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LASER DOPPLER VIBROMETER FOR
REMOTE ASSESSMENT OF STRUCTURAL
COMPONENTS

CLAIM OF PRIORITY

This application claims priority to U.S. provisional appli-
cation entitled, “Application of Laser Doppler Vibrometer
For Remote Assessment of Structural Components,” having

Ser. No. 60/133,588, filed May 11, 1999, now abandoned,
which 1s entirely incorporated herein by reference.

TECHNICAL FIELD

The present invention 1s generally related to non-
destructive evaluation of structures and, more particularly, 1s
related to a system and method for remotely measuring the
strength 1ntegrity of a structure.

BACKGROUND OF THE INVENTION

Electric power transmission lines require regular inspec-
tfions to ensure safety and reliability. Hazardous, expensive,
and time consuming tower climbing inspections are typi-
cally used to verity the structural integrity of pole-tops, cross
arms, and other elevated components. “Structural integrity”
refers generally to 1ts soundness, or, more specifically, to the
absence of macro- and microstructural irregularities that are
known or suspected to affect the strength of the material. In
addition to the aforementioned deficiencies, tower climbing
inspections are mconsistent and will vary from 1nspector to
inspector.

Structural integrity can be tested by using destructive or
non-destructive techniques. Material testing for quality con-
trol continues to be mostly destructive 1n nature despite
cfiorts to develop non-destructive alternatives that are more
feasible 1n terms of price, convenience and reliability.
Although destructive testing i1s quite often more accurate
because the condition of the material 1s made manifest rather
than inferred. The obvious disadvantage 1s that the material
or product tested 1s destroyed or rendered useless by the
testing process. Furthermore, testing integrity by removal of
already 1n-place structures, like cross arms on power lines,
1s not practical.

Alternatively, structural integrity can be tested using
non-destructive techniques. Most non-destructive testing
evaluates the material’s composition and structure by rely-
ing on the interaction of the tested material with sound
waves or electromagnetic radiation. Such methods mvolve
monitoring the effect of pressure or electromagnetic waves
passing through the material as they are mfluenced by tlaws
or mmhomogeneities 1n the test structure. Monitoring the
cffects 1s typically done by making contact between the
measuring device and the material.

Laser beams are known for use in non-destructive testing
to detect structural defects. For example, a laser beam 1s
projected onto a test object, the object 1s vibrated and the
pattern of light reflected from the object 1s analyzed. As the
frequency and intensity of vibrations are varied, changes
appear 1n the pattern of light. Particular changes indicate that
defects are present 1n the object. Non-destructive materials
testing systems make use of the relationship between reso-
nant frequency and the structural soundness of materials.

The analysis in most non-destructive testing of this type
relies on the relationship between the material’s resonant
frequency and the strength and quality of the material’s
structure. The resonant frequency of a material depends
upon, among other things, the material’s shape, density,
stiffness and the like.
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Typically, the tested material structure 1s vibrated using a
known force that is in contact with the structure (such as a
hammer blow or vibrator exciting a power pole) and the
vibrational characteristics of the tested area 1s measured. The
collected data 1s used to compute the resonant frequency of
the tested areca. Generally, digital computers are used to
perform evaluations based on the resonant frequency using
known relationships. However, this method of creating

vibration 1s time consuming and costly.

Acoustic resonance techniques have been used to measure
the integrity of wood. Degradation can be determined by
examining the acoustical resonance characteristics of wood.
If there 1s an increase 1n the damping of the longitudinal
acoustic waves, then the integrity of the wood has been
degraded. However, a vibration generator must be attached
to one point on the pole while a sensor 1s attached at another
point on the pole. Performing this for the hundreds of
thousands of transmission structures would be an arduous
and expensive undertaking.

Another solution was to use the damping loss factor of a
material to determine qualitatively the structural integrity of
a material. The data analysis was performed using a standard
digital analysis technique. As above, an electrodynamic
shaker 1s attached to the pole to cause a vibration, while the
vibration 1s measured with a laser vibrometer. Using this
technique to determine structural 1ntegrity for the numerous
transmission structures located in the United States would
also be arduous and expensive.

Thus, there 1s a need to find an apparatus and method to
measure structural integrity sately, remotely, accurately, and
In an 1nexpensive manner.

SUMMARY OF THE INVENTION

This invention 1s a method and system for remotely
inspecting the integrity of a structure. One embodiment of
this invention 1s a method of inspecting the integrity of a
structure by creating a vibratory response in the structure
from a remote location and then measuring the vibratory
response of the structure remotely by an artificial neural
network. The vibratory response can be produced by inira-
sonic and audio frequencies that can be produced by at least
a vehicle, motor, or sound recording. The vibratory response
can be measured with a laser vibrometer or an audio
recording device.

A second embodiment of this invention 1s a method of
evaluating the integrity of a structure by measuring the
vibratory response of a structure from a remote location and
then evaluating the excitation using an artificial neural
network. The artificial neural network can be a feedforward
or self organizing map artificial neural network.

A further embodiment of this invention 1s a method of
remotely 1nspecting the integrity of a structure by creating
infrasonic and audio frequencies, which produce vibratory
response 1n the structure. Then the vibratory response 1is
measured and a determination 1s made by an artificial neural
network of whether or not the structure 1s sound.

