US006466983B1
a2 United States Patent (10) Patent No.: US 6,466,983 B1
Strazza 45) Date of Patent: Oct. 15, 2002
(54) SYSTEMS AND METHODS FOR 6,269,380 B1 * 7/2001 Terry et al.
CONTROLILING ACCESS TO DATA 6,308,179 B1 * 10/2001 Peterson et al.
MAINTAINED IN A REPOSITORY OTHER PURI ICATIONS
(75) Inventor: Steven Paul Strazza, 16117 Asa Dr,, Raggett, David; HTML 3.2 Reference Specification; Docu-
Spencerville, MD (US) 20868-9736 ment REC-HTML32, Jan. 14, 1997, HTTP://www.w3.0rg/
TR/Rec—HTML32.
(73) Assignee: Steven Paul Strazza, Spencerville, MD Gettys, J; Mogul, I, et al RFC2616 Hypertext Transfer
(US) Portocol HTTP/1.1;Jun. 1999, The Internet Society,
_ _ o _ www.w3.0rg/Protocols.
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 0 days. Primary Fxaminer—Ayaz Sheikh
Assistant Examiner—Young N. Won
(21) Appl. No.: 09/406,196 (74) Attorney, Agent, or Firm—Thomas M. Marshall, Esq.
(22) Filed: Sep. 30, 1999 (57) ABSTRACT
(51) Int. CL7 ... GO6F 15/16 Systems and methods for controlling the dissemination of
(52) US.Cl o, 709/227; 709/203; 709/201; data from a repository based on request mechanisms that are
709/219; 709/226; 709/229; "107/522; T07/8; transparent to the requestor and the connection conveying
707/515; 707/200; 707/102 the requests. The systems and methods are used by the
(58) Field of Search 709/101, 102, repository to enforce one or more rule sets that implement
709/104, 201, 202, 203, 213, 215, 217, varying levels of access privilege created by the repository
219; 713/201, 202, 2277; '707/8, 102, 200, designer. For each user requesting access to privileged data,
515, 522 the repository uses the systems and methods to manage
_ novel information structures whose purpose 1s to apply the
(56) References Cited rule sets to the requestor’s session. By incorporating into
US PATENT DOCUMENTS cach request, a set of values herein named a “forresta” and
a “destination”, the systems and methods exercise control
5,675,802 A * 10/1997 Allen et al. over data access, assemblage and presentation. In addition,
2,751,997 A : >/1998 Kullick et al. the systems and methods provide that clients require no
2?288?333 i . gﬁggg ?hhen;?; a enhancements to well-known methods or systems used to
6:088:728 A * 72000 Bellemore ef al facilitqte communications with repositories employing this
6,237,011 B1 * 5/2001 Ferguson et al. Invention.
6,243,751 B1 * 6/2001 ChagtLtleljee et al.
6,260,069 B1 * 7/2001 Anglin 25 Claims, 13 Drawing Sheets

100 CLIENT
REQUEST
BROWSER
TYPE
FORRESTING
OR FLAT < RESPONSE TYPE NON-VOLATILE

200 PRIVILEGED OR RANDOM ACCESS MASS
200 FLAT STORAGE
SERVER

h 4
COMMUNICATIONS
PROCESS EXTERNAL DATA
04 FLAT
RESPONSE
204 T
~ 202
FORRESTING PRIVILEGED
TYPE | RESPONSE
REQUEST 203
+ * GOVERNED
- PRIVILEGED CONTENT
106 RESPONSE

203

SSHOOUd "TOYLNOO INHLSAS

TV NdH LA SSHOOV VIVA 01 ONILVYAO

€Il

US 6,466,983 B1

—» gsay0¥d |

o | ALROHLOV |

i SSADOM | NOISSDANMAd |
| SNOLLVOINNAWOD | IS0 cor |

AJAYAS AdOLISOddd V.LvVd

<01

Sheet 1 of 13

SSHOOUd d4SMOdd :

A4 LNdINOD LNHI']

11

Oct. 15, 2002

001

48|
HOVIOLS SSVIA
SSHOOV WOUNV d
HIILVIOA-NON €01

U.S. Patent

US 6,466,983 B1

Sheet 2 of 13

Oct. 15, 2002

U.S. Patent

V

LNAILNOD

TUNAAAOD

VLVA TVNAHLXH

HIOVHOLS

A 1LLVIOA-NON

¢ DIA

€02
ASNOJSTA IVA 901 1
AaoATIANId

W SSHDIOV WOUNVY

t01

_ 202 _
ASNOJSTY _ _\ — |!§_~_
LV
i SSHIO0Ud
SNOILVOINNININOD

YAANAS a Z01

LVIA 102 ‘ |
00

O AADATIAR
AdAL ASNOISHY N

¢0¢
ASNOJSHA

LSANOTY
HAdAL
ONILLSTMIOA

UHOHA TIATI

411

LV'Id 0O
INLLSHYAOA
ddAL

LSANOTA

LNHAI'TO

U.S. Patent Oct. 15, 2002 Sheet 3 of 13 US 6,466,983 B1

102 REPOSITORY SERVER

104 COMMUNICATIONS PROCESS

FORRESTING TYPE REQUEST

REFERENCE E)RRFSTA l 203

W RESPONSE
DESTINATION [SUPPLEMENT i

207 208

204

106 DAC

US 6,466,983 B1

Sheet 4 of 13

Oct. 15, 2002

U.S. Patent

t L % nowvNiLsad

U¢

ASNOdSHY

Y

NAINOD JANYTIAOD

HSNOdSHY cO7

H 11O

NOISSHS

SSAD0Ud (OVA) TOUINOD SSHOOV VILVA

¢ VId

VISAddd04Ad
| 11 I'é o - B
AINHIHATY
— b0T
o
H H1JOWNW
SSHOOV

1113

901

L

|

US 6,466,983 B1

INAANODOVIHA 10F INAINOVII 10F

dONHITITA

LNAHINOVIA 10¥ MNIT

T .
| LNANOVYEA tov] | _

Sheet 5 of 13

| LNHINDVHA 0¥
S -]

0¥ d + U POV Wy uIgOHvd

Oct. 15, 2002

ASNOASHY AADATIAI|A

v Dld

U.S. Patent

€07

US 6,466,983 B1

Sheet 6 of 13

Oct. 15, 2002

U.S. Patent

mcm INAL ZOU LNHINOO 20s
X+4 9 LNAWNOVY xm INTADVY | XAANI _
. 4 4DV d NOISAA
E 80S | HO LNAILNOD
x+A4q |®®°® 4 H LOS
F R

LSI'T A THINASSYV
LINHNDV dA 60S

_ XHAANI co5 _

_ _ LOHIHO _

_ AONTIHATT ope

ANVN GANDISSY 5

TOOL

HONHIHAHA

_ AU

_ 7 TNVN AANDISSV _

UHDVd NDISHd
dOd AYILNH €08

A1dV.L HDOVd f\/\

HOVd NDISHA

U.S. Patent Oct. 15, 2002 Sheet 7 of 13 US 6,466,983 B1

FIG. SA

504 ASSIGNED NAME

I <a href= 035{7555 DATA ELEMENT x
———— ———- 506
DATA ELEMENT n -’lmg SIC= [OBJECT = |
510 506 513

