(12) United States Patent

Tamura

US006479739B2

US 6,479,739 B2
Nov. 12, 2002

(10) Patent No.:
45) Date of Patent:

(54) METHOD OF CONTROLLING TONE
GENERATING DRIVERS BY INTEGRATING
DRIVER ON OPERATING SYSTEM

(75) Inventor: Motoichi Tamura, Hamamatsu (JP)

(73) Assignee: Yamaha Corporation, Hamamatsu (JP)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 7 days.

(21) Appl. No.: 09/841,243

(22) Filed: Apr. 24, 2001

(65) Prior Publication Data
US 2002/0029683 A1 Mar. 14, 2002

Related U.S. Application Data

(62) Division of application No. 09/268,211, filed on Mar. 15,
1999, now Pat. No. 6,271,454,

(30) Foreign Application Priority Data

Mar. 17, 1998 (JP) i, 10-085106

(51) Int. CL7 .., G10H 7/00

(52) US.Cl .., 84/603; 84/699; 84/660

(58) Field of Search 84/603-605, 645,

84/622, 625, 660, DIG. 26, 659

References Cited

U.S. PATENT DOCUMENTS
1/1997 QO’Connell

(56)

2

5,596,159 A 84/622

2 OPERATING SYSTEM(OS)

5,890,017 A * 3/1999 Tulkoff et al. 709/203
5,808,118 A * 4/1999 Tamuraccee.n.... 84/601
5,973,251 A * 10/1999 Mukojima et al. 84/603
* cited by examiner
Primary Fxaminer—Jeflrey Donels
(74) Attorney, Agent, or Firm—Morrison & Foerster LLP
(57) ABSTRACT

A method 1s designed for controlling a plurality of tone
generating drivers by an integrating driver installed in an
operating system to generate music tones according to
performance data created by a music application software. In
the method. the performance data created by the music
application software 1s mputted into the integrating driver
through an application program interface provided by the
operating system. The performance data 1s distributed from
the integrating driver to one or more of the tone generating
drivers provisionally registered to the integrating driver. The
registered tone generating driver 1s operated to generate
waveform data of a music tone at a specific sampling
frequency based on the distributed performance data. The
waveform data 1s streamed back from the registered tone
generating driver to the integrating driver. The speciiic
sampling frequency of the streamed waveform data is con-
verted mto a common sampling frequency by the integrating
driver. The waveform data of the common sampling fre-
quency 1s mixed to other waveform data streamed from
other tone generating driver while synchronizing progres-
sion of the waveform data with progression of other wave-
form data. The mixed waveform data 1s reproduced at the
common sampling frequency to output the music tones.

9 Claims, 11 Drawing Sheets

MULTIMEDIA FUNCTIONS
“MIDIoutAPI” “MIDIoutAPI” “MIDIoutAPI”
{IF10 ‘ IF11 ‘ iF12

FIRST MIDI
DRIVER
(HARDWARE TONE
GENERATOR)

SECOND MIDI
DRIVER
(SOFTWARE TONE

THIRD MIDI
DRIVER
(SOFTWARE TONE

GENERATOR)
STANDARD

GENERATOR)
STANDARD

6 i

STANDARD

------------------ r---.---

t SECOND STREAM.-4

FIRST STREAM

“WAVEoutAPI"

“MiDIoutAP!" “MIDIOUtAP”” “WAVEoutAP|”
IF3 IF1 IF2 .
Ly IF4
: INTEGRATING 3 FOURTH MIDI
+ DRIVER DRIVER WAVE
: (SOFTWARE TONE| | DRIVER
: GENERATOR)

WAVE
PROCESSOR

4—a| SUBROUTINE
_LIBRARY

HARDWARE TONE

GENERATOR 10

NON-STANDARD

e

B S dm e we o W A S ER R A M By BE B B B R R B B o mh

- o b an an S Ew E S B B R e e g A B e

11 copes_

US 6,479,739 B2

HOLVHINID

03000 [~ 9™ anoL 3uvmanvH
AdvHan | o
INILNOHENS
m WV3YLS 1SHI
= oo SIS —— i
= " peme———-- -, HHHH:.-m.,“@wmmm.m..ﬁ_.zmmmm 9 G
= m R R QHVYONVYLS QHYQNVLS QHYANY LS
> " g 1 v (HOLYY3INID (HOLYHINID (HOLVHINID
= 5 | Vo X AHYHE 7001 INOL JHYMLIOS) | | INOL 3UYMLI0S)| | 3NOL JUVYMOHVH)
” “ QVONVIS-NON | ! . L~ | mm_>_mﬂ_u_¢ _o_& m_>_mn_mum _ochzmm_“_
- ! ! aiw ay an IN L

mmm%@ﬁo INOL 3HYML40S) | TETYT
o | o_&mbﬁw od | | € ONILLYHOIL NI 4E] N oLl
S x — - IdVINOIQIN,, JIVINOIQIN,, _1dvInoidIn,,
2! “-" " “.
— . bl edl 3! B y €4l
~ JdVINOIAVM,, IdVINOIQIN,, ' LIdVINOIOIN,,

U.S. Patent

FHVYMLH0S NOILYDIddY JISNW

(SOJN3LSAS ONILYHILO 2

1 OI1d

US 6,479,739 B2

Sheet 2 of 11

Nov. 12, 2002

U.S. Patent

0¢

JOV4H3LNI
NHO43IAVM

0>

£¢ ¢cC LC Ve GC

SNg NdO

MSIC MSIQ
HOLINOW | I37gvAOnaYy aQYVH
g2 /2 92

J4SNON %8 dOL1LVHINTID
A4vOdAIM INOL
JHVMAYVH

6C
ot

¢ Dl

U.S. Patent Nov. 12, 2002 Sheet 3 of 11 US 6,479,739 B2

FIG.3
INPUT OUTPUT
WAVEFORM WAVEFORM
WAVEFORM
INTERFACE

ADC DAC

33 20

Fs
DMACT IGENEH ATOR I DMAC2

S T S

CPU BUS

RAM

23

U.S. Patent Nov. 12, 2002 Sheet 4 of 11 US 6,479,739 B2

FIG.4

HARDWARE DRIVER MAIN
INITIALIZE HARDWARE TONE GENERATOR |S10

CHECK FOR TRIGGER [S11
S12
TRIGGER FOUND ?
YES
S13
TYPE OF TRIGGER
(1) (2)

S15 S16
MIDI OTHER END
- |PROCESSING PROCESSING] | PROCESSING

U.S. Patent Nov. 12, 2002 Sheet 5 of 11 US 6,479,739 B2

FIG.5

SOFTWARE DRIVER MAIN
INITIALIZE |30

CHECK FOR TRIGGER [°21
S22
TRIGGER FOUND ? .
YES
S23
TYPE OF TRIGGER
(1) (2) (3)

S26 S27
MIDI OTHER END
PROCESSING PROCESSING PROCESSING

TONE
GENERATION

PROCESSING

U.S. Patent Nov. 12, 2002 Sheet 6 of 11 US 6,479,739 B2

FIG.6
INTEGRATING DRIVER MAIN

INITIALIZE |S30
s

DRIVER TO BE ON? >NO

YES
S32

TYPE OF DRIVER ?

S35

OPEN OPEN SOFTWARE DRIVER
HARDWARE SOFTWARE PREPARATION
DRIVER DRIVER PROCESSING
(STANDARD) (NON-STANDARD)

CHECK FOR TRIGGER [°36
S37
TRIGGER FOUND ?
YES
S38
)

TYPE OF TRIGGER
(1) (2) (3) (4
542
MIDI WAVE OTHER
PROCESSING PROCESSING| |PROCESSING
543
END
PROCESSING

TRIGGER
INTERRUPT
PROCESSING

US 6,479,739 B2

Sheet 7 of 11

Nov. 12, 2002

U.S. Patent

vivd d3Aldd H1dNO4d

vivd d3Aldd ddiHL

v1lvd d3AIHA ANODIS
v.ivad ddAIdd 154l

SNOILVd1SIDdY
40 H39NMNN

dVIA NOILVH1SI©D3dd

QL Dl4

(N3

dVIN NOILVd1SID3Y

WOd4d d3AIdA 1dIN
1og| 431410345 313130

313144 Ol
oog| g3AIHA 1IN AdID3dS

NOILF13d

d/ 9l

LNNOWY AV13a
cca| W3ILSAS INIWHIL3A

dVIN NOILYH1SIOId OL
JLIHM ANV 1INNOWY

sco|l Av13Q 103130

dVIN NOILVYH1SID3Y
OLNI H3AHA IQIW
cg| Q314103dS H31SID3Y

gd31S193dd Ol
ocg| g3AIEA 1AIN AJIO3dS

NOILVH1S5I0dY

V. Ol

U.S. Patent Nov. 12, 2002 Sheet 8 of 11 US 6,479,739 B2

F1G.8

TIMBRE SWITCHING EVENT

PLACE PROGRAM CHANGE INTO REGISTER AS PC |S70
PLACE BANK SELECT INTO REGISTER AS BS
PLACE MiDIch INTO REGISTER AS p
DETERMINE DRIVER SPECIFIED |71
BY PC AND BS — D(p)
§72

7
DRIVER FOUND IN \NO
REGISTRATION MAP ? S73
SPECIFY
SUBSTITUTE
DRIVER — D(p)
S74
NEWLY TURN ON? HYES
S75
OPEN DRIVER
INDICATED BY D(p)
' S76

REST DRIVER FOUND ?)YES -
CLOSE REST
DRIVER
UPDATE REGISTRATION MAP [°78

REGISTER PC & BS INTO BUFFER OF D(p) [°79
(__END |

US 6,479,739 B2

Sheet 9 of 11

Nov. 12, 2002

U.S. Patent

001S

(N4

ONIWIL LN3IHHNO NI
d3y3ovidl 39 Ol
ALIHOIHd 1S3HOIR
40 H3AIHA Ol
4399141 dN3S

1dNHY3LINI H3OOIHL

L1 D1

(N

_ P A9 G3LVOIONI
-ec| H3AIHA OL @3 AN3S

P 40 "34d4ng AN3IS
WOHd d3 INvl

16S

P OL H3AIHA

06S A4103dS

1dNYY3LNI H3WIL

01Ol

1 8S

oss| V.LVa IN3A3 F0V1d

ON3

d

)g 40 "344Ng AN3S
OLNI d3 H3iSID3d

A

d gy H31SID3IH OLNI
Uo|aIN 30V1d
g3 SV H3I1SID3H OLNI

INJA3 H3IH1O

6 DI

U.S. Patent Nov. 12, 2002 Sheet 10 of 11

FIG.12

WAVE PROCESSING

PLACE WAVEFORM DATA [°110
INTO REGISTER AS W
SPECIFY DRIVER TO d

CONVERT Fs OF RECEIVED [S111
WAVEFORM DATA AND ADD
RECEIVED WAVEFORM DATA
AFTER LAST POSITION SP(d)

SP(d) « SP(d)+PROGRESSION AMOUNT [S112

CHECK PROGRESSION STATE [9113
" OF EACH STREAM SP(x)
(PRIORITY DETERMINATION)

o114

ONE FRAME
COMPLETED ?

