(12)

United States Patent
Sheikh et al.

US006484225B2
(10) Patent No.: US 6,484,225 B2
45) Date of Patent: Nov. 19, 2002

(54)

(75)

(73)

(%)

(21)
(22)

(65)

(62)

(51)
(52)
(58)

(56)

METHOD AND SYSTEM FOR MANAGING
COMMUNICATIONS AMONG COMPUTER
DEVICES

Inventors: Tahir Q. Sheikh, Fremont, CA (US);
Walter A. Wallach, Los Altos, CA

(US)

Assignee: Micron Technology, Inc., Boise, 1D
(US)

Notice: Subject to any disclaimer, the term of this

patent 15 extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 09/854,236
Filed: May 11, 2001

Prior Publication Data
US 2001/0025329 Al Sep. 27, 2001

Related U.S. Application Data

Division of application No. 09/048,909, filed on Mar. 26,
1998, now Pat. No. 6,421,746.

INt. CL7 oo, GO6F 13/14
US.CL oo 710/310; 710/309
Field of Search 710/48, 107, 306,

710/309, 310, 52, 308

References Cited

U.S. PATENT DOCUMENTS
4,449,182 A 5/1984 Rubinson et al.

4,835,737 A 5/1989 Herrig et al.
4949245 A 8/1990 Martin et al.

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

IP 04 333 118 A 11/1992 GO6LF/1/18
IP 07 093 064 A 4/1995 ... GO6L/1/26

OTHER PUBLICAITONS

Lyons, Computer Reseller News, Issue 721, pp. 61-62, Feb.
3, 1997, “ACC Releases Low—Cost Solution for ISPs.”

M2 Communications, M2 Presswire, 2 pages, Dec. 19, 1996,
“Novell IntranetWare Supports Hot Pluggable PCI from
NetFRAME.”

Rigney, PC Magazine, 14(17): 375-379, Oct. 10,1995, “The
One for the Road (Mobile—aware capabilities in Windows
95).”

Shanley, and Anderson, PCI System Architecture, Third
Edition, p. 382, Copyright 1995.

Primary FExaminer—Glenn A. Auve

(74) Attorney, Agent, or Firm—Knobbe, Martens, Olson &
Bear LLP

(57) ABSTRACT

A method and system for managing communications among
computer devices without involving central processor units
of computer systems when 1t 1s determined that involving a

central processor unit 1s unnecessary. The method employs
a controller to manage communications among peer and host
devices. With this method, congestion due to control and
data traffic 1s minimized and a more efficient operation of
central processor units 1s achieved.

14 Claims, 3 Drawing Sheets

700
740 /
172 FPB.,
CPU | 150
Vgt 0 PEER N
FABRIC /’ .
CONTROLLER | &
9
176 708
/ // F /174 ®
4 736
CONCURRENT -
MEM BRIDGE 706
PIPELINE g FPB2
BUFFER s
146
INTERRUPT N
170 CONTROLLER PEER 2
//”2’6’ //3,2’
LOCAL 1/0 FPB
|ff¢z
PEER 1

