(12) United States Patent

Colby et al.

US006493699B2

US 6,493,699 B2
Dec. 10, 2002

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(21)
(22)

(65)

(63)
(60)

(51)
(52)
(58)

(56)

DEFINING AND CHARACTERIZING AN
ANALYSIS SPACE FOR PRECOMPUTED

VIEWS

Inventors: Latha S. Colby, Los Altos; Richard L.
Cole, Los Gatos; Edward P Haslam,
San Francisco; Nasi Jazayeri, Santa
Clara; Galt Johnson, San Francisco;
William J. McKenna, Santa Cruz;
David G. Wilhite, Jr., Santa Clara, all

of CA (US)

Assignee:

International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 09/277,034

Filed: Mar. 25, 1999

Prior Publication Data
US 2001/0013030 Al Aug. 9, 2001

Related U.S. Application Data

Continuation of application No. 09/049,784, filed on Mar.

27. 1998, now Pat. No. 6,199.063.

Provisional application No. 60/079,679, filed on Mar. 27,

1998, provisional application No. 60/079,670, filed on Mar.
27, 1998, and provisional application No. 60/079,671, filed

on Mar. 27, 1998.

Int. CL7 oo, GO6k 17/30
US.Cl . 707/2; 707/3; 707/200

Field of Search

707/1, 2, 3, 102,

7077/200; 345/339

References Cited

U.S. PATENT DOCUMENTS
5220625 A

170

6/1993 Hatakeyama et al. 382/54

172
/

Create a
Hash
Directary

5276870 A 1/1994 Shan et al.ooov....... 395/600
5,412,806 A * 5/1995 Duetal. ..ooovvvvivininnnn.n. 707/2
5,515,488 A 5/1996 Hoppe et al. 395/140
5,655,116 A 8/1997 Kirk et al.c.ceeneoe.. 395/601
5,678,042 A 10/1997 Pisello et al. 395/610
5,897,632 A * 4/1999 Daretal.ccovvvnenenennn. 707/2

OTHER PUBLICATTONS

V. Harinarayan et al., “Implementating Data Cubes Efl-
ciently”, June 1996, Sigmod Record, Vol. 25, Issue 2, June
1996, Montreal, Canada, pp. 205-216.

* cited by examiner

Primary Examiner—lJean R. Homere
(74) Attorney, Agent, or Firm—Konrad Raynes Victor &
Mann LLP

(57) ABSTRACT

Methods and apparatus for processing precomputed views
for answering user queries on a database are described. In
accordance with one aspect, a user database query on
precomputation strategy etfectiveness 1s responded to by
defining, based upon user database query history, an analysis
space consisting of a subset of all possible views for the
database, and by characterizing the views in the analysis
space. In accordance with a second aspect, a structure 1s
imposed on an analysis space consisting of a subset of all
possible views for the database based upon the capabilities
of a query rewriting facility, and the views 1n the analysis
space are characterized. In accordance with a third aspect, an
analysis space consisting of a subset of all possible views for
the database 1s defined, and a cost formula 1s applied to the
analysis space based upon a user-defined subset of the data
contained 1n the database. In accordance with a fourth
aspect, an analysis space that includes a candidate view
composed of a combination of two or more constituent
views 1s defined, and the views in the analysis space are
characterized.

86 Claims, 10 Drawing Sheets

174 176
/ /

Populate Hash

Directory with

Precomputed
VIgws

dentify Logged
Queries within
Specified Date

Filter ldentitied
Queries for
Specified

Range Detailed Table

b J

For Each Query Referencing Speacified Detailed
Table, Generate a Query Structure with
References to Grouping Columns

178

244
/

Generate

Statistical

Reports

i

Categorize Queries by
Grouping Columns

180

¥

Dirgctory

Generate SAL Taxt for
each Element in Hash

187

i

Build Dependency Graph
Based Upon Query
Rewriter Capabilities

L-—Z240)

l

Apply Cost Formula to
Determine Relative
Benefits of a Yiew

L 242

U.S. Patent Dec. 10, 2002 Sheet 1 of 10 US 6,493,699 B2

Product

1/1/98-12:01
1/2/98-13:07
1/2/98-14.02

Time

fime key day | month year -
I T I I
iseiz02[1y%| 1% |8 || FIG. 1C

stz s s | w |

Precomputed

pad D
l 23

1/1/38

FIG. 1D

1/2/38
1/2/98

U.S. Patent Dec. 10, 2002 Sheet 2 of 10 US 6,493,699 B2

Dimension Z Dimension 1
(Time) (Product)

Outboard

(Sales)

Dimension 3
(Store)

FlG. 2

U.S. Patent Dec. 10, 2002 Sheet 3 of 10 US 6,493,699 B2

Data Store 1o

12
Query Processing System 18

Precomputed l
View Processing 20

System

14

Coome
30 37

16 Tables
Regular Views

e Detail Tables
~ Candidate Views
b 4

Precomputed VIEWS [N femm\oen Precomputed [ables

Precomputed
Aggregate Views Aggregate lables

™
.?
- #
L
'I
--
' i

47

&
L
n
|
Y.
L)

& B
.......
.......

lllllllllllllllllll

U.S. Patent Dec. 10, 2002 Sheet 4 of 10 US 6,493,699 B2

— bl
_— 54 Store_dales

Store

perkey
storekey
mktkey
store type
store name

storekey
dollars

district
region

street
city
state
ZID

FIG. SA
56 Y
bl H4
om0} L EAO
:
sl Promotion

230

FIG. 5B

Possible to
Generate A Legal
Precomputed View
Definition?

Yes

FlG. 12

(3enerate

No Match
232 Candidate View

From Bl |

9 Il

'(S1ejjop ‘Nb ‘sweu poid)sajes janpoid Suisn
b ‘aweu poid £q dnousd
Aaylad pollad = Aaylad Ss|es pue
foysse[a1anpold = AaySSe|d Sajes pue
foypoid-1onpold = Asypo.id-sajes alaym
poliad ‘1onpoud ‘sajes LLUoJj
Sjes |ej0} Se (Siejjop)wins ‘b ‘sweu poid J08jas

US 6,493,699 B2

m Se (SJejjop “1b ‘aweu pold)malA Sajes 1anposd MaIA 818l

- 8/ —"

3 b ‘aweu” poud Aq dnoi3

2 faylad pouad = Aaylad sajes pue
faysse|a1onpold = A8ySSe|d-Sa|es pue

- foypoid-yonpold = Aaypold sajes aiaym

= - potiad ‘Janpoid 'sajes wo.

RS Sajes |e}o} Se (Siejjop)wns 1b ‘sweu poid J93[8S

R $9jes Jonpoid ojur pasul

S y—"

G)Jeyd 41b ‘(p§)eyd sweu pold)
Sa|es 1onpoud a|qe) 8)esid

((2'€T)98p siejjop |

0L—"

U.S. Patent

dqel
9]e33.135Y S9|eS 19npoid
UHM PSIEID0SSY MIIA
pDaINdwodald alealn

3|qe] 8}e3aiddy
Sa[eS 1anpo.d aje|ndod

3|(e] o}edalday

S9|es 1anpold a1eal)

08

9.

(L

U.S. Patent Dec. 10, 2002 Sheet 6 of 10 US 6,493,699 B2

90
User Queries Database

92

98

DBA Creates 104 Rewriter Rewrites User's
Precomputed Views Query

DBA Modifies 107 Advisor Logs Query
Precomputed Tables Statistics

100 96
DBA Quertes the Advisor
FIG. /A

V.

Precomputed View Processing System 20 Database
. Meta Data Layer|: Server
Advisor 94 YT
= Log
Q 5 34
uery ;
Hierarchies
E\
System Rewriter 0 Vi Detall Tables

P ted
l |‘——? Tables Data Store

18 FIG. /B

US 6,493,699 B2

Sheet 7 of 10

Dec. 10, 2002

U.S. Patent

L0158l A9y dal 8 Yl
10I38Y
281 —"
Aayda. aweu W Agypqu
1IEN
2=

(J3B]) S9jeg

311 911 M

vll

Ot] 3¢ 1 9¢1 vel

1eaf juow | Aep

AdyaLll]

Al |

U.S. Patent Dec. 10, 2002 Sheet 8 of 10 US 6,493,699 B2

User Query 140
Meta Data Layer

> Log
Summar _ _
StatIStICSy i

! Candidate II

l Precomputed

FIG. 9

Parse & 150 152
Analyze
Aggregate

Query Candidate

No No | Generate

(uery Block Rewritten? View Available?
From User
(Query Yes 16 .
164
enerate Log
C Rethrq No-Match
38{] %thogf Rewritten Query Candidate View
Precomputed Includes Additional Generation
View Used to Aggregation?
Rewrite Query
65 58 (Generate

Better Log Record
Candidate View™'eS,| Containing |- 160

Available? SQL Text of

Candidate

View
Partial-Match
Candidate View
(Generation F|G 10

US 6,493,699 B2

Sheet 9 of 10

Dec. 10, 2002

U.S. Patent

0 Ul SULWIN|0 3uIuieWwal J0 18SGNS Uo

Juspuadap Aj|euoiauny Ji 5 Ul UWNjod Yoea dA0LBY
0¢¢

o d|qe} 1ey} Jo
L JIM 9]qE]
Ay2JeIaIY-UOU ULLN|o? ,,_wﬁ U_;o mcaﬂ_ou

AUy

P 9oe|da
N | U9y

3¢

Ul Nw A3 J ol
cownl s 0[qe} 18} 40

SUWN|09 Jaylo

- & 3A0LaY
0N 01¢
>9A °07] SAOLIBY
) Ul SUWN0Y) 8AeH Jey)
Sa|qey Jo | 1517 Jonusuoq [804 [1¢
107 90¢

J ojul g 10 11| [9414S Ul
pue S$a)edipald ulol-uou ui

$39U81aJaJ uwn|od |je Ind

0) 0JUl g JO SUWN|0?
guidnols e 14

117 9|qnedwon-ydey y 1anJjsuo9

v0¢ U

L0I1SSaIdX8 93738
R 9)e343 0] Sjuauodwod

A0 9] JO || BuIqLLI0n)

INIENERENEET
0) pue g Jo SuoIssaldxa

aledaldse |je Ind

3SNe|?
Ad d(1049 3y} Ul J INg

3SMe|d JYIHM U!
S8jedlpaid yd-yj jje Ind

A 10 8snejo

QY4 Ut g 4o asneyd
| | woupw sajgey e ng

uoniuljag
M3IJ 8]eiausy

S

¢0¢

00¢

861
(b

361

v

IA

b

I

[

[T 9l

061

(UOLIUNE(]
M3IA PaINALLINIBI
B39\ a)elauan)
0} 9]q1S30d

U.S. Patent

Dec. 10, 2002 Sheet 10 of 10

170 172 174

Create 3 Populate Hash [dentity Logged

Hach Directory with Querigs within

Directory Precomputed SpECIfIEd Date
Views Range

For Each Query Referencing Specified Detailed

Table, Generate a Query Structure with
References to Grouping Columns

Categorize Queries by 180
Grouping Columns

Generate SQL Text for
each Element in Hash 182
Directory

Build Dependency Graph
Based Upon Query 240
Rewriter Capabilities

244

(Generate
Statistical

Apply Cost Formula to
Determine Relative 247
Benefits of a View

Reports

FIG. 13

Filter Identified

Detailed Table

US 6,493,699 B2

176

Queries for
Specified

178

US 6,493,699 B2

1

DEFINING AND CHARACTERIZING AN
ANALYSIS SPACE FOR PRECOMPUTED
VIEWS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority from the following
co-pending applications, each of which 1s incorporated
herein by reference: U.S. Provisional Application No.
60,079,679, filed Mar. 27, 1998, and entitled “System and
Method for Answering a Database Query By Utilizing an
Advisor;” U.S. Provisional Application No. 60,079,670,
filed Mar. 27, 1998, and enfitled “System and Method for
Answering a Database Query By Utilizing Generated Can-
didate Views;” U.S. Provisional Application No. 60,079,
671, filed Mar. 27, 1998, and entitled “System and Method
for Answering a Database Query By Utilizing an Integrated
Server;” and U.S. application Ser. No. 09/049,784, filed
Mar. 27,1998, and entitled “System and Method for Rewrit-
ing Relational Database Queries,” now U.S. Pat. No. 6,199,
063.