S01

307
A

] I:[NDEX O s0s
504 502

312
513

SUBSTITUTION
T INDEX

STITU T ION
PHRASE

<y PLACEHOLDER ' | DATA ELEMENT x |
_ 510
l DATA ELEMENT n 1 PLACEHOLDER
510

501

U.S. Patent Oct. 15, 2002 Sheet 8 of 13 US 6,466,983 B1

503 503
001 602 | e Y%
BODY (B)+
TARGET T j‘” s
nnn XXX
FRAME F

NOTATIONAL | N

ARTWORK A

600

Bnnnxxx

1

03 i[Bpppqqq- FRG

604

U.S. Patent Oct. 15, 2002 Sheet 9 of 13 US 6,466,983 B1

KIG. 7

%0 BUILD CODE LIST

205 PAGE TABLE

503 ENTRY FOR 701 ENTRY FOR
DESIGN PAGE »n RESPONSE PAGE »
ASSIGNED NAME | 702 INDE-)_(

504 = ~ —

<, INDEX

l_ ——

703 BUILD CODE | MAP ID
SEQUENCE | 16

rsog FRAGMENT INDEX (| INDEX
ASSEMBLY LIST 714 |
Dy |o o .I IDy+x _I Brnnnxxx —Ennnxxx |
| 508 | 508 600 600 }
- — J]

ALT

L m J
- \

713

SUBSTITUTION LIST 708

709
POSITION

710 711
TARGET PARSE INDEX

705 REFERENCE MAP MAP ID

715

517 516

908
dl 4’14V .L _ - A'1dV.L dINNTI

XAANI 2SIV 1ADYVL NOILISOd 708 o8 %0L
1L OTL 60L INTNOVEA | AONANOAS
80L LSI'T NOLLNLILSENS - SNOISSIANAJ - XHANI

" NOISSTAYAEd
9L
XAQNI
SOL

08

US 6,466,983 B1

Sheet 10 of 13

8 "DIA Errram

"8 Nolssongad

XHANI 454Vd LHDYEVL NOILLISO
1L OLL 60L
80L

LSI'T NOLLI.LILSH(1S

Oct. 15, 2002

d
LOL

tii dVIAN HONHIHATA

U.S. Patent

U.S. Patent Oct. 15, 2002 Sheet 11 of 13 US 6,466,983 B1

FIG. O

113

|

0100100101001
0101010010101

1101010110001
0011001010011

904

FCODE
PROCESS

oot | azgx10 |
9085

E—

" CHARACTER
_ REQUEST
INDICATOR | COUNT CFV FI?EI“' UES;? '
900 910 911 907 (2

' ACCESS
VALUE | VALUE VALUE

ACTIVE FORRESTA VALUES

106

U.S. Patent Oct. 15, 2002 Sheet 12 of 13 US 6,466,983 B1

. FIG. 10

I 1002 TIMESTAMP
‘ 1003 FORRESTA I

1004 DES TINATION VALUE

I 1005 PRIVILEGE VALUE \

:STATE TABLE

SOR NTRY
1010 1009

1012 1013

EC‘ TED

1011 FO ‘STA

l 1997 DELIVERY FILE LIST \

Ilﬁn

. 1
I: SEi:gSION NODE -

[SESSION NODE 000

1001

[_S_Eé SION NODE

U.S. Patent Oct. 15, 2002 Sheet 13 of 13 US 6,466,983 B1

FIG. 11

REFERENCE 403 REFERENCE 403

DELIVERY] HTM]

802
e
SEOUENCE » 703 SEOUENCE x

CREATES CREATES
1101

401

DELIVERY2 HTM DELIVERY3 HTM

1100

o 00
<FRAMESET COLS="320,320">
FRAME SRC="DELJVERY2.HTM” NAME="AREA B> l

</FRAME> — 205—
<FRAME SRC="DELIVERY3.HTM” NAME="AREA A”>
l </FRAME>

</FRAMESET>
00

100

AREA “A” | AREA “B”

1102

SCREEN DISPLAY OF CLIENT

US 6,466,983 B1

1

SYSTEMS AND METHODS FOR
CONTROLLING ACCESS TO DATA
MAINTAINED IN A REPOSITORY

CROSS-REFERENCE TO RELATED
APPLICATTONS

U.S. patent application, Ser. No. 09/406,197 filed on the
same date as this application by the same inventor.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.

REFERENCE TO A MICROFICHE APPENDIX
Not applicable.

BACKGROUND OF THE INVENTION

This invention relates to systems and methods for storing,
controlling and monitoring of digital data retrieval and
presentation, and more particularly to processing of digital
data to facilitate such.

With the popularity and economic frugality of dissemi-
nating information over wide area or local area networks
(“WANALAN”) continually expanding, designers of data
repositories existing on such networks have employed vari-
ous techniques to control access by their clients or users to
the content provided in such repositories. In many instances,
prior art content access by any particular client 1s an all-or-
nothing affair. If a client submits the correct credentials or
originates the connection from a speciiic locale, the reposi-
tory will provide whatever content 1s available. If the client
fails to 1dentily him or herself properly, the repository denies
all content. In the nothing response, the presenter loses the
ability to display any content, potentially losing a client. In
the all response, the presenter 1s faced with costly and
sometimes 1mpractical solutions for determining precisely
what sensitive content was accessed, downloaded or viewed
and by whom. For those repository applications that do
qualify content after user validation, most request additional
forms of identification, generally another all-or-nothing
approach applied to a sub-set of the data or, they contain
client/server cooperation dependencies 1n order to imple-
ment security. In some cases, additional hardware or physi-
cal discontinuity 1s employed to regulate content retrieval

but this 1s highly restrictive and can be financially out of
reach for some.

When such prior art repositories exist on networks that
employ governmental or industrial data classifications,
access Iniractions pose an even more serious threat to the
well being of the community that relies on the integrity and
exclusiveness of accessible data. In situations as these,
multiple users may have suilicient authority to pass through
access control but may lack the need to know such infor-
mation although they are qualified from a permission
standpoint, to view 1t. Environments that process extremely
sensifive data are typically restricted to one repository with
no external or shared access allowed. This 1s the outer fringe
of content control requiring a major commitment from the
presenter 1n order to be 1mplemented.

To 1llustrate some of the problems previous prior art
content control techniques have encountered; a cursory look
at some of the better-known methods 1s required. The first of
these, well-known as a “cookie approach”, requires the
client to accept a data structure commonly referred to as a
“cookie” from the repository and further, not modify or

10

15

20

25

30

35

40

45

50

55

60

65

2

delete 1t once 1t has been accepted. The repository then
requires the client to return the cookie for each request and
based on some privilege value assigned to the cookie,
permits content to be transmitted to the client. This method
assumes that the client has the capacity to store the cookie,
something not always possible with connections that do not
possess non-volatile memory. Because the cookie 1s con-
nection oriented rather than content oriented, 1t 1s ditficult to
control the access to specific items contained within the
returned content.

The 1mplementation of a prior art certificate process
typically requires the participation of a third party to inspect
and guarantee the certificate and data content 1ssued by the
repository. This type of control 1s for the benedit of the client
in that 1t provides an assurance that the content originated
from the repository. It provides little or no dissemination
control from a repository standpoint, especially in open
network environments such as the Internet.

Using a prior art re-direction method, the presenter
instructs the user’s access mechanism to form a connection
with a repository that 1s different from the initial. Although
this method addresses content control, the method 1s weak
for several reasons. It assumes the presenter has another
location to which the connection can be re-directed and once
this location 1s known, protecting 1t becomes as much of an
Issue as protecting the original site. Similar to cookies,
re-direction 1s a connection-oriented mechanism and not an
item oriented one.

Another common, prior art approach 1s data censure. In
this method, the data content 1s examined for speciiic
occurrences of certain terms or values. If the examination
process encounters a censured term or value within the
response of the repository, the content 1s denied to the client.
When repository designers incorporate censure methods mnto
content control schemes, problems multiply rather subside.
Issues arise as to what standard should be applied for
measuring the level of censure as well as how to regulate and
administer those that apply the measures. In some cases,
filtered material that should be available 1s excluded solely
because 1t leads to wrrelevant or unauthorized repositories.
Censure may also have the undesired side effect of prevent-
ing proper data synchromization. Specifically, data that 1is
censured may age or update at a rate different from that of
its parent source. Lastly, censure methods are not discrete.
By not discrete 1t 1s meant that prohibited values may
innocuously occur in pertectly valid content; however,
because the censure mechanism cannot distinguish the
semantic difference, the content would be denied due to the
physical presence of the prohibited data.