YES

US 6,479,739 B2

o115

RESERVE WAVEFORM DATA
OF COMPLETE FRAME IN WAVE
DRIVER FOR REPRODUCTION

US 6,479,739 B2

Sheet 11 of 11

Nov. 12, 2002

U.S. Patent

JdV N0 IAVM,,

HOLVHINID
93400 60} INOL IHVYMAHVH
AHVHEIT 301
SRR + | INILNOYIGNS
m (HOLVHINID (HOLVHINID
.o INOL JHVMLAOS) | [3INOL IHYMAHVH)
; HIAIHA HIAIHQ
IQIN QHIHL IAIN ANOD3S
_ Y
j“__ 1| ¢4l

NOILONNS VIQIWILTNW
«IdV N0 |QIN,, «dVv N0 |dIN,,

ak Ay A W sy W - B . i E Ak b W W B R AR A W

JdVML40S NOILYOITddY JISNN |~001

(SOIWILSAS DNILYHILO 1O

ol Ol

€0l

US 6,479,739 B2

1

METHOD OF CONTROLLING TONE
GENERATING DRIVERS BY INTEGRATING
DRIVER ON OPERATING SYSTEM

This 1s a division of U.S. patent application Ser. No.
09/268,211, filed Mar. 15, 1999, now U.S. Pat. No. 6,271,
454 which application 1s hereby mcorporated by reference 1n
its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to a method of
controlling a plurality of tone generator drivers of different
types 1n an integrated manner, and a machine readable
medium storing a control program for a plurality of tone
generator drivers.

2. Description of Related Art

Recently, rapid enhancement 1n the computational capa-
bilities of microprocessors (or CPUs) has been increasingly
finding their applications in general-purpose computers and
fone generators. Execution of a tone generating program or
module on these general-purpose computers has realized
systems for generating tone waveform data. On the other
hand, generation of tone wavelorm data by means of a
dedicated hardware device having a circuit coniiguration
adapted to the tone generation 1s practiced conventionally.

FIG. 13 shows a software configuration used 1n a con-
ventional tone generating system supported by computer
software. An operating system (OS) 101 for this tone gen-
erating system is Windows 95 (trademark of Microsoft
Corporation) for example. The OS 101 has an interface IF1
(MIDI-Out API) and an interface IF2 (MIDI-Out API) that
transfer MIDI (Musical Instrument Digital Interface) mes-
sages representing performance information for generating

tone waveform data, and an interface IF3 (WAVE-Out API)
that transfers generated tone waveform data.

In the example shown, the interface IF1 (MIDI-Out API)
1s used as an interface for a software tone generator adapted
to generate tone waveform data by having a CPU (central
processing unit) execute a predetermined tone generating
program. The interface IF2 (MIDI-Out API) is used for a
hardware tone generator adapted to generate tone wavetform
data by means of a dedicated hardware device having a
circuit configuration suitable for a particular tone generating
scheme.

Music application software 100 for generating a MIDI
message 15 located 1n the application layer for generating
performance information in the form of a MIDI message in
a real-time manner. A second MIDI driver (a hardware tone
generator) and a third MIDI driver (a software tone
generator) are installed on the OS 101. The second MIDI
driver supplies control data based on the MIDI message to
an external hardware tone generator 103. The third MIDI
driver 1s a kind of an application software.

In the example shown 1n FIG. 13, the MIDI message

generated by the music application software 100 1s received
by the third MIDI driver through the interface IF1 (MIDI-

Out API) provided on the OS 101. Having received the
MIDI message, the third MIDI driver generates the tone
waveform data based on the recerved MIDI message and
supplies through the interface IF3 (WAVE-Out API) the
ogenerated tone waveform data to a first WAVE driver
installed on the OS 101. The first WAVE driver reads
through a direct memory access (DMA) controller the tone
waveform data stored 1n a buffer memory, and supplies the

5

10

15

20

25

30

35

40

45

50

55

60

65

2

read data to a CODEC (COder/DECoder) 105, which 1s an
external hardware device. The CODEC 105 converts the
tone waveform data into an analog tone signal, which is then
sounded from a sound system not shown.

The third MIDI driver computes tone waveform data a
sample by sample within one frame period, thereby gener-
ating one frame of the tone waveform data. The generated
tone waveform data 1s stored 1n a buffer memory. The third
MIDI driver generates one frame of tone wavelform data
while controlling a delay time of the computation for data
generation and controlling an amount of tone waveform data
generated 1n a unit time. A subroutine library 102 of the third
MIDI driver stores general-purpose modules (or
subroutines) for use in the computation for generating tone
waveform data such as a digital filter, an iterpolator, and a
mixer. By use of these general-purpose modules, the third
MIDI driver generates tone waveform data having required
musical properties such as pitch and timbre.

In the conventional computer-based tone generating sys-
tem as shown 1n FIG. 13, a MIDI message generated by the
music application software 100 1s received by the third
MIDI driver through the interface IF1 (MIDI-Out API)
provided 1n the OS 101. Alternatively, the tone generating
system may be programmed so that a MIDI message gen-
erated by the music application software 100 is received by
the second MIDI driver through the other interface IF2
(MIDI-Out API) provided in the OS 101. In this case, the
second MIDI driver supplies the tone control data based on
the received MIDI message to the external hardware tone
ogenerator 103, in which a tone waveform 1s generated based
on the tone control data and the generated tone waveform 1s
sounded.

However, the above-mentioned conventional tone gener-
ating system presents a problem that, because this system
can set up a MIDI driver only before starting music
performance, this system cannot dynamically change MIDI
drivers during the music performance. Therefore, the con-
ventional tone generating system cannot generate tone
waveform data for different performance parts by use of
different tone generators in the sounding of the generated
tone waveform data.

Another problem involved 1n the conventional tone gen-
crating system 1s that a MIDI driver not installed on the
operating system cannot be used. Newly installing a MIDI
driver onto the operation system requires cumbersome
operations such as rebooting the system.

Generating tones by use of a software tone generator
requires a WAVE driver. If a plurality of MIDI drivers each
constituted by a software tone generator are used, a plurality
of WAVE drivers are required, presenting a problem of
shortage of WAVE drivers during the music performance. It
1s not possible for the conventional system to open a new
WAVE driver even when the system suffers from the short-
age of the existing WAVE driver. Further, in the case where
a plurality of MIDI drivers each constituted by a software
tone generator are used, the conventional tone generating
system does not consider control on relative delay times
caused 1n compufing process of the generation of tone
waveform data among the plurality of the tone generators,
nor does consider on variation of the amount of tone
waveform data generated 1n a unit time among the plurality
of the tone generators.

SUMMARY OF THE INVENTION

It 1s therefore an object of the present invention to provide
a method of controlling a plurality of tone generating

US 6,479,739 B2

3

drivers, the method bemg capable of using MIDI drivers
without 1nstalling the same on the operating system and
being capable of dynamically switching the mnstalled MIDI
drivers during the music performance. It 1s another object of
the present invention to provide a method of controlling a
plurality of tone generating drivers, the method being
capable of using no more than one WAVE driver even if a
plurality of MIDI drivers are used and being capable of
climinating the necessity for executing time control on tone
waveform data for each MIDI driver. It 1s a further object of
the present invention to provide a control method capable of
integrating a plurality of tone generating drivers for orga-
nized control thereof.

In order to achieve the objects, 1n a fist aspect of the
invention, a method 1s designed for controlling a plurality of
tone generating drivers by an mtegrating driver installed in
an operating system to generate music tones according to
performance data created by a music application software.
The mventive method comprises the steps of 1nputting the
performance data created by the music application software
to the integrating driver through an application program
interface provided by the operating system, distributing the
performance data from the mtegrating driver to one or more
of the tone generating drivers provisionally registered to the
integrating driver, operating the registered tone generating
driver to generate waveform data of a music tone at a
specific sampling frequency based on the distributed per-
formance data, streaming the waveform data from the reg-
istered tone generating driver to the integrating driver,
converting the specific sampling frequency of the streamed
waveform data into a common sampling frequency by the
integrating driver, mixing the waveform data of the common
sampling frequency to other waveform data streamed from
other tone generating driver while synchronizing progres-
sion of the waveform data with progression of other wave-
form data, and reproducing the mixed waveform data at the
common sampling frequency to output the music tones. By
such a method, the system can freely add and delete tone
generating drivers having different sampling frequencies of
the tone waveform data. Further, i1t 1s not necessary to
increase a number of application program interfaces of the
operating system for feeding the performance data to the

fone generating drivers even 1f another tone generating
driver 1s added.

Preferably, 1n the first aspect, the step of reproducing
comprises feeding the mixed waveform data through another
application program interface provided by the operating
system to a wave driver installed 1n the operating system for
reproducing the mixed waveform data at the common sam-
pling frequency. By such a method, it 1s not necessary to
increase a number of application program interfaces for
feeding the waveform data to the WAVE driver even 1if a tone
ogenerating driver 1s added since the common interface
provided by the operating system 1s used for transferring the

waveform data generated by any tone generating drivers to
the WAVE driver.

In a second aspect of the invention, a method 1s designed
for controlling a plurality of tone generator modules by an
integrator module for generating music tones according to
performance data being created by a music application
software and being composed of a plurality of timbre parts.
The mventive method comprises the steps of registering a
plurality of tone generator modules for control by the
integrator module such that each registered tone generator
module 1s operable under control by the integrator module to
generate wavelorm data of a music tone 1n accordance with
the performance data, allocating the timbre parts of the

10

15

20

25

30

35

40

45

50

55

60

65

4

performance data to the registered tone generator modules to
establish correspondence between each timbre part and each
tone generator module, distributing each timbre part of the
performance data from the integrator module to each tone
ogenerator module 1n accordance with the established corre-
spondence so as to operate the plurality of the tone generator
modules concurrently with each other to generate a plurality
of waveform data representing a plurality of music tones
corresponding to the plurality of the timbre parts, and
mixing the plurality of the waveform data with each other to
output the music tones 1n accordance with the performance
data. By such a method, the inventive system can dynami-
cally allocate the timbre parts of the inputted performance
data to the registered tone generating modules.

In a third aspect of the invention, a method 1s designed for
controlling a plurality of tone generator modules by an
integrator module for generating music tones according to
performance data being created by a music application
software and being composed of a plurality of performance
parts. The inventive method comprises the steps of regis-
tering a plurality of tone generator modules for control by
the 1integrator module such that each registered tone genera-
tor module can carry out a task of processing the perfor-
mance data to generate waveform data under control by the
integrator module, probing each tone generator module to
detect a time lag of the task from an mput timing of the
performance data to an output timing of the waveform data,
allocating the performance parts of the performance data to
the tone generator modules to establish correspondence
between ecach performance part and each tone generator
module, delivering each performance part of the perfor-
mance data from the integrator module to each tone gen-
erator module 1n accordance with the established correspon-
dence at a variable input timing, adjusting the input timings
of the performance parts of the performance data so as to
compensate for the detected time lags among the tone
ogenerator modules, thereby synchronizing the output tim-
ings of the waveform data from the tone generator modules,
and mixing the waveform data generated by the plurality of
the tone generator modules to produce the music tones. By
such a method, the inventive system can synchronously
reproduce the tone waveform data generated by the tone
ogenerator modules having different processing speeds by
adjusting the mput timings of the waveform data to the
respective tone generator modules.

