descriptor (i.e., embedding
necessary locale information within the data object). For
those embodiments constrained by compatibility or storage
space, the descriptor may be embodied in the form of a
system-comparable unit, such as an ID byte which refer-
ences an agreed-upon set of values (e.g., locale lookup
table). Thus, the true scope of the present invention is not
limited to any one of the foregoing exemplary embodiments
but 1s mstead defined by the following claims.

What 1s claimed 1s:

1. In a computer system, a method for storing National
Language Support (NLS) identifiers in data objects created
under different NLS configurations, the method comprising:

(a) defining a plurality of identifiers for indicating differ-
ent NLS configurations;

(b) assigning one of said identifiers indicating an active
identifier of the system to data objects created or
modified by the system, said active identifier specilying
the NLS configurations of the system when the data
objects were created or modified by the system;

(c) storing the assigned identifier in each data object
created or modified by the system as a local 1dentifier
of the data object, whereby the object includes infor-
mation mdicating a specific NLS configuration of the
system when the object was created or modified;

(d) receiving a request to process a new data object; and

(¢) determining if the new data object may be appropri-
ately processed by the system by comparing the local
identifier of the data object to the active 1dentifier of the
system;

wherein each identifier references at least one character
set and at least one language configurations table.

US 6,507,813 B2

23

2. The method of claim 1, wherein each 1identifier 1s 1n the
form of a system-comparable unat.

3. The method of claim 1, wherein each 1dentifier 1s in the
form of a byte (8-bit) data member.

4. The method of claim 1, wherein the identifier stored 1n
cach data object 1s positioned at a known location 1n each
data object.

S. The method of claim 1, wherein at least one of the data
objects is a database file, and wherein step (c) includes
storing the assigned 1dentifier at offset location Dx1D 1n the
database file.

6. The method of claim 1, wherein at least one of the data
objects 1s a single-index file, and wherein step (c¢) includes
storing the assigned 1dentifier at offset location OxOB 1n the
single-index file.

7. The method of claim 1, wherein at least one of the data
objects is a multiple-index file, and wherein step (c) includes
storing the assigned 1dentifier at offset location Ox1F in the
multiple-index file.

8. The method of claim 1, wherein each identifier specifies
a language driver by storing a value selected from one of:

Language Driver

1 US

2 INTL

3 JAPANESE
4 NORDAN
5 NORDAN4
0 SWEDFIN

wherein the language driver 1s used for NLS configurations.
9. The method of claim 1, wherein each identifier specifies
a language driver by storing a value selected from one of:

Value Language Driver
7 ARABIC
8 DANISH
9 DUTCH
10 DUTCH?2
11 FINNISH
12 FINNISH2
13 FRENCH
14 FRENCH2
15 GERMAN
16 GERMAN?2
17 [TALIAN
18 [TALIAN2
19 JAPANESE
20 SPANISH2
21 SWEDISH
22 SWEDISH?2
23 NORWEGIAN
24 SPANISH
25 UK
26 UK2
27 US
28 FRENCHCAN
29 FRENCHCAN?
30 FRENCHCANS3
31 CZECH
32 CZECH?2
33 GREEK
34 HUNGARIAN
35 POLISH
36 PORTUGUESE
37 PORTUGUESE2
38 RUSSIAN

where the language driver 1s used for NLS configurations.

10

15

20

25

30

35

40

45

50

55

60

65

24

10. The method of claim 1, wherein each 1dentifier

speciflies a language driver by storing a value selected from
one of:

Value Language Driver
39 DANISH
40 DUTCH
41 FINNISH
42 FRENCH
43 CANADIAN
44 GERMAN
45 [CELANDIC
46 [TALIAN
47 JAPANESE
48 NORWEGIAN
49 SPANISH
50 SPANISH?2
51 SWEDISH
52 UK
53 US
54 PORTUGUESE
55 Us2
56 INTL
57 INTL2
58 SPANISH
59 [CELANDIC
60 INTL
61 INTL2
62 SPANISH
63 SWEDFIN
64 NORDAN4
65 NORWEGIAN?2
66 DANISH?2
67 [CELANDIC
68 [CELANDIC2
69 TURKISH
100 CZECH
101 CZECH2
102 POLISH
103 RUSSIAN
104 HUNGARIAN
105 GREEK
106 GREEK2
107 HEBREW
108 ARABIC
109 SLOVENE
110 TURK
111 TURK2
112 TURKS3
113 BULGARIAN
114 FARSI
115 ROMANIAN
116 ARABIC
117 HEBREW
118 HEBREW?2
119 HEBREW?2

wherein the language driver 1s used for NLS configurations.

11. A computer system storing National Language Sup-
port (NLS) identifiers in data objects created under different
NLS configurations, the system comprising:

(a) a computer having a processor and a means for storing
the data objects;

(b) means for defining a plurality of identifiers indicating
different NLS configurations;

(c) means for assigning one of said identifiers indicating
a current NLS configuration of the system to each data
object created or modified by the system, wherein the
assigned 1dentifier specifies the NLS configuration of

the system when each data object was created or
modified by the system;

US 6,507,813 B2

25

(d) means for storing the assigned identifier in each data
object created or modified by the system, whereby the
object includes mnformation indicating a specific NLS
conflguration of the system when the object was cre-
ated or modified;

(e) means for detecting a request to process a data object
which was created or modified under a different NLS
configuration than that which the system currently

operates; and

26

(f) means for comparing the stored identifier of the data
object to the 1dentifier of the NLS configuration which
the system currently operates.

12. The system of claim 11, further comprising means for

> setting the NLS configuration which the system currently
operates to match that of the data object requested to be
processed.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,507,813 B2 Page 1 of 1
DATED . January 14, 2003
INVENTOR(S) : Daniel P. Veditz et al.

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Title page,
Item [73], Assignee, delete “Boland Software Corporation” and substitute -- Borland

Software Corporation --.

Signed and Sealed this

Thirteenth Day of May, 2003

JAMES E. ROGAN
Direcror of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