What all of these previous prior art techniques share 1s the
attribute that regulated content 1s assembled into a fixed
form prior to 1ts availability. This restriction requires mul-
tiple forms of the same content, with alterations to each
construct made based on the level of sensitivity. This leads
to the duplication of many elements used to implement the
content since no mechanism exists to dynamically replace
only the sensitive portions at the time of the request. With
duplication, there are increased cost and service require-
ments.

It should be noted that other prior art access control
techniques such as secure sockets, encryption, firewalls and
proxy servers fall into separate categories distinct from those
methods described above. Secure sockets and encryption are
well-known methods that protect content during transmis-
sion while firewalls and proxy servers are well-known
methods that limit direct connections with the repository.

US 6,466,983 B1

3

In a protected transmission, anyone may view the con-
nection but will lack the capacity to decipher the content.
The 1ssue then becomes controlling what content 1s
exchanged to a privileged client rather than how it 1is
protected during the exchange. Since encryption applies to
the overall session, determining the accessibility of speciiic
content typically requires an additional system. Again, the
presenter 1s challenged by the same dilemma as before only
now, all-or-nothing is presented over a secure channel.

By using prior art firewalls and proxy servers as software-
based gateways, the repository itself i1s protected from
unauthorized access but the ability of these technologies to
selectively assign content to authorized users 1s relatively nil
Or non-existent.

All of the present prior art access control schemes for data
on a repository fail to provide a simple, effective means to
dynamically assign and assemble responses to users of no,
equal, or disparate privilege at the time of the request.

BRIEF SUMMARY OF THE INVENTION

Systems and methods are described for controlling the
access, assemblage and presentation or transmission of data
maintained 1n a computer system repository. The present
invention has particular application to computer based serv-
ers that store or maintain data having varying permaission,
security or sensifivity requirements and which servers pro-
vide access to such data to a plurality of clients.

The present invention overcomes the deficiencies of prior
schemes for controlling content dissemination by allowing
the repository to dynamically construct responses. This 1s
attained by including passive imnformation, herein labeled as
a “forresta”, within the user’s request. Using the function-
ality provided by the forresta, each of the client requests and
cach of the server responses are individualized. This indi-
vidualization prevents a client from obtaining a response

requiring an authority level not held by the requestor or is
intended for another.

This 1nvention implements two information structures
within a computer system. These structures are denoted
herein as a “session node” and a “build code sequence”. A
unique session node exists at the repository for each client
requesting controlled content and 1 conjunction with the
forresta, implements the determination of applicability of
content to a client. Construction of content appropriate for a
particular client 1s achieved using one or more build code
sequences, whose selection 1s dynamic and can vary with
cach client request.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING

FIG. 1 1s a block diagram. illustrating an exemplary
environment used by the present mvention. The relation-
ships between the client, the repository and the content are
shown.

FIG. 2 1s a block diagram depicting the request/response
relationship established for a client with the repository.

FIG. 2A 15 an exploded block diagram of elements from
FIG. 2. It illustrates a greater level of detail for components
of a forresting type request 1ssued by a client.

FIG. 3 1s a block diagram of the major components of the
Data Access Control (“DAC”) process of the current inven-
fion. The mput and output of a request and a response
through this process 1s also shown.

FIG. 4 1s a block diagram 1llustrating the major compo-
nents of a privileged response constructed by the method of
the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 5 1s a block diagram depicting the structure of data
as provided by the designer of the repository and 1ts reor-
cganization 1nto a data structure used by the method and
process of the current invention.

FIG. 5A 1s an exploded block diagram of elements from
FIG. §. It illustrates a greater a level of detail of components
created by the repository designer and their modification
into a substituted form by the method and process of the
current 1nvention.

FIG. 6 1s a diagram depicting the assignment of values to
form the 1dentities of two data structures used by the method
and process of the current invention.

FIG. 7 1s a block diagram 1llustrating data structures used
by the method and process of the current invention that
allow for the content of the repository to be treated 1n a
dynamic fashion.

FIG. 8 15 a block diagram depicting the conversion of one
data structure to another by the method and process of the
current invention during the assignment of privilege infor-
mation to the content by the repository designer.

FIG. 9 1s a block diagram 1illustrating the required manipu-
lation of values 1n order to form a forresta value.

FIG. 10 1s a block diagram of the data structures used by
the method and process of the current mnvention to maintain
information about clients making requests of the repository.

FIG. 11 1s a block diagram depicting the relationship of
ogenerated content to a client display that 1s sub-divided into
separate display areas.

DETAILED DESCRIPTION OF THE
INVENTION

In the following detailed description of the systems and
methods of the present 1nvention, numerous specific details
of an exemplary embodiment are set forth in order to provide
a thorough understanding of the systems and methods of the
present 1nvention. It will be obvious to those skilled in the
art to which this invention pertains that the present invention
may be practiced without these specific details. In other
instances well-known methods, procedures, components and
circuits have not been described 1n detail to avoid unneces-
sarily obscuring aspects of the present invention.

FIG. 1 1s a simplified diagram of an exemplary system
embodying this invention. As shown 1n FIG. 1, the system
includes at least one or a plurality of requestors that are
represented 1n the diagram by a user’s client computer 100.
A client computer 100 1s operated by a user and the terms:
“client”, “user”’, and “requestor” are used interchangeably
herein with equivalent meaning. A data repository server
computer 102 with non-volatile random access storage 103
1s used 1 implementing the data repository with which each
client computer 100 will exchange data. The server com-
puter 102 connects with each client 100 1n the system using
some form of a communications link 101, typically imple-
mented using a network. The server computer 102 connects
with the random access storage 103 using some form of a
communications link 112, typically implemented using a
dedicated wiring arrangement. However, data transfer over
a network communications link 1s also possible. The server
computer 102 contains a prior art process that acts as the
operating system 113, a prior art communication process
104 for receiving and transmitting data over the communi-
cations link 101, a prior art process 105 for authenticating
cach user 100 and defining their authority level; and, the data
access control (“DAC”) process 106 of the present inven-

tion.

US 6,466,983 B1

S

The random access storage 103 may be composed of one
or more physical units remotely placed or co-located with
the server 102. The storage device 103 1s occupied by
sensitive data 107, non-sensitive data 108 and external data
109. As a whole, data maintained on the storage device 103
1s generically referred to as “content”. Sensitive 107 and
non-sensitive data 108 whose creation, retrieval, modifica-
tion or deletion 1s controlled by the method and process of
the present invention 1s collectively referred to as “governed
content” 110. Sensitive data 107 requires the client 100 to
have an authority level 1ssued by the user permission author-
ity authentication process 105 in order to receive it while
non-sensitive data 108 does not. External data 109 1s all
other data present on the storage device 103 that 1s not
governed content 110.

With respect to FIG. 2, clients 100 (FIG. 1) may make one

or more requests 200 of the server to have mformation or
data content returned to them. Responses 201 returned to a
client 100 when any parts of which are governed 110 1is
termed a “privileged response” 203. A response 201 con-
taining only external data 109 1s termed a “flat response”
202. In this embodiment of the present invention, both
privileged 203 and flat 202 responses are computer data files
structured using the Hypertext Markup Language
(“HTML”) format. HTML is a well-known computer pro-
cramming language that allows a computer to process and
render data received from another computer. The HTML
coding as used by the embodiment of the present mnvention
may reference data represented using other well-known or
prior art formats including those that represent visual,
textual, audible or programming information.