In a fourth aspect of the invention, a method 1s designed
for controlling a plurality of tone generator modules by an
integrator module on an operating system to generate music
tones 1n accordance with performance data being created by
a music application software and being composed of parts.
The 1nventive method comprises the steps of feeding the
performance data created by the music application software
to the integrator module through an application program
interface provided by the operating system, registering a
plurality of tone generator modules for control by the
integrator module, each tone generator module being
executable on the operating system to generate waveform
data of a music tone according to the performance data,
opening an individual interface dedicated to each of the
registered tone generator modules for communication with
the integrator module, allocating the performance data to the
tone generator modules a part by part, delivering each
allocated part of the performance data from the integrator
module to each tone generator module through the indi-
vidual interface dedicated to each tone generator module so
as to generate the waveform data, and collecting the wave-
form data generated by the registered tone generator mod-

US 6,479,739 B2

S

ules to the integrator module and mixing the collected
waveform data to generate the music tones. By such a
method, the interfaces are flexibly opened 1n correspondence
to the registered tone generator modules, hence a number of
the registered tone generator modules or tone generating
programs can be freely changed.

Preferably, mn the fourth aspect, the step of registering
comprises registering the tone generator modules mcluding
a standard tone generator module and a non-standard tone
generator module, the step of opening comprises opening a
first individual interface provided by the integrator module
independently from the operating system for the standard
tone generator module and opening a second individual
interface provided by the operating system for the non-
standard tone generator module, and the step of delivering
comprises delivering the performance data to the standard
tone generator module through the first individual interface
and delivering the performance data to the non-standard tone
generator module through the second individual interface.
By such a method, the system can conduct a joint perfor-
mance by the standard and non-standard ones of the tone
generator modules through the integrator module. The 1nte-
orator module can provide interfaces to the tone generator
modules 1f they are designed in agreement with the standard
of the mtegrator module without using interfaces provided
by the operating system, thereby avoiding shortage of the
application program interfaces.

In a fifth aspect of the mnvention, a method 1s designed for
controlling a plurality of tone generator modules by an
integrator module on an operating system for generating
music tones according to performance data being created by
a music application software and being composed of parts.
The inventive method comprises the steps of feeding the
performance data created by the music application software
to the integrator module through an application program
interface provided by the operating system, registering a
plurality of tone generator modules for control by the
integrator module, each tone generator module being
executable on the operating system to generate waveform
data of a music tone according to the performance data,
opening a data stream path between the integrator module
and each of the registered tone generator modules, allocating
the performance data to the registered tone generator mod-
ules a part by part, delivering each allocated part of the
performance data from the integrator module to each tone
ogenerator module so as to enable each tone generator
module to generate the waveform data, and collecting the
wavelorm data generated by each tone generator module to
the integrator module through each data stream path and
mixing the collected waveform data to generate the music
tones. By such a method, the integrator module opens the
individual data stream paths to the registered tone generator
modules, hence 1t 1s possible to freely increase or decrease
the number of the registered tone generator modules.

Preferably, in the fifth aspect, the step of registering
comprises registering the tone generator modules including
a standard tone generator module and a non-standard tone
generator module, the step of opening comprises opening
one data stream path provided by the integrator module
independently from the operating system for the standard
tone generator module and opening another data stream path
in the form of an 1nterface provided by the operating system
for the non-standard tone generator module, and the step of
collecting comprises collecting the waveform data from the
standard tone generator module through said one data stream
path and collecting the waveform data from the non-
standard tone generator module through said another data

10

15

20

25

30

35

40

45

50

55

60

65

6

strcam path. By such a method, the inventive system can
conduct a joint performance by the standard and non-
standard ones of the tone generator modules through the
integrator module. The integrator module can provide
stream paths of the waveform data between the integrator
module and the respective tone generator modules if they are
designed 1n agreement with the standard of the integrator
module without using interfaces provided by the operating
system, thereby avoiding shortage of the application pro-
oram 1nterfaces.

In a sixth aspect of the invention, a method 1s designed for
controlling a plurality of tone generator modules by an
integrator module on an operating system for generating
music tones according to performance data being created by
a music application software and being composed of parts.
The 1nventive method comprises the steps of feeding the
performance data created by the music application software
to the integrator module through an application program
interface provided by the operating system, registering a
plurality of tone generator modules for control by the
integrator module, allocating the performance data a part by
part to the registered tone generator modules and delivering
cach allocated part of the performance data to each corre-
sponding tone generator modules from the integrator
module, applying triggers individually to the tone generator
modules to cause the tone generator modules to progres-
sively generate wavelform data corresponding to the allo-
cated parts of the performance data 1n response to the
triggers, collecting the waveform data generated by the tone
ogenerator modules to the integrator module and mixing the
collected waveform data to output the music tones, moni-
toring progressions 1n the generation of the waveform data
by the tone generator modules to discriminate between
lageing one and advancing one of the tone generator
modules, and controlling application of the triggers to bal-
ance the progression of the generation of the waveform data
among the lageing tone generator module and the advancing
tone generator module. By such a method, the integrator
module manages operation states of all the tone generator
modules to thereby balance the tone generator modules.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects of the mnvention will be seen by
reference to the description, taken 1n connection with the
accompanying drawings, 1n which:

FIG. 1 1s a block diagram 1llustrating a software structure

adopted by a method of controlling a plurality of tone
generating drivers according to the 1nvention;

FIG. 2 a block diagram illustrating a hardware configu-
ration for use 1 a preferred embodiment of a method of
controlling a plurality of software-based tone generating
drivers according to the mvention;

FIG. 3 1s a block diagram 1illustrating a detailed configu-
ration of a waveform interface shown 1n FIG. 2;

FIG. 4 1s a flowchart indicative of a main routine of a
MIDI driver for a hardware tone generator;

FIG. § 1s a flowchart indicative of a main routine of a
MIDI driver constituted by a software tone generator, which
1s a kind of application software;

FIG. 6 1s a flowchart indicative of a main routine of an
integrating driver;

FIG. 7A 1s a flowchart imndicative of MIDI driver regis-
fration processing:

FIG. 7B 1s a lowchart indicative of MIDI driver deletion
pProcessing;;

US 6,479,739 B2

7

FIG. 7C 1s a diagram 1llustrating a registration map;

FIG. 8 1s a flowchart indicative of timbre switching event
processing to be executed in MIDI processing:

FIG. 9 1s a flowchart indicative of other event processing
to be executed 1 MIDI processing;

FIG. 10 1s a flowchart indicative of timer iterrupt pro-
cessing to be executed 1in MIDI processing;

FIG. 11 1s a flowchart indicative of trigger interrupt
processing to be executed in WAVE processing;

FIG. 12 1s a flowchart indicative of a WAVE operation to
be executed in WAVE processing; and

FIG. 13 1s a block diagram 1illustrating a software structure
in a related-art tone generating system.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

This invention will be described m further detail by way
of example with reference to the accompanying drawings.

Now, referring to FIG. 1, an operating system (OS) 2 is
Windows 95 (trademark of Microsoft Corporation) for
example 1n this software structure. The OS 2 has an appli-
cation program interface IF1 (MIDI-Out API) and an appli-
cation program interface IF2 (MIDI-Out API) capable of
transferring a MIDI (Musical Instrument Digital Interface)
message, which 1s performance information for generating
tone waveform data. The operating system 2 has also an
application program interface IF3 (WAVE-Out API) and an
application program interface IF4 (WAVE-Out API) capable
of transferring generated tone waveform data.

Music application software 1 for generating MIDI mes-
sages 15 located at the application layer on the operating
system, for sequenftially generating performance i1nforma-
tion 1n the form of MIDI messages 1n a real-time fashion.
The generated MIDI messages are received by an integrating
driver 3 that 1s a kind of program or software module
characteristic to the invention through the interface IF1
(MIDI-Out API) provided as one of multimedia functions of
the OS 2. Installation of the mtegrating driver 3 on the OS
2 provides the operating system with the capabilities of the
interface IF1 and the interface IF3. Stated otherwise, the
operating system opens the interfaces IF1 and IF3 when the
integrating driver 3 1s installed 1n the operating system. The
MIDI messages received by the integrating driver 3 are
allocated a part by part and distributed to a first MIDI driver
S5 (hardware tone generator), a second MIDI driver 6
(software tone generator), a third MIDI driver 7 (software
tone generator), which are all standardized in agreement
with the standard of the integrating driver, as well as to a
non-standard fourth MIDI driver 8 (software tone generator)
which 1s not agreement with the standard of the integrating,
driver.

According to the invention, a method 1s designed for
controlling a plurality of tone generator modules in the form
of MIDI drivers 5—8 by an integrator module in the form of
integrating driver 3 for generating music tones according to
performance data being created by a music application
software 1 and being composed of a plurality of timbre parts.
The mventive method comprises the steps of registering a
plurality of tone generator modules 5—8 for control by the
integrator module 3 such that each registered tone generator
module 5-8 1s operable under control by the integrator
module 3 to generate wavelorm data. of a music tone 1n
accordance with the performance data, allocating the timbre
parts of the performance data to the registered tone generator
modules 5-8 to establish correspondence between each

10

15

20

25

30

35

40

45

50

55

60

65

3

timbre part and each tone generator module, distributing
cach timbre part of the performance data from the integrator
module 3 to each tone generator module 5-8 1n accordance
with the established correspondence so as to operate the
plurality of the tone generator modules 5—8 concurrently
with each other to generate a plurality of waveform data
representing a plurality of music tones corresponding to the
plurality of the timbre parts, and mixing the plurality of the
waveform data with each other to output the music tones in
accordance with the performance data. By such a method,
the 1nventive system can dynamically allocate the timbre
parts of the mputted performance data to the registered tone
generating modules 5-8.

The standard MIDI drivers 5 through 7 can be registered
into the integrating driver 3 so that the integrating driver 3
opens an interface IF10 (MIDI-Out API), an interface IF11
(MIDI-Out API), and an interface IF12 (MIDI-Out API).
Through these interfaces IF10 (MIDI-Out API), IF11
(MIDI-Out API), and IF12 (MIDI-Out API), the allocated
MIDI messages are distributed to the standard first MIDI
driver § (hardware tone generator), second MIDI driver 6
(software tone generator), and third MIDI driver 7 (software
tone generator). To the non-standard fourth MIDI driver 8
(software tone generator), the allocated MIDI message is
supplied through the interface IF2 (MIDI-Out API) provided
by the OS 2 when installing this driver 4.

According to the invention, a method 1s designed for
controlling a plurality of tone generator modules 5-8 by an
integrator module 3 on an operating system 2 to generate
music tones 1 accordance with performance data being
created by a music application software 1 and being com-
posed of parts. The inventive method comprises the steps of
feeding the performance data created by the music applica-
tion software 1 to the integrator module 3 through an
application program interface IF1 provided by the operating
system 2, registering a plurality of tone generator modules
5-8 for control by the integrator module 3, each tone
generator module being executable on the operating system
2 to generate waveform data of a music tone according to the
performance data, opening an individual interface
IF10-I1F12 and IF2 dedicated to each of the registered tone
ogenerator modules 5—8 for communication with each tone
ogenerator module module, allocating the performance data
to the tone generator modules 5—8 a part by part, delivering
cach allocated part of the performance data from the inte-
ogrator module 3 to each tone generator module 5-8 through
the individual interface IF10-IF12 and IF2 dedicated to each
tone generator module so as to generate the waveform data,
and collecting the waveform data generated by the registered
tone generator modules 6—8 to the integrator module 3 and
mixing the collected waveform data to generate the music
tones. By such a method, the interfaces IF10-I1F12 and IF2
are tlexibly opened in correspondence to the registered tone
ogenerator modules 53-8, hence-a number of the registered
tone generator modules 5—8 or tone generating programs can
be freely changed.