BACKGROUND OF THE INVENTION

This application relates to processing (including
managing) and characterizing precomputed views in
response to user queries on a database.

A database 1s a collection of data, usually pertaining to
some reasonably well defined purpose. The data typically
has a known format which 1s defined by metadata The data
in a database 1s typically stored, retrieved, and modified by
a database management system. A relational database man-
agement system stores information in tables, in rows and
columns of data, and conducts searches. In a relational
database, the rows of a table typically represent records
(collections of information about separate items) and the
columns typically represent fields (particular attributes of a
record). A relational database management system may
respond to user queries on the database by matching mfor-
mation from a field 1n one table with information 1n a
corresponding field of another table, and producing a third

table that combines data from both tables. For example, 1t
one table contains the fields EMPLOYEE-ID, LAST-

NAME, FIRST-NAME, DEPI-ID, SALARY and HIRE-
DATE, and another table contains the fields DEPT-ID,
DEPT-NAME, and LOCATION, a relational database man-
agement system may match the DEPT-ID fields in the two
tables to find the names of all employees working in a
department 1 a specified location.

Users typically query, update and manage a relational data
base using a data sublanguage (e.g., SQL). A data sublan-
cguage 1s one that may be used 1n association with another
computer language for the specialized purpose of accessing
data. There are many relational data sublanguages, including
QUEL from Relational Technology, Inc. (ASK/Ingres), and
RDML from Digital Equipment Corporation. SQL has been
formally standardized for access to relational databases and
1s widely implemented and used, although there are many
variations of SQL (e.g., RISQL™ from Informix Software,
Inc. of Menlo Park, Calif.).

In the relational database model, the basic unit of data is
the relation. In SQL, the relation 1s represented by a table.
A relation 1s typically made up of one or more attributes
(represented as columns in SQL), each of which is associ-
ated with a data type (e.g., a character string, an integer, or
a floating point number). Data typically is stored in a table
in tuples (rows in SQL).

10

15

20

25

30

35

40

45

50

55

60

65

2

Referring to FIGS. 1A—1D, the relational database tables
Product, Sales, Time and Result contain columns of
attributes and rows of data related to those attributes. For
example, the Product table of FIG. 1A, includes prod ID,
product type, and bar code. Specific operations can be
performed on these tables. One such operation 1s selection,
which 1dentifies a specific row or rows 1n a table. Selection
1s typically done by specifying one or more predicates that
are used to filter a table to identify rows for which the
predicate 1s true. Predicates are typically found in the
WHERE clause of an SQL query. For example, a selection
operation could request the selection of prod ID of 1, which
would select the first row of the Product table. Another
operation 1n the relational database model 1s called the join.
A j01n operation 1s a way of combining data from two tables
which 1s typically based on the relationships between the
data 1n those tables. The Product table identifies the product
type by prod ID, and the Sales table 1dentifies the amount of
dollars associated with each prod ID/time (time key) com-
bination. The Product table and the Sales table may be joimned
through their prod ID columns. The Sales table also asso-
clates a time key with each row, and the Time table relates
a day with each time key. Accordingly, the Sales table and
the Time table may be joined through the time key values.

FIG. 2 shows relationships between a fact table and 1its
dimension tables. Fact tables and dimension tables are a

subset of detail tables. Fact tables are detail tables which
record events (e.g., a sales event). The tables in which
information related to the sales event (e.g., a time, a store,
and a product) 1s stored are the dimension tables of the
associated fact table. For example, Time table, Store table,
and Product table are the dimension tables associated with
the Sales table. The Class outboard (dimension of a
dimension) table eliminates redundancies by repeated infor-
mation (the relationships between products and classes) in a

separate table. This feature 1s referred to as normalization.

Another concept 1n relational database models 1s func-
tional dependency. A functional dependency 1s a many-to-
one relationship between columns of values 1n database
tables. A functional dependency from column x to column y
1s a constraint that requires two rows to have the same value
for the y column 1if they have the same value for the x
column. A functional dependency may be explicitly declared
by a user, such as the database administrator.

Further, relational database models provide for an aggre-
gation query, which 1s a query that requires the summari-
zation or consolidation of rows 1n database tables, typically
using a set function, such as SUM or COUNT, and an
optional GROUP BY clause. An aggregate table 1s typically
a table that summarizes or consolidates detail level records
from other database tables.

SQL enables users to define a virtual table (a “view”) and
to save that definition 1n a database as metadata. A view
usually is not physically materialized (or “precomputed”)
until it 1s needed (e.g., when a SQL statement references the
view). The metadata about the view can include information
such as the name of the view, the names and data types of
cach column and the SQL text describing the data the view
produces. The metadata about the view 1s typically stored in
the database’s metadata, but the actual data that the user will
sec 1n the view are typically not physically stored. Rather the
data typically are stored in detail tables from which the
view’s rows are derived. In the case of a precomputed view,
data typically is stored 1n an associated precomputed table.
In general, operations can be performed against views just as
they can be performed against detail tables.

A user may request information such as how many units
of cerecal X were sold on Jan. 1, 1999. The result of that

US 6,493,699 B2

3

query may be derived from the Product table (FIG. 1A), the
Sales table (FIG. 1B), and the Time table (FIG. 1C).
However, dertving the answers to each question from vari-
ous tables can be highly methicient and time consuming. In
order to increase efficiency, a database administrator may
predict questions which are most likely to be asked and
precompute a table which includes the answers to these
likely questions prior to these questions actually being
asked. For example, a store’s database administrator may
determine that a frequently asked question 1s the total sum
of sales of a given product over a period of one day
(sum__dollars). Accordingly, the database administrator may
create the Precomputed table (FIG. 1D) and a precomputed
view assoclated with that table.

The database administrator typically can not be expected
to anticipate all common questions likely to be asked and
even 1f all queries were known it 1s not feasible to
precompute/materialize all results. When a query 1s asked
and the answer 1s not directly available from a precomputed
table, the answer to such a query typically 1s derived from
one or more detail tables, a process which may be highly
fime consuming and computationally intensive.

SUMMARY OF THE INVENTION

The 1nvention features methods and apparatus for pro-
cessing precomputed views for answering user queries on a
database.

In accordance with one aspect, a user database query on
precomputation strategy eflectiveness 1s responded to by
defining, based upon user database query history, an analysis
space consisting of a subset of all possible views for the
database, and by characterizing the views in the analysis
space.

In accordance with another aspect, a structure 1s imposed
on an analysis space consisting of a subset of all possible
views for the database based upon the capabilities of a query
rewriting facility, and the views in the analysis space are
characterized.

In accordance with another aspect, an analysis space
consisting of a subset of all possible views for the database
1s defined, and a cost formula 1s applied to the analysis space
based upon a user-defined subset of the data contained 1n the
database.

In accordance with another aspect, an analysis space that
includes a candidate view composed of a combination of
two or more constituent views 1s defined, and the views 1in
the analysis space are characterized.

Embodiments may include one or more of the following
features.

An analysis space may be defined, at least in part, by
generating a log record for received user queries. The log
record may be generated from query blocks parsed from user
queries. The process of generating a log record for a user
query may include a determination of whether the query was
rewritten to use a precomputed view. The process of gen-
erating a log record may include a determination of whether
rewritten user queries 1nclude ageregation. The process of
ogenerating a log record may include an 1dentification of a
candidate view that could be used to rewrite user queries.
The log record generated for a query may include 1nforma-
fion about a precomputed view used to rewrite the query.
The log record generated for a user query may include
information about a candidate view that could be used to
rewrite the query.

The analysis space may be defined based upon capabili-
fies of a query rewriting facility. The definition of the

10

15

20

25

30

35

40

45

50

55

60

65

4

analysis space may reflect whether or not user queries have
been rewritten. The definition of the analysis space may
reflect whether or not rewritten user queries include aggre-
cgation. The query rewrite facility may be configured to
impose a structure on the analysis space. The imposed
structure may 1nclude a graph representative of hierarchical
relationships between views 1n the analysis space.

The analysis space may be defined based upon meta data.
The analysis space may be defined based upon hierarchical
relationships among views. The defined analysis space may
include precomputed views. The defined analysis space may
include candidate views generated based upon user query
history.

The views 1n the analysis space may be characterized, at
least 1n part, by generating a measure of precomputed view
utilization. The views 1n the analysis space may be
characterized, at least 1n part, by generating a measure of the
benelit of a precomputed view relative to other views 1n the
analysis space. The views i1n the analysis space may be
characterized, at least in part, by generating a report that
reflects current precomputation strategy effectiveness. The
views 1n the analysis space may be characterized, at least in
part, by generating a report that includes information about
candidate views that could be created. The views in the
analysis space may be characterized, at least 1in part, by
ogenerating a measure of the benefit of a candidate view
relative to other views in the analysis space. The views 1n the
analysis space may be characterized, at least 1n part, by
applying a cost formula to the analysis space.

Structure may be 1imposed on the analysis space based
upon meta data. The structure may be imposed on the
analysis space based upon hierarchical relationships
between views 1n the analysis space. At least one of the
constituent views of the candidate view may be a candidate
view. At least one of the constituent views of the candidate
view may be a precomputed view. The defined analysis
space may 1nclude the constituent views of the candidate
view. The defined analysis space may not include the
constituent views of the candidate view.

Among the advantages of the invention are the following.

The 1nvention helps the database administrator with cre-
ating and evaluating the optimal set of precomputed aggre-
cgates to satisfy a system’s unique performance and space
requirements. The invention provides an analysis of pre-
computation strategy effectiveness based upon user query
history. The mvention may perform the analysis on a user-
defined subset of the detail data, reducing analysis time. The
invention may refine the space of candidate views used in
the analysis to consider views that subsume one or more
candidate views 1n the subspace. The invention may define
a structure on the analysis space that allows a cost-benefit
analysis of a precomputed or candidate view to be deter-

mined 1n relation to other views 1n the space.

End-users and applications may continue to query the
database as they always have and the query rewriting facility
transforms the queries to utilize the existing ageregates. The
invention enables a database administrator to tune the data-
base’s aggregate performance without affecting the way
queries are submitted. In addition, all aggregate-related
metadata 1s mtegrated into the database system’s catalog,
including intra-dimensional hierarchy relationships.

Other features and advantages will become apparent from
the following description, including the drawings and the
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-1D are diagrammatic views of a Product table,
a Sales table, a Time table and a Precomputed table, respec-
tively.

US 6,493,699 B2

S

FIG. 2 1s a diagrammatic view of a Fact table and its
assoclated dimensions.

FIG. 3 1s a diagrammatic view of a client coupled to a
database server over a network.

FIG. 4 1s a diagrammatic view ol the relationships
between views, tables and hierarchies.

FIG. 5A 15 a diagrammatic view of retail schema, includ-
Ing an aggregate Store_ Sales table.

FIG. 5B 1s a diagrammatic view of a Sales table and its
assoclated dimensions.

FIG. 6 1s a diagrammatic view of a method of creating an
aggregate table and an associated precompute view.

FIG. 7A 1s a flow diagram of a method of managing
precomputed views.

FIG. 7B 1s a diagrammatic view of components of a
database server.

FIG. 8 1s a diagrammatic view of foreign key/primary key
relationships between an aggregate table and 1ts associated
dimensions.

FIG. 9 1s a diagrammatic view of an advisor configured to
log query information and to generate candidate views and
summary statistics based upon meta data, including infor-
mation contained in the log, hierarchies, and information
relating to candidate and precomputed views.

FIG. 10 1s a method of generating a log record based, at
least 1n part, upon a user aggregate query block.

FIGS. 11-13 are flow diagrams of a method of generating,
candidate views and statistical reports based, at least 1n part,
upon user query history.