In this embodiment of the present invention, the client 100
(FIG. 1.) uses the prior art process commonly referred to as
a “browser” 111 to transmit requests 200 (FIG. 2.) and
receive responses 201 across the link 101. Browser com-
munication employs a prior art process that 1s also repre-
sented within communication process 104 that facilitates
client/server communication using the Hypertext Transfer
Protocol (“HTTP”), a well-known method of transmitting
digital mnformation. A client request 200 that 1s sent 1n this
manner 15 assumed to be 1n one of the well-known repre-
sentations of a Uniform Resource Locator (“URL”). The
URL 1s an adopted standard naming convention, which
encompasses several sub-classes of location names pres-
ently including HTTP. Once a client 100 has established
HTTP protocol communications with the server 102,
requests 200 may alternatively be expressed as hyperlink
references as allowed by the syntax of HIML.

With the receipt of a request 200 (FIG. 2) by communi-
cation process 104 (FIG. 1), the authority process 1085,
through its own method, may immediately require verifica-
tion of the client’s 100 right to communicate with the server
102. This action can occur independently of the method of
the present invention. The method of the authority process
105 can also defer user verification unfil a later time.
Instances of the authority process 105 interacting with the
DAC 106 of the present invention are described later.

In general, the interpretation of a request 200 (FIG. 2) by
the communications process 104 (FIG. 1) determines the
receiving process resident on the server 102. This 1s the
means by which the DAC 106 1s notified when a request 200
destined for 1t arrives at the server 102. The t communica-
tions process 104 uniquely identifies each request 200 with
its client 100 either by explicit value or by thread of process

operation and forwards any associated argument list as input
arcuments to the DAC 106.

When the request 200 (FIG. 2) does not specify the DAC
106 (FIG. 1) as the intended recipient, it is denoted as being

10

15

20

25

30

35

40

45

50

55

60

65

6

“flat”. A response 202 to a flat request 200 1s created by
cither IS communications process 104 or another prior art
procedure. A flat type request 200 always receives external
data 109 as the content of a response 201 from a repository

server 102 that maintains governed content 110. A request
200 (FIG. 2) that is directed to the DAC 106 is denoted

herein as a “forresting type” request 204. To retrieve gov-
erned content 110 the client 100 must at some point, make

a flat type request 200 for content that contains at least one
forresting type request 204 that the client 100 may subse-
quently 1nvoke. A forresting type request 204 must be
executed before any governed content 110 can be delivered
as a response 201.

The content of the first response 201 (FIG. 2) that contains
a forresting type request 204 1s denoted using the common
term “default page”. The location of the default page on the
storage device 103 (FIG. 1) is made known to the commu-
nications process 104 by the repository designer. This allows
the default page to be retrieved and transmitted to the client
100 by the communication process 104 without executing
any portion of the DAC 106. This means that the default
page 1s always considered a flat type response 202 derived
from external data 109. The retrieval and transmission of the
default page 1s a well-known, common operation for com-
munications processes 104 that implement HTTP and pro-
vide support for data represented using CML.

A request 200 (FIG. 2) using the forresting format 204
includes at least two argument values in 1ts representation. In
this embodiment of the present invention, the actual repre-
sentation of this request type conforms to the syntax rules for
request specification as declared by the HT'TP and HTML
rules of implementation. With respect to FIG. 2, an

expanded view of a request 200 1n the forresting format 204
1s depicted 1n FIG. 2A. The first field 1s denoted as the

“reference field” 205. The value of the reference field 205
identifies the recipient of the request 204. The second field
and first required arcument 206 1s referred to as the “for-
resta” and the third field and second required argument 207
1s referred to as the “destination”. The fourth field and
optional argument 208 1s any additional information not
already described that 1s exchanged between the client 100
and the server 102. Accordingly, the forresta arcument 206
contains the “forresta value” and the destination argument
207 contains the “destination value”. Within the default
page, each reference 205 1n a forresting format request 204
has a forresta arcument 206 set to an “anonymous user”
value and a destination arcument 207 whose value identifies
non-sensitive content 108.

Use of the term “anonymous user” in this embodiment of
the present invention should not be confused with the
well-known concept of an “anonymous login”, which 1s a
ogeneral user account type established on a multi-user com-
puter. As used herein, “anonymous”™ or “anonymous use?” 1s
strictly defined as the DAC’s 106 (FIG. 1) lack of authen-
fication information for a particular client 100 as provided
by the authority process 105. The explicit value of “anony-
mous user’ 1s a constant that 1s global to all elements of the
DAC 106 and i the preferred practice of the present
invention 1s expressed as a form of numeric value zero.

With respect to FIG. 3, the DAC 106 (FIG. 1) of the
present 1nvention 1s further explained. The DAC 106 1s
sub-divided into three sub-processes. These sub-processes
are the access module 300, the session module 301 and the
form module 302. The access module 300 1s always the

recipient of a forresting type request 204 (FIG. 2). In this
embodiment of the present invention, the identifier value of
the access module 300 1s used as the value of the reference

US 6,466,983 B1

7

205. The access module 300 also contains the methods that
implement interfacing to the communications 104 and user
authentication 103 processes. The session module 301 main-
tains and processes mnformation about each client 100 and
the form module 302 generates privileged responses 203
(FIG. 2) from governed content 110. In the preferred prac-
fice of the present invention, a privileged response 203
containing governed content 110 1s passed from form mod-
ule 302 to access module 300 for delivery to the client 100
via communication process 104 and communication link

101.

The form module 302 (FIG. 3) constructs a response 203
(FIG. 2) to the client 100 (FIG. 1) based on the values of the
forresta 206 (FIG. 2A) and destination 207 arguments. The
destination argument 207 identifies the speciific governed
content 110 desired. The forresta arcument 206 1s used to
determine the authority level of the request 204 and asso-
ciates the request 204 with the specific client 100 that 1ssued
it.

Governed data 110 1s organized as one or more 1nstances
of the general structure classification commonly known as a
“file” as 1t pertains to non-volatile data storage on a com-
puter. The present invention further qualifies these files as
“fragments” to uniquely 1dentify them from other files that
may be co-located on the storage device 103. With respect
to FIG. 4, an exemplary privileged type response 203 1is
shown as being composed of one or more fragments 401
arranged to form one or more pages 402.

The process and method of the present invention further
qualifies fragments 401 (FIG. 4) into “types”. These types
are herein named: “body”, “target”, “frame” and “artwork™.
How a fragment 401 1s categorized depends on the infor-
mation content of the fragment 401. A “Body” type fragment
contains data that 1s generally not modified by the method of
the current mnvention. A “Target” type fragment contains one
or more 1mplied references 403 to other fragments 401. A
“Frame” fragment contains information that when rendered
or processed by the client computer 100 (FIG. 1), divides the
viewing area ol the display device at the client computer 100
into regions, each of which may receive governed 110 or
external 109 content independent of the other regions.
Lastly, an “Artwork™ type fragment contains or has refer-
ences to, visual, audio or other content not categorized by
the other fragment types. In the event a fragment 401
contains attributes of multiple types, a hierarchy of catego-
rization 1s applied 1n the following order listed from highest

to lowest: frame, target, body and artwork.

Typically, one privileged response 203 (FIG. 2) is repre-
sented using one page 402 (FIG. 4). When the display device
of the client 100 (FIG. 1) is sub-divided into multiple
viewling areas, each such area can display content supplied
by a unique page 402 meaning that a privileged response 203
would be composed of multiple pages. In this embodiment
of the 1d present invention, each page 402 or set of pages 1s
syntactically correct 1n its HIML form when delivered as a
response 201.