Preferably, the step of registering comprises registering
the tone generator modules 5-8 including a standard tone
generator module 5—7 and a non-standard tone generator
module 8, the step of opening comprises opening a first
individual interface IF10-1F12 provided by the integrator
module 3 independently from the operating system 2 for the
standard tone generator module 5-7 and opening a second
individual interface IF2 provided by the operating system 2
for the non-standard tone generator module 8, and the step
of delivering comprises delivering the performance data to
the standard tone generator module 5—7 through the first

US 6,479,739 B2

9

individual interface IF10-IF12 and delivering the perfor-
mance data to the non-standard tone generator module 8
through the second individual interface IF2. By such a
method, the system can conduct a joint performance by the
standard and non-standard ones of the tone generator mod-
ules 5-8 through the integrator module 3. The integrator
module 3 can provide interfaces IF10-IF12 to the tone
generator modules 5—7 1f they are designed 1n agreement
with the standard of the integrator module 3 without using,
interfaces IF1-IF4 provided by the operating system 2,
thereby avoiding shortage of the application program inter-

faces.

The non-standard fourth MIDI driver 8 (software tone
generator) must be installed on the OS 2 for use. On the
other hand, the standard first MIDI driver § (hardware tone
generator), second MIDI driver 6 (software tone generator),
and third MIDI driver 7 (software tone generator) may be
installed on the OS 2 for use or may be registered in the
integrating driver 3 for use without mnstallation on the OS 2.
If the standard MIDI drivers are registered 1n the 1ntegrating
driver 3 for use, these MIDI drivers can be immediately used
without restarting or rebooting the OS 2. Therefore, no
cumbersome 1nstalling operations are required. The first
MIDI driver 5 1s designed to drive a hardware tone generator
10 and controls the tone generating operation of the hard-
ware tone generator 10 based on the MIDI message supplied
through the interface F10. The second MIDI driver 6
(software tone generator) and the third MIDI driver 7
(software tone generator) are each constituted by a software
tone generator module.

The MIDI message 1s supplied from the 1ntegrating driver
3 to the second MIDI driver 6 (software tone generator) and
the third MIDI driver 7 (software tone generator) through
the interface IF11 (MIDI-Out API) and the interface IF12
(MINI-Out API), respectively. The second MIDI driver 6
(software tone generator) and the third MIDI driver 7
(software tone generator) receive a trigger generated at a
predetermined period from a timer 4-2 1n a tool library 4
provided 1n the integrating driver 3, and execute necessary
computation for generating a predetermined amount of tone
waveform data. The tone waveform data generated by the
second MIDI driver 6 (software tone generator) is supplied
to a WAVE processor 4-1 1n the tool library 4 through a first
stream path. The tone waveform data generated by the third
MIDI driver 7 (software tone generator) is supplied to the
WAVE processor 4-1 through a second stream path. The
non-standard fourth MIDI driver 8 (software tone generator)
executes tone generating computation by use of the MIDI
message supplied through the interface IF2. The tone wave-
form data generated by the fourth MIDI driver 8 (software
tone generator) is supplied to the WAVE processor 4-1

through the interface IF3 (WAVE-Out API).

According to the invention, a method 1s designed for
controlling a plurality of tone generator modules 5—8 by an
integrator module 3 on an operating system 2 for generating
music tones according to performance data being created by
a music application software 1 and being composed of parts.
The inventive method comprises the steps of feeding the
performance data created by the music application software
1 to the integrator module 3 through an application program
interface IF1 provided by the operating system 2, registering
a plurality of tone generator modules 5—8 for control by the
integrator module 3, each tone generator module being
executable on the operating system 2 to generate waveform
data of a music tone according to the performance data,
opening a data stream path between the integrator module 3
and each of the registered tone generator modules 6-8,

10

15

20

25

30

35

40

45

50

55

60

65

10

allocating the performance data to the registered tone gen-
erator modules 5-8 a part by part, delivering each allocated
part of the performance data from the integrator module 3 to
cach tone generator module so as to enable each tone
ogenerator module to generate the waveform data, and col-
lecting the waveform data generated by each tone generator
module to the integrator module through each data stream
path and mixing the collected waveform data to generate the
music tones. By such a method, the imtegrator module 3
opens the individual data stream paths to the registered tone
generator modules 6—8, hence 1t 1s possible to freely increase
or decrease the number of the registered tone generator
modules.

Preferably, the step of registering comprises registering
the tone generator modules including a standard tone gen-
erator module 6 and 7 and a non-standard tone generator
module 8, the step of opening comprises opening a data
stream path provided by the integrator module 3 indepen-
dently from the operating system 2 for the standard tone
generator module 6 or 7 and opening another data stream
path 1n the form of an interface IF3 provided by the
operating system 2 for the non-standard tone generator
module 8, and the step of collecting comprises collecting the
waveform data from the standard tone generator module 6
and 7 through the data stream path and collecting the
waveform data from the non-standard tone generator module
8 through the mterface IF3. By such a method, the inventive
system can conduct a joint performance by the standard and
non-standard ones of the tone generator modules 6-—8
through the integrator module 3. The integrator module 3
can provide stream paths of the waveform data between the
integrator module 3 and the respective tone generator mod-
ules 6 and 7 if they are designed in agreement with the
standard of the mtegrator module 3 without using interfaces
IF1-1F4 provided by the operating system 2, thereby avoid-
ing shortage of the application program interfaces.

The WAVE processor 4-1 converts a specific sampling
frequency Fs of the received tone waveform data into a
predetermined common sampling frequency. If plural pieces
of tone waveform data have been received, the WAVE
processor 4-1 adds together the pieces of tone waveform
data matched in timing. It should be noted that, if some of
the plurality of received tone waveform data have a common
sampling frequency Fs, such pieces of tone waveform data
may be added together before the sampling frequency
conversion, thereby decreasing the amount of computation.
When the amount of the added tone waveform data has
reached one frame, one frame of tone waveform data 1s
stored 1n a buffer memory for reservation 1in the WAVE

driver 9 for reproduction. In this case, the tone waveform
data 1s supplied from the WAVE processor 4-1 to the WAVE

driver 9 through the interface IF4 (WAVE-Out API).
Consequently, if two or more MIDI drivers are used, only
one WAVE driver may be used, thereby preventing a situ-
ation 1n which WAVE drivers run short.

According to the invention, a method 1s designed for
controlling a plurality of tone generating drivers 5—8 by an
integrating driver 3 installed 1n an operating system 2 to
generate music tones according to performance data created
by a music application software 1. The 1nventive method
comprises the steps of nputting the performance data cre-
ated by the music application software 1 to the integrating
driver 3 through an application program interface IF1 pro-
vided by the operating system 2, distributing the perfor-
mance data from the mtegrating driver 3 to one or more of
the tone generating drivers 6 and 7 provisionally registered
to the integrating driver 3, operating the registered tone

US 6,479,739 B2

11

generating driver 6 to generate wavelform data of a music
fone at a specific sampling frequency based on the distrib-
uted performance data, streaming the waveform data from
the registered tone generating driver 6 to a WAVE processor
4-1 contained 1n the tool library 4 of the integrating driver
3, converting the specific sampling frequency of the
streamed waveform data 1nto a common sampling frequency
by the WAVE processor 4-1 of the integrating driver 3,
mixing the waveform data of the common sampling fre-
quency to other waveform data streamed from other tone
generating driver 8 while synchronizing progression of the
wavelorm data with progression of other waveform data,
and reproducing the mixed waveform data at the common
sampling frequency to output the music tones. By such a
method, the system can freely add and delete tone generating
drivers 5—-8 having different sampling frequencies of the
tone waveform data. Further, 1t 1s not necessary to increase
a number of application program interfaces of the operating
system 2 for feeding the performance data to the tone
generating drivers even 1f another tone generating driver 1s

added.

Preferably, the step of reproducing comprises feeding the
mixed waveform data through another application program
interface 1F4 prowded by the operating system 2 to a WAVE
driver 9 installed 1n the operating system 2 for reproducing
the mixed waveform data at the common Samphng fre-
quency. By such a method, it 1s not necessary to 1ncrease a
number of application program interfaces for feeding the
waveform data to the WAVE driver 9 even 1f a tone gener-
ating driver 1s added since the common interface IF4 pro-
vided by the operating system 2 Is used for transferring the
waveform data generated by any tone generating drivers 6—8

to the WAVE driver 9.

The integrating driver 3 checks the progress of the tone
wavelform data received from the first and second stream
paths while controlling the delay time of the computation for
the tone waveform generation and the amount of tone
waveform data generated 1n a unit time, thereby controlling,
the priority of triggers caused by the timer 4-2. The priority
may also be determined according to the computation delay
fime until the tone waveform data 1s generated 1n each MIDI
driver. It should be noted that the tool library 4 1s provided
as a dynamic link library (DLL). Various sub modules stored
in the DLL can be called when the integrating driver 3 1is
started.

According to the invention, a method 1s designed for
controlling a plurality of tone generator modules 5-8 by an
integrator module 3 on an operating system 2 for generating
music tones according to performance data being created by
a music application software 1 and being composed of parts.
The 1nventive method comprises the steps of feeding the
performance data created by the music application software
1 to the integrator module 3 through an application program
interface IF1 provided by the operating system 2, registering
a plurality of tone generator modules 5—8 for control by the
integrator module 3, allocating the performance data a part
by part to the registered tone generator modules 5-8 and
delivering each allocated part of the performance data to
cach corresponding tone generator modules 5—8 from the
integrator module 3, applying trigeers by a timer 4-2 con-
tained 1n a tool library 4 of the integrator module 3 indi-
vidually to the tone generator modules 6—8 to cause the tone
generator modules 6—8 to progressively generate waveform
data corresponding to the allocated parts of the performance
data 1n response to the triggers, collecting the waveform data
ogenerated by the tone generator modules 6—8 to the integra-
tor module 3 and mixing the collected waveform data to

10

15

20

25

30

35

40

45

50

55

60

65

12

output the music tones, monitoring progressions in the
ogeneration of the waveform data by the tone generator
modules 6—8 to discriminate between lagging one and
advancing one of the tone generator modules 6—8, and
controlling application of the triggers by the timer 4-2 to
balance the progression of the generation of the wavetform
data among the lagging tone generator module and the
advancing tone generator module. By such a method, the
integrator module 3 manages operation states of all the tone
generator modules 6—8 to thereby balance the tone generator
modules 6-8.

The tone waveform data generated in the standard second
and third MIDI drivers 6 (software tone generator) and 7
(software tone generator) 1s supplied to the WAVE processor
4-1 through the first and second stream paths only 1n the
amount of data generated 1n response to a trigger. The time
control on the tone waveform data 1s not executed 1n the
second MIDI driver 6 (software tone generator) and the third
MIDI driver 7 (software tone generator). On the other hand,
in the non-standard fourth MIDI driver 8 (software tone
generator), time control 1s executed on the generated tone
waveform data. Therefore, when one frame of tone wave-
form data has been generated, the generated data 1s supplied
to the WAVE processor 4-1. This allows the standard MIDI
drivers to execute time control on the tone waveform data in
a unified manner 1n the WAVE processor 4-1. Consequently,
cach MIDI driver need not execute time control separately
and, the integrating driver 3 can execute optimum control on
two or more concurrently operating MIDI drivers.