DETAILED DESCRIPTION
[. Overview

A. General Features of a System and Method of Managing
Precomputed Views

Referring to FIG. 3, 1n one embodiment, a client 10 may
send queries to a database server 12 over a network 14 to
access data contained in a data store 16 (e.g., a data
warchouse such as the Red Brick Warchouse available from
Informix Software, Inc. of Menlo Park, California). Data-
base server 12 includes a query processing system 18 which,
in turn, includes a precomputed view processing system 20).
Query processing system 18 receives queries from client 10
over network 14 and, with the support of precomputed view
processing system 20, executes the received queries by
returning to client 10 data from data store 16 that corre-
sponds to the requested information. Precomputed view
processing system 20 provides a systematic approach to
precomputing aggregate data for decision-support queries.
Before each query 1s executed, precomputed view process-
ing system 20 performs a cost-based analysis to determine
whether the query should be intercepted and rewritten to
improve query performance. In addition, precomputed view
processing system 20 logs statistics about query execution to
enable database administrators to determine how efliciently
the existing aggregation strategy 1s working and to deter-
mine how to improve the current aggregation strategy.

In decision support environments, a standard model of
data 1s that of facts associated with points in a dimension
space. In a retailing environment, for example, each sale
occurs at a particular time, 1n a particular store, and 1s of a
particular product. In this example, each sales event 1s a fact
and occurs at a point i1n the three-dimensional space
(product, store, time). Each dimension usually forms a
hierarchy: product may be a two-level hierarchy, for
example, with product-type at the finest level of granularity

10

15

20

25

30

35

40

45

50

55

60

65

6

and product-category at the coarsest level. Multi-
dimensional data models distinguish between points 1n
dimensions (e.g., product-type) and attributes of these points
(e.g., product-color). Aggregates typically are computed on
points 1n the dimension space, possibly with constraints
placed on dimensional attributes.

Agoregate processing 1n relational databases typically
involves retrieving qualifying fact records based upon
dimensional constraints, grouping the records by values for
points 1n specilied dimensions, and applying aggregate
functions to each group. Even with a highly efficient query
processing system, aggregate queries requiring billions of
fact and associated dimension records often will be very
expensive to compute. Precomputation often results 1n dra-
matic performance gains 1n aggregate processing, and aggre-
cgate results at one level of granularity often can be used to
compute (rollup) aggregates at coarser granularities. This
climinates the need to precompute all possible aggregates.

As explained 1n detail below, precomputed view process-
ing system 20 includes a query rewrite system (the
Rewriter), a query logging and analysis facility (the
Advisor), and an enhanced meta data facility (the Meta Data
Layer). The Rewriter intercepts and attempts to rewrite user
database queries using aggregate tables; the Rewriter
rewrites queries transparently to client applications and end
users. The Advisor may be queried for advice on the size and
relative benefits of existing aggregate tables and potential
(candidate) aggregate tables that would be useful to create.
The Meta Data Layer stores information about database
objects and their relationships.

B. Database Objects

FIG. 4 illustrates the relationships between views 30,
database tables 32 and hierarchies 34. In general, a view 30
defines a client query on data store 16. A precomputed view
36 defines a query and 1s linked to a precomputed table 38,
which 1s a database table that contains the precomputed
results of the query. In other words, a query defined in a
precomputed view 1s computed before the query is received
by query processing system 18. In contrast, the results for a
query defined by a regular view 40, including candidate
views 42 which are generated by the Advisor, must be
computed every time the regular view 1s referenced. In
operation, a query defined 1n a precomputed view 36 may be
precomputed automatically; otherwise, the database admin-
istrator must populate the associated precomputed table 38.

The database administrator may populate the table using, for
example, a Table Management Utility (TMU) LOAD DATA

operation or an SQL “INSERT INTO . . . SELECT” state-
ment. The administrator may then create an associated
precomputed view 36 that contains a query expression
which reflects the contents of the precomputed table 38.
Once defined, query processing system 18 may automati-
cally update precomputed tables 38 to reflect changes in
detail tables 46 and may also rewrite user queries to use
precomputed views (and their associated precomputed
tables).

An aggregate table 44 1s a precomputed table that stores
the results of an “aggregate query” defined 1 an associated
precomputed agegregate view 45, which defines the aggre-
cgate relationship between the aggregate table and an under-
lying set of detail tables 46. The precomputed view defini-
fion establishes the semantic link between detail tables 46
and the aggregate table 44 containing the precomputed
results. In general, ageregate tables 44 contain information
that has a coarser granularity (i.e., fewer rows) than the
information contained 1n detail tables 46. For example, 1n a
retall database, the transaction-level data might be in the

US 6,493,699 B2

7

form of 1individual sales receipts stored 1n a Sales_ Receipts
detail table. The records 1n the Sales_ Receipts table may be
ageregated over certain time periods to produce a set of
aggregate tables (e.g., a Sales_ Daily table and a Sales
Monthly table).

An aggregate query typically uses a standard SQL
function, such as SUM or COUNT, to aggregate factual data
(c.g., sales totals over given periods of time) contained in
detail tables 46. Other aggregation queries use a GROUP BY
clause to select distinct rows of dimension data from a large
dimension table (e.g., distinct combinations of quarters and
years or districts and regions). In these ways, aggregation
queries “roll up” rows of data of fine granularity into groups
of rows of coarser granularity. The performance gain offered
by the query rewrite system derives from the precomputa-
tion of these rollups. Additional performance gains are
achieved by the ability of the query rewrite system to rewrite
queries that require additional rollups, involving columns of
a granularity that 1s coarser than the grouping columns of the
view. In other words, the query rewrite system may be used
to rewrite a large number of queries that do not match the
query defined 1n the view. For example, the view might
define a query that returns rows grouped by a Month
column, yet this view may be used to rewrite queries
ogrouped by the Qtr and Year columns, despite the fact that
neither of these columns 1s named 1 the query defined by
the view. This rollup capability frees a database administra-
tor from having to create three separate views, grouped by
Month, Qtr and Year, respectively, or one very wide view
cgrouped by all three columns.

Hierarchies 34 (i.e., functional dependencies), which are
inherent in warehouse data, enable rollups to columns which
are not defined 1 precomputed views. A hierarchy 1s a
many-to-one relationship shared by columns of values. In
other words, a hierarchy from column X to column Y 1s a
constraint that requires two rows to have the same value for
the Y column 1f they have the same value for the X column.
The columns may be 1n the same table or in different tables.
For example, 1if a hierarchy exists between the Store
Number and City columns 1 a Store table, whenever the
value 1n the Store_ Number column 1s Store#56, the value 1n
the City column 1s Los Angeles. This relationship 1s many-
to-one because there could be many stores 1n a city, but a
ogrven store can only be 1 one city. Similarly, the City
column 1n the Store table may have a many-to-one relation-
ship with a Region column in the Market table (e.g., if the
city is Los Angeles, the region is always West).

Hierarchies allow precomputed views 36 that are grouped
by columns of finer granularity to be used to rewrite queries
ogrouped by columns of coarser granularity. For example, the
existence of a Store_ Number-to-City hierarchy allows the
Store_ Number values to be grouped into distinct City
values. If a precomputed view 36 1s grouped by Store__
Number, 1t 1s not necessary to create another view grouped
by City because the same view may be used to rewrite
queries that constrain on one or both of these columns. The
query rewrite system uses hierarchies 34 intelligently to
rewrite queries that require a rollup beyond the scope of the
precomputed view definition.

There are two types of hierarchies: those implicitly known
to the query processing system, and those that must be
explicitly declared by the database admuinistrator.

Hierarchies that follow the path of a primary key/foreign
key relationship or result from non-nullable unique column
definitions are implicitly known to the query processing
system. As a result, a view grouped by, for example, the
Sales.Perkey column, where Perkey 1s a foreign key column

5

10

15

20

25

30

35

40

45

50

55

60

65

3

that references, for example, the Period table, automatically
may be used to rewrite queries grouped by any combination
of columns 1n the Period table. This feature also applies to
queries grouped by columns in outboard tables (i.c., tables
referenced by dimension tables). For example, a view
cgrouped by the Sales.Storekey column, where Storekey 1s a
foreign key column that references the Store table and
Store. Mktkey 1s a foreign key column that references the
Market table, automatically may be used to rewrite queries
that group by any combination of columns 1n the Store and
Market tables.

Other hierarchies must be explicitly declared. For
example, 1f a view 1s grouped by the Month column 1n the
Period table and dependencies exist from Month to Qtr and
from Qtr to Year, both dependencies need to be declared.
After they have been declared, the query rewrite system may
use the same precomputed view to rewrite queries grouped
by any combination of the three columns. Declaring these
dependencies also improves the performance of the Advisor.
The mechanism for declaring a hierarchy 1s the CREATE
HIERARCHY command. A CREATE HIERARCHY state-
ment names pairs of columns that satisty functional depen-
dencies and 1dentily the tables to which the columns belong.

Referring to FIGS. 5A and 5B, in one embodiment, a
retaill database schema includes a Sales detail table 50, a
Period dimension table 52, a Store dimension tale 54, a
Product dimensional table 56, a Promotion dimension table
58, a Market dimension table 60, and a Class dimension

table 62. The Market and Class tables 60, 62 are outboard
tables. The dollars column 1n the Sales table represents totals
per day, per store, per product, per promotion. For example,
a single row 1n the detail table might record that on Jan. 2,
1999, the San Jose Roasting Company sold $95 of whole-
bean Aroma Roma coifee to customers using catalogue
coupons. If users routinely submit queries that request sales
totals per some time period, per some store or geographical
area (e.g., per day, per region or per month, per state), the
database administrator might define a Store__Sales table 64
that contains sales totals for all products and all promotions
per day, per store. This aggregate table would retain the
same relationship to Store dimension table 54 and Period
dimension table 52 as the detailed Sales table, but 1t would
not reference the other dimensions 1n the retail schema.
Referring to FIG. 6, 1n an embodiment relating to a retail
sales analyst query for a report that compares sales totals for
specific products during specific quarters, a database admin-
Istrator may create a precomputed view as follows. In
anticipation of repeated analyst queries for reports compar-
ing sales totals for specific products during specific quarters,
the database administrator creates a Product__Sales aggre-
gate table using a CREATE TABLE statement 70 (step 72).

The database administrator populates the Product_Sales
table using an INSERT statement 74 (step 76). The database

administrator then creates a precomputed view associated
with Product__Sales aggregate table using a CREATE VIEW
statement 78 (step 80). The query rewrite system may then
intercept user queries, such as

select prod_ name, gtr, sum(dollars) as total sales
from sales, product, period

where sales.prodkey=product.prodkey
and sales.classkey=product.classkey
and sales.perkey=period.perkey
ogroup by prod_ name, qgtr;
The query rewrite system may replace these queries with a
scan ol the Product_Sales aggregate table. The query
rewrite system assigns table names, rewrites join predicates,
and represents queries 1n a way that significantly improves
query performance.

US 6,493,699 B2

9

The 1nvention provides additional precomputation func-
tionality to both database administrators and users. In
particular, the 1nvention provides an intelligent method for
database admuinistrators to determine which precomputed
views to create and maintain. This feature 1s especially
useful because precomputing and maintaining aggregates
for all combinations of points 1n all dimensions 1n a large
data warchouse 1s 1mpractical.

II. Functional Components
A. Meta Data Laver

1. Overview

The Meta Data Layer (described in detail below) stores
aggregate table definitions and enables other system com-
ponents (e.g., the Rewriter, the Advisor, and database server
12) to access these definitions. The Meta Data Layer stores
information about precomputed views and dimensional
hierarchies, and tracks the state of each precomputed table
in relation to the detail tables from which 1t was computed.
The dimensional hierarchies enable the 1nvention to deliver
multidimensional database functionality, such as rollups
from aggregates on points 1n a dimension to other points of
coarser granularity 1n the same dimension.
2. Precomputed Tables and Precomputed Views

Among the features of the Meta Data Layer are the

following precomputed table and precomputed view support
features. The Meta Data Layer maintains information about
precomputed table definitions and relationships that are
accessible by database administrators. The Meta Data Layer
also allows precomputed tables to be defined through SQL.
The Meta Data Layer tracks whether each precomputed
table is in synch with its associated detail tables (i.e.,
whether or not the precomputed table accurately reflects the
precomputed view definition). This feature enables the sys-
tem to handle insertions into precomputed tables and
updates to associated detail tables, operations which would
otherwise invalidate the precomputed tables. The Meta Data
Layer 1dentifies mappings between precomputed table col-
umns and associated detail table columns. The Meta Data
Layer 1dentifies grouping columns and aggregation columns
for the aggregate tables. The Meta Data Layer identifies the
aggregate expression (e.g., min(dollars) and sum(units)) for
cach aggregation column. The Meta Data Layer allows
precomputed tables to have indexes built on them and
foreign key/primary key constraints defined for them. These
features allow precomputed tables to be hooked into the
database schema and have star and other indexes built on
them to 1improve query processing speed. The Meta Data
Layer may identify relationships between precomputed
tables, enabling the Rewriter to compute one precomputed
table from another precomputed table. The Meta Data Layer
allows arbitrary dimensional hierarchies, fact aggregate
tables (tables aggregating facts from a fact table) and dimen-
sional precomputed tables (tables that contain only grouping
columns) to be defined.
3. Hierarchies

As explained above, a dimensional hierarchy 1s specified
using a CREATE HIERARCHY statement. For example,

consider the following hierarchy definition:
create hierarchy type-to-category

(from product(type) to product(category));

This SQL command creates metadata representing the fact
that type and category columns are points in the product
dimension, and that aggregates (such as Sum(dollars))
orouped on the type column may be used to rollup to
(compatible) aggregates on the category column. Another
way to mterpret the CREATE HIERARCHY statement 1s as
a declaration of a functional dependency between two
columns.

