US006450231B1
a2 United States Patent (10) Patent No.: US 6,430,231 B1
Bernstein et al. 45) Date of Patent: Nov. 12, 2002
(54) EFFICIENTLY DE-INTERLACING A BUFFER Primary Examiner—Sherrie Hsia
OF IMAGE DATA (74) Attorney, Agent, or Firm—Sawyer Law Group LLP
(75) Inventors: John Bernstein, San Jose, CA (US); (57) ABSTRACT
Robert Douglas Ferrell, Los Gatos,
CA (US) A method and apparatus for de-interlacing a buifer of 1mage
(73) Assignee: FlashPoint Technology, Inc. data, wherein scan lines from an 1mage sensor have been
Peterborough, NH (US) transferred to the buffer and stored 1 a group of even scan
| | o | lines and a group of odd scan lines. The method for
(*) Notice: Sub]ect. o any d1scla1mer,i the term of this de-interlacing the buffer includes providing a first table to
patent 1s extended or adjusted under 35 . Jicat ¢ of locat; £ each line in th
U.S.C. 154(b) by 0 days. indicate curren | siorage ocations o 62%(3 .scan 1nF: in the
buffer and providing a second table to indicate which scan
(21) Appl. No.: 09/535,138 line 1s currently stored 1n each storage location. The first
_ table and a temporary line buffer are then used iteratively
(22) Filed: Mar. 24, 2000 . . .
swap pairs of scan lines that are stored out of numerical
(51) Illt. (:].7 .. H04N 7/01 Order in the bu ﬂer? SUCh that after a Swap? one Of the Scan line
(52) U..S. Cle oo, 348/448; 348/714 in the pair is stored in numerical order in the buffer. After
(58) Field of Search P 124%/3318\]3 ;/104f each swap, the first table is updated using the second table,
’ ’ and then second table is updated, such that the first and
(56) References Cited second tables reflect a change of storage locations for the

U.S. PATENT DOCUMENTS
6,166,773 A * 12/2000 Greggain et al. 348/4483

* cited by examiner

scan lines, whereby the buffer 1s de-interlaced 1n place

without using a duplicate buffer.

39 Claims, 5 Drawing Sheets

50

Generate forward index
table and reverse index
table

52

Begin with 1st physical
storage location in the image
buffer

Jse torwarg

next

Using forward index table, determine if
current storage location contains scan
line of same index value

swap the scan line in current storage location
with the scan line having the same index

value

tables

Advance to the

54

56

9le

60

storage location

U.S. Patent Nov. 12, 2002 Sheet 1 of 5 US 6,480,231 Bl

Interlaced Image Buffer -

Storaco a
.

ocations

\ scar

e S

-

—

A

s o

Cines

206 O

AW N 2O

1207 Scan Line 1207 .
- N - - _.—_____..’.
0 Pixels 1608
PRIOR ART

FIG. 1

U.S. Patent Nov. 12, 2002 Sheet 2 of 5 US 6,480,231 Bl

— 22 26

PROCESSOR 27
IMAGE
SENSOR De-interlace
Algorithm
| 28

EVEN SCAN
LINES OIZ ' S M

Phys. :
f(’;‘g;%%is || ODD SCAN Temporary
' LINES | ine Buffer
N 34
Q-cmomencnnn M
Pixels
0 Nx1 0 Nx1
1 Forward 1 Reverse
2 Index 2 Index
: Table : Table 24
N 36 N 38
DRAM

FIG. 2

U.S. Patent Nov. 12, 2002 Sheet 3 of 5 US 6,480,231 B1

50

Generate forward index
table and reverse index

table

52

Begin with 1st physical
storage location in the image
buffer

o4

Using forward index table, determine if

current storage location contains scan
line of same index value

N
o6

Jse torward table and temporary bufter to
swap the scan line in current storage location
with the scan line having the same index

value

tables

o8

60

Advance to the

next
storage location

FIG. 3

U.S. Patent Nov. 12, 2002 Sheet 4 of 5 US 6,480,231 B1

Image Buffer

Physical Scan
storage O Lines
locations
: FIG. 4A
4
5
6
!

Forward index

Table

Indexed Current

by Scan ?-—-—E—-—l storage

Line 5 [location

3 5 FIG. 4B
4 | 2
516
6|3
7

Reverse Index
Table

Indexed by 0 m Scan
storage Line

location

FIG. 4C

~N OO H WN -
e o lmjanfa[a

U.S. Patent Nov. 12, 2002 Sheet 5 of 5 US 6,480,231 B1

Image Buffer Image Buffer

Temporary Line Buffer

0 0 SLO |

2 2 ol 4

3 3 SL6

4 4 SL1

5 5 SL 3

6 6 SL 5

7 7| SL7 |

FIG. 5A FIG. 5B

Image Buffer Image Buffer
0 o[SLO l Temporary Line Buffer
1 1| SL1 sL2
2 2 | |
3 3
4 4
S o
6 6
I4 I4

FIG. 5C

US 6,430,231 Bl

1

EFFICIENTLY DE-INTERLACING A BUFFER
OF IMAGE DATA

FIELD OF THE INVENTION

The present invention relates to de-interlacing image
buffers 1in digital image capture devices, and more particu-
larly to de-interlacing image buffers 1n devices utilizing
image capture sensors, such as CCDs and CMOS sensors
that have interlaced output data.