According to the invention, a method 1s designed for
controlling a plurality of tone generator modules 5—8 by an
integrator module 3 for generating music tones according to
performance data being created by a music application
software 1 and being composed of a plurality of perfor-
mance parts. The mventive method comprises the steps of
registering a plurality of tone generator modules 5-8 for
control by the mtegrator module 3 such that each registered
tone generator module can carry out a task of processing the
performance data to generate waveform data under control
by the integrator module 3, probing each tone generator
module to detect a time lag of the task from an mput timing
of the performance data to an output timing of the waveform
data, allocating the performance parts of the performance
data to the tone generator modules 5-8 to establish corre-
spondence between each performance part and each tone
generator module, delivering each performance part of the
performance data from the integrator module 3 to each of the
tone generator modules 5—8 1n accordance with the estab-
lished correspondence at a variable mput timing, adjusting
the mput timings of the performance parts of the perfor-
mance data so as to compensate for the detected time lags
among the tone generator modules 53-8, thereby synchro-
nizing the output timings of the waveform data from the tone
ogenerator modules 5—8, and mixing the waveform data
generated by the plurality of the tone generator modules 6—8
to produce the music tones. By such a method, the inventive
system can synchronously reproduce the tone waveform
data generated by the tone generator modules 5—8 having
different processing speeds by adjusting the mput timings of

the waveform data to the respective tone generator modules
5-8.

When the music application software 1, which 1s an
application program, 1ssues a request to open a MIDI driver
registered 1n the integrating driver 3, such a request is
detected and a corresponding stream path, the first stream
path or the second stream path, 1s opened. The first and
second stream paths are channels capable of transmitting

US 6,479,739 B2

13

tone waveform data at a specified rate and 1n a specified bat
width. Priorities are selectively given to these streams. In the
WAVE processor 4-1, the received tone waveform data 1s
processed 1n the order of the priorities. Preferably, the
priority 1s determined according to the significance of the
performance part to which the tone generating driver 1s
assigned.

The WAVE driver 9 for which reproduction of tone
waveform data has been reserved by the WAVE processor
4-1 reads samples of the wavelorm data from the buifer
memory through a direct MEMOry access (DMA) controller
so that the reproduced data i1s outputted for every sampling
per1od, and supplies the samples of the waveform data thus
read to a CODEC 11. The CODEC 11 converts the wave-
form data samples into an analog tone signal, which 1s then
sounded from a sound system not shown. Waveform sample
data generated 1n the hardware tone generator 10 1s also
sounded from the sound system not shown.

A subroutine library 4-3 provided 1n the integrated tool
library 4 1s generalized and stores general-purpose sub
modules (or subroutines) for use in computation of gener-
ating tone waveform data, such as a digital filter, an
interpolator, and a mixer. Each standard MIDI driver uses
these general-purpose sub modules to generate tone wave-
form data having required musical properties such as pitch
and timbre. In the above-mentioned software structure, 1t 1S
assumed that the second MIDI driver 6 (software tone
generator) be a physical model tone generator simulating an
acoustic musical mstrument and the third MIDI driver 7
(software tone generator) be a waveform memory tone
generator. In such a case, 1t 1s preferable to distribute a MIDI
message corresponding to a solo part to the second MIDI
driver 6 (software tone generator) and a MIDI message
corresponding to an accompaniment part to the third MIDI
driver 7 (software tone generator).

The standard MIDI drivers may be used by registering the
same 1nto the mtegrating driver 3 without 1nstalling them on
the OS 2 as drivers. Because the integrating driver 3 1is
adapted to distribute MIDI messages to the MIDI drivers,
they can be supervised to exchange the performance parts
during the music performance. Consequently, different por-
tions of the same part can be performed by different MIDI
drivers, thereby widening performance diversity.

The following describes a hardware configuration of the
music apparatus practiced as one preferred embodiment of
the 1nvention with reference to FIG. 2. In the figure, refer-
ence numeral 21 denotes a microprocessor or central pro-
cessing unit (CPU) for use as a main controller of the
embodiment. Under the control of the CPU 21, the method
of controlling a plurality of tone generating drivers 1is
executed as a process for controlling a plurality of drivers by
an 1nstruction program for controlling a plurality of drivers.
At the same time, processing of other application programs
1s executed. Reference numeral 22 denotes a read-only
memory (ROM) storing the control program and other
programs to be executed by the CPU 21. Reference numeral
23 denotes a random access memory (RAM) providing a
work area to be used by the CPU 21 and an area 1n which
a program and performance data for example read from a
hard disk 26 or a removable disk 27, which are external
storage devices, are loaded. Reference numeral 24 1s a
hardware timer for providing the CPU 21 with the timing of
fimer interrupt processing.

Reference numeral 25 1s a MIDI interface 1n which
performance data such as MIDI messages are mputted from
other MIDI devices, and from which internally generated

10

15

20

25

30

35

40

45

50

55

60

65

14

MIDI messages are supplied to those external MIDI devices.
Reference numeral 26 denotes the hard disk for storing
application software and MIDI performance data. Reference
numeral 27 denotes the removable disk for storing applica-
tion software and MIDI performance data like the hard disk
26. Reference numeral 28 1s a monitor on which the screen
of an application program or various settings 1s displayed.
Reference numeral 29 denotes a personal computer key-
board having alphanumeric, symbolic, and control keys.
This keyboard device includes a pointing device such as a
so-called mouse.

Reference numeral 30 denotes a waveform interface for
reading tone waveform data from the RAM 3 at a sampling
frequency and for converting the tone waveform data into an
analog signal, which 1s sounded from a sound system not
shown. It should be noted that the sound system may have
an effect imparting circuit for imparting effects such as
reverberation and chorus to the tone signal supplied from the
waveform 1nterface 30. Reference numeral 36 denotes a
hardware tone generator dedicated to tone generation. This
hardware tone generator executes a plurality of time-
division channel operations as mstructed by the CPU 21,
thereby generating and outputting a plurality of tones. It
should be noted that the above-mentioned hardware circuits
are 1nterconnected through a CPU bus 20. The above-
mentioned configuration 1s generally the same as those of a
personal computer and a workstation. Therefore, the control
method associated with the present invention can be 1mple-
mented by a general-purpose computer.

The above-mentioned hardware configuration may also
have a communication interface for connection with a server
computer through a communication network such as a LAN
(Local Area Network), the Internet, or a telephone network.
In addition, the control program for a plurality of tone
generating drivers may be installed on the hard disk 26 or the
removable disk 27 by setting a machine readable medium
such as a floppy disc (FDD) or compact-disc ROM (CD-
ROM) storing the control program into a drive attached as
an external storage device, thereby allowing the above-
mentioned hardware configuration to perform the process of
controlling a plurality of tone generating drivers. The
machine readable medium i1s used 1in a music apparatus
having a processor or CPU for operating an integrator
module and a plurality of tone generator modules on an
operating system. The machine readable medium contains
program 1nstructions executable by the processor to cause
the music apparatus to perform a process of generating
music tones according to performance data created by a
music application software.

FIG. 3 shows details of the configuration of the waveform
interface 30 shown 1n FIG. 2. As shown, the waveform
interface 30 has an analog-to-digital converter (ADC) 31 for
converting an input analog audio signal supplied from a
microphone for example 1nto a digital audio signal, a first
direct memory access controller (DMAC1) 32 for writing
the digital data supplied from the ADC 31 to the RAM 23 1n
units of one sample in each sampling period (1/Fs), a second
direct memory access controller (DMAC2) 34 for sequen-
tially reading frames of tone waveform data from buifer
memories WB1 through WBS prepared in the RAM 23 1n
units of one sample in each sampling period (1/Fs), a
digital-to-analog converter (DAC) 35 for converting the tone
waveform data read by the second direct memory access
controller 34 into an analog tone signal, and an Fs generator
33 for generating a sampling pulse having a period of a
common sampling frequency Fs to be supplied to the first
and second direct memory access controllers 32 and 34. It

US 6,479,739 B2

15

should be noted that the CODEC 11 shown 1n FIG. 1 denotes
an 1ntegrated circuit for implementing the capabilities of the
ADC 31 and the DAC 35 of the waveform interface 30.

To the RAM 23, the WAVE processor 4-1 writes tone
wavelorm data. In the shown example, the buffer memories
WB1, WB2, WB3, and WB4 each store one complete frame

of tone waveform data for example. The buifer memory
WB3 stores mcomplete tone waveform data for example.
The tone waveform data stored in the buffer memories WB1
through WB4 are sequentially read by the second direct
memory access controller 34 1n units of one sample 1in every
sampling period (1/Fs) with reference to the sampling pulse

ogenerated by the Fs generator 33.

The following describes the preferred embodiment of the
method of controlling a plurality of tone generating drivers
based on software with reference to FIG. 4 and so on. FIG.
4 shows the main routine of the first MIDI driver 5
(hardware tone generator) to be executed by the CPU 21.
This main routine (hardware driver main) starts when the OS
2 1s booted and if the first MIDI driver 5 (hardware tone
generator) 1s installed on the OS 2. Further, this main routine
(hardware driver main) starts when a command to open a
driver concerned comes from the integrating driver 3 and the
first MIDI driver 5§ (hardware tone generator) is registered in
the integrating driver 3. When the main routine gets started,
the hardware tone generator 1s 1nitialized 1n step S10. In this
initializing step, the tone generator registers are cleared and
the settings of the hardware tone generator 10 1s reset.

When the imitialization has been completed, the CPU 21
checks for a trigger 1n step S11. There are three types of
triggers that follow:

(1) Supply of a MIDI message through the interface IF10
(MIDI-Out API) of the integrating driver 3 (namely, a
MIDI message has been supplied from the music
application software 1);

(2) Detection of an input event on the tone generator
setting panel displayed on the monitor 28 or a com-
mand input event on the keyboard 29; and

(3) Inputting of a main routine end command.

In step S12, the CPU 21 checks for any of the above-
mentioned triggers. The processing of step S11 1s repeated
until any of the triggers (1) through (3) is detected. If a
trigger 1s found 1n step S12, the CPU 21 determines the type
of the detected trigger 1n step S13, and executes a process
accordingly. For example, if the trigger (1) is detected, MIDI
processing is executed in step S14. If the trigger (2) is
detected, other processing 1s executed in step S15. If the
trigger (3) 1s detected, end processing is executed in step
S16.

The MIDI processing to be executed 1n step S14 includes
note-on processing based on a MIDI message note-on event
and note-off processing based on a MIDI note-off event. In
the note-on processing, a channel 1s assigned to the hardware
tone generator according to the 1nput of a note-on event, a
tone parameter corresponding to the inputted note-on event
1s set to a register of the assigned channel, and a note-on
command 1s 1ssued to this channel. The channel starts
generating of a music tone based on the tone parameter. The
fone parameter to be set 1s determined according to the
fimbre selected for a performance part and the pitch and
Velocny specilled 1n a note-on event. In the note-off
processing, a channel generating a tone corresponding to the
note-oif event 1s detected from among the hardware tone
ogenerator channels, and a note-off command 1s 1ssued to the
detected channel. If a program change event is supplied, the
timbre selected for a specified performance part 1s changed
to another timbre specified by the program change event.

10

15

20

25

30

35

40

45

50

55

60

65

16

The other processing to be executed 1n step S15 includes
displaying of the tone generator control panel on the monitor
28, selection of timbres of the hardware tone generator, and
controlling of tone parameters. If a timer event 1s detected,
LFO control for imparting vibrato to a tone according to the
timer event and envelope control are executed 1n step S135.
When the processing of step S14 or step S15 has been
completed, then the routine backs to step S11, whereby the
processing operations of steps S11 through S135 are repeated.
When the trigger (3) is detected, then, in step S16, prede-
termined end processing for ending this main routine 1is
executed, upon which the main routine (hardware driver
main) comes to an end.