10

15

20

25

30

35

40

45

50

55

60

65

10

When denormalized dimension tables exist (for perfor-
mance reasons), the CREATE HIERARCHY statement ref-
erences columns from a single table. Hierarchies can also be
speciflied between columns of different tables. Suppose that
our example schema had normalized dimension tables. The
product dimension may be represented 1n two tables as
follows:

product (prodkey, pname, type, category-key)

class (category-key, category, category-desc)

In this case, the hierarchy between type and category would

be defined as:

create hierarchy type-to-category

(from product(type) to class(category));
Since these columns are 1n different tables, a join 1s required
to perform this rollup and, therefore, the Metadata Layer
requires a foreign key-primary key join constraint to exist
between the product and class tables. These join constraints
allow the Rewriter to perform the second class of rollups.

The Meta Layer also infers implicit hierarchies
(functional dependencies), such as those between a primary
key column and another column of the same table, as well
as dependencies implied by transitivity. Explicit and implicit
hierarchies allow the Rewriter to answer a large class of
queries using a small set of precomputed aggregates.

B. Rewriter

A database administrator creates precomputed tables,
loads precomputed tables (or uses existing precomputed
tables), and defines associated precomputed views with
query expressions that reflect the exact contents of the
precomputed tables. A database administrator necessarily
knows which precomputed views exist, but database users
need not know this information. When a query 1s submitted
by a user, the query rewrite system evaluates the precom-
puted views created by the database administrator and, if
possible, rewrites the query to select information contained
in ageregate tables, which typically are much smaller than
the tables referenced in the original user query. Where
possible, joins are simplified or removed and, depending
upon the degree of consolidation that occurs between the
detail and ageregate data, query response times are highly
accelerated. Moreover, as explained below, queries may be
rewritten against a precomputed view even when the query
and the view definition do not match exactly.

The Rewriter rewrites user queries 1n terms of a relatively
small set of precomputed views without requiring users to
manually rewrite queries or to change their queries when
precomputed views are dropped or added. The Rewriter
intercepts ageregate queries and attempts to rewrite each
query to use precomputed aggregates. This rewriting 1s done
on a block-by-block basis, and includes correlated subque-
ries as well as blocks 1n union/intersect/except queries. The
Rewriter uses a cost-based algorithm to choose among
potential rewrites. The Rewriter 1s able to perform both
types of rollups. Since the Rewriter 1s able to rollup effi-
ciently from finer granularity aggregates to coarser granu-
larity ageregates 1n the same dimension, the total number of
precomputed ageregates may be reduced. These rollups may
be performed when aggregates are grouped on both non-key
and key columns corresponding to points in a dimension.
The rewrites are performed transparently, thereby msulating
users from the details of aggregate processing. Thus, user

queries do not have to be changed if aggregates are dropped
from the database or added to the database.

C. Advisor

The Advisor suggests what tables to precompute, and
determines the effectiveness of existing precomputed tables
based upon an analysis of query histories. The Advisor also

US 6,493,699 B2

11

provides a facility to log activity of user queries against data
store 16. From the logged queries, a database administrator
may analyze the use of existing precomputed tables 1n data
store 16, and may 1dentily for creation potential new views
(candidate views) which may improve query performance.

As data store 16 1s queried, the Advisor logs queries that
are rewrltten by the Rewriter and queries that would benefit
from being rewritten if the appropriate aggregate table had
existed. After a period of time, a database administrator may
analyze the aggregate query logs by querying statistical
reports (tables) created by the Advisor. One report (the
RBW__PRECOMPVIEW__UTILIZATION table) provides
information about the use of existing precomputed views 1n
the database. Another report (the RBW__
PRECOMPVIEW__CANDIDATES table) provides infor-

mation about an optimal set of precomputed views that the
Advisor suggests based upon user query history and existing,
precomputed views.

The Advisor system tables are generated from a detailed
analysis of the mmformation stored i the logs. The analysis
1s based upon algorithms that determine an optimal set of
aggregate tables given the actual query history against data
store 16. As part of the analysis, a benefit 1s assigned to each
existing view and to each candidate view. The BENEFIT
column 1n the Advisor system tables 1s a cost metric that
reflects the number of rows saved by processing the query
through the precomputed view rather than the associated
detail table or the next best view; as well as the number of
times the view has been used (for existing views) or the
number of times the view would have been used (for
candidate views).

The logeing mechanism of the Advisor examines each
user aggregate query submitted. If no precomputed tables
exist, the logging mechanism will record which, if any,
candidate precomputed tables would be useful to answer the
query. The generated candidate typically 1s not an exact
match of the query, but rather one that can be used to
efficiently answer (through rollups) a broad range of user
queries involving the same dimensions as the user query (or
some subset of these dimensions). In this way, the Advisor
reduces the number of precomputed tables that need to be
stored. In other words, based on actual query histories, the
Advisor allows intelligent materialization (precomputation)
of a subset of all possible precomputed tables (e.g., precom-
puted tables grouped on all combinations of dimensions and
points along dimensions).

If precomputed tables exist and the Rewriter transforms
the query to use an existing precomputed table, the Advisor
logging mechanism records information about precomputed
table usage. If the Advisor can suggest a more ecffective
(nonexistent)precomputed table as a candidate for
precomputation, this candidate will also be logged.

The Advisor features a relational SQL-based interface,
which 1s made possible by having the Advisor integrated
with the database server. A database administrator may use
SQL commands to access Advisor-speciiic tables and obtain
information on the ufilization of existing precomputed
tables, and on the candidate precomputed tables that should
be created. The Advisor also features a mechanism for
limiting the set of precomputed tables that must be analyzed
to a small subset of all possible precomputed tables. In
addition, while analyzing existing and potential candidate
precomputed tables, the Advisor uses logged reference
counts and rewritability of one precomputed table by
another (using the Rewriter).

10

15

20

25

30

35

40

45

50

55

60

65

12

D. Server Integration

The 1nvention supports precomputed views in a way that
i1s fully integrated into a database server, increasing the
scope of performance optimizations and the ability to share
meta data with the server. Queries are intercepted and
rewritten by database server 12, not by a separate piece of
software.

Among the advantages of full integration are the follow-
ing. Ageregation information 1s stored in the system tables
along with all the other metadata for the database, making
knowledge of all database activity centralized. The result of
this integration 1s consistency and the ability to use the
enhanced meta data for query compilation and optimization
regardless of whether precomputed views are used. For
example, 1f aggregate table data 1s out of synch with detail
data, the system knows about it instantly and does not use
the table to rewrite queries (unless requested to do so). In
addition, optimization strategies are known to query pro-
cessing system 18 as a result of full integration.

I1I. Detailed Operation

A. Overview

Referring to FIGS. 7A and 7B, in one embodiment, a
database administrator may continuously improve the aggre-
cgation strategy used by query processing system 18 as
follows. In operation, a user sends a query to database server
12 over network 14 (step 90). Initially, the database admin-
Istrator may or may not have created one or more precom-
puted tables. If no precomputed tables have been created, the
Rewriter cannot rewrite the query; instead, query processing
system 18 directly accesses detail tables 46 of data store 16
to execute the query. If one or more precomputed tables have
been created, the Rewriter attempts to rewrite the query
using the precomputed tables (step 92). The Advisor gen-
erates (and stores in a log 94 of the Meta Data Layer) reports
for queries that are rewritten by the Rewriter (step 96) and
for queries that would benefit from being rewritten 1if the
appropriate precomputed table had existed (step 97). After a
period of time (represented by return loop 98), a database
administrator may use the Advisor to analyze the query logs
by querying the statistical reports (tables) created by the
Advisor (step 100). Based on the information learned from
querying the Advisor system tables, the database adminis-
trator modifies the existing precomputed table set by adding
(defining and populating) new precomputed tables or by
dropping existing precomputed tables (step 102). The data-
base administrator also creates precomputed views for each
of the new precomputed tables (step 104).

By this method, query performance improves, but the
user’s view of the database schema does not change because
the user queries the same set of detail tables 46 over time.

B. Meta Data Layer

The Meta Layer has two levels of external interfaces: a
RISQL enhancement for the database administrator to define
aggregate table mformation, and programmatic interfaces
for communicating with the other components of database
server 12. The Meta Data Layer tracks all metadata mfor-
mation and provides a different external view of that meta-
data information to the database administrator through sys-
tem tables, to a compiler, and to a loader. In one
embodiment, the metadata information may be created and
modified only by a database administrator using RISQL.
1. External User Interface

As mentioned above, the process of defining an aggregate
table mvolves creating a table that will be used to store the
aggregate data, and then defining an aggregate view which
defines the relationship between the data 1n the aggregate
table and the data in the detail tables. A database admainis-

US 6,493,699 B2

13

frator may create an aggregate table definition with the
following expression:

CREATE VIEW|view__name JAS|query__expression JUSING
[table__name]{[table__column_ name])

Here, view_name 1s the name of the materialized view,
table_ name 1s the name of the aggregate table, and the
table_ column_ name 1s the list of columns 1n the aggregate
table that are mapped one-to-one 1n order with the columns
that would be returned by the query expression if 1t were
expressed as a SELECT statement. In one embodiment, the
query__expression 1s limited to the following form:

SELECT | grouping_column, or ager column]
FROM |[table_name_ list]
WHERE [join__predicate list]

GROUP BY [grouping column]

The columns specified in the GROUP BY column are the
ogrouping columns. The grouping columns in the SELECT
l1st must exactly match the columns specified in the GROUP
BY clause. Aggregate columns are columns of the form
aggr(expr), where aggr() 1s one of SUM(), MIN(), MAX(),
COUNT(), or COUNT(DISTINCT()), and expr is a simple
expression derived from a column or columns in a detail
table or a numeric literal or both. In this embodiment, the
WHERE clause may contain only join predicates that relate
the tables listed in the FROM clause. Join predicates may
join tables only through foreign key/primary key relation-
ships. Furthermore, these foreign key/primary key join
predicates may be specified only outward from the detail
table specified in the query expression. In this way, the detail
table may be identified by virtue of it being at the heart (i.e.,
the location from which the foreign key/primary key rela-
tionships point outward) of the join, or by virtue of it being
the table from which all aggregate columns are derived.

As with creating aggregate tables, dropping aggregate
tables may be a two-step process. First, the database admin-
istrator drops the view associated with the aggregate table
using the DROP VIEW expression. Next, the database
administrator drops the aggregate table itself using the
DROP TABLE expression.

Referring to FIG. 8, 1n an 1llustrative retail context, a sales
schema 110 includes a sales fact table 112 with a mulii-
column primary key 114 (timekey, mktkey, prodkey), along
with columns dollars 116 and transaction 118. Sales fact
table 112 has a time dimension and a market dimension
represented by a time table 120 and a market table 122. Time
table 120 has a primary key 124 (timekey), as well as a day
column 126, a month column 128 and a year column 130.
Time table 120 1s denormalized because there 1s a many-
to-one mapping from day to month, and from month to year.
Market table 122 includes a region outboard table 132 (i.e.,
a dimension of a dimension).