With respect to FIG. 5, the designer of the repository
creates pages 402 (FIG. 4) by first delineating governed
content 110 (FIG. 1) into one or more “design pages” S01.
Content appearance, 1ts design, layout, required authority
and organization are attributes of design pages 501. These
attributes are decided solely at the discretion of the reposi-
tory designer and are developed using prior art processes
that are independent of this embodiment of the current
invention. The design page 501 to page 402 translation
begins with the reference tool S00. The reference tool 500 1s

10

15

20

25

30

35

40

45

50

55

60

65

3

a process of the current mvention that 1s executed by the
designer as a standalone method. It 1s typically executed on
a computer that is not the server 102 (FIG. 1) and always
prior to governed content 110 being placed on the storage

device 103.

The reference tool 500 (FIG. 5) begins by assigning each
design page 501 a unique, mteger i1dentifier denoted as its

“index” 502. A table 505, denoted as the “page table™, is
created by the reference tool 500 where each entry 503
represents a design page 501 by pairing 1ts assigned name
504 and the tool generated 1index 502. As design pages 501
are processed, the reference tool 500 ensures that no two
design pages 501 have the same assigned name 504 by
comparing entries 503 made 1n the page table 505. If this
situation occurs, the designer must correct it by altering the
assigned name 504 of at least one of the design pages 501
in order to continue and complete the process. If a design
page 501 contains a reference 506 to another design page
501, the assigned name 504 1s used as the object 507 of the
reference 506. There 1s no restriction on the i1dentity of an
object 507 1if the object 507 does not 1dentify a design page
S501. In this instance, the reference tool 500 assumes that
such an object 507 can be resolved when the request 201
(FIG. 2) of which it will be part, is processed by commu-
nications process 104 (FIG. 1).

The reference tool 500 (FIG. 5) continues by physically
separating each design page 501 into one or more fragments
401 (FIG. 4). As they are created, fragments 401 are
numbered uniquely with the value being placed denoted as
a “fragment 1denfifier” 508. The integer values used for
identifying fragments 401 may be similar to the integer
values used for identifying design pages 501 since by
context a fragment 1dentifier 508 can be distinguished from
an 1ndex 502. The index 1dentifier 302 of a design page 501
1s additionally utilized as an attribute of the design page’s
501 constituent fragments 401. This permits relating a
fragment 401 back to the design page 501 from which 1t
originated. Fragments 401 are numbered sequentially, pre-
serving their placement order within the respective design
page 501. Additionally, fragment numbering i1s assigned
continuously across all design pages 501 rather than
re-setting the 1dentifier 508 to 1ts original starting point with
cach new design page 501. As a design page 501 1s pro-
cessed by the reference tool 500, 1ts entry 503 in the page
table 505 1s modified to record the fragment 1dentifiers 508
in the requisite re-assembly order 509. This process repeats
until all design pages 501 have been processed.

The reference tool 500 (FIG. 5) does not restrict the size
or content of a fragment 401 (FIG. 4) and performs the
mechanics of design page 501 break-up at the designer’s
direction. In this preferred embodiment of the practice of the
current mvention, the reference tool 500 ensures that a
break-up of design page 501 content does not occur at a
location that would split the syntax of a single HITML tag
between two fragments 401. This rule i1s imposed for
designer convenience and 1s not a reflection of a design
limitation for the present invention. The criteria used for
deciding design page 501 fragmentation are based upon the
content of the design page 501. Sections of a design page
501 that require authority levels different from those
required of other sections are typically broken out as frag-
ments 401. However, the practice of the present invention 1s
not dependent on the criterta employed to decide how
fragmentation 1s applied to a design page 501. In accordance
with this, 1t 1s possible to have an entire design page 501 be
the content of a single fragment 401 that would then be the
sole component of a page 402.

US 6,466,983 B1

9

When all fragments 401 (FIG. 4) have been created, the
reference tool 500 (FIG. §) displays each fragment 401 to
the designer 1dentifying all content that specifies a reference
506. This 1s achieved by parsing the content of the fragment
401 using syntax recognition of reference type constructs. In
this preferred embodiment of the practice of the present
invention, syntaxes to used i1n the comparison by the refer-
ence tool 500 to perform reference 506 recognition are
provided from two sources. The first 1s a pre-defined table
containing all known HTML constructs 1n current existence
at the time the present invention was embodied. The second
source 1s from the repository designer, who can specily
additional syntaxes not found in and added to the existing,
table using a function of the reference tool 500. For each
reference 506 so identified, the designer may instruct the

reference tool 500 to delete 1t.

With respect to FIG. 5, FIG. 5A 1s an exploded view of
exemplary references 506 contained within a design page
501. In this embodiment of the present mnvention, the order
or frequency of appearance of references 506 or non-
reference data elements 510 within a design page 501 1is
arbitrary and at the discretion of the designer. For each
reference 506 that 1s retained by the designer the tool 500
generates a “placeholder symbol” 511. This 1s accomplished
by the reference tool 500 searching a pre-defined table of
allowable substitutions. This table 1s denoted as the “sub-
stitution table” 512. Each entry 513 within the substitution
table 512 has three values. The first value 514 1s an 1ncom-
plete or syntactically invalid form of the original reference
506 and there exists one, unique value for each valid
reference 506 construct. This value 514 is referred to herein
as a “substitution phrase”. The second value 1s an example
of a valid reference 506 construct, minus any explicit object
507 value, and 1s denoted as the “parse phrase” 515. Each
table entry 513 i1s uniquely enumerated and the assigned
number 15 referred to as the “substitution index” 516.
Comparing the syntax of the reference 506 to each parse
phrase 515 locates the substitution index 516 of the specific
entry 513. If the object 507 specifies a governed content
object 517, the reference tool 500 locates the page table 505
entry 503 of the design page 501 by searching on the value
of the object 517, which 1s equivalent in value to the
assigned name 504. The index 502 of the design page 501 1s
retrieved from the entry 503 and is paired with the substi-
tution 1ndex 516 1n replacement of the original reference
506. If the object 507 specifies an ungoverned content object
518, the tool 500 creates an entry 519 1n a separate tempo-
rary table 520 in which to store the object 518. The index
value 521 of the table entry 519 and the table identifier 523
are paired with the substitution index 516 1n replacement of
the original reference 506. If the reference 506 includes
other required values, the reference tool 500 appends these
values at the end of the placeholder symbol 511.

As the next step, the reference tool 500 (FIG. 5) types the
fragments 401 (FIG. 4) based on parse phrase 515 (FIG. SA)
content. If the fragment 401 contained no references 506, it
1s typed as a body fragment. If the fragment 401 had at least
one reference 506 whose object 507 was i1denfified as
cgoverned content 517, it 1s typed as a target fragment. If all
objects 507 within the fragment 401 were. 1dentified as
ungoverned content 518, the fragment 401 i1s typed as
artwork.

Categorization as a frame type fragment 401 (FIG. 4) is
achieved by examining the content within a fragment 401
for frame constructs. In this preferred embodiment of the
practice 20 of the present invention, the frame construct

provided by HTML 1s a well-known method by which

10

15

20

25

30

35

40

45

50

55

60

65

10

designers can sub-divide the display of a client computer
100 (FIG. 1) into separate viewable arecas, known as
“frames”. Data that generates the framing on a computer
display contains none of the content actually displayed
within each frame. This presents a ditficulty in controlling
the content of a frame-based response 201 (FIG. 2). In this
instance, the response 201 that 1s sent to the client 100 might
contain only a description of the frame layout. In addition,
the syntax of a frame declaration can specily an object 507
(FIG. 5) that is processed by a prior art method that involves
only the browser 111 and communications process 104. In
this 1stance, should the object 507 be a governed content
object 517, control of the indicated governed content 110 by
the DAC 106 would not be possible. To overcome these
problems, the reference tool 500, upon the detection of
framing syntax within a fragment 401, marks the fragment
401 with an additional attribute. This value indicates that
references 506 that specity frames are to be handled by a
recursive call of the form module 302 when 1t 1s time to use
the fragment 401 1n the construction of a page 402.