FIG. 5 shows a main routine of the second MIDI driver 6
(software tone generator), third MIDI driver 7 (software tone
generator), and the fourth MIDI driver 8 (software tone
generator) constituted by application programs or software
modules to be executed by the CPU 21. This main routine
(software driver main) starts when the OS 2 is booted and if
onc of these MIDI drivers 68 1s mstalled on the OS 2.
Otherwise, this main routine (software driver main) starts
when a command to open each of these drivers 6—8 comes
from the integrating driver 3 and 1if these drivers 6—8 are
registered 1n the integrating driver 3.

When this main routine starts, the second MIDI driver 6
(software tone generator), the third MIDI driver 7 (software
tone generator), and/or the fourth MIDI driver 8 (software
tone generator) required by the music application software is
initialized 1n step S20. In this mitialization, a storage area 1s
allocated on the RAM 23, driver routines are loaded, and
registers are cleared.

When the mitialization has been completed, the CPU 21
checks for a trigger 1in step S21. There are four types of
triggers that follow:

(1) Supply of a MIDI message through the interface IF11
(MIDI-Out API) or the interface IF12 (MIDI-Out API)
or the interface IF2 (MIDI-Out API) installed on the OS
2 (namely, a MIDI message has been supplied from the

music application software 1);

(2) In the case of a standard MIDI driver (software tone
generator), supply of a trigger indicative of a tone
generating timing from the timer 4-2 1n the integrated
tool library 4, and, 1n the case of a non-standard MIDI
driver (software tone generator), supply of a trigger
indicative of an mterrupt caused by the OS 2 at a certain
time interval;

(3) Detection of an input event on the tone generator
setting panel displayed on the monitor 28, a command
input event on the keyboard 29, or mput of a timer
event; and

(4) Inputting of a main routine end command.

In step S22, the CPU 21 checks for any of the above-
mentioned triggers. The processing of step S21 1s repeated
until any of the triggers (1) through (4) is detected. If a
trigger 1s found 1n step S22, the CPU 21 determines the type
of the detected trigger 1n step S23 and executes processing
accordingly. For example, if the trigger (1) 1s detected, MIDI
processing is executed in step S24. If the trigger (2) is
detected, tone generation processing 1s executed 1n step S235.
If the trigger (3) 1s detected, other processing is executed in
step S26. If the trigger (4) 1s detected, end processing is
executed 1n step S27.

If the mnterface IF1, the interface 1IF12, and the interface
IF2 are to be used, the music application software or the
integrating driver 3 must 1ssue a command for opening these
interfaces before using the same. For example, when the
integrating driver 3 1ssues a command to open the interface

US 6,479,739 B2

17

IF11 and the interface 1F12 of the standard MIDI drivers 6
and 7 (software tone generator) respectively, these interfaces
are opened accordingly as an 1nlet of MIDI messages. At the
same time, the first stream path and the second stream path
are opened as an outlet of the tone waveform data generated
by these MIDI drivers 6 and 7. When the mtegrating driver
3 1ssues a command to open the interface IF2 as an inlet of
the MIDI message for the non-standard fourth MIDI driver
8 (software tone generator), this interface IF2 is opened and,
at the same time, the interface IF3 1s opened as an outlet of
the waveform data generated by the non-standard fourth
MIDI driver 8. MIDI messages are supplied through the
open 1nterfaces IF11, IF12, and IF2 to the tone generating
drivers 6—8, thereby causing the trigger (1).

The MIDI processing to be executed 1n step S24 mcludes
note-on processing based on a MIDI message note-on event
and note-ofl processing based on a MIDI message note-off
event. In the note-on processing, a channel 1s assigned to the
software tone generator according to the 1nput of a note-on
event, a tone parameter corresponding to the mputted note-
on event 1s set to a register of the assigned channel, and a
note-on command 1s 1ssued to this channel. The channel
starts generating of a music tone based on the tone param-
cter. The tone parameter to be set 1s determined according to
the timbre selected for a performance part and the pitch and
velocity specified 1n a note-on event. In the note-off
processing, a channel generating a tone corresponding to the
note-oif event 1s detected from among the software tone
generator channels, and a note-off command is 1ssued to the
detected channel. If a program change event 1s supplied, the
timbre selected for a specified performance part 1s changed
to another timbre specified by the program change event.

In the tone generation processing to be executed 1n step
S25, generation of plural samples of tone waveform data
starts when a trigger 1s supplied from the timer 4-2 or the OS
2. The sampling frequency of the tone wavetform data at this
moment 1s set to a predetermined sampling frequency Fs
determined by the software tone generator concerned. In the
case of the non-standard fourth MIDI driver 8 (software tone
generator) that 1s started alone, the generated tone waveform
data 1s collected on a frame basis. When a frame 1is
completed, the complete frame 1s passed to the WAVE
processor 4-1 through the interface IF3. In the case of the
standard second MIDI driver 6 (software tone generator) and
third MIDI driver 7 (software tone generator) supervised by
the mtegrating driver 3, the generated tone waveform data 1s
not collected on a frame basis but passed directly to the
WAVE processor 4-1 through the first or second stream path.

The other processing to be executed 1n step S26 includes
displaying of the tone generator control panel on the monitor
28, selection of timbres of the software tone generator, and
controlling of tone parameters. If a timer event 1s detected,
LFO control for imparting vibrato to a tone according to the
fimer event and envelope control are executed 1n step S26.
When the processing of step S24, step S25, or step S26 has
been completed, then the routine backs to step S21, whereby
the processing operations of steps S21 through S26 are
repeated. When the trigger (4) is detected, then, in step S27,
predetermined end processing for ending this main routine 1s
executed, upon which the main routine (software driver
main) comes to an end.

FIG. 6 shows a main routine of the integrating driver
(integrating driver main) to be executed by the CPU 21. As
described, the integrating driver 3 1s mstalled on the OS 2 as
a MIDI driver. Therefore, this main routine starts when the
OS 2 1s booted. When the main routine starts, initialization
1s executed 1n step S30. In step S31, the CPU 21 determines

10

15

20

25

30

35

40

45

50

55

60

65

138

a MIDI driver to be turned on. A MIDI driver required by the
music application software 1 1s opened or the MIDI driver
started last time 1s opened. If a MIDI driver to be opened 1s
found, MIDI driver open processing 1s executed 1n step S32.

In step S32, the CPU 21 determines the type of a MIDI
driver to be opened. The MIDI driver having the determined
type 1s opened. For example, if the driver type 1s found a
standard MIDI driver of a hardware tone generator in step
S32, the first MIDI driver 5 (hardware tone generator) is
scarched 1n step S33 and the processing for opening the
same 1s executed (refer to FIG. 4). If the driver type is found
a standard MIDI driver of software tone generator 1n step
S32, the second MIDI driver 6 (software tone generator) and
the third MIDI driver 7 (software tone generator) are
scarched and the processing for opening them 1s executed
(refer to FIG. §) in step S34. If the driver type is found a
non-standard MIDI driver of software tone generator, the
fourth MIDI driver 8 (software tone generator) 1s searched
and the preparations for using the same are made 1n step S335.
It should be noted that, when opening each MIDI driver, the
corresponding interface IF10, IF11, IF12, or IF2 may also be
opened.

When the processing operations of steps S31 through S35
have been executed repeatedly, all or the necessary MIDI
drivers are opened. Therefore, decision 1s NO 1n step S31 in

this case. In step S36, the CPU 21 checks for a trigger. There
are five types of triggers that follow:

(1) Supply of a MIDI message through the interface IF1
(MIDI-Out API) installed on the OS 2 (namely, a MIDI
message has been supplied from the music application
software 1);

(2) Causing an interrupt to transmitting a trigger to the
timer 4-2 of the integrated tool library 4;

(3) Reception of tone waveform data generated by a MIDI
driver;

(4) Detection of an input event on the tone generator
setting panel displayed on the monitor 28 and a com-
mand 1nput event on the keyboard 29; and

(5) Inputting of a main routine end command.

In step S36, the CPU 21 checks for a trigger. The
processing of step S36 1s executed repeatedly until any of the
triggers (1) through (5) is detected. If a trigger is found in
step S37, the CPU 21 determines the type of the trigger and
executes processing accordingly. For example, if the trigger
(1) 1s detected, MIDI processing is executed in step S39. If
the trigger (2) is detected, trigger interrupt processing is
executed in step S40. If the trigger (3) is detected, WAVE
processing is executed in step S41. If the trigger (4) is
detected, other processing 1s executed in step S42. If the
trigger (5) 1s detected, end processing is executed in step
S43. Meanwhile, 1f the interface IF1 1s to be used, the music
application software 1 must 1ssue a command for opening,
this interface IF1 before use. In addition, when the interface
IF1 has been opened, the integrating driver 3 1ssues a
command for opening the interfaces IF1, IF12, and IF2 as
the 1nlet of MIDI messages transierred from the interface
IF1. Through the open interface IF1, the MIDI messages are
inputted 1n the integrating driver 3, thereby causing the
trigger (1).

In the MIDI processing to be executed 1n step S39, when
a timbre switching event included in a MIDI message such
as program change i1s supplied, timbre switching event
processing shown 1n FIG. 8 1s started and executed. When a
note-on event or note-oil event included 1n a MIDI message
1s supplied, other event processing shown i FIG. 9 is
executed. In the integrating driver 3, the supplied MIDI
messages are allocated and distributed to the specified MIDI

US 6,479,739 B2

19

drivers. When the time comes to send the event data
included 1mn a MIDI message in the distribution processing,
fimer 1nterrupt processing shown 1 FIG. 10 1s caused and
processed. When program change or bank select 1s supplied
with a MIDI message, the timbre switching event processing,
shown 1n FIG. 8 1s started. In step S70, the program change
included 1n the MIDI message 1s mputted into a register as
PC, the bank select included in the MIDI message 1s inputted
into a register as BS, and MIDI channel number (MIDIch)
included 1n the program change and the bank select is
inputted 1nto a register as p. In step S71, the MIDI driver
corresponding to a timbre specified on a timbre map 1s
determined based on the program change PC and the bank
select BS. The name of the determined MIDI driver is
inputted into a register as D(p). The timbre map stores
information about optimum tone generators (namely, opti-
mum MIDI drivers) for the timbres specified by the program
change PC and the bank select BS and substitute tone
generators (namely, substitute MIDI drivers) to be used if no
optimum tone generator 1s available. Consequently, 1if there
1s no soltware tone generator corresponding to a specified
fimbre, another software tone generator or a hardware tone
generator can be used as a substitute tone generator. It
should be noted that 16 MIDI channels of data D(p) store the
names of MIDI drivers to be used for generating the tones
of parts.

In step S72, the CPU 21 checks the MIDI drivers regis-
tered in the integrating driver 3 for the MIDI driver D(p). If
the MIDI driver D(p) is found as registered to the integrating
driver 3, the decision 1s Yes in step S72 and the processing
goes to step S74. If the MIDI driver D(p) is not found as
registered, the decision 1s No 1n step S72 and the processing
ogoes 1o step S73. In step S73, a MIDI driver substituting the
MIDI driver D(p) not registered is specified and the name of
the substitute MIDI driver is inputted into the register as
D(p). In step S74, the CPU 21 determines whether the MIDI
driver 1s to be newly turned on provided that the MIDI driver
D(p) has not been turned on. If the MIDI driver having the
driver name D(p) held in the register is not opened, the
decision 1s Yes in step S74 and the processing goes to step
S75. In step S75, the MIDI driver D(p) 1s opened and the
processing goes to step S76. If the MIDI driver D(p) is found
open, step S75 1s skipped and the processing goes to step
S76.