BACKGROUND OF THE INVENTION

The fundamental purpose of a digital imaging device 1s to
convert a view of the real world to a 2-D array of digital
pixels. Photons emitted by objects in a scene as well as
photons reflected by objects 1n the scene are focused onto an
image sensor by an optical system. The optical system
produces a 2-D image of the (usually) 3-D scene and the
optics determines the relative focus, depth of field, maxi-
mum resolution, etc. of the 2-D 1mage.

The 2-D mmage incident on the sensor is then converted
from photons to electrical charge by the sensor. The sensor
1s composed of a rectangular grid of photo-sensitive sites,
called pixels, and each row of pixels is referred to as a scan
line. At each pixel, a charge 1s accumulated when light falls
on that arca. In this way, the sensor builds up an array of
charges which are a close approximation of the relative
brightness of the 2-D image. Typical sensor devices are
CCD (charge coupled device) or CMOS (complimentary
metal oxide) technology, and have millions of pixels.

Once the sensor has been exposed to the 2-D 1mage for
some period of time, the resulting pixel charges must be read
from the device. The output signal 1s typically a series of
analog voltages produced sequentially for each pixel loca-
tion. This type of signal 1s not readily manipulated by a
digital computer. Conversion from analog voltages to digital
numbers is accomplished using an ADC (analog to digital
converter) which produces an n-bit number given a voltage
input, where n 1s typically 8, 10, or 12 for digital cameras.

A hardware subsystem of the digital computer 1s used to
quickly transfer each digital number produced by the ADC
to a buffer within the computer’s memory. This subsystem 1s
called a DMA (direct memory access) engine because it
directly accesses (wrltes the image data) memory without
the CPU (central processing unit) being utilized. This allows
the CPU to perform other operations in parallel, thus making
better use of system resources.

The order of pixel read-out from the sensor to the ADC
may be either interlaced or progressive scan. In both cases,
entire scan lines of pixels are sequentially output as voltages
starting at one end of the scan line and proceeding to the
other end. In progressive scan devices, the order of read-out
of the scan lines 1s also sequential, starting at either the top
or the bottom of the sensor and progressing to the bottom or
top, respectively. For example, 1n a small 4-scan line pro-
oressive scan device, the scan lines might be read from top
to bottom: 0, 1, 2, 3; or from bottom to top: 3, 2, 1, O.

By contrast, in an 1nterlaced scan device the order of
read-out of the scan lines 1s not sequential, but rather, first all
of the even scan lines are read out 1n order followed by all
of the odd scan lines. For example, a small 4-scan line
interlaced scan device might be read from top to bottom: O,
2, 1, 3; or from bottom to top: 2, 0, 3, 1. FIG. 1 1s a block
diagram 1llustrating the contents of a conventional 1208 scan
line 1mage buffer after an interlaced transfer.

10

15

20

25

30

35

40

45

50

55

60

65

2

For purposes of manipulating image data in a digital
computer, 1t 1s preferred to have the scan lines stored in the
buflfer memory in a progressive scan order. In some systems,
the 1nterlaced scan lines can be easily re-ordered as they are
being read-out from the ADC. The actual transfer of data
from the ADC to the computer’s digital memory 1s done
using DMA (direct memory access). Some processors have
DMA engines that are capable of performing this re-ordering
of scan lines automatically. This 1s the most efficient method
of de-interlacing the 1mage data since 1t requires no extra

memory or computer processing time (beyond the actual
DMA ftransfer time).

In cases where the DMA engine 1s not capable of
de-interlacing the 1mage scan lines, they must be
de-interlaced after they have been transferred to memory
using a solftware algorithm running in the computer. This
operation will utilize system resources including, extra
memory, CPU processing time, and bus bandwidth.

The most straightforward algorithm for de-interlacing the
image scan lines requires a second 1image buffer in memory
which 1s the same size as the interlaced image buifer. Each
scan line 1s then read from the interlaced butfer and written
into the desired scan line position in the resulting progres-
sive bulifer.

This method has two disadvantages. First, 1t requires a
potentially large second 1mage buffer. In a digital imaging
system, memory 1s a very limited resource so requiring an
entire 1mage bufler 1s a severe penalty. Second, since the
algorithm reads scan lines from one buffer and writes them
into another buifer, the memory cache 1s less likely to help
with reducing bus bandwidth used during de-interlacing.
This will cause system throughput to suffer. In short, large
amounts of memory are unavailable for use elsewhere in the
device (e.g. for capturing another image) while the
de-1nterlace algorithm 1s running.