Another embodiment of this invention 1s a system for
remotely measuring the integrity of a structure using a
vehicle and an artificial neural network, where the vehicle 1s
equipped with a vibratory response device. The vehicle can
be an aircralt, automobile or any other appropriate vehicle.
The vibratory response can be produced by infrasonic and
audio frequencies that can be produced by a vehicle, motor,
sound recording or loudspeaker. The vibratory response can
be measured with a laser vibrometer or an audio recording
device. The artificial neural network can be a feedforward or
self-organizing map artificial neural network.
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A final embodiment of this 1nvention 1s a system for
remotely measuring the mtegrity of a structure using vehicle
and an artificial neural network, where the vehicle produces
an audio frequency.

Other systems, methods, features, and advantages of the
present mvention will be or become apparent to one with
skill 1n the art upon examination of the following drawings
and detailed description. It 1s intended that all such addi-
tional systems, methods, features, and advantages be
included within this description, be within the scope of the
present mnvention, and be protected by the accompanying
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The 1nvention can be better understood with reference to
the following drawings. The components 1n the drawings are
not necessarily to scale, emphasis instead being placed upon
clearly illustrating the principles of the present invention.
Moreover, 1n the drawings, like reference numerals desig-
nate corresponding parts throughout the several views.

FIG. 1 1s a schematic of an aircraft acquiring data from a
power pole cross arm.

FIG. 2A and 2B describe a feedforward artificial neural
network, where FIG. 2A 1s a block diagram of how imfor-
mation moves through the feedforward artificial neural
network and FIG. 2B describes the topology of the feedfor-
ward artificial neural network.

FIG. 3 1s a block diagram of the training procedure of a
feedforward artificial neural network.

FIG. 4 1s a block diagram of the procedure for using this
invention.

FIG. 5 describes the topology of a self organizing map
artificial neural network.

FIG. 6 1s a block diagram of the training procedure of a
sellf organizing map artificial neural network.

FIG. 7 1s a block diagram of the procedure for using this
invention.

DETAILED DESCRIPTION

FIG. 1 depicts one embodiment of this invention, where
an aircrait 1s equipped with a laser vibrometer. A preferred
embodiment of this invention opportunistically uses the
vibration produced by the aircraft 10 to produce a semi-
random, broad-band suite of infrasonic and audio frequen-
cies 20. The cross arm 30 of the transmission structure 35 1s
vibratorily excited by the infrasonic and audio frequencies
20. Degraded cross arms vibrate differently than structurally
sound cross arms. The laser vibrometer 40 emits a laser
beam 350 that 1s aimed at a particular cross bar 30 on a
fransmission structure 35, while the aircraft 10 passes the
transmission structure 35. Laser light 60 that 1s scattered or
reflected by the cross arm 30 1s collected by the laser
vibrometer 40 and saved as response data. The vibratory
response and detection are performed remotely, thus pre-
cluding the danger mnherent with climbing inspections. The
entire process can be performed m less than one second.
After the wvibratory data 1s collected, an artificial neural
network 1s used to evaluate the data and distinguish sound
cross arms from degraded cross arms. Thus, this invention 1s
a method and system of determining structural integrity of
structures safely, remotely, and 1n an economical manner.

The structures that can be inspected include pole-tops,
cross arms, and other elevated components on telephone
poles, power poles, radio towers, TV towers, cell/mobile
phone towers, bridges, structures in manufacturing support-
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4

ing vessels, piping, military structures, space structures, or
other similar types of structures. This invention can be used
to 1nspect structures where there 1s a need to inspect the
structure from a remote location.

The vibratory response can be produced by a vehicle such
as an aircrait, e.g., a helicopter or airplane, or automobile,
¢.g2., a car or truck. In addition, the excitation can be
produced by a motor (e.g., such as from a lawn mower),
sound recording, or any other appropriate vibratory response
device. Under some circumstances, 1t may be viable to use
environmental noise as the source of the vibratory excita-
tion. The vibratory response i1s caused by infrasonic and
audio frequencies, or suite of infrasonic and audio
frequencies, produced by a vehicle, motor, sound recording,
or other vibratory response device. The infrasonic and audio
frequencies can be produced by the vehicle itself, e.g., motor
or propeller, or by a sound recording. Preferably, the infra-
sonic and audio frequencies are produced by the vehicle.
Preferably, the mfrasonic and audio frequencies are a semi-
random, broad-band suite of audio frequencies; however,
other appropriate infrasonic and audio frequencies can be
used.

Vibrational characteristics are measured by a vibratory
response measuring device, preferably a laser vibrometer,
but can be measured by any non-contacting device that can
measure vibratory response, €.2., a audio recording device
such as a microphone.

In a preferred embodiment, a laser vibrometer 1s used to
measure the vibratory response. In practice, a laser vibro-
meter operates by transmitting laser light to the vibrated
structure and collecting laser light scattered or reflected
therefrom. The data collected from the vibratory response 1s
termed the vibration data. To increase the reflection of the
laser beam a reflective material can be placed onto the cross
arm or other structure.

Measuring vibrational velocity using a laser vibrometer 1s
based on the Doppler principal: measurement of a very
slight shift in the wavelength of laser light when 1t 1s
scattered or 1s reflected from a moving object. Combining
the transmitted light with the scattered light causes
interference, where the interference 1s related to the amount
of the shift and thus related to the vibrational velocity of the
structure on which the laser light 1s directed.