In step S76, the CPU 21 checks the open MIDI drivers not
in use. If a rest MIDI driver not 1in use 1s found, this rest
MIDI driver 1s closed 1n step S77 and the processing goes to

step S78. Because the MIDI drivers installed on the OS 2
cannot be closed, the rest MIDI drivers except for the MIDI
drivers mstalled on the OS 2 are closed in step S77. If no rest
MIDI driver 1s found, then, 1n step S78, the data indicative
of the operating or stopped state of the MIDI drivers in the
MIDI driver registration map 1s updated according to the
results of the processing of steps S72 through S77. In step
S79, the contents of the program change PC and the bank
select BS held 1n the register are written to a send buifer
assigned to the MIDI driver D(p), upon which the timbre
switching event processing comes to an end. Consequently,
the user can switch MIDI drivers based on the program
change and bank select processing even during the music
performance and open only the MIDI drivers 1n use, thereby
enhancing the usage efficiency of the RAM 23.

If a MIDI message other than a timbre switching event
message 15 supplied 1 the MIDI processing of step S39, the
other event processing in the MIDI processing shown 1n
FIG. 9 starts. In step S80, the event data included in the
MIDI message 1s inputted 1nto a register as ED and the MIDI

10

15

20

25

30

35

40

45

50

55

60

65

20

channel (MIDIch) number of that event data is inputted into
a register as p. The MIDI message other than a timbre
switching event message includes a note-on message, a
note-oil message, a pitch bend message, and an after-touch
message. In step S81, the event data ED 1s written to a send
buffer of the MIDI driver D(p) corresponding to the MIDI
channel number p, upon which the other event processing
comes to an end.

After the program change PC, bank select BS, and event
data ED have been written to the send buifer of the MIDI
driver D(p) set in the timbre switching event processing and
other event processing, the data stored 1n the send buffer are
delayed by an offset and then sent to the MIDI driver D(p).
The ofiset 1s determined based on a computation delay time
from supplying the data to the MIDI driver D(p) that has
been set to the outputting of a corresponding tone waveform.
In order to match the timings with each other of the tone
waveform data outputted from a plurality of MIDI drivers,
a MIDI driver having a relatively long computation delay
fime receives the performance data 1n a relatively short time
(therefore the send delay time or offset in the send buffer is
short) and vice versa. A timer interrupt is caused between a
time when the data are stored 1n the send buffer and another
time when the delay time or offset time set to the corre-
sponding MIDI driver D(p) lapses.

When the timer interrupt i1s caused, the timer interrupt
processing shown 1n FIG. 10 starts, thereby setting the MIDI
driver name specified by the timer mterrupt to a register d 1n
step S90. In step S91, the delayed event data ED 1s taken
from the send buffer assigned to the MIDI driver d. In step
S92, this event data ED 1s sent to the MIDI driver d. In the
MIDI processing operations of step S39, the MIDI messages
to be mputted are written to the send bulilers provided for the
MIDI drivers and then sent to the corresponding MIDI
drivers by the timer interrupt processing. Consequently, the
MIDI messages can be distributed to the MIDI drivers in
time. In doing so, each piece of data to be written to the send
buffer 1s delayed by a delay time set to that send buffer
before being sent, thereby eliminating the difference in
timing between the pieces of tone waveform data of the
MIDI drivers due to the difference between the computation
delay times among the MIDI drivers.

Now, returning to the main routine of the integrating
driver 3 shown 1n FIG. 6, when a trigger interrupt for
sending a trigger to the timer 4-2 of the integrated tool
library 4 1s caused, the trigger imnterrupt processing starts in
step S40. When the trigger interrupt processing has started,
the trigger is sent to a standard MIDI driver (software tone
generator). The standard MIDI driver is triggered when the
trigger interrupt 1s caused in step S100 of FIG. 11. The
tricgered MIDI driver should have the highest priority
among the tone generating drivers registered to the integrat-
ing driver 3. In this case, the MIDI driver having the highest
priority 1s that generates tone waveform data least recently
among the plurality of MIDI drivers (software tone
generator). If there are two or more MIDI drivers having the
approximately same degree of delay, the MIDI driver
assigned with the most significant part (for example, solo
part) is given the highest priority.

In step S101, the CPU 21 determines whether to send the
trigger to other MIDI drivers with that timing based on the
state 1n which the tone waveform data 1s generated by these
MIDI drivers at that time and based on the usage ratio of the
CPU 21 including other applications. If the trigger 1s to be
sent to other MIDI drivers, then the routine backs to step
S100, and the trigger 1s sent to the MIDI driver having the
highest priority at that moment. In step S101, if the tone

US 6,479,739 B2

21

wavelorm data have been sutficiently generated by the MIDI
drivers (software tone generator), the CPU 21 determines
that no trlgger 1s to be sent, upon which this trlgger interrupt
processing comes to an end. Even if not sufficient, when
another application must be executed before, the CPU 21
determines that no trigger 1s to be sent, upon which this
frigger interrupt processing comes to an end. It should be
noted that the trigger mterrupt processing 1s called every 10
ms, for example.

Returning to the main routine shown i FIG. 6 of the
integrating driver 3, if the mtegrating driver 3 has received
the tone waveform data generated by a MIDI driver, then, 1n
step S41, the WAVE processing starts. If the MIDI driver 1s
a standard software tone generator, the integrating driver 3
receives the tone waveform data through the first and second
stream paths. If the MIDI driver 1s a non-standard software
fone generator, the integrating driver 3 receives the tone
waveform data through the mterface IF3. When the WAVE
processing starts as shown 1 FIG. 12, the tone waveform
data received 1n step S110 1s put 1n a register as W and the
name of the specified MIDI driver that has generated the
tone waveform data 1s put 1n a register as d. In step S111, 1t
the sampling frequency of the received tone waveform data
1s found different from a predetermined common samphng
frequency Fs, the different specific sampling frequency 1is
converted 1nto the predetermined common sampling fre-
quency Fs. Further, the tone waveform data received this
fime 1s added to the tone waveform data already received
from other MIDI drivers.

This addition 1s executed by adding the tone waveform
data received this time to the tone waveform data previously
received after its position SP(d). Namely, If the last position
in the bufler memory of the tone waveform data previously
generated by the MIDI driver concerned is SP(d), the tone
waveform data received this time 1s written to the bufler
memory to a position after the position SP(d). If the tone
wavelorm data generated by another MIDI driver has
already been written to the position after the position SP(d),
the tone waveform data received this time 1s added to the
tone waveform data already written and the result 1s written
to that position after the position SP(d). Thus, the tone
wavelorm data generated by two or more MIDI drivers can
be mixed together.

In step S112, the progression amount of the tone wave-
form data received this time 1s added to the last position
SP(d) of the tone waveform data previously generated by the
MIDI driver concerned, the result of the addition providing
the updated last position SP(d) of the new tone waveform
data 1n the MIDI driver d. It should be noted that the last
position SP(d) of tone waveform data is provided for each
MIDI driver and the above-mentioned addition processing is
executed for each MIDI driver. When the processing of step
S112 has been completed, the CPU 21 checks the progres-
sion state of each data stream based on the last position
SP(d) of the tone waveform data stored in the buffer memory
in step S113. This check 1s made to determine the priority of
a trigger given selectively to MIDI drivers. The slower the
generation of tone waveform data by a lageging MIDI driver,
the higher the priority of sending a trigger to that lagging
MIDI driver. Consequently, in the above-mentioned trigger
interrupt processing, a trigger 1s preferentially sent to a
lageging MIDI driver of which generation of tone waveform
data 1s being delayed. It should be noted that the processing
of step S113 1s executed only on the standard MIDI drivers
(software tone generator).

In step S114, the CPU 21 determines whether one frame
of tone waveform data has been generated in each MIDI

10

15

20

25

30

35

40

45

50

55

60

65

22

driver. If one frame of tone waveform data 1s generated, the
processing goes to step S115. In step S115, the completed
onc frame of tone waveform data 1s passed to the WAVE
driver through the interface IF4 and reserved for reproduc-
tion. If one frame of tone waveform data 1s not yet com-
pletely generated, the WAVE processing ends at that point.
In this case, next piece of tone waveform data 1s received
and the WAVE processing restarts to complete one frame of
tone wavelorm data. Until one frame of tone waveform data
1s completed, the processing of step S115 1s skipped. It
should be noted that the tone waveform data reserved in the
WAVE dniver for reproduction 1s read from the bufler
memory in every sampling period (1/Fs) for reproduction.

Returning to the main routine shown 1n FIG. 6 of the
integrating driver 3, if an input event on the tone generator
setting panel displayed on the monitor 28 or a command
mput event from the keyboard 29 1s detected, the other
processing starts 1n step S42. In the other processing, the
MIDI driver registration shown in FIG. 7A and the MIDI
driver deletion shown 1n FIG. 7B are executed. In this case,
when the registration button 1s clicked on the MIDI driver
registration/deletion panel shown on the monitor 28, the
registration processing starts and a MIDI driver to be
registered 1s speciiied 1n step S50. This MIDI driver speci-
fication 1s executed by clicking the name of a MIDI driver
to be registered on the displayed panel for example. In step
S51, the specified MIDI driver 1s entered 1n a registration
map.

The registration map 1s constituted by the number of
registered MIDI drivers and by the data about registered
MIDI drivers such as first driver data, second driver data,
third driver data, and so on as shown 1n FIG. 7C. The MIDI
driver data include the address of a MIDI driver program
loaded 1n the RAM 23, the operating/stopped state, a trigger
period, a sampling frequency, and a computation delay time
(delay amount) of tone waveform data. It should be noted
that no trigger period 1s included for the MIDI drivers for
hardware tone generator. The trigger period data 1s used to
check the tone wavetform data generation state of each MIDI
driver (software tone generator) in the above-mentioned
trigger interrupt processing. To be more specific, if the
amount of tone waveform data to be generated at that point
after the last position SP(d) is smaller than the amount
equivalent to the trigger period, that MIDI driver need not be
trlggered The Computauon delay time of tone waveform
data 1s recorded for use 1n adjusting the delay of the system
with the slowest MIDI driver. As described, the computation
delay fime 1s used to control the offset time of the event data
ED 1n the send buffer corresponding to each MIDI driver.

Returning to the registration processing, when the pro-
cessing of step S51 1s completed, the computation delay time
(delay amount) of the tone waveform data of the registered
MIDI driver 1s detected and the detected delay amount is
written to the registration map in step S52. It should be noted
that the computation delay time 1s detected by sending a test
note-on event to each MIDI driver and by measuring a time
at which the response to that test note-on event appears in
the tone waveform data generated 1in each MIDI driver. In
step S53, the system delay amount 1s set to the greatest one
of the delay amounts of all MIDI drivers listed in the
registration map, upon which the registration processing
comes to an end. The difference between the system delay
amount and the computation delay time of each MIDI driver
determines the send offset time 1n the send buffer of each
MIDI driver.

When the deletion button is clicked on the MIDI driver
registration/deletion panel displayed on the monitor 28, the

US 6,479,739 B2

23

deletion processing shown 1n FIG. 7B starts. In step S60, a
MIDI driver to be deleted 1s specified. This MIDI driver
specification 1s made by clicking the name of the MIDI
driver displayed on the panel for example. In step S61, the
specified MIDI driver 1s deleted from the registration map,
upon which the deletion processing comes to an end. If the
MIDI driver to be deleted from the registration map 1s
operating, the corresponding interface and the stream path
are closed. Further, 1f that MIDI driver has been opened by
the integrating driver 3, that MIDI driver 1s also closed.
Thus, the main routine shown 1n FIG. 6 of the integrating
driver 3 has been executed.