Accordingly, what 1s needed 1s more efficient method for
de-interlacing an 1mage buffer. The present invention
addresses such a need.

SUMMARY OF THE INVENTION

The present mnvention provides a method and apparatus
for de- interlacing a builer of 1mage data, wherein scan lines
from an 1mage sensor have been transterred to the buifer and
stored 1n a group of even scan lines and a group of odd scan
lines. The method for de-interlacing the buifer includes
providing a first table to indicate current storage locations of
cach scan line 1n the buffer and providing a second table to
indicate which scan line 1s currently stored 1n each storage
location. The first table and a temporary line buffer are then
used iteratively swap pairs of scan lines that are stored out
of numerical order 1n the buffer, such that after a swap, one
of the scan line 1n the pair 1s stored 1in numerical order 1n the
buffer. After each swap, the first table 1s updated using the
second table, and then second table 1s updated, such that the
first and second tables retflect a change of storage locations
for the scan lines.

According to the method and apparatus disclosed herein,
the 1mage bufler 1s de-interlaced 1n place without the need
for an entire duplicate buffer, which save memory and
decreases memory transfers, thereby increasing overall sys-
tem performance.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram illustrating the contents of a
conventional image buffer after an interlaced transfer.

US 6,430,231 Bl

3

FIG. 2 1s a block diagram showing an image capture
subsystem of a software-controlled 1mage capture device.

FIG. 3 1s a flow chart 1illustrating a process for
de-mterlacing a buffer of 1mage data 1in accordance with the
present mvention.

FIG. 4A 1s a diagram 1illustrating the contents of an
example 1mage bufler.

FIG. 4B shows a forward index table generated for the
image bulfer of FIG. 4A.

FIG. 4C 1s a diagram 1illustrating the contents of the

reverse 1ndex table generated for the image buffer of FIG.
4A.

FIGS. SA-5D graphically illustrate the process of swap-
ping lines 1 the 1mage buffer using the temporary line

bufter.

DETAILED DESCRIPTION

The present mvention relates to a method and apparatus
for de-interlacing an 1mage bulfer containing interlaced
image data without copying all the data from the buffer into
a second buffer. The following description 1s presented to
enable one of ordinary skill in the art to make and use the
invention and 1s provided in the context of a patent appli-
cation and its requirements. Although the present mnvention
will be described 1n the context of a still digital camera,
various modifications to the preferred embodiment will be
readily apparent to those skilled in the art and the generic
principles herein may be applied to other embodiments. That
1s, any digital 1maging capture device that captures and
stores digital 1mages, could incorporate the features
described herein and that device would be within the spirit
and scope of the present invention. Thus, the present mven-
fion 1s not mtended to be limited to the embodiment shown
but 1s to be accorded the widest scope consistent with the
principles and features described herein.

FIG. 2 1s a block diagram showing an image capture
subsystem of a software-controlled 1mage capture device.
The system includes an 1mage sensor 22 for capturing image
data, an image buffer 28 in random access memory (DRAM)
24 for storing 1mage data, and a processor 26 for executing,
image processing algorithms. As explained above, the image
buffer 28 comprises 0-N physical storage locations for
storing scan lines from the 1mage sensor 22, where each scan
line comprises 0—M pixels. When the image data from the
image sensor 22 1s moved to the image buifer 28 during an
interlaced transfer, the scan lines are stored as a group of
even scan lines and a group of odd scan lines.

According to the present invention, the 1mage buffer 28 1s
de-mterlaced m place without moving all the data to a
duplicate buifer by the de-interlace algorithm 27 executed 1n
the processor 26. The de-interlace algorithm 27 accom-
plishes this task utilizing a temporary line buffer 34, and two
lookup tables (LUT) referred to as a forward index table 36
and a reverse 1ndex table 38.

The present invention uses the forward table to indicate
the current storage location of each scan line in the buifer
and uses the reverse table to indicate which scan line 1s
currently stored 1n each storage location. The forward table
and the temporary line buffer are then used iteratively Swap
pairs of scan lines that are stored out of numerical order in
the buifer, such that after a swap, one of the scan line in the
pair 1s stored 1n numerical order 1n the buffer. After each
swap, the forward and reverse tables are updated to reflect
a change of storage locations for the scan lines.

In a preferred embodiment, both the forward and reverse
tables 36 and 38 are Nx1 tables, where N equals the number

10

15

20

25

30

35

40

45

50

55

60

65

4

of scan lines. The forward index table 36 1s indexed by scan
line number and the value at any given location represents
the current physical storage location of the corresponding
scan line in the 1mage bufler 28.

The reverse mdex table 38 1s indexed by the physical
storage location 1n the image buffer 28, and the value at any
orven location represents a scan line number. In other words,
the reverse index table 38 indicates which scan line 1is

currently stored mm each physical storage location in the

image buffer 28 and 1s used to update the forward index table
36, as described below.