In one example, an aggregate table salesl_agg may be
created by aggregating by both time and market using the
key columns, as follows:

create table salesl_ agg(
tkey 1nt not null,
mkey 1nt not null,
sum__dollars 1nt,
primary key (tkey, mkey),
foreign key (tkey) references Time,
foreign key (mkey) references Market);

create view aggl view
as select timekey, mktkey, sum(dollars)
from sales
oroup by timekey, mktkey
using salesl agg(tkey, mkey, sum__ dollars);

10

15

20

25

30

35

40

45

50

55

60

65

14

Aggoregations by key columns allows simple rollup in
cither of the time or market dimensions. For example, a
query that requests the total sales by region, or total sales by
month or year, may be computed from the salesl_ agg
aggregate table. Another advantage of aggregating by key
columns 1s that star indexes may be created on the aggregate
table. For example, a star index may be created on salesl__
agg(tkey, mkey). Queries that constrain on these dimensions
may be serviced by a star join on the aggregate table.

In another example, an aggregate table sales2_ agg may
be created by ageregating by non-key columns, as follows:

create table sales2_ agg(
day int not null,
sum__dollars 1nt,
primary key (day));
create view agg2view
as select day, sum(dollars)
from sales, time
where sales.timekey=time.timekey
oroup by day
using sales2 agg(day, sum__dollars);

The sales2__age ageregate dimension table may be used
to answer a query that selects day and sum(dollars) from
sales and time grouped by day; the sales2__agg eliminates
the join from the sales table to the time table. In order to
compute total sales by month, however, the time table must
be joined to pick up the month for each day value; extra
distinct processing 1s needed because day 1s not a unique
column.

Non-key rollup performance may be improved by defin-
ing dimensional ageregate tables. In the above example, a
time agg table with columns (day, month, year) and a
primary key of day would improve query performance. A
foreign key/primary key relationship from sales2 agg to
time__agg along with the associated star index may be
added. In this case, when a query asks for total sales by year
(naming sales and time in the query), the query may be
rewritten to use sales2 agg and time_ agg, and a starjoin
may be used when performing the query.

The database administrator may define rollup hierarchies
which enable rollups from non-key columns to other
columns, as follows:

CREATE HIERARCHY] hierarchy name |[[FROM|f__table(f_col)]
TOJ|t__table(t_ col) JONfkname)

This expression allows the database administrator to define
many-to-one relationships between two columns that may or
may not be 1n the same table. Hierarchies may be dropped
using the DROP HIERARCHY expression.

2. External API Speciification

The Meta Data Layer supports query rewriting by
enabling the Rewriter to determine which materialized
views are relevant to a query, and determine 1f and how one
column may be rolled-up to another.

In one embodiment, to determine which materialized
views are relevant to a query, the query processing system
sends to the Meta Data Layer a list of tables 1n the query, and
the Meta Data layer returns a list of compatible aggregate
tables (including their parse trees, column mappings, and
whether or not they are valid). An aggregate table is com-
patible with the query if the tables upon which 1t 1s defined
(in the FROM clause) is a subset of those tables in the query.
In an alternative embodiment, the query processing system
may request from the Meta Data Layer all aggregates built
upon a given detail table.

A combination of rollup (hierarchy) information and
foreign key/primary key relationships may by used to deter-
mine whether one column may be rolled-up into another
column.

US 6,493,699 B2

15

The Meta Data Layer maintains certain system tables.
The RBW__ VIEWS table tracks information about
whether or not views are materialized, and other general

information about the materialized views. The RBW
VIEWS table includes the following columns: NAME,

CREATOR, PRECOMPVIEW, PRECOMPVIEW__
TABLE, DETAIL__TABLE, VALID, and COMMENT. The
PRECOMPVIEW column denotes whether the table 1s
materialized or not. If PRECOMPVIEW 1s false, then
PRECOMPVIEW__TABLE, DETAIL__TABLE, and
VALID are all NULL. If PRECOMPVIEW 1is true,
PRECOMPVIEW__TABLE denotes the name of the table
imnto which the view 1s materialized; DETAIL TABLE
denotes the detail table on which the aggregate table is
defined; and VALID indicates whether the data in the
materialized view 1s 1in synch with the data in the detail table.

The RBW__ PRECOMPVIEWCOLUMNS table displays
the relationships between columns 1n the aggregate table and
the detail table. The RBW__ PRECOMPVIEWCOLUMNS
table includes the following columns: TABLE, TABLE _
COLUMN, VIEW, and VIEW__COLUMN. Using this table,
the mapping to the appropriate view and view column may
be identified given an aggregate table name (TABLE) and

column in that aggregate table (TABLE _COLUMN).

The RBW__COLUMNS table provides information about
the data types of the columns. The RBW__ VIEWTEXT table
provides additional iformation about the columns (e.g.,
whether a column 1s a grouping column or an aggregate
column, and the expression of the aggregate columns).

The RBW__HIERARCHIES table tracks rollup hierar-
chies by listing column relationships. The RBW__
HIERARCHIES table includes the following columns:
NAME, FROM_TABLE, FROM__COLUMN,
TO_TABLE, TO_COLUMN, and CONSTRAINT__
NAME. The CONSTRAINT_ NAME column will be
NULL if the FROM__TABLE column 1s the same as the
TO__TABLE column.

3. Internal Features

The Meta Data Layer stores families of structures (block
types) in a system catalog. One family of structures corre-
sponds to precomputed table column definitions; the other
family of structures corresponds to rollup hierarchy defini-
tions. The hierarchy definition block type 1s loosely based on
the primary key/foreign key relationship structure. Both the
hierarchy definitions and rollup hierarchies are of fixed size
and multiple instances fit in a single block.

Whenever the database administrator adds or drops a view
definition, or adds or drops a hierarchy definition, the system
catalog 1s modified to reflect the change. Because these
structures mimic the foreign key/primary key relationship
storage, the access methods are similar.

The Meta Data Layer provides at least two interfaces to
the Rewriter for retrieving data. The first retrieves a list of
precomputed tables associated with a given detail table. The
seccond determines whether or not a rollup path exists
between two columns and, if so, the Meta Data Layer
generates a list of rollup paths. Rollup 1s possible if the
FROM__COLUMN 1s a primary key or a non-nullable
unique column, or if there 1s a rollup defined from the
FROM__ COLUMN to the TO__COLUMN, or through the
transitive set of functional dependency relationships.

C. Rewriter

A detailed description of the Rewriter 1s provided i U.S.
application Ser. No. 09/049,784, filed Mar. 27, 1998, and
enfitled “System and Method For Rewriting Relational
Database Queries,” which 1s incorporated herein by refer-
ence.

10

15

20

25

30

35

40

45

50

55

60

65

16

D. Advisor

As mentioned above, the Advisor assists the database
administrator in determining which precomputed tables
would provide the greatest query performance improvement,
whether those tables currently exist or not. Since the Advisor
knows exactly what types of queries can be rewritten by the
Rewriter, the Advisor 1s able to suggest directly the kinds of
precomputed views that should be built into the database.
The Advisor provides a cost-benefit analysis of existing and
potential precomputed views. The Advisor also provides a
facility to log activity of aggregate queries against a data-
base. The logs files are created when logging 1s enabled,
cither at system startup or when activated by the database
administrator. From this information the database adminis-
trator may analyze the use of existing aggregates in the
database, and may evaluate potential new aggregates to
create that, with the Rewriter, may improve query perfor-
mance.

As shown 1n FIG. 9, the Advisor receives a user database
query 140 from query processing system 18. The Advisor
ogenerates logs records for queries that are rewritten by the
Rewriter and for queries that would benefit from being
rewritten if the appropriate ageregate tables had existed, and
stores these records 1n log 94 in the Meta Data Layer. The
advisor uses the log records, as well as other meta data, such
as information relating to hierarchies 34, to generate one or
more candidate views 42. Information about candidate
views 42 and precomputed views 36 are also stored in log
94. The Advisor also uses meta data information to generate
summary statistics 142, including the Advisor system tables

(RBW__PRECOMPVIEW__CANDIDATES and RBW__
PRECOMPVIEW__UTILIZATION). The database admin-
istrator may analyze the information contained 1n log 94 by
querying the Advisor system tables. The results of queries on
the Advisor system tables may be inserted into a new or
temporary table which may be queried by the database
administrator.

1. Logging Query Information

When Advisor query logeing 1s enabled, the Advisor logs
all queries that are rewritten to access data in precomputed
views 36. The Advisor also logs candidate views 42 that, if
they had existed, they would have been used for rewriting
queries. The database administrator may access candidate
views by querying the RBW__PRECOMPVIEW__
CANDIDATES table. The Advisor also logs information
about correlated subqueries to the Advisor log files. Corre-
lated subqueries execute the same query multiple times, but
with different values. Queries that contain a table or a
subquery that is not related (via a primary key/foreign key
relationship) to the other tables in the query are not logged,
however, even though these queries could be rewritten 1f an
appropriate precomputed view existed.

Referring to FIG. 10, in one embodiment, the Advisor
ogenerates log records as follows. The Advisor parses and
analyzes each aggregate query block in the user query (step
150). If the aggregate query block was rewritten by the
Rewriter to use an existing precomputed view (step 152), a
log record 1s generated. If the rewritten query did not involve
additional aggregation (step 154), a log record is generated
that contains the SQL text of the precomputed view used to
rewrite the aggregate query block (step 156). The same log
record i1s generated (step 156), if the rewritten query
involved additional aggregation (step 154), but a better
candidate view could not be recommended to further
improve query performance (step 158); if a better candidate
could be recommended (step 158), a log record is generated
that contains the SQL text of the candidate view (step 160;

US 6,493,699 B2

17

partial-match candidate view generation). If the Rewriter did
not rewrite the aggregate query block (step 152) but a
candidate view could be recommended (step 162), a log
record 1s generated that contains the SQL text of the can-
didate view (step 160; no-match candidate view generation).
If the Rewriter did not rewrite the aggregate query block
(step 152) and a candidate view could not be recommended
(step 162), no log record is generated (step 164).

The following information may be stored 1n a log file:
fimestamp; database name; detail table 1dentifier; 1dentifier
of view used to answer query (otherwise Null); rollup
information; elapsed time for the query and for each aggre-
cgate block within the query; SQL text for this aggregate
block.

2. Generation of Candidate Views

The candidate view generation process 1nvolves analyz-
ing an aggregate query block to determine whether a pre-
computed view could be suggested that would have been
used to rewrite the ageregate query if that precomputed view
had been created. The end result of this process 1s SQL text
that defines the select part of a precomputed view definition.
A precomputed view created using this definition (along
with the associated aggregate table) is guaranteed to be used
in executing the query block (assuming that there were no
better precomputed views and that all the necessary view
validation and query rewrite settables are enabled).

Referring to FIG. 11, given a query block B, 1ts associated
query Q and a hierarchy graph FG, in the case where the
Rewriter did not rewrite the aggregate query block but a
candidate view could be recommended (no-match candidate
view generation), a candidate view definition V may be
ogenerated as follows.

First, the Advisor determines whether it 1s possible to
generate a legal precomputed view definition (step 190). The
definition of a “legal” precomputed view depends on the
classes of precomputed views that are supported by the
system, and this definition may be modified to accommodate
changes 1n the classes of precomputed views supported. In
addition, the Advisor determines whether the query block
may be rewritten to use the precomputed view that would be
generated. In one embodiment, a view definition may not be
created 1f any of the following conditions 1s true:

(1) the FROM clause of B contains subqueries or multiple
occurrences of the same table;

(i) the FROM clause of B contains a precomputed view
table or a system table;

(i11) the block B references columns that either are
rowpointers, segids, or subqueries;

(iv) if any block in Q has outer joins, reset by, break by
or references a precomputed view;

(v) if B’s project list has a distinct (the distinct did not get
converted by a GROUP BY);

(vi) the foreign key/primary key predicates of B reference
subqueries;

(vii) a snowflake style graph cannot be constructed for B.
To check this condition, construct a join graph using the
tables in the FROM clause and foreign key/primary key
predicates. A foreign key/primary key predicate
between two tables A and B 1s represented as an edge
starting from the referencing table (the table containing
the foreign key in the predicate) to the referenced table
(the table containing the primary key). Find the center
of the join (i.e., a node that has no incoming edges); this
is a candidate fact table (F). Determine if the remaining
nodes are reachable from the candidate fact table and 1t
a node does not have more than one 1ncoming edge.