In the above-mentioned preferred embodiment of the
invention, the MIDI drivers not used 1n any part are closed.
These MIDI drivers may not be always closed. Leaving
these MIDI drivers open allows prompt switching between
active ones and rest ones. In the WAVE processor of the
above-mentioned preferred embodiment of the invention,
the generated tone waveform data 1s passed to a WAVE
driver through the interface IF4 provided by means of the
multimedia function of the OS 2. Alternatively, the gener-
ated tone wavelorm data may be passed through an interface
especially provided on the WAVE driver without using the
multimedia function.

The format of event data 1n a MIDI message may be any
of “event plus relative time” representing a performance
event occurrence time 1 a time from the last event, “event
plus absolute time” representing a performance event occur-
rence time 1n an absolute time 1n a piece of music or a bar,
“pitch (rest) plus note length” representing performance data
in pitch and note length or rest and rest length, and “bear
format” 1n which memory areas are allocated for minimum
performance resolutions and a performance event 1s stored
in an allocated memory area corresponding to a time at
which the performance event occurs. Further, event data
may have a format in which the data of two or more channels
coexist or a format 1n which the data of each channel is
stored on a separate area.

Meanwhile, as described before, the hard disk 26 and the
removable disk 27 store various programs and data. If the
ROM 22 does not store the program for controlling a
plurality of tone generator drivers, this program may be
stored 1n the hard disk 26 or the removable disk 27. The
stored program 1s then loaded into the RAM 23 to make the
CPU 21 execute the same process as that executed when the
program 1s stored in the ROM 22. This facilitates addition
and upgrading of the control program.

Alternatively, a CD-ROM (Compact Disc ROM) drive
may be attached to the system, in which the control program
stored on the CD-ROM 1s later stored on the hard disk 26 or
the removable disk 27. This also facilitates new installation
and upgrading of the control program. It will be apparent
that the CD-ROM drive may be replaced with a floppy disk
drive, a magneto-optical (MO) disk drive, or the like.

Moreover, adding a communication interface to the hard-
ware conflguration associated with the invention allows the
hardware configuration to connect to communication net-
works such as a LAN, the Internet, and a telephone network
through the communication interface, whereby the hardware
conflguration 1s connected to a remote server computer.
Consequently, 1f the control program and various data are
not stored 1n the local hard disk 26 and the removable disk
27, the control program and various data can be downloaded
from the remote server computer. In this case, the hardware
conilguration associated with the mnvention, which 1s a client
of the server computer, sends a command to request the
server computer for the downloading of the control program

10

15

20

25

30

35

40

45

50

55

60

65

24

and various data through the communication interface and
the communication network. Receiving the command, the
server computer distributes the requested control program
and various data to the hardware configuration associated
with the invention through the communication network.
Receiving the distributed control program and various data,

the hardware confliguration stores the same on a local storage
device such as the hard disk 26 or the removable disk 27.

As described and according to the invention, there 1is
provided a method of controlling a plurality of tone gener-
ating drivers, 1n which a program for controlling a plurality
of tone generating drivers 1s installed on the operating
system, thereby placing an integrating driver below an
interface (MIDI-Out API) for transferring MIDI messages
prepared on the operating system and an interface (WAVE-
Out API) for transferring tone waveform data. Standard
MIDI drivers can be registered 1n the integrating driver to
make the registered MIDI drivers available. This novel
constitution eliminates the need for restarting the system
after the installation on the operating system, thereby sig-
nificantly enhancing ease of use when using any of the

standard MIDI drivers.

Moreover, the itegrating driver can switch the MIDI
drivers registered 1n the integrating driver by use of part
selecting information (program change and bank select)
included 1 a MIDI message received through an interface
(MIDI-Out API). This novel constitution allows the system
to dynamically switch MIDI drivers during the music per-
formance.

Further, 1n the standard MIDI drivers, tone waveform data
generated without executing time control on the same 1s sent
to the integrating driver through stream paths. In addition,
the integrating driver adds together the pieces of tone
waveform data received from two or more MIDI drivers
while executing time control on these tone waveform data,
thereby forming the resultant tone waveform data into one
frame. This novel constitution makes it unnecessary for each
MIDI driver to execute time control individually on tone
waveform data, thereby significantly mitigating the CPU
load.

Still further, although the mtegrating driver can supervise
two or more MIDI drivers at a time, the integrating driver
may only adopt one WAVE driver for the destination of tone
waveform data. This novel constitution prevents the WAVE
drivers from shortage.

Yet further, tone waveform data can be generated by not
only a standard MIDI driver but also a non-standard MIDI
driver. Consequently, the tone waveform data of various
parts can be generated by MIDI drivers having various
properties.

Moreover, the itegrating driver can switch the MIDI
drivers registered 1n the integrating driver by use of part
selecting information (program change and bank select)
included 1 a MIDI message received through an interface
(MIDI-Out API). This novel constitution allows the system
to dynamically switch MIDI drivers during the music per-
formance.

Further, 1n the standard MIDI drivers, tone waveform data
ogenerated without executing time control on the same 1s sent
to the integrating driver through stream paths. In addition,
the integrating driver adds together the pieces of tone
waveform data received from two or more MIDI drivers
while executing time control on these tone waveform data,
thereby forming the resultant tone waveform data into one
frame. This novel constitution makes it unnecessary for each
MIDI driver to execute time control individually on tone
waveform data, thereby significantly mitigating the CPU

load.

US 6,479,739 B2

25

Still turther, although the integrating driver can supervise
two or more MIDI drivers at a time, the integrating driver
may only adopt one WAVE driver for the destination of tone
wavelorm data. This novel constitution prevents the WAVE
drivers from shortage.

Yet further, tone waveform data can be generated by not
only a standard MIDI driver but also a non-standard MIDI
driver. Consequently, the tone waveform data of various
parts can be generated by MIDI drivers having various
properties.

As many apparently different embodiments of this inven-
tion may be made without departing from the spirit and
scope thereot, 1t 1s to be understood that the mvention 1s not
limited to the specific embodiments thereof except as
defined 1n the appended claims.

What 1s claimed 1s:

1. A method of controlling a plurality of tone generator
modules by an integrator module for generating music tones
according to performance data being created by a music
application software and being composed of a plurality of
music parts having various timbres, the method comprising
the steps of:

registering a plurality of tone generator modules for
control by the mtegrator module such that each regis-
tered tone generator module 1s operable under control
by the integrator module to generate waveform data of
a music tone 1n accordance with the performance data;

determining a registered tone generator module for a
music part 1n response to timbre switching data, which
1s contained in the performance data and which
instructs a change of the timbre of the music part;

allocating the music part to the determined tone generator
module to establish correspondence between the music
part and the determined tone generator module;

distributing the music part of the performance data from
the 1ntegrator module to the allocated tone generator
module 1n accordance with the established correspon-
dence so as to operate the tone generator module
concurrently with other tone generator modules to
generate a plurality of waveform data representing a
plurality of music tones corresponding to the plurality
of the music parts; and

mixing the plurality of the waveform data with each other
to output the music tones 1 accordance with the
performance data.

2. The method according to claim 1, wherein the plurality
of the tone generator modules generate samples of the
plurality of the waveform data i response to different
sampling frequencies, and wherein the step of mixing con-
verts the different sampling frequencies of the plurality of
the waveform data generated by the plurality of the tone
generator modules 1nto a common sampling frequency so as
to enable the mixing of the plurality of the waveform data.

3. The method according to claim 1 comprising the step
of probing each tone generator module to detect a time lag
of a task from an 1nput timing of the performance data to an
output timing of the waveform data, so that the step of
distributing can adjust the mput timings of the music parts
of the performance data so as to compensate for the detected
fime lags among the tone generator modules.

4. The method according to claim 1, wherein at least one
of the tone generator modules 1s an 1ndependent tone gen-
erator module that can operate independently from the
remaining tone generator modules, the method further com-
prising the step of opening an interface to the independent
tone generator module before the step of distributing the

10

15

20

25

30

35

40

45

50

55

60

65

26

performance data, thereby enabling the distribution of the
performance data to the independent tone generator module
through the opened interface.

5. The method according to claim 1, wherein at least one
of the tone generator modules 1s an 1ndependent tone gen-
crator module that can operate independently from the
remaining tone generator modules, the method further com-
prising the step of opening a stream pass for transferring the
waveform data generated from the independent tone gen-
erator module, thereby enabling the step of mixing to mix
the waveform data transferred through the opened stream
pass with other waveform data.

6. The method according to claim 1 further comprising the
steps of applying triggers to the tone generator modules to
cause the tone generator modules to progressively generate
waveform data 1n response to the triggers, monitoring pro-
oressions 1n the generation of the waveform data by the tone
ogenerator modules to discriminate between lagging one and
advancing one of the tone generator modules, and control-
ling application of the triggers to balance the progression of
the generation of the waveform data among the lageging tone
generator module and the advancing tone generator module.

7. The method according to claim 1, wherein each tone
oenerator module 1s intermittently operated to generate
samples of the waveform data at one time such that the
samples generated at one time amounts for a plurality of
sampling periods.

8. An apparatus having a processor for operating an
integrator module and a plurality of tone generator modules
on an operating system to execute a process of generating
music tones according to performance data, which 1s created
by a music application software and which 1s composed of
a plurality of music parts having various timbres, wherein
the process comprises the steps of:

registering a plurality of tone generator modules for
control by the mtegrator module such that each regis-
tered tone generator module 1s operable under control
by the integrator module to generate waveform data of
a music tone 1n accordance with the performance data;

determining a registered tone generator module for a
music part 1n response to timbre switching data, which
1s contained in the performance data and which
instructs a change of the timbre of the music part;

allocating the music part to the determined tone generator
module to establish correspondence between the music
part and the determined tone generator module;

distributing the music part of the performance data from
the integrator module to the allocated tone generator
module 1n accordance with the established correspon-
dence so as to operate the tone generator module
concurrently with other tone generator modules to
generate a plurality of waveform data representing a
plurality of music tones corresponding to the plurality
of the music parts; and

mixing the plurality of the waveform data with each other
to output the music tones 1n accordance with the
performance data.

9. A machine readable medium for use 1n a music appa-
ratus having a processor for operating an integrator module
and a plurality of tone generator modules on an operating
system, the medium containing instructions executable by
the processor for causing the music apparatus to perform a
process of generating music tones according to performance
data, which 1s created by a music application software and
which 1s composed of a plurality of music parts having
various timbres, wherein the process comprises the steps of:

US 6,479,739 B2

27

registering a plurality of tone generator modules for
control by the integrator module such that each regis-
tered tone generator module 1s operable under control
by the integrator module to generate waveform data of
a music tone 1n accordance with the performance data;

determining a registered tone generator module for a
music part 1n response to timbre switching data, which
1s contained 1n the performance data and which
instructs a change of the timbre of the music part;

allocating the music part to the determined tone generator
module to establish correspondence between the music
part and the determined tone generator module;

23

distributing the music part of the performance data from
the integrator module to the allocated tone generator
module 1n accordance with the established correspon-
dence so as to operate the tone generator module

concurrently with other tone generator modules to
generate a plurality of waveform data representing a

plurality of music tones corresponding to the plurality
of the music parts; and

mixing the plurality of the waveform data with each other
to output the music tones 1n accordance with the
performance.

	Front Page
	Drawings
	Specification
	Claims