US 6,484,225 B2

Page 2
U.S. PATENT DOCUMENTS 5,740,378 A 4/1998 Rehl et al.
) _ 5,747,889 A 5/1998 Raynham et al.
4099787 A 3/1991 MeNally et al 5754797 A 5/1998 Takahashi
S / arto 5.761,033 A 6/1998 Wilhelm
5,265,098 A 11/1993 Mattson et al. ,
: 5,761,045 A 6/1998 Olson et al.
5,269,011 A 12/1993 Yanai et al. # s
5,761,454 A * 6/1998 Adusumilli et al. 710/105
5,272,584 A 12/1993 Austruy et al.
5,764,924 A 6/1998 Hong
5,317,693 A 5/1994 Cuenod et al.) :
: 5,764,968 A 6/1998 Ninomiya
5,317,747 A 5/1994 Mochida et al. ‘
5,765,198 A 6/1998 McCrocklin et al.
5,329,625 A 7/1994 Kannan et al. ﬁ
: 5,768,541 A 6/1998 Pan-Ratzlatt
5337413 A 8/1994 Lui et al. S 768540 A 6/1998 Fnst ol
5353415 A * 10/1994 Wolford et al. 711/115 19, HSUOML €L al.
5 : 5,781,767 A 7/1998 Inoue et al.
5,357,614 A 10/1994 Pattisam et al. 710/68
: 5,781,798 A 7/1998 Beatty et al.
5,386,567 A 1/1995 Lien et al. :
5,784,576 A 7/1998 Guthrie et al.
5,426,740 A * 6/1995 Bennettcc.ceen...... 710/126 :
5,790,831 A 8/1998 Lin et al.
5,446,910 A 8/1995 Kennedy et al.
. 5,793,987 A 8/1998 Quackenbush et al.
5,471,634 A 11/1995 Giorgio et al.
5,793,992 A * §/1998 Steele et al. 710/113
5,483,419 A 1/1996 Kaczeus, Sr. et al.
) 5,794,035 A 8/1998 Golub et al.
5,493,574 A 2/1996 McKinley
: 5,796,185 A 8/1998 Takata et al.
5,493,666 A 2/1996 Fitch
P e s 5,796,981 A 8/1998 Abudayyeh et al.
5,517,646 A 5/1996 Piccririllo et al.
5,798,828 A 8/1998 Thomas et al.
5,530,810 A 6/1996 Bowman
5,799,036 A 8/1998 Staples
5,539913 A 7/1996 Furuta et al. :
5,802,269 A 9/1998 Poisner et al.
5,555,510 A 9/1996 Verseput et al.
5,802,393 A 9/1998 Begun et al.
5,564,024 A 10/1996 Pemberton)
5,802,552 A 9/1998 Fandrich et al.
5,568,610 A 10/1996 Brown :
e 5,805,834 A 9/1998 McKinley et al.
5,579.491 A 11/1996 Jeffries et al.
5,809,224 A 9/1998 Schultz et al.
5,581,712 A 12/1996 Herrman
5,812,757 A 9/1998 Okamoto et al.
5,586,250 A 12/1996 Carbonneau et al.
: 5,812,858 A 9/1998 Nookala et al.
5,588,121 A 12/1996 Reddin et al.
5,815,117 A 9/1998 Kolanek
5,588,144 A 12/1996 Inoue et al.
5,822,547 A 10/1998 Boesch et al.
5,606,672 A 2/1997 Wade :
5,838,935 A * 11/1998 Davis et al. 710/129
5,608,876 A 3/1997 Cohen et al.
5,870,567 A * 2/1999 Hausauer et al. 710/112
5,615,207 A 3/1997 Gephardt et al. :
: 5,878,237 A * 3/1999 Olarlgcccceevvevvenennenn. 710/128
5,632,021 A 5/1997 Jennings et al.)
5,890,002 A * 3/1999 Lietal. ..cocovvnenan.n... 710/260
5,638,289 A 6/1997 Yamada et al.
: 5,909,568 A 6/1999 Nason
5,644.470 A 7/1997 Benedict et al.
: 5,911,779 A 6/1999 Stallmo et al. 714/6
5,644,731 A 7/1997 Liencres et al.
. 5,918,057 A * 6/1999 Chou et al. 710/260
5,651,006 A 7/1997 Fujino et al.
5,930,358 A 7/1999 Rao .ccovvvviiiiiiiiiiinann, 380/4
5,652,832 A 7/1997 Kane et al.
e 5,953,538 A * 9/1999 Duncan et al. 710/22
5,664,119 A 9/1997 lJeflries et al.
5,964,855 A 10/1999 Bass et al.
2,080,288 A 1071997 Carey et al. 5983349 A 11/1999 Kodama et al 713/200
5,696,970 A 12/1997 Sandage et al. 709, OUAIMI €L Al eevveeennes
5,721,935 A 2/1998 DeSchepper et al.
5,726,506 A 3/1998 Wood * cited by examiner

US 6,484,225 B2

Sheet 1 of 3

Nov. 19, 2002

U.S. Patent

| 434d
crf

[Ol

¢ ddda
L/ 4

‘gd4

N d4ia

794

“9d _

\

744

/41 /

0/1 Iv201
&.\\
NITTOYLNOD 0L/
LdNY¥ILNI
J N344n8
bt INIT3d!d
J 390148
e | INTHYNINOD
 p _
an’
!
MITI0HLINOD
D148V
2t
Ndd
-

N3N

%\\\

U.S. Patent

FIG. 2

Nov. 19, 2002

Sheet 2 of 3

US 6,484,225 B2

|

HOST

!