The temporary line buffer 34 1s a 1xM array capable of
storing one scan line of data, where M equals the number of
pixels 1n a scan line. Based on the contents of the forward
and reverse mdex tables 36 and 38, the temporary line buffer
34 1s used to efficiently swap two scan lines in the image
buffer 28. Thus, the image buffer 28 may be reordered
without allocatmg memory for a second buifer the size of the
original 1mage buffer 28. In addition, the forward and
reverse 1ndex tables 36 and 38 cnable the de-interlace
algorithm 27 to avoid moving every scan line in the image
buffer 28 because the tables indicate whether a scan line 1s
already 1n 1ts proper storage location in the image buifer 28.

FIG. 3 1s a flow chart illustrating a process for
de-interlacing a buffer of 1mage data in accordance with the
present invention. After the scan lines from the 1mage sensor
22 have been transferred to the image bufler 28 and stored
in groups of even and odd scan lines, the process begins by
ogenerating the forward index table 36 and the reverse index

table 38 1n step 50.

In a preferred embodiment, the forward index table 36 1s
generated using an incremented count and the number of
rows 1n the 1image butfer 28, where the number of rows 1n the
image bufler 28 may be referred to as the “height” of the
buffer. The value stored at any given location 1n the forward
index table 36 1s a function of whether the count 1s odd or
even, and the height. The forward index table 36 may be

ogenerated by the following pseudocode, where Forwardin-
dex 1s a variable name for the forward index table 36:

For (count=0; count<height; count++){
if count 1s an odd number, then
Forwardindex(count)=(height+count)/2
if count 1s an even number, then
Forwardindex(count)=count/2}

FIG. 4A 1s a diagram illustrating the contents of an
example 1mage buffer 28. The example assumes that the
image buffer includes eight storage locations (0-7), where
storage locations 0 through 3 store even scan lines 0, 2, 4,
and 6, respectively; and storage locations 4 through 7 store
odd scan lines 1, 3, 5, and 7, respectively.

FIG. 4B shows a forward mdex table 36 generated for the
image buffer 28 of FIG. 4A. As shown, the forward index
table 36 indicates which physical storage location 1n the
image buffer 28 contains any given scan line (e.g, scan line
1 1s stored in location 4).

The reverse index table 38 i1s generated similar to the
forward 1ndex table 36, except that initially, the values in the
reverse 1ndex table 38 indicate that the even scan lines are
stored 1n the first half of image buffer 28, and the odd scan
lines are stored 1n the second half of the image buffer 28. The
pseudocode for generating the reverse imndex table 38 1s as
follows, where Reverseindex 1s a variable name for the
reverse 1ndex table 38:

for (count=0; count<height; count++){
if count<(height/2), then
Reverseindex(count)=count™2
clse

Reverseindex(count)=(count*2)—(height-1)}
FIG. 4C 1s a diagram 1illustrating the contents of the
reverse index table 38 generated for the 1image buffer 28 of

US 6,430,231 Bl

S

FIG. 4A. The reverse index table 38 1s used to update the
values 1n forward index table 36 after two scan lines 1n the

image buller 28 have been swapped. The reverse index table
38 may be thought of as “given the physical storage location
in 1image buffer 28, what scan line does it contain?” (e.g.,
location 1 stores scan line 4).

Referring again to FIG. 2, after the forward index table 36

and the reverse index table 38 have been generated, the
process loops starting at the first physical storage location in
the buffer, and progresses location-by-location through the
buffer 1 step 52. In a preferred embodiment, the loop 1s
controlled by 1nitializing a variable called current_ loc rep-
resenting the value of the current physical storage location,
and 1ncrementing the variable by 1 each time through the
loop.

Given the current physical storage location, the forward
table 1s accessed to determine whether the current storage
location contains the scan line having the same index value
in step 54. This comparison may be i1mplemented 1n
pseudocode as:

if Forwardindex (current_ loc)=current__ loc

For example, the first time through the loop, current__loc=0,
and as shown in FIGS. 4A and 4B, Forwardindex (0)=0. This

means that physical location 0 i1n the image buffer 28
contains scan line 0, so the condition 1s met.

Referring again to FIG. 3, 1f the forward index table 36
indicates that the current storage location in 1image buffer 28
contains the scan line of the same value 1n step 54, then the
scan line 1s 1n 1ts proper storage location and the process
advances to the next storage location 1n step 60. The process
then proceeds to step 54 to perform the comparison again.
According to the present mnvention, scan lines are stored in
the proper location are not copied or reshuilled, thereby
saving time and storage space.