Preferably, a laser vibrometer 1s used because laser vibro-
meters are generally more accurate and convenient than
other devices for measuring vibrational velocity, but other
methods can be used. The laser vibrometer 1s especially
convenient 1n that laser light can be transmitted and col-
lected from a remote location, such as an aircraft or moving
vehicle.

The vibration data collected from the laser vibrometer or
alternative device can be treated in a number of ways. The
following 1s a preferred embodiment of how vibration data
can be preprocessed. First, vibration data 1s collected from
the laser vibrometer as Fast Fourier Transform (FFT) data
from 0 Hz to 1600 Hz in 4 Hz increments. Data points from
0 Hz—792 Hz (199 samples) are put into a data set. There are
N data sets where N 1s the number of structures measured.
Next, the natural logarithm of each data point 1s taken and
when a data point 1s zero, due to mstrument sensitivity, that
point 1s made equal to the average of the samples on either
side of the zero value sample. Then, each data set 1is
normalized by dividing every sample datum point by the
maximum data point value sampled in that particular spec-
trum. This normalizes each cross arm’s data from O to 1. The
purpose for this process i1s to prevent later analysis to be
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confounded by signal strength, or vibration amplitude.
Vibration amplitude 1s not controlled, and 1s a function of
how close the noise generator (e.g., helicopter) is to the
structure. This information says nothing about structural
integrity, and so must be normalized among all the data sets.
Normalization 1s performed for each of the N data sets or
FFT spectrums (each arm). For training data sets the actual
cross arm-breaking force, which corresponds to a particular
data set, and becomes the 200” datum point. The actual
breaking strengths of the cross arms should be normalized
from O to 1. Next, the data 1s put into a 200 point row vector.
Further, concatenate every row vector into one single N by
200 matrix (file). Lastly, save the N by 200 matrix in a
format that can be presented to the artificial neural network
(ANN). Data sets where the actual breaking strength is not
known only have 199 points 1n each data set. Thus, the

matrix file will only be N by 199.

An ANN will be used to distinguish usable structural
members from non-usable members 1 a digital computer
simulation of a biological computing structure. Biological
computing 1s adept at pattern recognition but 1s a poor
method for adding numbers. Any appropriate ANN can be
used to analyze data in this invention including feedforward
and self-organizing map ANN's.

Biological computing uses analogical or continuously
variable mput values. Computed decisions based on these
values are weighted sums of the iputs. The process 1s
inherently parallel. As a pattern-recognition engine, the
ANN has the advantage of being able to interpolate by
making educated guess decisions, which are not based on
specific prior knowledge. An ANN decision can be based on
factors that are unknown, non-linear, or unrecognized. The
only requirement 1s that the neural network must have had
experience with appropriate problems of such complexity,
1.€. training.

In general, ANNs can be described as a computing
architecture that 1s made of parallel interconnections of
neural processors. In other words, ANN 1s a mathematical
model patterned after the biological behavior of neurons,
which classily patterns input into the artificial neural net-
work. In order for an ANN to correctly classify input
patterns, adjustable weights and thresholds must be appro-
priately set for each neuron or umit of the ANN. The
adjusting process of the weights 1s commonly referred to as
training or learning, which reflects the traditional iterative
nature of biological learning processes.

In general, an ANN i1ncludes input neurons, output
neurons, and hidden neurons. A neuron 1s simply a data
processing device capable of receiving multiple inputs,
processing those mputs, and generating one or more outputs
based on those 1nputs. Generally, this means that the input
neurons receive a single input, hidden neurons receive
several mnputs, and output neurons receive several inputs.
The hidden neurons do not receive any input signals from
sources outside the ANN. Further, they do not output signals
to any devices outside the ANN. Consequently, hidden
neurons are hidden from the universe existing outside the
ANN. However, ANN’s can have feed back loops, where
there are two layers of hidden neurons and the neuron 1n the
later layer 1s connected to the neuron in the former layer.
One skilled 1n the art would realize that variations could be
made with the structure of the ANN. Two ANN’s that can be
used 1n this mvention are a feedforward ANN and a self-
organizing map ANN.

One embodiment of the ANN 1s a feedforward ANN
(FFANN) as depicted in FIGS. 2A and 2B. Preferably, this
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FFANN has 199 input neurons (200 input neurons for
training sets), one bias input, and 20 hidden neurons. There
1s only one layer of hidden neurons. The transfer functions
are sigmodial nonlinear transfer functions. All input weights
are connected to all the hidden neurons. There 1s only one

output neuron.