FC FORWARDS
TRANSACTION
TO CONCURRENT
BRIDGE (CB)

!

CB FORWARDS
TRANSACTION TO
LOCAL 1.0, MEMORY,
OR CPU

'

HOST DEVICE
ASSEMBLES AND

ACKNOWLEDGES

PEER DEVICE
DETECTS/INITIATES
TRANSACTION

20

FABRIC CONTROL

210

NO

AVAILABLEL
?

YES

250

TRANSACTION
INTENDED FOR PEER

OR HOST DEVICE
?

240

PEER

270

FABRIC—-PCI

BRIDGE AVAILABLE
?

NO

YES
J

250

FABRIC CONTROLLER
DIRECTS TRANSACTION
TO PEER DEVICE

260

L

c60

PEER DEVICE
RESPONDS TO

TRANSACTION

280

U.S. Patent Nov. 19, 2002 Sheet 3 of 3 US 6,484,225 B2

FIG. 3

NO

- - : - YES
!

DETERMINE STATE OF 27
TRANSACTION AND
EXTENT OF INTERRUPT

I3

DESTINATION
INVOLVES
PASSAGE THROUGH
CONCURRENT
BRIDGE
~

NO

YES
!

INTERRUPT 40
CONCURRENT BRIDGE

-

!

CONNECT PEER
DEVICE TO DESTINATION

o0

TERMINATE CONNECTION

BETWEEN PEER DEVICE
AND DESTINATION

JoU0

ISSUE

ANOTHER INTERRUPT
?

YES

IO

END

US 6,454,225 B2

1

METHOD AND SYSTEM FOR MANAGING
COMMUNICATIONS AMONG COMPUTER
DEVICES

RELATED APPLICATIONS

This application 1s a divisional of U.S. patent application
entitled “METHOD OF DATA AND INTERRUPT POST-

ING FOR COMPUTER DEVICES” having Application Ser.
No. 09/048,909, filed on Mar. 26, 1998 now U.S. Pat. No.
6,421,746.

The subject matter of U.S. Patent Application entitled
SYSTEM FOR DATA AND INTERRUPT POSTING FOR

COMPUTER DEVICES, filed on Mar. 26, 1998, Applica-
fion Ser. No. 09/048,818, and having attorney Docket No.
MNFRAME.O68A 1s related to this application.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The mvention relates generally to data processing within
information processing systems. More particularly, this
invention relates to inter-device communication within a
computer system.

2. Description of the Related Art

Information processing systems, such as personal com-
puters (PCs), have virtually become an inseparable part of
many people’s daily activities. These systems process an
enormous amount of information 1n a relatively short time.
To perform these sophisticated tasks, a computer system
typically includes a central processor, memory modules,
various system and bus control units, and a wide variety of
peripheral data input/output (I/O) and storage devices. These
computer components communicate using control and data
signals having various data rates and signal protocols over
multiple system buses.

Examples of such system buses include a peripheral
component interconnect (“PCI”) bus, a scaleable coherent
interface (“SCI”) bus, and a high performance parallel
interface (“HIPPI”) bus. The PCI bus is a 32-bit or 64-bit bus
with multiplexed address and data lines. The bus 1s intended
for use as an 1nterconnect mechanism between highly inte-
orated peripheral controller components, peripheral add-in
boards, and processor/memory devices. In some
applications, the SCI bus uses point-to-point links and a
packet protocol to support 64-bit physical addresses. The
upper 16 bits of the 64-bit address specily a node number
and the lower 48 bits of the 64-bit address specily an offset
address. The SCI bus uses coaxial cables over medium
distances (e.g., 10’s of meters) and fiber optics over long
distances (e.g., 10 km) to provide unidirectional point-to-
point signaling, from a transmitting device (i.c., transmitter)
to a recerving device (i.e., receiver), to simulate a bus. The
SCI bus supports read and write transactions among the
various devices within a computer system. A transaction
includes request and response subactions. The request sub-
action transfers an address and a command (read or write),
whereas the response subaction returns status. For a write
fransaction, data are included within the request packet. For
a read ftransaction, data are included within the response
packet. For a compound transaction (e.g., fetch and add),
data are mncluded within the request and response packets.