10

15

20

25

30

35

40

45

50

55

60

65

138

The join graph (JG), fact table (F) and foreign key/
primary key predicates (P1) are stored for later use
(viil) the aggregate expressions in the query do not fall
under the class of allowable aggregates 1n a precom-

puted view definition;

(ix) there are aggregates in subqueries that are correlated
to this block;

(x) the GROUP BY list of B does not constitute an
allowable GROUP BY clause of a precomputed view
definition;

(xi) the grouping list G (which may differ from the
original grouping list of B) cannot be constructed as
follows. Define G1 as a list consisting of the following:
all the columns referencing the tables 1n B appearing 1n
non-foreign key/primary key predicates, the SELECT
list, and the grouping list of B, ignoring column refer-
ences 1nside aggregate expressions. Construct the list G

which is a “graph-compatible” version of G1 (see steps
206 and 208, below). If such a G can be constructed
store 1t for later use.

Second, the Advisor generates the view definition V as
follows (process 192). Put all tables in the FROM clause of

B in the FROM clause of V (step 194). Put all foreign
key/primary key predicates (P1) in the WHERE clause (step
196). Put G in the GROUP BY clause (step 198). Put all
aggregate expressions of B and G in the SELECT list (step
200). Combine all of these components to create a SELECT
expression (step 202).

The Advisor constructs a graph-compatible list G from G1
as follows (process 204). Put all grouping columns of B into
G (step 206). Also put all column references in non join
predicates and in the SELECT list of B 1nto G, 1gnoring
column references inside aggregate expressions (step 207).
Construct a list T of tables that have columns in G (step 208).
For each table that has a column in G (iterative steps 209,
210, 211), determine whether the primary key of that table
is in G (step 212). If so, remove all other columns of that
table from G (step 214); if not, determine if any one of the
columns is a non-hierarchy element (step 216). If so, remove
all columns of that table and replace them with the primary
key of that table (step 218). Finally, remove each column in
G that 1s functionally dependent on some subset of the
remaining columns in G based upon the mformation con-
tained in the hierarchy graph FG (step 220).

Referring to FIG. 12, given a query block B, its associated
query Q and a hierarchy graph FG, in the case where the
rewritten query mvolved additional aggregation and a better
candidate could be recommended (partial-match candidate
view generation), a candidate view definition V may be
ogenerated as follows.

First, the Advisor determines whether it 1s possible to
generate a legal precomputed view definition (step 230). The
definition of a “legal” precomputed view depends on the
classes of precomputed views that are supported by the
system, and this definition may be modified to accommodate
changes 1n the classes of precomputed views supported. In
addition, the Advisor determines whether the query block
may be rewritten to use the precomputed view that would be
ogenerated. In one embodiment, a view definition may not be
created 1f any of the following conditions 1s true:

(1) the FROM clause of B does not contain any precom-
puted views;

(11) B references rowids, segids or segnames;

(i11) B has more than one precomputed view that has
aggregate eXpressions;

(iv) B has more than one precomputed view and none of
them has an aggregate expression;

US 6,493,699 B2

19

(v) B has a subquery that has more than one table in its
FROM clause or has a subquery that references a
precomputed view or has a subquery that has aggregate
expressions or has a subquery whose SELECT list has
expressions that are not simple column references.

(vi) a candidate view for a reverse-engineered Bl (built
by composing B, the precomputed view definitions and
subqueries in the FROM clause of B) cannot be built
using the candidate view generation process described
above 1n connection with no-match candidate view
generation (step 192).

If a no-match candidate view generation test passes the
reverse-engineered query Bl generated in step (vi) above,
the Advisor generates the no-match candidate view from Bl
(step 232).

3. Generation of Statistical Reports

a. Overview

As explained above, the database administrator may use
the Advisor to understand the utilization of each view and to
oget a sense of the costs and benefits of each view with
respect to other views answering the same query. The
database administrator may also use the Advisor to deter-
mine ways to improve the performance of aggregate queries;
in particular, the Advisor provides recommendations to the
database administrator as to which views to create and how
many views to create. The scope of analysis may be con-
strained by date range and specific detail table. The Advisor
scans the log file for queries referencing the specified detail
table within the given date range. If the database adminis-
trator does not specily a date range, the Advisor scans all the
existing Advisor log files for queries referencing the speci-
fied detail table. For each view associated with the specified
detail table, the reports may include a view name, utilization
count (total number of times the view was used to answer
queries), rollup count (total number of times the view was
used to answer hierarchical relationships), and the size of the
view. The Advisor also creates a unique list of views either
by scanning the log files or by querying the RBW__VIEWS
system table for all the materialized and candidate views
associated with the specified detail table. The Advisor uses
this list to define an analysis space and to generate a
dependency graph. It will then apply a cost formula to
calculate the benefits of one precomputed view 1n the graph
with respect to other views that can answer the same queries.

The RBW__PRECOMPVIEW__CANDIDATES table

contains information which 1s used to analyze the benefits of
creating new precomputed views that would improve the
performance of certain queries. This information also may
be used by the database adminmistrator to decide which

precomputed views to create. The RBW__
PRECOMPVIEW__ CANDIDATES table contains one row

for each potential candidate view based on the queries that

are logged and one row for each existing view. The RBW__
PRECOMPVIEW__CANDIDATES table contains the fol-

lowing columns:

TABLE

RBW__PRECOMPVIEW__CANDIDATES

Column Name Column Type Column Description

DETAIL_TABLE_NAME CHAR(128) Name of the detail table.

This column must be
constrained with a single
detail table per query.

5

10

15

20

25

30

35

40

45

50

55

60

65

20

TABILE-continued

RBW__PRECOMPVIEW__CANDIDATES

Column Name Column Type Column Description

START__DATE

TIMESTAMP Start date for aggregate
query analysis. Scope of
analysis 1s defined by

an equality constraint on
the specified data range.
End date for aggregate
query analysis. Scope of
analysis 1s defined by

an equality constraint

on the specified date range.
Time, in seconds, spent 1n
executing aggregate parts of
the query sub-plans for a
group of queries that could
be represented by a
candidate view.

Number of times a
candidate view would
have been used to answer
queries referencing the
specified detail table.
Name of an existing view
defined on the specified
detail table that contains a
subset of the rows 1n the
detail table. Use this to
limit the scope of analysis
to a portion of the

detail table. This speeds up
the processing time of the
Advisor analysis.

Size (number of rows) of
the precomputed view. If
SAMPLE__ VIEW__NAME
column 1s constrained, the
value 1s the size of the
sample view.

(Detail table size/View
size). Size is defined

as number of rows. This
indicator can be used to
predict the reduction n
average number of rows
processed for a query. If
SAMPLE__ VIEW__NAME
column 1s constrained, the
value is (Sample view size/
View size).

Benefit of a view with
respect to the set of views
being analyzed. Le., the
benefit if a view 1s
computed by considering
how it can improve the
cost of evaluating views,
including 1tself.

Name of an existing
precomputed view defined
on the specified detail
table. Null for candidate
VIEWS.

Sequence number of the
view text for SQL

text greater than 1,024
bytes.

SQL text representing the
candidate view’s definition.

END_ DATE TIMESTAMP

AGGR_ELAPSED TIME INTEGER

REFERENCE__COUNT INTEGER

SAMPLE_ VIEW__NAME

CHAR(128)

SIZE INTEGER

REDUCTION_FACTOR DOUBLE

(FLOAT)

BENEFIT DOUBLE

(FLOAT)

NAME CHAR(128)

SEQ INTEGER

TEXT CHAR(128)

The SAMPLE VIEW NAME column enables the data-

base administrator to perform Advisor analysis on a smaller
set of data to improve the performance of Advisor queries.
When constrained on the SAMPLE__VIEW__NAME

column, the scope of the Advisor query 1s limited to the view

US 6,493,699 B2

21

name referenced in the column. The database administrator
should create a sample view that contains a representative
sample of the data in the database and that has the following
characteristics: 1t maps to a subset of the rows 1n a detail
table; 1t has a column corresponding to each of the columns
in the detail table; and the data types of the columns 1n the
sample view exactly match the data types 1n the detail table.

The RBW__ PRECOMPVIEW__CANDIDATES table can
be used to guide the database administrator in creating new
views to help the performance of certain queries. For
example, let’s assume the database contains no aggregate
tables, and the database administrator would like to know
what are the most beneficial aggregate views he should
create on the Sales table:

Select reference__count, benelit, text, seq
From rbw__precompview__candidates

Where detail table name=‘SALES’;

The scope of the above analysis can further be constrained
to a date range:

Select reference__count, benefit, text, seq
From rbw__precompview__candidates
Where detail__table. name=‘SALES’ and
start__date=date(‘1996-01-01") and end_ date=date
(‘1996-03-30’);

The RBW__PRECOMPVIEW__UTILIZATION table
contains mformation used by the database administrator to
analyze the value of precomputed views that were created
for a specific detail table. It also provides insight on a
specific view’s utilization and the costs and benefits of that
view with respect to other views answering the same query.
The RBW__PRECOMPVIEW__UTILIZATION table has
one row for every valid precomputed view defined 1n the

database, including views that are set to a valid state by the
database administrator. The RBW__PRECOMPVIEW__
UTILIZATION table includes the following columns.

TABLE

RBW PRECOMPVIEW__UTILIZATION

Column Name Column Type Column Description

DETAIL_TABLE NAME CHAR(128) Name of the detail table.
This column must be
constrained with a single
detail table per query.
Start date for aggregate
query analysis. Scope of
analysis 1s defined by an
equality constraint on
the specified data range.
End date for aggregate
query analysis. Scope of
analysis 1s defined by

an equality constraint on
the specified date range.
Name of precomputed view
defined on the specified
detail table.

Size of the precomputed
view (number of rows).
(Detail table size/View
size). Size is defined as
number of rows. This
indicator can be used to
predict the reduction in
average number of rows
processed for a query.
Benefit of a view with
respect to the set of views

being analyzed.

START__DATE

TIMESTAMP

END__DATE

TIMESTAMP

NAME CHAR(128)

SIZE INTEGER

REDUCTION_FACTOR DOUBLE

(FLOAT)

BENEFIT DOUBLE

(FLOAT)

5

10

15

20

25

30

35

40

45

50

55

60

65

22

TABILE-continued

RBW PRECOMPVIEW__UTILIZATTION

Column Name Column Type Column Description

Number of times this view
was referenced to answer
queries asking for a subset
of this view’s Grouping
columns or asking for an
attribute of a dimension of
less granularty.

Number of times a view
was used to answer queries
referencing the specified
detail table.

Number of times a view
was used to retrieve
information that was not an
exact match of what was
stored 1n the precomputed
view (e.g., a query that
performs another aggrega-
tion on the data in the
precomputed view).

ROLLUP_COUNT INTEGER

REFBRENCE__COUNT INTEGER

NON_EXACT__
MATCH__COUNT

INTEGER

The NON_ EXACT_MATCH__COUNT column 1denti-
fles how many times a view 1n the database was used to
calculate answers to question where some additional aggre-
cgation was needed. If the count 1n this column is high, 1t
suggests that other precomputed views might improve query
performance. An exact match occurs when a query 1s
answered by a precomputed view without performing addi-
fional aggregation on the precomputed view. There may be
some predication on the query (e.g., a Where clause or a
Having clause) and there can be some formatting (e.g., an
Order By clause), but no extra aggregation (e.g., Group By,
Sum, Min, or Max). For example, consider a detail table
with a granularity of days, a precomputed view defined on
that table with a granularity of months, and the detail table
and the precomputed view both contain the sum of dollars.
Queries relating to how many dollars were generated for a
year may be answered by the month table, but not answered
directly—a further ageregation must be computed to answer
the queries. Each time the precomputed view 1s accessed to
answer a query about the sum of dollars for a year, the
NON__EXACT_MATCH__COUNT column 1s incremented
by one. If the answer to the query 1s not an exact match of
what 1s 1n the precomputed view, including when additional
aggregation 1s performed and when a join to another table
occurs, the column 1s incremented.