FIG. 2A 1s a block diagram showing how information
moves through the FFANN. The data set 1s input into the
input neurons 202 (e.g., IN,, IN,, . . . IN,,,). Typically, the
first neuron (IN,,) is programmed to have a bias equal to
one. This 1s necessary to ensure proper operation of the
FFANN. However, the FFANN will “learn” 1f the bias 1s not
needed and the weight corresponding to the bias 1nput will
be adjusted to zero by the back-propagation algorithm or
similar algorithm. The b 2"¢ through 200” input neurons
(IN,, . .. IN,,,) will have data points 1 through 199 input
into them. Then the information 1s multiplied by their
respective input weights 204 (e.g., W, [, W, ,,... W, ...
W01, Wogs oo« Wag og0). All 200 mput neurons (199 data
points and 1 bias point) are multiplied by their respective
mnput weights and are summed at the hidden neurons 206
(HN, . . . HN,,). In other words, each hidden neuron
receives 1nformation from 200 properly weighted data
points. Each hidden neuron produces a summation result,
€.g., a, ... a,, that 1s passed through a nonlinear transfer
function (NLF) 208. Then, each NLF 208 produces a result,
c.g.,d, ...d,,, that 1s multiplied by the output weights 210,
€.g., V;...V,,, V,,. The bias point 1s also multiplied by an
output weight 210 (V,,), but does not pass through a NLF
208 as 1s shown 1 FIG. 2B. The output neuron 212 receives
the properly weighted values (twenty-one in total) and
produces a summation that corresponds to the predicted
breaking strength 214 of a particular cross arm. One skilled
in the art would understand that variation on the number of
hidden neurons and layers of hidden neurons 1s possible.

Additional variations could be envisioned by one skilled 1n
the art.

FIG. 3 genecrally describes the training stage of the
FFANN 1n the present invention. Cross-arm FFT vibration
data 1s gathered by the laser vibrometer 302. Selected arms
that have been measured by the laser vibrometer, a quantity
N, are then removed from service and broken, and their
breaking strengths are measured and stored in 314. The
vibration data, plus the breaking strength, form a data-set for
cach of the N cross arms. These N data-sets are then shuifled
into a randomly placed list of strong and weak arms, called
the training set. This 1s done to prevent the FFANN from
frying to learn something about the sequence 1n which the
different data-sets are presented to 1t during training. The
vibration data of each arm 1s preprocessed 304 according to

the atorementioned methods, and the training set 1s fed into
the FFANN 306. Initially, the input and output weights 308

of the FFANN are set to random values. The FFANN
predicts the breaking strength of each data set of the training
set 310. The comparator 312 calculates the difference or
error between the predicted and actual known breaking
strengths 314. This 1s performed for each of the data sets 1n
the training set. If the error 1s below a particular threshold
316 then the training 1s complete 322. If the error 1s not
below a particular threshold 316 then the data sets in the
training set are reshuffled 320 into a new random list. In
addition, the back-propagation training algorithm 318 uses
the error to update the input and output weights 308. The
aforementioned process 1s then repeated, often many thou-
sands of times, until the error 1s below a threshold value 316,
thereby indicating that training of the FFANN is complete

322.
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The back-propagation training algorithm 318 1s set to a
learning gain equal to 0.05, learning momentum equal to
0.04, training epochs equal to 10,000, linear output, and
delta learning rule. Back-propagation training algorithms are
well known mathematical procedures and one skilled 1n the
art would understand that the values input into the back-
propagation training algorithm are not absolute and other
suitable values can be used. In general, ANN’s are tolerant
of 1mprecision and various values can be used to obtain the

same result, albeit within an acceptable error limat.

Once the FEANN has been trained, the system 1s ready to
predict the strength of cross-arms for which breaking
strength values are not available, FIG. 4. The FFANN 1s
therefore now able to mput vibrational data for a particular
cross-arm and predict 1ts breaking strength. First, the cross-
arm vibration data 1s gathered by the laser vibrometer 402.
Next, the data 1s preprocessed 404 according to the methods
outlined above. Lastly, the data i1s fed into the ANN 406,
which predicts a breaking strength 308 for the particular
cross-arm. The details of how the FFANN operates are

discussed above 1n FIGS. 2A and 2B.

Another embodiment of the ANN for this invention 1s a
self-organizing map ANN (SOMANN) as shown in FIG. S.
Preferably, this SOMANN has 199 mput neurons 502 and a
2-dimensional grid or map of output neurons 506. The
number of output neurons 506 can vary depending on the
resolution or precision needed. Every mput neuron 502 is
connected to each output neuron 506 via connection weights
504. In other words, every output neuron 506 has 199
connection weights 504 directed towards 1t from all 199
input neurons 302, which 1s partially depicted in FIG. 5.
However, FIG. 5 does not show the input neurons 502
connected to every output neuron 506 for sake of clarity.
One skilled 1n the art would understand that variations can
be made to the structure or topology of the SOMANN and
still accomplish the same goal of this 1nvention.

FIG. 6 generally describes the training process of the
SOMANN used 1n this invention. Cross-arm FF'T vibration
data 1s gathered by the laser vibrometer 602 for N cross
arms. The breaking strengths of the cross arms are not
needed to train the SOMANN, but are used after training to
designate areas of the 2-dimensional map as “strong,”
“average,” and “weak,” discussed 1n more detail below. The
vibration data form a data set for each of the N cross arms.
These N data-sets are then shuffled mto a randomly placed
list of cross arms, called the training set. This 1s done to
prevent the SOMANN from trying to learn something about
the sequence 1n which the different data-sets are presented to
it during training. The vibration data of each arm 1s pro-
cessed 604 and the training set 1s fed 1nto the SOMANN 606.
Initially, the connecting weights 608 of the SOMANN are
set to random values. The SOMANN locates each data set
onto the 2-dimensional map 610. The SOMANN analyzes
the statistical properties of the weighted 1nput mnformation
and locates each data set, or cross arm, onto the
2-dimensional map. More particularly, for each output
neuron, the mput vector, 1.e. input neurons, 1s multiplied by
the corresponding connecting weights to produce a number
called an activation threshold. After this process i1s per-
formed for each output neuron, the output neuron with the
highest activation threshold “wins”, 1.e. “winner take all”
algorithm. Then a comparison 1s made or error determined
between the values of the input vector and the corresponding,
connecting weights 616. If the error 1s below a particular
threshold then the training of the SOMANN is complete
622. However, if the error 1s not below the particular
threshold then the data sets are reshuffled into a new random