The HIPPI protocol supports bus communication over a
simplex channel (point-to-point link) for transferring data in
one direction. In some applications, the HIPPI bus uses a
parallel data path to provide communication at 800 Mbps

with a 32-bit data bus, and 1.6 Gbps with a 64-bit data bus.

10

15

20

25

30

35

40

45

50

55

60

65

2

The HIPPI bus performs data transfers and tlow control 1n
increments of bursts, with each burst nominally containing
256 words (1.e., 1024 or 2048 bytes). The HIPPI bus
provides error detection by using byte parity on the data bus,
and immediately following each burst of data with a length/
longitudinal redundancy checkword (LLRC). HIPPI fram-
ing protocol (FP) defines the framing for packets that will be
sent over a HIPPI connection. Basically the HIPPI-FP
standard splits a packet 1n three arcas: Header Area,
D1 Area, and D2 Area. Each of these areas starts and ends
on a 64-bit boundary. The Header_ Area defines the sizes
and offsets of the D1__Area and D2__Area. The D1__Area
contains control information and the D2__Area contains data
assoclated with the control information.

Despite the transfer power of these communication
protocols, data and control tratfic among computer devices
1s still prevalent. Bottlenecks of data and control traffic
among central processing units (“CPUs”), memory devices,
and external media all adversely aifect processing speeds
and efficiency rates of computer systems. Data and control
transactions are often limited to a common path used by all
devices 1n the system. For instance, data traffic for devices
on various input/output (“I/O”) buses travels through the
host processor bus. Additionally, all communications among
peer devices travel through the host processor bus. Peer
devices on the PCI bus may include one or more of the
following: an audio card, a motion video card, a small
computer system interface (SCSI) card, a graphics card, or
other PCI—PCI bridges. For each transaction, a peer device
may 1ssue one or more interrupts to the processor to com-
municate to another device in the system. The frequency of
interrupts results 1n unnecessary and often excessive data
traffic on the host processor bus. More importantly, the
involvement of the CPU 1n the management of these trans-
actions slows computer processing speeds significantly.

Several attempts have been made 1n the field to resolve the
bottleneck of traffic resulting from the above-described
common path. Some of these attempts include employing
data paths having higher data rate capacity, or widening data
path bandwidths to support higher data throughput on the
bus. These solutions, however, are often costly and, more
importantly, limited by the capacity of the employed data
path. Therefore, there 1s a need 1n the computer technology
to manage device mterrupts more elffectively. The solution
should provide a more efficient utility of CPUs while con-
tinuing to meet the demands of 1ncreasing control and data
traffic.

SUMMARY OF THE INVENTION

To overcome the limitations of the related art, the inven-
tion provides a method of posting data and interrupt trans-
actions for devices and local subsystems in a computer
system. A local subsystem may include one or more peer
devices. The 1nvention provides a fabric controller, a con-
current bridge, and an interrupt controller to alleviate the
need of burdening the CPU with every transaction in the
system. Accordingly, unnecessary control and data flow
through the host processor bus 1s minimized.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects, features and advantages of
the 1mmvention will be better understood by referring to the
following detailed description, which should be read in
conjunction with the accompanying drawings, in which:

FIG. 1 1s a functional block diagram of a computer system
employing one embodiment of the invention.

US 6,454,225 B2

3

FIG. 2 1s a flow chart describing the decisional steps of
one embodiment of the Fabric Controller.

FIG. 3 1s a flow chart describing the decisional steps of
one embodiment of the interrupt controller.

DETAILED DESCRIPTION OF THE
INVENTION

The 1nvention provides a method of posting data and
interrupt transactions for devices 1n a computer system. The
method employs a fabric controller, a concurrent bridge, and
an 1nterrupt controller to alleviate the need of burdening the
CPU with every ftransaction in the system. Accordingly,
unnecessary control and data flow through the host proces-
sor bus 1s minimized. Additionally, by directing necessary
transactions to the CPU, concurrent data and control trans-
actions 1n a single system are supported.