If the forward index table 36 indicates that the current
storage location does not contain the scan line of the same
value 1n step 54, then the forward index table 36 and the
temporary line buffer 34 are used to swap the scan line
stored 1n the current storage location with the scan line
having the same 1ndex value as the current storage location
in step 56. According to the present invention, the temporary
line buifer 34 1s used to store the scan line stored in the
current storage location, while the other scan line having the
same 1ndex value 1s moved there. In a preferred
embodiment, this may be i1mplemented using the
pseudocode below, where temp__line 1s a variable name of
the temporary line buifer 34, current_loc 1s the current
storage location value (1), and 1image buffer 1s a variable
for the 1mage bufler address. The process of swapping lines
in the 1image bufler 28 using the temporary line buifer 34 is
shown graphically in FIGS. 5A—5D, which are indicated
next to the corresponding lines of pseudocode:

temp_ line=image_ buffer(current_loc); (FIGS. 5A and
5B)

image buffer(current loc)=i1image_ buff
(Forwardindex(curr_loc)); (FIG. §5C)

image_ buffer(Forwardindex(current_ loc)=temp__line;
(FIG. 5D)

Referring again to FIG. 3, after the two scan lines are
swapped 1n the 1image buffer 28, the forward and reverse
index tables 36 and 38 are out of sync with the current
contents of the image bufler 28. Therefore, the forward
index table 36 and reverse index table 38 are updated to
reflect where the scan lines are now stored in the image
buffer 28 1n step 38.

In a preferred embodiment, the forward index table 36 1s
updated to reflect the swapped lines using the reverse index
table 38, as shown 1n the following pseudocode:

™

CI

10

15

20

25

30

35

40

45

50

55

60

65

6

temp=Forwardindex(current__loc);
Forwardindex(Reverseindex(current_ loc))=temp;

Forwardindex(current_ loc)=current_ loc;
In a preferred embodiment, the reverse index table 38 1s
updated to reflect the swapped lines as follows:

Reverseindex(temp)=Reverseindex(current__loc);

Reverseindex(current loc)=current loc;

After the forward and reverse index tables 36 and 38 are
updated, the current storage location i1n the 1mage buifer 28
1s advanced to the next storage location 1n step 60, and the
process proceeds until the end of the image buffer 28 1s
reached.

The process of de-interlacing an 1mage buifer 1n accor-
dance with the present invention will now be explained by
way of the examples shown 1n FIGS. 4 and 5. As stated
above, the process begins by determining whether a current
storage location in the 1mage buffer contains a scan line of
the same 1ndex value. Location 0 in the image buifer
contains scan line 0, which 1s correct, so the process moves
to the next row of the image buifer, location 1. Scan line 1
needs to be stored and storage location 1, so the forward
table 1s accessed to determine the physical location of scan
line 1. Referring to FIG. 4B, this 1s accomplished by
indexing the forward index table with the index value 1. This
reveals that the current storage location of scan line 1 in the
image buifer 1s storage location 4. Therefore, the contents of
storage location 1 and the contents of storage location 4 must
be swapped. The contents of storage location 1 and line 4 are
then swapped by moving scan line 2 from storage location
1 into the temporary line buffer (FIGS. 5A and 5B), and
moving scan line 1 from storage location 4 to storage
location 1 (FIG. 5C). Scan line 2 from the temporary buffer
is then moved to storage location 4 (FIG. 5D). The forward
and reverse tables are then updated to reflect the swap.

After scan line 1 has been stored 1n its correct position 1n
the 1mage bufler, storage location 2 1s processed. Referring
to FIG. 4B, the forward table 1s index by index value 2 to
ascertain the current physical location of scan line 2, which
1s now stored 1n storage location 4. Therefore, scan line 4 1n
storage location 2 1n the 1mage buffer 1s swapped with scan
line 2 stored 1n storage location 4 of the 1image bufier. Now,
both scan lines 2 and 4 are stored in their correct positions
in the 1mage builer. The forward and reverse tables are then
updated to reflect this change. The process then repeats for
storage locations 3 through 7. Notice that when line 4 1s
processed, no swapping 1s necessary, since line 4 1s 1n the
correct position.

According to the present invention, the scan lines are
stored 1n the 1image bufler in numerical order without requir-
ing a duplicate buffer, and therefore saving a substantial
amount of memory. Also, not every line of data needs to be
moved, as some lines are already stored in the proper order,
which increasing overall processing speed.

A method and apparatus for de-interlacing a buffer of
image data has been disclosed. Although the present inven-
tion has been described in accordance with the embodiments
shown, one of ordinary skill 1n the art will readily recognize
that there could be variations to the embodiments and those
variations would be within the spirit and scope of the present
invention. In addition, software written according to the
present mvention may be stored on a computer-readable
medium, such as a removable memory, or transmitted over
a network, and loaded 1nto the digital camera for execution.
Accordingly, many modifications may be made by one of
ordinary skill in the art without departing from the spirit and
scope of the appended claims.