10

15

20

25

30

35

40

45

50

55

60

65

3

list 620 and resubmitted 1into the SOMANN 606 to continue
training. In addition, the error 1s used to update the connect-
ing weights 218. The aforementioned process 1s then
repeated, often many thousands of times, until the error 1s
below a threshold value 616, thereby indicating that training

of the SOMANN 1s complete 622.

An alternative to the “winner take all algorithm™ is the
“Kohonen algorithm.” This algorithm operates by updating
the connecting weights 1n some area or neighborhood
around the winning output neuron. One skilled 1n the art
would understand that alternative algorithms to the winner
take all and Kohonen algorithms can be successfully used 1n
this invention.

The SOMANN produces a 2-dimensional map after
training, where particular cross arms are put onto various
arcas of the map. Thus, by determining the actual breaking
strengths of the cross arms used in the training sets, a
correlation can be made between the areca of the
2-dimensional map and the actual breaking strength. Arcas
of the 2-dimensional map can be characterized as “strong,”
“average,” and “weak.” Other more specific classifications
can be made 1f necessary. The final result 1s a 2-dimensional
map that has areas designated as strong, average, or weak.

Once the SOMANN has been trained, the system 1s ready
to predict the strength of cross-arms for which breaking
strength values are not available, FIG. 7. The SOMANN 1is
therefore now able to input vibrational data for a particular
cross-arm. First, the cross-arm vibration data i1s gathered by
the laser vibrometer 702. Next, the data 1s processed 704.
Lastly, the data 1s fed into the SOMANN 706, which
classifies the cross arm. The classes correspond to a place on
the 2-dimensional map obtained through training that cor-
respond to a strong, average, or weak cross arm. For
example, the upper right hand portion of the 2-dimensional
map 1s characterized as strong. Then while analyzing a
particular cross arm, the result of the SOMANN 1s that the
cross arm 1s located in the upper right hand corner of the
2-dimensional map. Thus, the cross arm would be consid-

ered strong. The details of how the SOMANN operates are
discussed above 1 FIG. 5.

The FEFANN and SOMANN of the present invention can
be implemented 1n hardware, software, firmware, or a com-
bination thereof. In the preferred embodiment(s), the ANN
1s 1mplemented in software or firmware that 1s stored 1n a
memory and that 1s executed by a suitable instruction
execution system. If implemented in hardware, as 1n an
alternative embodiment, the ANN can be implemented with
any or a combination of the following technologies, which
are all well known 1n the art: a discrete logic circuit(s)
having logic gates for implementing logic functions upon
data signals, an application speciic integrated circuit
(ASIC) having appropriate combinational logic gates, a
programmable gate array(s) (PGA), a field programmable
gate array (FPGA), etc.

It should be emphasized that the above-described embodi-
ments of the present invention, particularly, any “preferred”
embodiments, are merely possible examples of
implementations, merely set forth for a clear understanding
of the principles of the invention. Many variations and
modifications may be made to the above-described
embodiment(s) of the invention without departing substan-
tially from the spirit and principles of the invention. All such
modifications and variations are intended to be included
herein within the scope of this disclosure and the present
invention and protected by the following claims.
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What 1s claimed 1s:

1. A method of mspecting the integrity of a structure
comprising:

creating a vibratory response in said structure remotely,

wherein said vibratory response 1s measured as vibra-
tion data; and

measuring the vibratory response remotely, wherein said
vibration data 1s preprocessed 1n a way including:
collecting said laser vibrometer vibration data as Fast

Fourier Transform data in 4 hertz increments from 0
hertz to 1300 hertz for N data sets, where said N data
sets corresponds to the number of said structures
measured, and broken and used for training;
dividing the frequency range into 4 hertz increments
from O hertz to 792 hertz producing 199 data points
for each data set;
taking the natural logarithm of said 199 data points of
cach data set;
normalizing said 199 data points by dividing said 199
data points by the largest data point value of that
particular data set for each data set;
transforming said 199 data points of each data set into
a 199 point row vector;
concatenating said row vectors mto one single N by
199 matrix; and
saving sald matrix in a format suitable to present to the
artificial neural network.
2. The method of claim 1, wherein said vibratory response
1s produced by a suite of infrasonic and audio frequencies.
3. The method of claim 2, wherein said infrasonic and
audio frequencies are produced by a vehicle.
4. The method of claim 2, wherein said infrasonic and
audio frequencies are produced by a motor.
S. The method of claim 2, wherein said infrasonic and
audio frequencies are produced by a sound recording.
6. The method of claim 1, wherein said vibratory response
1s measured with a laser vibrometer.
7. The method of claim 1, wherein said vibratory response
1s measured with an audio recording device.
8. The method of claim 1, wherein said vibration data 1s
evaluated with an artificial neural network.
9. The method of claim 8, wherein said artificial neural
network 1s a feed-forward artificial neural network.
10. The method of claim 8, wherein said artificial neural
network 1s a self-organizing map artificial neural network.
11. The method of claim 1, wherein said structure com-
prises a power pole cross-arm.
12. The method of claim 1, wherein the said structure can
be coated with a reflecting material.
13. A method for evaluating the integrity of a structure
comprising;
measuring vibratory response 1n said structure remotely,
wherein said vibratory response 1s measured as vibra-
tion data; and