When substitution processing 1s complete, and as 1llus-
trated by FIG. 6, the reference tool 500 (FIG. 5) generates

a unique “build code” 600 for each fragment 401 (FIG. 4).
The reference tool 500 constructs a build code 600 by
combining the symbol 602 used to represent the fragment
type 601, the index 502 of the parent design page 501 and
the fragment 1dentifier S08. The reference tool 500 converts
the build code 600 value into a sequence of one or more
symbols. The resulting symbol sequence forms the filename
string 603 of the fragment 401. A filename extension 604
may be added to the string 603 to fully qualify it for use with
the file storage mechanism. The filename created from the
build code 600 facilitates the accessing of a fragment 401
held on the storage device 103 by the DAC 106 (FIG. 1).
When all fragments 401 of a design page 501 have been
assigned build codes 600, the reference tool S00 modifies the
fragment assembly list 509 of the design page entry 503 by

replacing each fragment index 508 with the corresponding
build code 600.

With respect to FIG. 7, the page table 505 (FIG. §) is
converted by the reference tool 500 to a data structure
denoted herein as the “build code list” 700. The fragment
assembly list 509 with its build code 600 (FIG. 6) content
creates the “build code sequence” 703 for the design page
501, which 1s now represented by a response page entry 701.

The next step involves the reference tool 500 (FIG. 5)
constructing a “reference map” 705 (FIG. 7) for each
response page entry 701 within the list 700. A reference map
705 resolves references 506 to governed content 110 (FIG.
1) for a build code sequence 703. Each reference map 705
1s assigned a unique identifier 715. The identifier 715 1is
recorded as map 1d 716 1n the build code sequence 703 to
which the map 705 belongs. Each build code 600 (FIG. 6)
within the build code sequence 703 1s given an entry 713 1n
the reference map 705. A unique index value 706 1s created
for each entry 713. The index value 706 1s saved as an index
notation 714 of the build code 600 representation.

When all entries 701 (FIG. 7) have been reference
mapped, the reference tool 500 (FIG. 5) begins the process
of “fix-up”. From the build code list 700, each entry 701 1s
processed in turn. From each entry 701, the tool 500 mputs
the build code sequence 703. Reading each build code 600
(FIG. 6) from the sequence 703, the tool 500 identifies and
inputs each fragment 401 (FIG. 4) in turn. As each fragment
401 1s processed, its contents are copied 1nto a new, empty

file 1dentified by the derived name 603. If a build code 600
appears more than once or in to multiple sequences 703,

US 6,466,983 B1

11

only the first occurrence of the code 600 causes the fragment
401 to be copied. As the copy 1s performed, the fragment 401
is parsed for placeholders 511 (FIG. 5A). If a placeholder
511 that was created from a governed object 517 1s
encountered, 1t 1s replaced within the new file by a substi-
tution phrase 514. The particular substitution phrase 514 is
located by using the index 516 recorded 1n the placeholder
511. The replacement within the new file 1s denoted as the
link reference 403. The substitution list 707 of the map entry
713 1s then accessed. An entry 708 1s created in the list 707.
From the placeholder 511, the substitution mmdex 516 is
recorded as the parse index 711 and the object 517 1is
recorded as the target 710. Any other values that are found
in the placeholder 511 are stored with the target 710. The
sequence count of the current placeholder 511, relative only
to other placeholders 511 specifying a governed content
object 517, 1s recorded as the position 709. It the placeholder
511 identifies an ungoverned content object 518, the table
entry 519 1s copied without modification as the replacement
for the placeholder 511. The table entry 519 is deleted and

no entry 1s made 1n the substitution list 707.

With respect to FIG. 8, when the copy process for each
fragment 401 (FIG. 4) in a build code sequence 703: (FIG.
7) is complete, the reference tool 500 (FIG. §) prompts the
designer to supply “permission levels” 800. A permission
level 800 can apply to each build code 600 (FIG. 6) and to
the entire sequence 703. The permission level 800 1s a single
value taken from a set values 801 used to describe varying,
degrees of privilege. The actual values used are arbitrary,
however, the set of values 801 must contain at least two
clements and each element 800 must describe a ditferent
quality of permission.

With the addition of permission levels 800 (FIG. 8), the
reference tool 500 (FIG. §) converts each reference map 705
(FIG. 7) in turn. The data structure created by the conversion
1s referred to as a “yump table” 802 with each entry being
denoted as a “yump table entry” 803. Each entry 803 utilizes
the content of 1ts corresponding map entry 713 and adds the
assigned permission levels 804, 805. The map identifier 716
recorded with the sequence 703 1s updated to reflect the
value of the jump table i1dentifier 806.

The creation of all jump tables 802 (FIG. 8) concludes the
fix-up process. At this point, all fragments 401 (FIG. 4), the
build code list 700 (FIG. 7) and the jump tables 802 are
eligible to be placed on the storage device 103 (FIG. 1) as
governed content 110 with their physical location made
known to the DAC 106. Before this, and if desired, the
designer can re-invoke the reference tool 500 (FIG. 5) to
perform an optional additional process. The process begins
with the reference tool 500 allowing the designer to create
new jump tables 802 or additional entries 803 within exist-
ing tables 802. Elements so created reference existing build
codes 600 (FIG. 6) or sequences 703; however, they permit
the arrangement of these elements 1nto alternate orders of
sequence. Then, using any or all jump tables 802 as input,
build codes 600 may have their entry within a sequence 703
modified to reflect one or more alternate choices 712 (FIG.
7). Each alternate 712 can describe another build code 600
through a particular jump table entry 803 or, an alternate
sequence 703 using a different table 802. An alternate 712 1s
used during the construction of a privileged type response
203. In the event either permission 804,805 of the build
code’s 600 original entry 803 1s not met; the alternate 712
will be examined to see if 1t qualifies as a suitable replace-
ment.

In this preferred embodiment of the practice of the present
invention, privileged type responses 203 (FIG. 2) may share

10

15

20

25

30

35

40

45

50

55

60

65

12

fragments 401 (FIG. 4); build code sequences 703 (FIG. 7),
jump tables 802 (FIG. 8) or jump table entries 803 to any
extent except that any combination must form a complete
syntactically valid page 403 before its delivery to the client
100 (FIG. 1) as part of a response 201. To test the validity
of a response 201, the designer need only attempt to render
the response 201 using the browser 111 and display device
of a potential or test client 100. If the response 201 renders
and functionally behaves as the designer intended, 1t 1s valid.

As described earlier, the determination of privilege asso-
ciated with a forresting type request 204 (FIG. 2) 1s derived
from the “forresta argument” 206 (FIG. 2A) with the desired
content 1dentified by the “destination arecument” 207. All
forresta values, except the anonymous user value, are gen-
erated utilizing a time and memory based routine that uses
multiple random values. In this preferred embodiment of the
present invention, the resulting format of a forresta value 1s
an “n”’-byte character sequence that has no conflicting
meaning within the coding constructs of a response 201. To
create a forresta value sequence requires use of the follow-
ing algorithm. This algorithm 1s defined by the current
preferred embodiment of the present invention and 1s
referred to herein as the “fcode process” 900 (FIG. 9). In the
preferred embodiment of the current invention, the fcode

process 900 1s a routine contained. within the session
module 301 (FIG. 3).