US 6,430,231 Bl

7

What 1s claimed 1s:

1. A method for de-interlacing a buffer of 1image data,
wherein scan lines from an 1mage sensor have been trans-
ferred to the buifer and stored 1n a group of even scan lines
and a group of odd scan lines, the method comprising the

steps of:

(a) providing a first table to indicate current storage
locations of each scan line in the buffer;

(b) providing a second table to indicate which scan line is
currently stored 1n each storage location;

(¢) using the first table and a temporary line buffer to
iteratively swap pairs of scan lines that are stored out of
numerical order in the buifer, such that after a swap,

one of the scan line 1n the pair 1s stored 1n numerical

order 1n the buffer; and

(d) updating the first table using the second table, and
updating the second table after each swap, such that the
first and second tables reflect a change of storage
locations for the scan lines, whereby the buiffer is
de-interlaced 1n place without using a duplicate buffer.
2. The method of claim 1 wherein steps (a) and (b) further

include the step of generating the first and second tables such

that the first and second tables have a dimension of Nx1,
where N 1s a total number of scan lines stored 1 the buf‘er.
3. The method of claim 2 wherein step (c¢) further includes

the step of providing a 1xM temporary line buifer, where M

represents a length of each scan line 1n pixels.

4. A computer-readable medium containing program

instructions for de-interlacing a bull

er of 1mage data,
wherein scan lines from an 1mage sensor have been trans-
ferred to the buifer and stored in a group of even scan lines
and a group of odd scan lines, the 1nstructions for:

(a) providing a first table to indicate current storage
locations of each scan line in the buffer;

(b) providing a second table to indicate which scan line is
currently stored 1n each storage location;

(¢) using the first table and a temporary line buffer to
iteratively swap pairs of scan lines that are stored out of
numerical order in the buifer, such that after a swap,

one of the scan line 1n the pair 1s stored 1n numerical

order 1n the buffer; and

(d) updating the first table using the second table, and
updating the second table after each swap, such that the
first and second tables reflect a change of storage
locations for the scan lines, whereby the bulfer is
de-interlaced 1n place without using a duplicate buffer.
5. The computer-readable medium of claim 4 wherein

instructions (a) and (b) further include the instruction of

generating the first and second tables such that the first and
second tables have a dimension of Nx1, where N 1s a total
number of scan lines stored 1n the bulifer.

6. The computer-readable medium of claim § wherein
instruction (c) further includes the instruction of providing a
1xM temporary line builer, where M represents a length of
cach scan line 1n pixels.

7. An 1mage capture device for de-interlacing a builer of
image data, comprising:

an 1mage sensor for capturing image data as scan lines;

a memory, the memory including a buffer for storing the

scan lines wherein the scan lines are stored 1n the buifer
as a group of even scan lines and a group of odd scan
lines; and

a processor coupled to the memory for executing image

processing algorithms, wherein at least one of the
algorithms functions to de-interlace the buffer by per-

forming the steps of:

10

15

20

25

30

35

40

45

50

55

60

65

3

(a) providing a first table to indicate current storage
locations of each scan line in the buffer;

(b) providing a second table to indicate which scan line
1s currently stored 1n each storage location;

(¢) using the first table and a temporary line buffer to
iteratively swap pairs of scan lines that are stored out
of numerical order 1in the buffer, such that after a
swap, one of the scan line 1n the pair 1s stored in
numerical order 1n the buffer; and

(d) updating the first table using the second table, and
updating the second table after each swap, such that
the first and second tables retlect a change of storage
locations for the scan lines, whereby the buffer 1s
de-interlaced 1n place w1th0ut using a duplicate
buffer.

8. The image capture device of claim 7 wherein steps (a)
and (b) further include the step of generating the first and
second tables such that the first and second tables have a
dimension of Nx1, where N 1s a total number of scan lines
stored 1n the bulifer.

9. The image capture device of claim 8 wherein step (¢)
further 1ncludes the step of providing a 1xM temporary line
buffer, where M represents a length of each scan line in
pixels.

10. A method for de-interlacing a buffer of 1mage data,
wherein scan lines from an 1mage sensor have been trans-
ferred to the buffer and stored in a group of even scan lines
and a group of odd scan lines, the method comprising the
steps of:

(a) generating a first index table for storing a plurality of
values that are indexed by scan line number, wherein a
value at any given location represents a current physi-
cal storage location in the buffer for the corresponding
scan line;

(b) generating a second index table for updating the first
mdex table, wherein the second index table stores a
plurality of values and 1s indexed by physical storage
locations 1n the image bufler, and wherein a value at
any given location represents a scan line number; and

(c) starting at the first physical storage location in the
buffer, the first physical storage location being a current
storage location, performing the steps of;

(1) accessing the first index table by the current storage
location and determining whether the current storage
location contains a scan line having a same index
value,

(i1) if no, swapping the scan line stored in the current
storage location with a scan line 1n the buffer having,
the same 1ndex value as the current storage location,
and

(i11) updating the first and second index tables, and
advancing the current storage location to a next
storage location, and repeating steps (1) through (ii1)
until a last storage location in the buffer 1s reached,
whereby the scan lines are stored in the 1mage buflfer
in numerical order without requiring a duplicate
buffer.

11. The method of claim 10 wherein steps (a) and (b)

further include the steps of generating the first and second
index tables such that the first and second 1ndex tables have
a dimension of Nx1, where N 1s a total number of scan lines
stored 1n the 1mage bufler.