evaluating said excitation with an artificial neural

network, wherein said vibration data 1s preprocessed 1n

a way 1ncluding:

collecting said laser vibrometer vibration data as Fast
Fourier Transform data in 4 hertz increments from O
hertz to 1300 hertz for N data sets, where said N data
sets corresponds to the number of said structures
measured, and broken and used for training;

dividing the frequency range into 4 hertz increments
from O hertz to 792 hertz producing 199 data points
for each data set;

taking the natural logarithm of said 199 data points of
cach data set;
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normalizing said 199 data points by dividing said 199
data points by the largest data point value of that
particular data set for each data set;

transforming said 199 data points of each data set into
a 199 point row vector;

concatenating said row vectors mto one single N by
199 matrix; and

saving sald matrix 1in a format suitable to present to the
artificial neural network.

14. The method of claam 13, wherein said vibratory
response 1s measured with a laser vibrometer.

15. The method of claim 13, wherein said vibratory
response 1s measured with an audio recording device.

16. The method of claim 13, wherein said artificial neural
network 1s a feed-forward artificial neural network.

17. The method of claim 13, wherein said artificial neural
network 1s a self-organizing map.

18. The method of claim 13, wherein said structure
comprises a power pole cross-arm.

19. The method of claim 13, wherein the said structure
can be coated with a reflecting material.

20. A method of remotely inspecting the integrity of a
structure comprising:

creating infrasonic and audio frequencies;

producing a vibratory response 1n said structure using said
frequencies, wherein said vibratory response 1s mea-
sured as vibration data;

measuring said vibratory excitation; and

determining said structural integrity using an artificial
neural network, wherein said vibration data 1s prepro-
cessed 1n a way 1ncluding:
collecting said laser vibrometer vibration data as Fast
Fourier Transtorm data 1n 4 hertz mncrements from 0
hertz to 1300 hertz for N data sets, where said N data
sets corresponds to the number of said structures
measured;
dividing the frequency range into 4 hertz increments
from O hertz to 792 hertz producing 199 data points
for each data set;
taking the natural logarithm of said 199 data points of
cach data set;
normalizing said 199 data points by dividing said 199
data points by the largest data point value of that
particular data set for each data set;
transforming said 199 data points of each data set into
a 199 point row vector;
concatenating said row vectors mto one single N by
199 matrix; and saving said matrix in a format
suitable to present to the artificial neural network.
21. The method of claim 20, wherein said infrasonic and
audio frequencies are a semirandom, broad-band suite of
audio frequencies.
22. The method of claim 20, wherein creating infrasonic
and audio frequencies comprises:

creating infrasonic and audio frequencies with a vehicle.
23. The method of claim 20, wherein creating infrasonic
and audio frequencies comprises:

creating 1nfrasonic and audio frequencies with a motor.
24. The method of claim 20, wherein creating inirasonic
and audio frequencies comprises:

creating 1nfrasonic and audio frequencies with playing a
sound recording of infrasonic and audio frequencies.
25. The method of claim 20, wherein said vibratory
response 1s measured with a laser vibrometer.
26. The method of claim 20, wherein said vibratory
response 1s measured with an audio recording device.



US 6,505,130 B1

11

27. The method of claim 20, wherein said artificial neural
network 1s a feed-forward artificial neural network.

28. The method of claim 20, wherein said artificial neural
network 1s a self-organizing map artificial neural network.

29. The method of claim 20, wherein said structure
comprises a power pole cross-arm.

30. The method of claim 20, wherein the said structure
can be coated with a reflecting material.

31. A system for remotely measuring the integrity of a
structure comprising:

a vehicle, wherein said vehicle comprises a vibratory
response measuring device; and

a neural network.

32. The system of claim 31, wherein said vehicle com-
prises an aircrafit.

33. The system of claim 31, wherein said vehicle com-
prises an automobile.

34. The system of claiam 31, wherein said structure 1s
vibratorily excited by an audio frequency.

35. The system of claim 31, wherein said audio frequency
1s produced by said vehicle.

36. The system of claim 31, wherein said audio frequency
1s produced by a motor.

37. The system of claim 31, wherein said audio frequency
1s produced from a sound recording.

38. The system of claim 31, wherein said infrasonic and
audio frequency comprises a semi-random, broad-band suite
of audio frequencies.