FIG. 1 shows a functional block diagram of a computer
system employing one embodiment of the invention. As
shown 1n FIG. 1, a computer system 100 comprises a
plurality of host devices communicating via a concurrent
bridge 108 using standard I/O data buses. These host devices
include, for example, a central processing unit (“CPU”) 112,
one or more memory units 116, and a local input/output
(“I/0”) interface 120 for connecting one or more local 1/0
devices. The mvention 1s implemented independently of the
bus protocol used. Accordingly, the concurrent bridge (CB)
bus 104 may be one of a variety of bus protocols which are
well known 1n the art. For example, in one embodiment, the
CB bus 104 may be a scaleable coherent interface (“SCI”)
bus, or a high performance parallel interface (“HIPPI”) bus.
A fabric controller 124 1s connected to the CB 108 via a data
port (not shown) to manage the flow of transaction requests
among peer devices, and among peer and host devices.
Additionally, an interrupt controller 128 1s connected to the
CB 108 via a control port 106 to manage the flow of interrupt
activity among peer devices, and among peer and host
devices. The design of the CB 108, fabric controller 124, and
interrupt controller 128 may be based on an application
specific integrated circuit (ASIC).

The CB 108 includes four data ports to connect the CPU
112, memory 116, local I/O 120, and the fabric controller
124. The CB 108 further includes a control port 106 to
connect the interrupt controller 128 to other host devices.
The CB 108 establishes communications for up to two links
simultaneosly. As used in the patent document, a link refers
fo an internal connection between two ports within the CB
108. Hence, for example, the CPU 112 may communicate
with the Local I/O 120, while the fabric controller 124
accesses the memory 116 simultaneously. In addition to 1its
ability to establish concurrent links, the CB 108 includes an
arbiter which coordinates access by competing devices to
same resources. The CB 108 may utilize an internal pipeline
buffer 110 to coordinate access to the same resource. Hence,
for example, 1f the fabric controller 124 1s communicating to
the memory 116 and the CPU 112 requests access to write
into the memory 116 at the same time, the CB 108 allows the
CPU 112 to write 1nto the pipeline buifer 110 of the CB 108.
After the fabric controller 124 completes 1ts communication
with the memory 116, the CB writes data stored in its
pipeline buffer 110 into memory 116. Hence, the CB 108
provides virtual access by competing devices to the same
resource simultaneously.

In addition to the main host bus, computer systems
typically include other buses to support communication
among peripheral devices, and between the CPU 112 and
peripheral devices. One very common bus 1s the peripheral

10

15

20

25

30

35

40

45

50

55

60

65

4

component interconnect (“PCI”) bus which supports com-
munication by PCI devices to host and other devices in the
system. A plurality of fabric-PCI bridges (“FPBs”) provide
bus protocol conversion to connect PCI buses to the CB bus

104. In this embodiment, a FPB1 132, FPB2 136, and FPBn
140 are connected to the CB bus 104 to provide communi-
cation for a plurality of PCI devices. As noted above, typical
PCI devices (“peer devices™) include an audio card, a motion
video card, a local area network (LAN) interface, a SCSI
card, an expansion bus interface, a graphics card, or other
PCI—PCI bridges. As shown 1 FIG. 1, peer devices resi-
dent on PCI buses mclude Peerl 142, Peer2 146, and PeerN
150. Data and control traffic transmitted by peer and host
devices travel through, and under the management of, the
fabric controller 124. Interrupt traffic transmitted by peer
and host devices travels through, and under the management
of, the Interrupt controller 128.

FIG. 2 1s a functional flow chart describing the decisional
steps of one embodiment of the fabric controller 124. The
fabric controller 124 may be a processor-based unit which
includes hardware and software 1n 1ts design. The computer
hardware architecture shown in FIG. 1 may be used as the
basis for applying the decisional steps as executed by the
fabric controller 124.

Typically, transaction requests by peer and host devices
are 1ssued continuously 1n the computer system 100. When
a peer or host device 1s not 1ssuing, receiving, or processing,
a transaction, the device 1s 1n an 1dle state as indicated at the
beginning of the process at step 200. There are at least three
1dentifiable categories of transactions in the system 100. The
first category 1s known as a “local” transaction which
includes transactions being 1ssued by and processed within
the peer device itself. The second category 1s known as a
“olobal peer” transaction which includes transactions being
1ssued by a peer device to one or more other peer devices for
further action. A third category 1s known as a “global”
transaction which includes transactions transierred between
onc or more peer devices and one or more host devices.
More particularly, examples of a global transaction include
a transter between the CPU 112 and Peer 1 142, the memory
116 and Peer 1 142, and the local I/O 120 and Peer 1 142.