12. The method of claim 11 wherein step (c¢) further
includes the step of implementing step (c)(i) in pseudocode
as:

if Forwardindex (current_ loc)=current_ loc,
where Forwardindex 1s a variable name for the first index
table and current loc 1s a variable name for the current
storage location.

US 6,430,231 Bl

9

13. The method of claim 12 wherein step (c)(i1) further
includes the step of performing the swap using a temporary
line buffer.

14. The method of claim 13 wherein step (¢) further
includes the step of implementing step (c)(ii) in pseudocode
as:

temp_ line=image_ buffer(current__loc)

image buffer (current loc)=image
(Forwardindex(curr__ loc))

image buf er(Fomardmdex(current __loc)=temp__line,
where temp line 1s a variable name of the temporary line
buffer and 1mage_ buffer 1s a variable for the 1mage buffer.

15. The method of claim 14 wherein step (c)(ii1) further
includes the step of updating the first table using the second
table.

16. The method of claim 15 wherein step (c)(ii1) of
updating the first table using the second table 1s 1mple-
mented 1n pseudocode as:

temp=Forwardindex(current_ loc)
Forwardindex(Reverseindex(current

loc))=temp
to Forwardindex(current_ loc)=current_ loc,
where ReverseindeXx 1s a variable name for the second 1index

table.

17. The method of claim 16 wherein step (c)(ii1) of
updating the second table 1s implemented 1n pseudocode as:

Reverseindex(temp)=Reverseindex(current _loc);

Reverseindex(current_ loc)=current_loc.
18. The method of claim 17 wherein step (a) further

includes the step of generating the first index table 1in
pseudocode as:

for (count=0; count<height; count++){
if count 1s an odd number, then
Forwardindex(count)=(height+count)/2
if count 1s an even number, then
Forwardindex(count)=count/2},

where height 1s the total number of scan lines.
19. The method of claim 18 wherein step (a) further

includes the step of generating the second index table in
pseudocode as:

for (count=0; count<height; count++){
if count<(height/2), then
Reverseindex(count)=count™2
clse
Reverseindex(count)=(count*2)-(height—1)}.

20. A computer-readable-medium Contammg program
instructions for de- 1nterlacmg a buffer of image data,
wherein scan lines from an 1mage sensor have been trans-
ferred to the buffer and stored in a group of even scan lines
and a group of odd scan lines, the 1nstructions for:

(a) generating a first index table for storing a plurality of
values that are indexed by scan line number, wherein a
value at any given location represents a current physi-
cal storage location 1n the buffer for the corresponding
scan line;

(b) generating a second index table for updating the first
imndex table, wherein the second index table stores a
plurality of values and 1s indexed by physical storage
locations 1n the 1mage buifer, and wherein a value at
any given location represents a scan line number; and

(c) starting at the first physical storage location in the
bufler, the first physical storage location being a current
storage location, performing the instructions of;

(1) accessing the first index table by the current storage
location and determining whether the current storage
location contains a scan line having a same 1ndex
value,

ffer

_bu

10

15

20

25

30

35

40

45

50

55

60

65

10

(11) 1f no, swapping the scan line stored in the current
storage location with a scan line in the buffer having,
the same 1ndex value as the current storage location,
and

(i11) updating the first and second index tables, and
advancing the current storage location to a next
storage location, and repeating instructions (1)
through (ii1) until a last storage location in the buffer
1s reached, whereby the scan lines are stored 1n the
image buffer in numerical order without requiring a
duplicate buifer.

21. The computer-readable medium of claim 20 wherein
instructions (a) and (b) further include the instructions of
ogenerating the first and second index tables such that the first
and second 1ndex tables have a dimension of Nx1, where N
1s a total number of scan lines stored 1n the 1mage bulifer.

22. The computer-readable medium of claim 21 wherein
instruction (c) further includes the instruction of implement-
ing instruction (c)(i) as:

if Forwardindex (current__loc)=current_ loc,

where Forwardindex 1s a variable name for the first index
table and current loc 1s a variable name for the current
storage location.

23. The computer-readable medium of claim 22 wherein
instruction (c)(ii) further includes the instruction of perform-
ing the swap using a temporary line buifer.

24. The computer-readable medium of claim 23 wherein
instruction (c) further includes the instruction of implement-
ing instruction (c)(ii) as:

temp_ line=image_ buffer(current loc)

image_ buffer (current
(Forwardindex(curr__loc))

ffer

__bu

_loc)=1mage

image_ buffer(Forwardindex(current_ loc)=temp__line,

where temp__ line 1s a variable name of the temporary line
buffer and 1mage_ buffer 1s a variable for the image bulffer.

25. The computer-readable medium of claim 24 wherein
instruction (c)(1i1) further includes the instruction of updat-
ing the first table using the second table.