39. The system of claam 31, wherein said vibratory
measuring device 1s a laser vibrometer.

40. The system of claam 31, wherein said vibratory
measuring device 15 an audio recording device.

41. The system of claam 31, wherein said vibratory
response 1s measured as vibration data.

42. The system of claim 41, wherein said vibration data 1s
preprocessed 1n a way comprising:

collecting said laser vibrometer vibration data as Fast

Fourier Transform data in 4 hertz increments from O
hertz to 1300 hertz for N data sets, where said N data
sets corresponds to the number of said structures
measured, and broken and used for training;

dividing the frequency range 1nto 4 hertz increments from
0 hertz to 792 hertz producing 199 data points for each
data set;

taking the natural logarithm of said 199 data points of
cach data set;

normalizing said 199 data points by dividing said 199 data
points by the largest data point value of that particular
data set for each data set;

transforming said 199 data points of each data set into a
199 point row vector;

concatenating said row vectors into one single N by 199
matrix; and

saving sald matrix 1n a format suitable to present to the

artificial network.

43. The system of claim 42, wherein said data set com-
prises 200 data points, where the 200” data point is the
actual breaking strength of said structure.

44. The system of claim 31, wherein said arfificial neural
network 1s a feed-forward artificial neural network.

45. The system of claim 31, wherein said arfificial neural
network 1s a self-organizing map artificial neural network.

46. A system for remotely measuring the integrity of a
structure comprising:

a vehicle, wherein said vehicle produces an audio fre-
quency that causes a vibratory response 1n said struc-
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ture and wherein said vehicle comprises a vibratory
response measuring device; and

a neural network, wherein said neural network evaluates

said vibratory excitation.

47. The system of claim 46, wherein said vehicle com-
prises an aircrait.

48. The system of claim 46, wherein said vehicle com-
prises an automobile.

49. The system of claim 46, wherein said audio frequency
comprises a semi-random, broad-band suite of audio fre-
quencies.

50. The system of claim 46, wherein said vibratory
measuring device 1s a laser vibrometer.

51. The system of claam 46, wherein said vibratory
measuring device 1s an audio recording device.

52. The system of claam 46, wherein said vibratory
response 1s measured as vibration data.

53. The method of claim §2, wherein said vibration data
1s preprocessed 1n a way comprising:

collecting said laser vibrometer vibration data as Fast

Fourler Transform data mn 4 hertz increments from 0
hertz to 1300 hertz for N data sets, where said N data
sets corresponds to the number of said structures
measured, and broken and used for training; dividing
the frequency range into 4 hertz increments from 0O
hertz to 792 hertz producing 199 data points for each
data set;

taking the natural logarithm of said 199 data points of
cach data set;

normalizing said 199 data points by dividing said 199 data
points by the largest data point value of that particular
data set for each data set;

transtforming said 199 data points of each data set into a
199 point row vector;

concatenating said row vectors mnto one single N by 199
matrix; and

saving said matrix in a format suitable to present to the

artificial neural network.

54. The method of claim 53, wherein said data set
comprises 200 data points, where the 2007 data point is the
actual breaking strength of said structure.

55. The system of claim 53, wherein said artificial neural
network 1s a feed-forward artificial neural network.

56. The system of claim 53, wherein said artificial neural
network 1s a self-organizing map artificial neural network.

57. A method of mspecting the integrity of a structure
comprising:

creating a vibratory response 1n said structure remotely,

wherein said vibratory response 1s measured as vibra-
tion data including 200 data points, where the 200
data point 1s the actual breaking strength of said struc-
ture; and

measuring the vibratory response remotely.

58. The method of claim 57, wherein said vibratory
response 1s produced by a suite of infrasonic and audio
frequencies.

59. The method of claim 58, wherein said infrasonic and
audio frequencies are produced by a vehicle.

60. The method of claim 58, wherein said infrasonic and
audio frequencies are produced by a motor.

61. The method of claim 58, wherein said infrasonic and
audio frequencies are produced by a sound recording.

62. The method of claam 57, wherein said vibratory
response 1s measured with a laser vibrometer.

63. The method of claam 57, wherein said vibratory
response 1s measured with an audio recording device.
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64. A method for evaluating the integrity of a structure
comprising:
measuring vibratory response 1n said structure remotely,
wherein said vibratory response 1s measured as vibra-
tion data including 200 data points, where the 2007
data point 1s the actual breaking strength of said struc-
ture; and

evaluating said excitation with an artificial neural net-
work.

65. The method of claim 64, wherein said artificial neural
network 1s a feed-forward artificial neural network.

66. The method of claim 64, wherein said artificial neural
network 1s a self-organizing map.

67. The method of claim 64, wherein said structure
comprises a power pole cross-arm.

68. The method of claim 64, wherein the said structure
can be coated with a reflecting material.

69. A method of remotely inspecting the integrity of a
structure comprising:

creating infrasonic and audio frequencies;

producing a vibratory response 1n said structure using said
frequencies, wherein said vibratory response 1S mea-
sured as vibration data including 200 data points, where
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the 2007 data point is the actual breaking strength of
said structure;

measuring said vibratory excitation; and

determining said structural integrity using an artificial
neural network.

70. The method of claim 69, wherein said infrasonic and

audio frequencies are a semi-random, broad-band suite of

audio frequencies.
71. The method of claim 69, wherein creating infrasonic

and audio frequencies comprises:

creating infrasonic and audio frequencies with a vehicle.
72. The method of claim 69, wherein creating inirasonic
and audio frequencies comprises:

creating infrasonic and audio frequencies with a motor.
73. The method of claim 69, wherein creating infrasonic

and audio frequencies comprises:

creating infrasonic and audio frequencies with playing a
sound recording of infrasonic and audio frequencies.
74. The method of claim 69, wherein said vibratory
response 1s measured with a laser vibrometer.
75. The method of claim 69, wherein said vibratory
response 1s measured with an audio recording device.
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Line 26, replace “a” with -- an --.