The RBW__PRECOMPVIEW__UTILIZATION table
describes the view utilization information for the material-
1zed views for a specific base table. For example, the
database administrator can query the Utilization table to see
how well the existing views on the Sales table are utilized:

Sclect name, reference_count, rollup_ count
From rbw__precompview__utilization
Where detail table name=‘SALES’;
The scope of the above analysis can further be constrained
to a date range:

Sclect name, reference_ count, rollup__count
From rbw__precompview__utilization
Where detail table name=‘SALES’;
start_ date=date(‘1996-01-01") and end-date=date
(‘1996-03-30°);
If there are no constraints on the {start_date, end_ date}
columns, the scope of the analysis will be all the existing
AdvisorLog files. As an another example, the database

US 6,493,699 B2

23

administrator can ask to see the view utilization, view
benefits, and view size for the existing views on sales:

Select name, reference count, benefit, size

From rbw__precompview__utilization
Where detail table name=‘SALES’;

b. Defining an Analysis Space

Referring to FIG. 13, 1n one embodiment, the Advisor
defines an analysis space as follows. At start-up the Advisor
creates a Hash-Directory (step 170). The Advisor populates
the Hash-Directory with existing precomputed views (step
172). The Advisor identifies all of the logged queries stored
in log 64 that have a date within a specified date range (step
174). The Advisor filters the identified queries for the
queries that reference the specified detail table (step 176).
For each query referencing the specified detail table, the
Advisor generates a query structure that includes references
to grouping columns (step 178).

The Advisor categorizes the queries by their grouping
columns so that each query will be hashed to its proper slot
based upon its grouping columns (step 180). Upon collision,
the Advisor will add the element to the Hash-Directory if its
Grouping columns are different than the rest; otherwise, 1f
the ageregate expression 1s different, the Advisor will add
the aggregate expression to a list of aggregate expressions.
For each candidate view, the Advisor keeps track of the
ageregate elapsed time and the number of references to the
view. At this point, the Advisor generates SQL text for each
element in the Hash-Directory (step 182).

c. Imposing a Structure on the Analysis Space

Referring back to FIG. 13, after a view definition has been
generated for each element 1in the Hash-Directory, the Advi-
sor builds a dependency graph based upon the capabilities of
the Rewriter (step 240). Two e¢lements of the graph are
related by a directed edge 1f one element’s view definition
can be rewritten 1n terms of the second element’s view
definition. The graph may be completed by generating one
or more parent nodes of the candidate views. Parent nodes
are nodes of finer granularity as compared to their child node
or nodes. To expand the graph, one pass may be made from
the leaf nodes to the root node to create parent nodes by
combining two or more nodes. The parent node may include
the combined grouping columns. For each level, except for
the leaf nodes, there are generated nodes which were created
through combination of two or more children, and actual
nodes which were created from processing the log file. In
one embodiment, two nodes are combined to produce a
parent 1f, and only 1f, one of the nodes was an actual node;
this minimizes the number of nodes 1n the graph. The root
node of a graph represents the finest granularity of data (i.e.,

the fact table).

d. Performing a Cost-Benefit Analysis

After the dependency graph has been built, the Advisor
applies a cost formula to the dependency graph to determine
the benefits of each view relative to the other views that may
be used to answer the same query (step 242; FIG. 13). The
cost model assumes as 1ts 1nput a directed graph with space
cost (1.€., the number of rows) associated with each view. As
used herein, the dependency relationship between two ele-
ments (views) in the graph is denoted by <. For elements a,
b of a graph, b is an ancestor of a, if and only if a<b. If C(v)
is the cost of view v, the benefit, B(v, S), of view v relative
to a set S of nodes 1n the dependency graph 1s defined by:

B(H S)=2W§VBW

10

15

20

25

30

35

40

45

50

55

60

65

24

where, for each w=v, B, =C(v)-C(u) if C(v)<C(u) for view
u, which 1s the least cost in S such that w=u; otherwise
B, =0. Thus, the benefit of v 1s computed by considering how
it can 1improve the cost of evaluating views, including itself.
For each view w that v covers, the cost of evaluating w using
v 1s compared with the cost of using whatever view from S
offered the cheapest way to evaluate w. If the cost of v 1s less
than the cost of the competitor, then the difference represents
part of the benefit of selecting v as a materialized view. The
total benefit, B(v, S), 1s the sum over all views w of the
benelit of using v to evaluate w.

The set S of dependency graph nodes, which are to be
used 1 a benefit calculation, 1s generated using the follow-
ing method:

S={root fact table node}
for (i=0; i<number of nodes in dependency graph; i++) 4

select a view “v” 1n graph such that v 1s not 1n S and
such that B(v,S) is maximized,

S=S union {node representing “v”’}

j

The views 1n a graph are unlikely to have the same
probability of being requested mm a query. A probability
representing the frequency with which the view 1s queried 1s
therefore associated with each view. The probability of view
v 1s the total number of references to v over the total number
of references to all the views 1n the graph. To normalize the
benelit metric of a view v to be measured 1n terms of the total
number of rows processed, the probability, Pr , 1s redefined
as the total number of references to v (as opposed to the total
number of references to v over the total number of refer-
ences to all the views in the graph). Under this formulation,
the benefit, B(v, S), of view v relative to a set S of views is
ogrven by:

B(T"; S)=Zw§vPrw}<Bw

The size of a precomputed view 1s readily determined
from the number of rows 1n the view. Because the sizes of
candidate views are not known, the Advisor must estimate
the size of these views. In one embodiment, the Advisor
estimates the size of a candidate view by running the cost
model on a statistically representative but small subset of the
detail data. The database administrator may define the subset
of the detail data (as a view) on which the cost model is run.
In this way, the size of a candidate view 1s estimated by
actually materializing the view. The database administrator
may also supply the Advisor with a sample of the detail table
represented by a view on that table.

In another embodiment, sampling and analytical methods
are used to compute the sizes of different views from a
materialization of the largest element in the graph (i.e., the
view that groups by the largest attribute in each dimension).
In a third embodiment, the Advisor dynamically calculates
the potential view size at query execution time. In another
embodiment, the database administrator supplies the Advi-
sor with a number of distinct values for each attribute of a
dimension and all possible or interesting correlation values;
from this information the Advisor estimates the size of each
view 1n the graph.

After the cost formula has been applied to the dependency
oraph, the Advisor generates statistical reports that may be
queried by the database administrator (step 244).

4. Interpreting the Results of Queries on Advisor System
Tables

There 1s always a cost-benefit trade-off 1n creating pre-
computed views. The cost 1s 1n disk space, time to create,
time to load, and time to administer. The benefit 1s better

US 6,493,699 B2

25

query performance. Users always favor faster performance.
The database administrator should evaluate this trade-oft
and decide which precomputed views should be created and
which should be removed. Queries on the Advisor system
tables assist the database administrator in making these
decisions.

The BENEFIT columns 1n the RBW__
PRECOMPVIEW_UTILIZATION and RBW__
PRECOMPVIEW__ CANDIDATES tables provide a mea-

sure of the relative benefit for the views of a given Advisor
run. The numbers in the BENEFIT column are measures of
the number of rows that would not have to be processed with
the corresponding precomputed views.

The SIZE columns in the RBW__PRECOMPVIEW__
UTILIZATION and RBW__PRECOMPVIEW__
CANDIDATES tables specily the number of rows 1n the
precomputed view or the candidate view. In general, views
with a smaller number of rows are less expensive than views
with a greater number of rows. The REDUCTION__
FACTOR columns provide the ratio of the view size with
respect to the detail table. Both the size and the reduction
factor of a view should be considered 1n evaluating the cost
and benefit of a particular view.

The REFERENCE __COUNT column specifies how many
times a precomputed view was used (RBW__
PRECOMPVIEW__UTILIZATION table) or could have
been used (RBW__PRECOMPVIEW__CANDIDATES
table). In general, if this number is small, the associated
view 1t not particularly useful for the database.

In sum, a good number 1n any particular column by 1tself
generally 1s not a compelling reason to create or remove a
view. Instead, all of the numbers associated with a view
should be considered together when assessing the value of
that view. In addition, the results for a particular view should
considered 1n the context of all of the views for a given detail
table.

Other embodiments are within the scope of the claims.
For example, many of the above embodiments were
described 1n the context of aggregate queries and precom-
puted aggregate queries. The invention applies to other
implementations as well. Thus, a precomputed view con-
taining no aggregation may be defined and created by
precomputed view processing system 20, and may be used
by the Rewriter and the Advisor.

In another embodiment, the database administrator may
limit the Advisor’s inquiry to views that were referenced
more than a certain number of times or to views with an
aggregate execution time (i.e., sum of each query’s aggre-
gate block elapse time referencing that view) that is greater
than a threshold amount of time. Alternatively, the depen-
dency graph may be limited to a minimum (but acceptable)
number of nodes.

Still other embodiments are within the scope of the
claims.

What 1s claimed 1s:

1. A method of managing precomputed views for answer-
ing queries on a database, comprising:

defining an analysis space that includes any combination
of existing and potential precomputed views for the
database;

keeping a history of queries on the database;

performing a cost-benefit analysis of the existing and
potential precomputed views in the analysis space, the
analysis being based at least in part on the history of
queries on the database; and

presenting a result of the cost-benefit analysis to deter-
mine a set of existing precomputed views to retain and

10

15

20

25

30

35

40

45

50

55

60

65

26

a set of potential precomputed views to create for use
in responding to future queries.

2. The method of claim 1, wherein keeping a history of
queries on the database includes generating a log record of
queries on the database.

3. The method of claim 1, wherein keeping a history of
queries on the database includes parsing query blocks of
queries on the database.

4. The method of claim 1, wherein keeping a history of
queries on the database includes determining whether a
query on the database was rewritten to include a precom-
puted view.

5. The method of claim 4, further comprising:

when a query was rewritten to include a precomputed
view, keeping information about the precomputed view
included 1n the rewritten query.

6. The method of claim 1, wherein keeping a history of
querics on the database includes determining whether
rewritten queries nclude aggregation.

7. The method of claim 1, wherein keeping a history of
queries on the database includes idenfifying a potential
precomputed view which could have been used to rewrite a
query on the database.

8. The method of claim 7, further comprising:

keeping information about the potential precomputed
VIEW.

9. The method of claim 1, wherein the analysis space 1s
defined based upon capabilities of a query rewriting facility.

10. The method of claim 9, wherein the definition of the
analysis space retlects whether or not queries have been
rewritten.

11. The method of claim 9, wherein the definition of the
analysis space reflects whether or not rewritten queries
include aggregation.

12. The method of claim 1, wherein the defined analysis
space 1ncludes potential and existing precomputed views.

13. The method of claim 1, wherein the defined analysis
space mncludes potential precomputed views generated based
upon user query history.

14. The method of claim 1, wherein performing a cost-
benelit analysis of the precomputed views in the analysis
space comprises generating a measure of precomputed view
utilization.

15. The method of claim 1, wherein performing a cost-
benefit analysis of the views 1n the analysis space includes
ogenerating a measure of benefit of a precomputed view
relative to other precomputed views i1n the analysis space.

16. The method of claim 15, wherein performing a
cost-benefit analysis of the precomputed views 1n the analy-
sis space includes generating a measure of benedit of one that
1s a potential precomputed view.

17. The method of claim 1, wherein performing a cost-
benelit analysis of the precomputed views in the analysis
space comprises generating a report that reflects current
precomputation strategy elflfectiveness.

18. The method of claim 1, wherein performing a cost-
benefit analysis of the precomputed views in the analysis
space comprises generating a report that includes 1nforma-
tion about potential precomputed views that could be cre-
ated.

19. The method of claim 1, wherein performing a cost-
benefit analysis of the precomputed views 1n the analysis
space comprises applying a cost formula to the analysis
space.

20. The method of claim 1, further comprising:

determining hierarchical relationships between possible
views 1n the analysis space; and

US 6,493,699 B2

27

performing the cost-benefit analysis based on the hierar-
chical relationships.
21. The method of claim 1, wherein defining 1s based
upon user database query history.
22. A method of managing precomputed views for
answering queries on a database, comprising;:

defining an analysis space that includes one or more
precomputed views for the database, the one or more
precomputed views including a potential precomputed
VIEW,

determining hierarchical relationships of the one or more
precomputed views 1n the analysis space;

performing a cost-benefit analysis of the views i the
analysis space based on the hierarchical relationships;
and

presenting a result of the cost-benefit analysis to deter-
mine a set of existing precomputed views to retain and
a set of potential precomputed views to create for use
in responding to future queries.