The fcode process 900 (FIG. 9) performs a self-

initialization each time the DAC 106 (FIG. 1) is initialized

from start-up as an executing process on the server 102. This
self-initialization facilitates the creation of a data table 901

containing sixty-one (61) values, which is illustrated in FIG.
9. This table 901 1is referred to as the “forresta map table™
(“FMT”). Each entry 902 in the table 901 contains one
symbol, whose appearance within the table 901 i1s unique,
that 1s a member of the “key set” 903. In this embodiment
of the present invention, the key set 903 contains one each,
of the upper-case characters “A” through “Z” inclusive, the
lowercase characters “a” through “z” inclusive, and the
character representations of the digits “1” through “9”

mnclusive.

The process of FMT 901 (FIG. 9) creation begins with the
fcode process 900 querying a prior art process available
through the operating system 113 (FIG. 1) for a random
value. In this preferred embodiment of the current invention,
the requested value 1s 1n the range of 64 to 4096 inclusive,
although other bounding ranges are possible. The fcode
process 900 then requests a block of memory 904 from the
operating system 113 using the returned random value to
specily the size of the memory block 904. In this request, the
fcode process 900 specifies that the memory block 904
should not be mitialized and 1t should not originate from
memory resources already assigned to the DAC 106. By not
initialized 1t 1s meant that the contents of the memory block
904 should not be altered from its pre-request state as it
existed within the resources of the operating system 113.
The poimnt of origin of the memory block 904 must be
common to any server 102 process requesting memory
resources. A common memory resource may be identified
and described using the well-known term, “global memory
heap”.

The content of the memory bock 904 (FIG. 9) is accepted
as input by the fcode process 900. The memory block 904 1s
examined for the presence of a signature value employed by
the fcode process 900. The signature value identifies a
memory block 904 that i1s not eligible for use by the fcode
process 900. The signature value causes the current memory
block to be discarded and a new memory block 904 to be

US 6,466,983 B1

13

requested. In this preferred embodiment of the present
invention, the signature value is 1dentified by examining the
memory block 904 for the same value 1 each byte. The
fcode process 900 mmitially sets a “comparison field” 905
equal to the first “n” bits of the memory block 904. In this
preferred embodiment of the present invention, “n” 1s the
minimum number of bits required to represent a byte on the
server 102 (FIG. 1) on which the fcode process 900 is
executing. If the numerical value represented in the com-
parison field 905 1s equal to one of the values of the key set
903, it 1s compared against existing entries 902 in the FMT
901, if any. If the value 1s unique within the FMT 901, 1t 1s
stored at the next, sequentially available entry 902. If the
contents of the comparison field 905 duplicates an FMT
entry 902 or 1s not a desired value, the fcode process 900
refreshes the comparison field 905 1n the following manner.

A refresh of the comparison field 905 (FIG. 9) is accom-
plished with a logical left shift of the bits within the field
905, 1gnoring any carry. To replace discarded bits, new bits
are serially retrieved from the next available within the
memory block 904. The size of the shift 1s equal to a “shaft
count” 906 whose 1nitial value 1s one. Each time a value 1n
the comparison field 9035 duplicates an entry 902 1n the FMT
901, the fcode process 900 will increment the shift count 906
by one; however, 1f the shift count value exceeds one-half
the size of the memory block 904, the fcode process 900 will
reset 1t to one. If the size of the shift exceeds the number of
bits within the comparison field 905, new bits are serially
brought 1n from the memory block 904 until the shift 1s
completed. If no more bits are available from the memory
block 904, the fcode process 900 requests a new random
number and uses 1t to obtain a new block of memory from
the operating system 113 (FIG. 1). Any subsequent new
memory block 1s always requested using the same 1nitial-
ization and allocation constraints as 1imposed on the {first.
Once the new block has been received by the fcode process
900, the previous block 1s cleared of its contents by setting
cach byte contained within it to the same, arbitrarily chosen
value and returned to the memory management process of
the operating system 113. The fcode process 90 will repeat
these steps until all entries 902 within the FMT 901 are
complete.

To create a forresta value, the session module 301 (FIG.
3) employs the following routine, which exists as a callable
process included with and unique to the session module 301.
This routine 1s denoted as the “create forresta value”

(“CFV™) 907 (FIG. 9) process;

The CFV 907 (FIG. 9) accepts as input, the forresta
argument 206 (FIG. 2A) of the forresting type request 204
being processed. A correct arcument 206 will be, at a
minimum, equivalent to the anonymous user value repre-
sented as a proper length sequence of contiguous bytes. If
the CFV 907 does not recognize the format of the arcument
206, 1t returns an access violation return code. If the argu-
ment 206 does not resolve to the anonymous user value, the
CFV 907 compares the argument 206 against each entry 908
of a list 909, which 1t maintains, that contains all forresta
values currently 1n use. If the arcument 206 does not match
any value contained within the list 909, the CFV 907 returns
an access violation return code. If the arcument 206 1s equal
to the anonymous user value, the CFV 907 proceeds without
examining the list 909.

The CFV 907 (FIG. 9) proceeds to form a new forresta
value by mvoking the fcode process 900 for each character
required by the forresta format. The number of characters
required 1s arbitrary. However, 1n this preferred embodiment
of the present invention, a minimum of eight (8) characters

10

15

20

25

30

35

40

45

50

55

60

65

14

1s 1imposed. In response, the fcode process 900 requests a
random number from a prior art random number generation
process in the range of one (1) to sixty-one (61) inclusive
and returns the character held by the entry 902 at that
relative index of the FMT 901. The CFV 907 will repeat its
request until sufficient characters have been retrieved. When
a new forresta value has been created, the CFV 907 com-
pares the new value to entries 908 1n the existing forresta
value list 909, if any. If the new forresta value duplicates an

entry 908, it 1s discarded and the CFV 907 will repeat the
process of forresta value generation. When a new, unique
forresta value 1s obtained, the CFV 907 discards the original
argument 206 (FIG. 2A). The new forresta value is then
added to the list 909 of active forresta values. When the
arcument 206 1s not equal to the anonymous user value, the
CEFV 907 removes and discards the list entry 908 that the
arcument 206 value matched.

The CFV 907 (FIG. 9) has an additional capability that is
invoked whenever an access violation 1s detected by any
routine within the DAC 106 (FIG. 1), including the possi-
bility that the CFV 907 will invoke 1tself under this condi-
tion. When a violation occurs, the detecting routine signals
the CFV to perform a “rotation” of the FMT 901. The CFV
907 accomplishes this by first requesting the current time
value from the operating system 113 or other prior art
process 1In a format of hours, minutes and seconds. The
portion of the time value that represents seconds 1s supplied
as mput 911 to the fcode process 900 along with a unique
indicator value 910. Upon recognizing the indicator 910, the
fcode process 900 changes the position of the entries 902 in
the FMT 901. This 1s accomplished by applying a logical,
circular shift to each entry’s 902 position using an iterative
count 911 equal to the seconds value passed by the CFV 907.
If the seconds value 1s zero, the fcode process 900 uses the
value sixty (60) as the iteration count 911.

As forresting type requests 204 (FIG. 2) are delivered
from 104 (FIG. 1) to the access module 300 (FIG. 3) each
1s reformatted by the access module 300 mito a “session
node” 1000 (FIG. 10) data structure. FIG. 10 shows an
exploded view of an exemplary session node 1000. The
session node 1000 1s then forwarded as an 1nput argument in
a process call to the session module 301. The input arcument
to the session module 301 1s denoted as the “current” session
node 1000 for convenience.