Column 3,
Line 9, delete “and”.

Column 9,
Line 15, 1n claim 1 after “hertz” insert -- ; -- and re-format the claim
to read as follows:

1. A method of inspecting the integrity of a structure comprising:
creating a vibratory response in said structure remotely, wherein said vibratory
response is measured as vibration data; and
measuring the vibratory response remotely, wherein said vibration data 1s
preprocessed in a way including:
collecting said laser vibrometer vibration data as Fast Fourier Transform
data in 4 hertz increments from O hertz to 1600 hertz for N data sets, where said N
data sets corresponds to the number of said structures measured, and broken and
used for training;
dividing the frequency range into 4 hertz increments from 0 hertz to 792
hertz;
producing 199 data points for each data set;
taking the natural logarithm of said 199 data points of each data set;
normalizing said 199 data points by dividing said 199 data points by the
largest data point value of that particular data set for each data set;
transforming said 199 data points of each data set into a 199 point row
vector,
concatenating said row vectors into one single N by 199 matrix; and
saving said matrix in a format suitable to present to the artificial neural

network.
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Column 9,
Line 64, 1n claim 13 after “hertz” 1nsert -- ; -- and re-format the claim to read as
follows:

13. A method for evaiuating the integrity of a structure comprising:

mcasuring vibratory response in said structure remotely, wherein said vibratory
response is measured as vibration data; and
evaluating said excitation with an artificial neural network, wherein said vibration
data is preprocessed in a way mcluding:
collecting said laser vibrometer vibration data as Fast Fourier Transform
data in 4 hertz increments from O hertz to 1600 hertz for N data sets, where said N
data sets corresponds to the number of said structures measured, and broken and
used for training;
dividing the frequency range into 4 hertz increments from O hertz to 792
hertz:
producing 199 data points for each data set;
taking the natural logarithm of said 199 data points of each data set;
normalizing said 199 data points by dividing said 199 data points by the
largest data point value of that particular data set for each data set;
transforming said 199 data points of cach data set into a 199 point row
vector;,
concatenating said row vectors into one single N by 199 matrix; and

saving said matrix in a format suitable to present to the artificial neural
network.

Column 10,
Line 39, 1n claim 20 after “hertz” 1nsert -- ; -- and re-format the claim to

read as follows:

20. A method of remotely inspecting the integrity of a structure comprising:
creating infrasonic and audio frequencies;
producing a vibratory response in said structure using satd frequencies, wherein
said vibratory response 1s measured as vibration data;

measuring said vibratory excitation; and
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Column 10, line 39, claim 20 cont’d,

determining said structural integrity using an artificial neural network, wherein
said vibration data is preprocessed in a way 1ncluding:

collecting said laser vibrometer vibration data as IFast Fournier Transform
data in 4 hertz increments from 0 hertz to 1600 hertz for N data sets, where said N
data sets corresponds to the number of said structures measured,

dividing the frequency range into 4 hertz increments from 0 hertz to 792
hertz;

producing 199 data points for each data set;

taking the natural logarithm of said 199 data points of each data set;

normalizing said 199 data points by dividing said 199 data points by the
largest data point value of that particular data set for each data set;

transforming said 199 data points of each data set into a 199 point row
vector;

concatenating said row vectors into one single N by 199 matrix; and

saving said matrix in a format suitable to present to the artificial neural
network.

Column 11,

Line 43, in claim 42 after “hertz” 1nsert -- ; -- and re-format the claim
to read as follows:

42, The system of claim 41, wherein said vibration data is preprocessed 1n a way
COMpPrising:

collecting said laser vibrometer vibration data as Fast Fourier Transform data in 4
hertz increments from O hertz to 1600 hertz for N data sets, where said N data sets
corresponds to the number of said structures measured, and broken and used for training;

dividing the frequency range into 4 hertz increments from 0 hertz to 792 hertz;

producing 199 data points for each data set;

taking the natural logarithm of said 199 data points of each data set;

normalizing said 199 data points by dividing said 199 data points by the largest
data point value of that particular data set for each data set;

transforming said 199 data points of each data set into a 199 point row vector;

concatenating said row vectors into one single N by 199 matrix; and
saving said matrix in a format suitable to present to the artificial network.
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Line 24, 1n claim 53 after “hertz” 1nsert -- ; -- and re-format the claim
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53.  The method of claim 52, wherein said vibration data is preprocessed in a way
comprising:
collecting said laser vibrometer vibration data as Fast Fourier Transform data in 4
hertz increments from O hertz to 1600 hertz for N data sets, where said N data sets
corresponds to the number of said structures measured, and broken and used for training;
dividing the frequency range into 4 hertz increments from 0 hertz to 792 hertz;

producing 199 data points for each data set;

taking the natural logarithm of said 199 data points of each data set;

normalizing said 199 data points by dividing said 199 data points by the largest
data point value of that particular data set for each data set,

transforming said 199 data points of each data set into a 199 point row vector;

concatenating said row vectors into one single N by 199 matrix; and

saving sald matrix in a format suitable to present to the artificial neural network.
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