23. The method of claim 22, wherein determining hier-
archical relationships 1s based upon meta data.

24. The method of claim 22, wherein determining hier-
archical relationships 1s based upon capabilities of a query
rewriting facility.

25. A method of managing precomputed views for
answering queries on a database, comprising:

defining an analysis space that includes a potential pre-
computed view composed of a combination of two or
more constituent views;

performing a cost-benefit analysis of the potential pre-
computed view 1n the analysis space; and

presenting a result of the cost-benefit analysis to deter-
mine a set of existing precomputed views to retain and
a set of potential precomputed views to create for use
in responding to future queries.

26. The method of claim 25, wherein at least one of the
constituent views of the potential precomputed view 1is
another potential precomputed view.

27. The method of claim 28§, wherein at least one of the
constituent views of the potential precomputed view 1s an
existing precomputed view.

28. The method of claim 25, wherein the defined analysis
space 1ncludes the constituent views of the potential pre-
computed view.

29. The method of claim 25, wherein the defined analysis
space does not include the constituent views of the potential
precomputed view.

30. An apparatus for processing precomputed views for
answering user queries on a database, comprising;:

a query processor; and

an advisor configured to describe precomputation strategy
ciiectiveness by defining an analysis space that
includes any combination of existing and potential
precomputed views for the database, keeping a history
of queries processed by the query processor, and per-
forming a cost-benefit analysis of the views 1n the
analysis space, the analysis based at least 1n part on the
history of queries, and presenting a result of the cost-
benelit analysis to determine a set of existing precom-
puted views to retain and a set of potential precomputed
views to create for use 1n responding to future queries.
31. The apparatus of claim 30, wherein keeping a history
of queries processed by the query processor includes gen-
erating a log record of received queries.
32. The apparatus of claim 31, wherein the log record of
received queries 1ncludes information about a precomputed
view 1ncluded 1n a rewritten query.

10

15

20

25

30

35

40

45

50

55

60

65

23

33. The apparatus of claim 31, wherein the log record of
received queries 1ncludes information about a potential
precomputed view which could have been used to rewrite
the query.

34. The apparatus of claim 30, wherein keeping a history
of queries processed by the query processor includes parsing
query blocks of queries processed by the query processor.

35. The apparatus of claim 30, wherein keeping a history
of queries processed by the query processor mncludes deter-
mining whether a query was rewritten to 1include a precom-
puted view.

36. The apparatus of claim 30, wherein keeping a history
of queries processed by the query processor mncludes deter-
mining whether a rewritten query includes aggregation.

37. The apparatus of claim 30, wherein keeping a history
of queries processed by the query processor includes 1den-
tifying a potential precomputed view which could have been
used to rewrite a query processed by the query processor.

38. The apparatus of claim 30, wherein the analysis space
1s defined based upon capabilities of a query rewrlting
facility.

39. The apparatus of claim 38, wherein the definition of
the analysis space reflects whether or not queries processed
by the query processor have been rewritten.

40. The apparatus of claim 38, wherein the definition of
the analysis space reflects whether or not rewritten queries
include aggregation.

41. The apparatus of claim 30, wherein the analysis space
1s defined based upon meta data.

42. The apparatus of claim 30, wherein the defined
analysis space includes potential precomputed views gener-
ated based upon the history of queries processed by the
qUETY Processor.

43. The apparatus of claim 30, wherein performing a
cost-benefit analysis of the precomputed views 1n the analy-
sis space 1ncludes generating a measure of precomputed
view utilization.

44. The apparatus of claim 30, wherein performing a
cost-benefit analysis of the precomputed views in the analy-
sis space Includes generating a measure of benefit of a
precomputed view relative to other precomputed views in
the analysis space.

45. The apparatus of claim 30, wherein presenting the
result of the cost-benedit analysis of the views 1n the analysis
space comprises generating a report that reflects current
precomputation strategy elfectiveness.

46. The apparatus of claim 30, wherein performing a
cost-benefit analysis of the views 1n the analysis space
includes generating a report that includes information about
a potential precomputed view which could have been used
to rewrite the query.

47. The apparatus of claim 30, wherein performing a
cost-benefit analysis of the precomputed views in the analy-
sis space 1ncludes applying a cost formula to the analysis
space.

48. The apparatus of claim 30, wheremn the advisor i1s
further configured to describe precomputation strategy
cliectiveness by:

determining hierarchical relationships of the one or more
precomputed views 1n the analysis space; and

performing the cost-benefit analysis based at least in part
on the hierarchical relationships.
49. An apparatus for processing precomputed views for
answering user queries on a database, comprising;

a query processor; and

an advisor configured to define an analysis space that
includes one or more precomputed views for the

US 6,493,699 B2

29

database, the one or more precomputed views including
a potential precomputed view, determine hierarchical
relationships of the precomputed views 1n an analysis
space, and perform a cost-benefit analysis of the pre-
computed views 1n the analysis space based at least 1n
part on the hierarchical relationships, and present a
result of the cost-benefit analysis to determine a set of
existing precomputed views to retain and a set of
potential precomputed views to create for use 1n
responding to future queries.

50. The apparatus of claim 49, wherein the hierarchical
relationships are determined based upon meta data.

51. The apparatus of claim 49, wherein the hiearchical
relationships are determined based upon capabilities of a
query rewriting facility.

52. An apparatus for processing precomputed views for
answering user queries on a database, comprising:

a query processor; and

an advisor configured to define an analysis space that
includes a potential precomputed view composed of a
combination of two or more constituent views, perform
a cost-benefit analysis of the views in the analysis
space, and present a result of the cost-benefit analysis
to determine a set of existing precomputed views to
retain and a set of potential precomputed views to
create for use 1n responding to future queries.

53. The apparatus of claim 52, wherein at least one of the
constituent views of the potential precomputed view 1s a
potential precomputed view.

54. The apparatus of claim 52, wherein at least one of the
constituent views of the potential precomputed view 1s
another potential precomputed view.

55. The apparatus of claim 52, wherein the defined
analysis space includes the constituent views of the potential
precomputed view.

56. The apparatus of claim 52, wherein the defined
analysis space does not include the constituent views of the
potential precomputed view.

57. A computer program product, tangibly stored on a
computer-readable medium, for processing precomputed
views for answering queries on a database, comprising
instructions operable to cause a programmable processor to:

define an analysis space that includes any combination of
possible views for the database,

perform a cost-benefit analysis of the views in the analysis

space; and

present a result of the cost-benefit analysis to determine a

set of existing precomputed views to retain and a set of
potential precomputed views to create for use 1n
responding to future queries.

58. The computer program product of claim §7, wherein
the analysis space 1s defined based upon capabilities of a
query rewriting facility.

59. The computer program product of claim 58, wherein
the definition of the analysis space reflects whether or not
received queries have been rewritten.

60. The computer program product of claim 58, wherein
the definition of the analysis space reflects whether or not
rewritten queries 1nclude aggregation.

61. The computer program product of claim 57, wherein
the analysis space 1s defined based upon meta data.

62. The computer program product of claim 57, wherein
the defined analysis space 1ncludes precomputed views.

63. The computer program product of claim 57, wherein
the defined analysis space includes potential precomputed
views generated based upon query history.

10

15

20

25

30

35

40

45

50

55

60

65

30

64. The computer program product of claim 57, wherein
instructions to perform a cost-benefit analysis comprise
instructions operable to cause a programmable processor to
generate a measure of precomputed view utilization.

65. The computer program product of claim §7, wherein
instructions to perform a cost-benefit analysis comprise
Instructions operable to cause a programmable processor to
ogenerate a measure of benefit of a precomputed view relative
to other views 1n the analysis space.

66. The computer program product of claim 57, wherein
instructions to perform a cost-benefit analysis comprise
instructions operable to cause a programmable processor to
ogenerate a report that reflects current precomputation strat-
cgy cllectiveness.

67. The computer program product of claim 57, wherein
instructions to perform a cost-benefit analysis comprise
instructions operable to cause a programmable processor to
ogenerate a report that includes information about candidate
views that could be created.

68. The computer program product of claim §7, wherein
instructions to perform a cost-benefit analysis comprise
Instructions operable to cause a programmable processor to
generate a measure of benefit of a potential precomputed
view relative to other views in the analysis space.

69. The computer program product of claim 57, wherein
instructions to perform a cost-benefit analysis comprise
instructions operable to cause a programmable processor to
apply a cost formula to the analysis space.

70. The computer program product of claim 37, further
comprising instructions operable to cause a programmable
processor to:

determine hierarchical relationships between the possible
views 1n the analysis space; and

perform the cost-benelit analysis based on the hierarchical

relationships.

71. The computer program product of claim 57, wherein
the analysis space 1s defined based upon database query
history.

72. The computer program product of claim 70, wherein
the mstructions to define an analysis space comprise mstruc-
tions operable to cause a programmable processor to gen-
erate a log record for received queries.

73. The computer program product of claim 72, wherein
the 1nstructions to generate a log record comprise 1nstruc-
fions operable to cause a programmable processor to parse
query blocks from queries.

74. The computer program product of claim 72, wherein
instructions to generate a log record for a user query
comprises 1nstructions operable to cause a programmable
processor to determine whether the query was rewritten to
include a precomputed view.

75. The computer program product of claim 72, wherein
instructions to generate a log record comprises nstructions
operable to cause a programmable processor to determine
whether rewritten user queries include aggregation.

76. The computer program product of claim 72, wherein
instructions to generate a log record comprises instructions
operable to cause a programmable processor to identify a
potential precomputed view which could have been used to
rewrite the received queries.

77. The computer program product of claim 72, wherein
the log record generated for a query comprises mformation
about a precomputed view used to rewrite the query.

78. The computer program product of claim 72, wherein
the log record generated for a user query comprises 1nfor-
mation about a potential precomputed view which could
have been used to rewrite the received query.

US 6,493,699 B2

31

79. A computer program product, tangibly stored on a
computer-readable medium, for processing precomputed
views for answering queries on a database, comprising,
instructions operable to cause a programmable processor to:

determine hierarchical relationships between or among
views 1n an analysis space that includes any combina-
tion of potential precomputed of potential precomputed
views for the database;

perform a cost-benefit analysis of the views in the analysis
space based on the hierarchiacal relationships; and

present a result of the cost-benefit analysis to determine a
set of existing precomputed views to retain and to
create a set of potential precomputed views for use 1n
responding to future queries.

80. The computer program product of claim 79, wherein
the hierarchical relationships are determined based upon
meta data.

81. The computer program product of claim 79, wherein
the hierarchical relationships are determined based upon
capabilities of a query rewriting facility.

82. A computer program product, tangibly stored on a
computer-readable medium, for processing precomputed
views for answering queries on a database, comprising,
instructions operable to cause a programmable processor to:

10

15

20

32

define an analysis space that includes a potential precom-
puted view composed of a combination of two or more
constituent views; and

perform a cost-benedit analysis of the views in the analysis
space; and

present a result of the cost-benefit analysis to determine a
set of existing precomputed views to retain and a set of
potential precomputed views to create for use 1n
responding to future queries.

83. The computer program product of claim 82, wherein
at least one of the constituent views of the potential pre-
computed view 1s another potential precomputed view.

84. The computer program product of claim 82, wherein
at least one of the constituent views of the potential pre-
computed view 1s a precomputed view.

85. The computer program product of claim 82, wherein
the defined analysis space includes the constituent views of
the potential precomputed view.

86. The computer program product of claim 82, wherein
the defined analysis space does not include the constituent
views of the potential precomputed view.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,493,699 B2 Page 1 of 1
DATED : December 10, 2002
INVENTOR(S) : Latha S. Colby et al.

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 2,
Line 40, should read -- 87. The method of claim 1, wherein the analysis space 18 defined
based upon meta data. --

Signed and Sealed this

Twenty-second Day of June, 2004

o WD

JON W. DUDAS
Acting Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