To perform 1its sophisticated management functions, the
fabric controller 124 monitors the 1ssuance, transfer, and
completion of transactions using the following process. At
step 210, a peer device detects or 1ssues a transaction. The
form of a transaction depends on the bus protocol employed
among peer devices. In some bus protocols, the transaction
command 1s communicated in the form of a packet. The
packet includes, among other things, a source address, a
destination address, a transaction address, a transaction type,
one or more status bits, and one or more error correction bits
(e.g., cyclic redundancy checksum CRC). A peer device
(e.g., Peerl 142 of FIG. 1) may detect a transaction com-
mand which 1s received from another device or,
alternatively, 1ssued by Peerl 142 1itself. At step 220, Peerl
142 checks for the availability of the fabric controller 124
for managing the transaction command being 1ssued or
transferred. Typically, Peerl 142 sends a synchromizing
packet to establish a handshake with the fabric controller
124, and waits for an acknowledgment packet from the
fabric controller 124. If the fabric controller 124 1s not
available, then Peerl 142 waits for the fabric controller 124
to send the acknowledgment packet to Peerl 142. The
waiting arises when the fabric controller 124 1s managing
other transaction commands from other devices 1n the sys-
tem. When the fabric controller 124 becomes available, then
at step 230, the fabric controller 124 1ssues an acknowledg-

US 6,454,225 B2

S

ment packet to and receives the transaction command from
Peerl 142 via the FPB1 132. As noted above, the transaction

command may be a read, write, or a compound subaction.
The fabric controller 124 determines the intended destina-
fion of the transaction command pursuant to the destination

address field 1 the packet.

If the transaction command 1s intended for a host device,
then at step 240, the fabric controller 124 forwards the
transaction command to the CB 108 (FIG. 1) for further
action. At step 250, the CB 108, in turn, forwards the
transaction command to its intended destination (e.g., CPU
112, memory unit 116, or local I/O interface 120) for
processing. At step 260, the recipient host device returns a
response packet to the 1ssuing device to acknowledge that
the transaction command has been received for processing.
If, on the other hand, the fabric controller 124 determines 1n
step 230 that the transaction command 1s intended for
another peer device, then the fabric controller 124 moves to
step 270. At step 270, the fabric controller 124 checks for the
availability of the fabric-PCI bridge (e.g., FPB2 136) to
which the intended peer device (e.g., Peer2 146) 1s con-
nected. If the FPB2 136 1s not available, the fabric controller
124 waits until 1t receives an acknowledgment packet from
the FPB2 136. When the FPB2 136 becomes available, the
FPB2 sends an acknowledgment packet to the fabric con-
troller 124 and, at step 280, the fabric controller 124 directs
the transaction command to Peer2 146 via the FPB2 136 for
further action. At step 290, the recipient peer device
responds to the transaction command by returning a
response packet acknowledging receipt of the transaction
request. By forwarding the transaction request directly to the
intended peer device without involving the CPU 112, the
possibility of bottle neck traffic on the CB bus 104 1s
minimized. Moreover, concurrent transactions among host
devices and among peer devices are supportable. The pro-
cess terminates at step 299.

FIG. 3 1s a flow chart describing the decisional steps of
one embodiment of the interrupt controller 128 (FIG. 1). As
shown 1 FIG. 3, at step 300, a typical interrupt process
commences by setting the interrupt controller 128 1n a
“watchdog” state and waiting for the 1ssuance of interrupts
by one or more peer devices. At step 310, the interrupt
controller 128 determines 1f an interrupt has been 1ssued by
a peer device. If no interrupt has been i1ssued, the interrupt
controller 128 returns to its watchdog state as described 1n
step 300. If an mterrupt 1s detected then, at step 320, the
interrupt controller 128 analyzes the state of the current
fransaction, which 1s being performed by the interrupt-
issuing peer device (“source peer device”). Additionally, in
response to the interrupt request by the source peer device,
the interrupt controller 128 determines whether to interrupt
a destination peer device (i.€., the peer device targeted by the
source peer device) and/or interrupt the CPU 112
(“speculative interrupt”™).