26. The computer-readable medium of claim 25 wherein
instruction (c)(iii) of updating the first table using the second
table 1s implemented as:

temp=Forwardindex(current_ loc)
Forwardindex(Reverseindex(current_ loc))=temp

to Forwardindex(current_ loc)=current_ loc,
where Reverseindex 1s a variable name for the second index

table.

27. The computer-readable medium of claim 26 wherein
instruction (c)(ii1) of updating the second table is imple-
mented as:

Reverseindex(temp)=Reverseindex(current loc);

Reverseindex(current_loc)=current_loc.

28. The computer-readable medium of claim 27 wherein
instruction (a) further includes the instructions of generating
the first index table by:

for (count=0; count<height; count++)4
if count 1s an odd number, then

Forwardindex(count)=(height+count)/2
if count 1s an even number, then

Forwardindex(count)=count/2},
where height 1s the total number of scan lines.

29. The computer-readable medium of claim 28 wherein
instruction (a) further includes the instructions of generating
the second index table by:

US 6,430,231 Bl

11

for (count=0; count<height; count++){
if count<(height/2), then
Reverseindex(count)=count™2
clse
Reverseindex(count)=(count*2)-(height—1)}.
30. An 1image capture device for de-interlacing a buffer of
image data, comprising:
an 1mage sensor for capturing image data as scan lines;

a memory, the memory including a buffer for storing the
scan lines wherein the scan lines have been stored 1n the
buffer as a group of even scan lines and a group of odd
scan lines; and

a processor coupled to the memory for executing image
processing algorithms, wherein at least one of the
algorithms functions to de-interlace the buffer by per-
forming the steps of:

(a) generating a first index table for storing a plurality
of values that are indexed by scan line number,
wherein a value at any given location represents a
current physical storage location 1n the buifer for the
corresponding scan line;

(b) generating a second index table for updating the
first index table, wherein the second index table
stores a plurality of values and 1s indexed by physical
storage locations 1n the 1mage buffer, and wherein a
value at any given location represents a scan line
number; and

(c) starting at the first physical storage location in the
buffer, the first physical storage location bemg a
current storage location, performing the steps of;
(1) accessing the first index table by the current

storage location and determining whether the cur-
rent storage location contains a scan line having a
same 1ndex value,

(i1) if no, swapping the scan line stored in the current
storage location with a scan line i the buifer
having the same index value as the current storage
location, and

(i11) updating the first and second index tables, and
advancing the current storage location to a next
storage location, and repeating steps (i) through
(111) a last storage location in the buffer 1s reached,
whereby the scan lines are stored in the image
buffer 1n numerical order without requiring a
duplicate buffer.

31. The image capture device of claim 30 wherein steps
(a) and (b) further include the steps of generating the first
and second 1ndex tables such that the first and second 1ndex
tables have a dimension of Nx1, where N 1s a total number
of scan lines stored 1n the 1mage bufler.

32. The image capture device of claim 31 wherein step (c)
further includes the step of implementing step (c)(1) in
pseudocode as:

5

10

15

20

25

30

35

40

45

50

12

if Forwardindex (current_ loc)=current_ loc,
where Forwardindex 1s a variable name for the first index
table and current_ loc 1s a variable name for the current
storage location.

33. The 1mage capture device of claim 32 wherein step
(c)(i1) further includes the step of performing the swap using
a temporary line buffer.

34. The image capture device of claim 33 wherein step (¢)
further includes the step of implementing step (c)(i1) in
pseudocode as:

temp_ line=image buffer(current_ loc)

image_ buffer (current
(Forwardindex(curr__loc))

buffer

_loc)=image

image_ buffer(Forwardindex(current_ loc)=temp__ line,
where temp__ line 1s a variable name of the temporary line
buffer and image_ bufler 1s a variable for the 1mage bulifer.

35. The 1mage capture device of claim 34 wherein step
(c)(111) further includes the step of updating the first table
using the second table.

36. The 1mage capture device of claim 35 wherein step

(c)(ii1) of updating the first table using the second table is
implemented 1n pseudocode as:

temp=Forwardindex(current_ loc)
Forwardindex(Reverseindex(current_loc))=temp

to Forwardindex(current_ loc)=current_ loc,

where Reverseindex 1s a variable name for the second mdex
table.

37. The image capture device of claim 36 wherein step
(c)(ii1)) of updating the second table is implemented in
pseudocode as:

Reverseindex(temp)=Reverseindex(current loc);

Reverseindex(current_loc)=current loc.

38. The image capture device of claim 37 wherein step (a)
further includes the step of generating the first index table in
pseudocode as:

for (count=0; count<height; count++){
if count 1s an odd number, then

Forwardindex(count)=(height+count)/2
if count 1s an even number, then

Forwardindex(count)=count/2},
where height 1s the total number of scan lines.

39. The image capture device of claim 38 wherein step (a)
further includes the step of generating the second 1ndex table
in pseudocode as:

for (count=0; count<height; count++){
if count<(height/2), then
Reverseindex(count)=count™*2

clse
Reverseindex(count)=(count*2)—(height-1)}.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