In analyzing the state of the current transaction, the
interrupt controller 128 determines whether the transaction
1s 1n 1ts early stages of execution or nearing completion. The
interrupt controller 128 may evaluate one or more factors to
assess the state of the current transaction. The factors may
include, among other things, the destination address, trans-
action address, one or more status bits, and type of trans-
action. Hence, for example, a source peer device (¢.g., Peerl
142) may request to read certain data (e.g., an image) from
the memory 116. If the transaction address specifies a block
of data at the end of the image data for this type of
transaction, the interrupt controller 128 determines that the
read transaction 1s nearing completion. Alternatively, a sys-

10

15

20

25

30

35

40

45

50

55

60

65

6

tem operator may set a counter to a threshold rate to
determine at which point (e.g., percentage) a transaction is
nearing completion. For instance, 1f the 1mage size 1s 8K,
and Peerl 142 1s reading the 1mage data in blocks of 1K
during each memory access, then the read transaction 1is
nearing completion on the 8th access to memory. Therefore,
if the interrupt controller determines that Peerl 142 1is
accessing the memory 116 for the 8th time, then the read
fransaction 1s nearing completion. If the transaction 1s near-
ing completion, the interrupt controller 128 may interrupt
the CPU 112. Such mterrupt may be necessary to prepare the
CPU 112 for further action after the Peerl 142 completes

executing its current transaction.

Moreover, 1n some 1nstances, the interrupt controller 128
may interrupt the CPU 142 even when the transaction 1s not
nearing completion. Such interrupt may be 1n response to an
express request by the source peer device. Additionally, the
interrupt controller 128 may interrupt the CPU 142 upon
detecting an error in the transaction (e.g., a data overflow).
In such case, the mterrupt controller 128 interrupts the CPU
142 to take appropriate measures, €.g., 1nstruct the source
peer device to cancel or re-initiate the transaction.

At step 330, the interrupt controller 128 determines
whether transaction packets sent by the source peer device
to a destination device 1nvolve passage through the CB 108
(FIG. 1). Typically, a source peer device issues an interrupt
command to communicate with another device in the sys-
tem. More particularly, Peerl 142 1ssues an interrupt com-
mand indicating the address of the memory 116. Based on
the address, the iterrupt controller 128 determines whether
interrupting the CB 108 1s necessary to establish a data path
between the Peerl 142 and the memory 116. Hence, if
establishing a data path with the destination device involves
passage through the CB 108, then at step 340, the interrupt
controller 128 interrupts the CB 108 for this purpose.

On the other hand, if establishing a data path with the
destination device does not mnvolve passage through the CB
108, the mterrupt controller 128 does not interrupt the CB
108. The process continues directly from step 330 to step
350. At step 350, the interrupt controller 128 establishes a
data path between the Peerl 142 and the memory 116. The
Peerl 142, 1n turn, reads the desired data from the memory
116. At step 360, the interrupt controller 142 terminates the
data path between the peer device 142 and the memory 116.
At step 370, the source device determines whether to 1ssue
another interrupt to communicate with another device. For
instance, after reading and processing (e.g., expanding the
image) the desired data, the peer device 142 may issue an
interrupt to send out a request to write the processed (i.e.,
expanded image) data into another peer device (e.g., Peer2
146). Hence, if the Peerl 142 issues another interrupt to the
interrupt controller 128, the process repeats at step 320. If,
on the other hand, the Peerl 142 does not 1ssue an interrupt
to the interrupt controller 128, the process terminates at step

380.

In view of the foregoing, 1t will be appreciated that the
invention overcomes the long-standing need for a method of
managing data and interrupt commands issued by peer
devices without the disadvantage of involving the central
processor 1n every transaction. The invention ensures an
ciiective utilization of central processors by minimizing
unnecessary interruptions by other devices in a computer
system. The 1nvention may be embodied in other speciiic
forms without departing from 1its spirit or essential charac-
teristics. The described embodiment 1s to be considered in
all respects only as 1llustrative and not restrictive. The scope
of the invention 1is, therefore, indicated by the appended

US 6,454,225 B2

7

claims rather than by the foregoing description. All changes
which fall within the meaning and range of equivalency of
the claims are to be embraced within their scope.

What 1s claimed 1s:

1. An apparatus for managing communications 1n a com-
puter system having a central processor connected to a host
bus, the apparatus comprising;:

a plurality of communication ports configured to provide
concurrent communications among a plurality of
devices, wherein concurrent communications com-
prises a {irst communication between a first pair of the
plurality of devices occurring simultancously with a
second communication between a second pair of the
plurality of devices;

an arbiter operationally connected to at least one of the
plurality of ports, the arbiter being configured to coor-
dinate access by the plurality of devices to a particular
device; and

a pipeline buffer operationally connected to at least one of
the plurality of ports, the pipeline bufier being config-
ured to provide access by one of the plurality of devices
to a device that 1s currently unavailable.

2. The apparatus of claim 1, wherein the first or second
communication 1s established via a connection between two
of the plurality of ports.

3. The apparatus of claim 1, wherein the central processor
1s electrically connected to at least one of the communica-
fion ports, the central processor configured to control a
communication 1nitiated by at least one of the plurality of
devices 1n the event that the communication necessitates
involving the central processor.

4. The apparatus of claim 3, further comprising a memory
and at least one 1nput/output device, wherein the memory
and the input/output device are operationally connected to
the plurality of ports.

5. The apparatus of claim 1, further comprising an inter-
rupt controller electrically connected to at least one of
plurality of devices and to at least one of the plurality of
communication ports, the mterrupt controller being config-
ured to manage a communication initiated by at least one of
the plurality of devices in the event that involvement by the
central processor 1n the communication 1S unnecessary.

6. The apparatus of claim 1, wherein the pipeline buitfer
stores at least part of the communication 1nitiated by a first
one of the plurality of devices to a second one of the plurality
of devices 1n the event that the second device 1s unavailable,
and further wherein the pipeline buffer forwards the data to
the second device when the second device becomes avail-
able.

7. A method of managing communications 1n a computer
system having a central processor connected to a host bus,
and having a controller connected to a nonhost bus, the
method comprising:

Inifiating communication between a first device and a
second device;

determining by the controller whether the communication
between the first device and the second device neces-
sitates 1nvolving the central processor, wherein the act

10

15

20

25

30

35

40

45

50

55

3

of determining by the controller comprises determining
whether the first device has requested involvement 1n
the communication by the central processor; and

communicating data between the first device and the
second device under the control of the controller with-
out mvolving the central processor 1f 1t 1s determined
that involving the central processor 1s unnecessary.

8. The method of claim 7, wherein determining whether
the communication necessitates mvolving the central pro-
cessor comprises determining whether the communication 1s
substantially complete.

9. The method of claim 7, wherein determining whether
the communication necessitates involving the central pro-
cessor comprises determining whether an error in the com-
munication has occurred.

10. The method of claim 7, further comprising determin-
ing an intended destination of the communication.

11. The method of claim 10, wherein determining the
intended destination comprises reading a destination address
field 1 the communication.

12. The method of claim 7, wherein communicating data
comprises communicating data between peer devices solely
via the nonhost bus.

13. Asystem for managing communications 1n a computer
system having a central processor connected to a host bus,
and having a controller connected to a nonhost bus, the
system comprising:

means for mitiating communication between a first device

and a second device;

means for determining whether the communication
between the first device and the second device neces-
sitates 1nvolving the central processor, wherein the
determining means determines whether the first device
has requested involvement 1n the communication by the
central processor;

means for communicating data between the first device
and the second device without involving the central
processor 1f 1t 1s determined that involving the central
Processor 1S unnecessary.

14. In a computer system having a central processor
connected to a host bus, and having a controller connected
to a nonhost bus, a program storage device storing instruc-
tions that when executed by the computer perform a method
of managing communications, the method comprising;:

initiating communication between a first device and a
second device;

determining by the controller whether the communication
between the first device and the second device neces-
sitates involving the central processor, wherein the act
of determining by the controller comprises determining
whether the first device has requested mvolvement in
the communication by the central processor;

communicating data between the first device and the
second device under the control of the controller with-
out mnvolving the central processor if 1t 1s determined
that involving the central processor 1s unnecessary.

	Front Page
	Drawings
	Specification
	Claims