Session nodes 1000 (FIG. 10) are maintained as a set in
a data structure referred to herein as a “session list” 1001. In
this preferred embodiment of the present invention, the
session list 1001 1s implemented within a memory space
assigned to the DAC 106 (FIG. 1) by the memory manage-
ment process of the operating system 113. When the DAC
106 i1s initialized from start-up, the session list 1001 (FIG.
10) 1s formatted to retain zero or more session nodes 1000
by the session module 301 (FIG. 3). In the DAC’s 106
initialized state after start-up there are no session nodes 1000
present within the session list 1001. Session nodes 1000 are
added or removed from the session list 1001 by the session
module 301, however; any component of the DAC 106 may
reference the contents of the list 1001 to facilitate its
function.

When the session module, 301 (FIG. 3) is invoked by the
access module 300 and if the session list 1001 (FIG. 10) is
not empty, the session module 301 will examine each
resident node 1000 for the “time-out” condition. Timing out
1s a quality determined by measuring the inactivity interval
of the client 100 (FIG. 1) with respect to DAC 106 inter-
action. In this preferred embodiment of the practice of the
present invention, the time interval between successive

US 6,466,983 B1

15

requests 200 (FIG. 2) of a single client 100 received by the
DAC 106 1s the determining factor. of the time-out condi-
tion. Typically, this period 1s measured 1n units of seconds.
The session node 1000, when 1nitially created by the access
module 300 1s marked with a timestamp 1002 that indicates
its moment of creation. In this preferred embodiment of the
present mvention, the explicit timestamp value 1s provided
by a prior art process resident within the operating system
113. During the examination of a node 1000 that 1s list 1001
resident by the session module 301, the current value of time
1s retrieved from the same prior art process that provided the
initial timestamp. With the assumption that time values
always mcrease, the timestamp 1002 1s subtracted from the
current time value. If the result 1s less than a repository
designer selected value, timeout has not occurred and the
session module 301 proceeds to the next session node 1000
in the list 1001, if any. If the result 1s equal to or greater than
the selected value, timeout has occurred and the session
node 1000 1s removed from the session list 1001. Removal
of a node 1000 from the list 1001 also clears the data content
of the node 1000 and removes its forresta value 1003 from
the active forresta list 909 (FIG. 9) maintained by the CFV

907 process.

With the completion of time-out processing, the session
module 301 (FIG. 3) performs an equivalence comparison
test between the forresta value 1003 (FIG. 10) contained
within the session node 1000 that 1s current and the anony-
mous user value. If the values are equal, the session module
301 forwards the current node as an input arcument 1n a
process call to the form module 302. If the result of the
comparison 1s not equivalence, the session module 301
performs an equivalence test between the forresta value
1003 of the current node and the forresta values contained
within nodes 1000 resident on the session list 1001. If the
session list 1001 1s empty, the current node 1s discarded by
the session module 301 and a return of process control with
a status code 1s made to the access module 300. If a node
1000, which 1s resident on the list 1001, has a forresta value
1003 that tests equally and there remain unexamined nodes
1000, the session module 301 continues the examination. If
multiple nodes 1000 satislfy the comparison test with the
forresta value 1003 of the current node, the session module
301 removes all such nodes 1000 from the list 1001 and
clears the data content from each. The forresta value 1003 1s
then removed from the active forresta list 909 (FIG. 9). In
this 1nstance, the session module 301 returns an access
violation value.

With the absence of an access violation, the destination
value 1004 (FIG. 10) of the current node is placed into the
appropriate field 1004 of the list 1001 resident node 1000.
The session module 301 (FIG. 3) then forwards the address
of the node 1000 that 1s list 1001 resident as an 1nput

arcument 1n a process call to the form module 302. The node
1000 that 1s current 1s cleared of data content and discarded.

When the form module 302 (FIG. 3) receives a session
node 1000 address (FIG. 10), it verifies the argument by
requesting the address of the session list 1001 from the
session module 301. The value of the 1nput arcument 1s then
applied against the contents of the list 1001. If the input
arcument address references an entry within the list 1001,
the form module 302 proceeds. If the 1nput arcument address
does not properly reference a list 1001 entry, the form
module 302 returns an access violation. With a valid
address, the form module 302 accesses the referenced node
1000 and extracts the privilege value 1005, the destination
value 1004 and the state table 1006. The privilege value
1005 1s derived from mnformation returned by the authority

10

15

20

25

30

35

40

45

50

55

60

65

16

process 105 (FIG. 1). The state table 1006 1s a data structure
that represents the current request 200/response 201 (FIG. 2)
relationship existing between the client 100 and the DAC
106. The destination 1004 i1s a copy of the destination
argument 207 (FIG. 2A) and any other supplied values
received as part of the forresting type request 204. In the
following, each of these elements 1s described.

The notion of “privilege” 1s determined using the author-
ity assigned to a user 100 (FIG. 1) by the authority process
105. Without regard to the specifics of the method of the
authority process 105, the following steps occur when a
destination 1004 (FIG. 10) references sensitive data 107.

If the session node 1000 (FIG. 10) does not contain a
privilege value 1005 for the requesting client 100 (FIG. 1),
the form module 302 (FIG. 3) returns process control to the
access module 300 with a signature code indicating the
absence of privilege. The signature code 1s a new, unique
forresta value 1003 obtained by the form module 302
invoking the CFV 907 (FIG. 9). The format of the process
call in conjunction with the signature code causes the access
module 300 to invoke the authority process 105 and a
transfer of process control 1s negotiated between the two
routines. The transfer and subsequent return of process
control between the access module 300 and the authority
process 105 1s dependent on the operation of the authority
process 105 and the operating system 113 of the server 102
and 1s not unique to or described by this embodiment of the
present 1nvention. Before the access module 300 relin-
quishes control, 1t establishes a “watchdog interrupt™ that 1s
set for a pre-determined amount of time. A watchdog inter-
rupt 1s a well-known method for allowing the operating
system of a computer to mnvoke a waiting process 1f a
specified period elapses. If the watchdog interrupt returns
process control to the access module 300, the request 204
(FIG. 2) is 1ignored, the session node 1000 1s discarded and
the form module 302 1s 1nstructed to discard the outstanding
signature value. If the access module 300 receives a
response from the authority process 105 before the watch-
dog interrupt returns, the watchdog interrupt request 1s
cancelled. If the authority process 105 denies access, the
request 204 1s 1ignored, the session node 1000 discarded and
the form module 302 1s mstructed to discard the signature
value. If authority i1s granted, the access module 300 for-
wards the authority value, the signature code received from
the form module 302 and the session node 1000 to the
session module 301.

Upon recognizing that an authority value has been passed
to it, the session module 301 (FIG. 3) invokes the form
module 302 1n a process call to determine the validity of the
signature code. If the form module 302 acknowledges that
the signature code represents an outstanding request, the
session module 301 proceeds, otherwise an access violation
1s generated. In the absence of an access violation, the
session module 301 accesses a file that contains “criteria
information”. Criteria information 1s defined and created by
the designer using the reference tool 500 (FIG. §) and is
considered governed content 110 (FIG. 1) although it is not
a fragment 401 (FIG. 4) and is never used within a response
201 (FIG. 2). Criteria information provides the mapping
between values returned by the authority process 105 and
permission levels 800 (FIG. 8) established for governed
content 110. The criteria information value obtained in this
manner becomes the privilege value 1005 (FIG. 10) of the

client 100.

When a privilege value 1005 (FIG. 10) has been
determined, the session node 1000 becomes an “authorized
session node”. Authorized session nodes 1000 are placed on

US 6,466,983 B1

17

the session list 1001 by the session module 302 (FIG. 3).
During processing, authorized session nodes 1000 remain
list 1001 resident as long as they do not timeout or experi-
ence an access violation. Additionally, a session node 1000

will be removed from the list 1001 if the client 100 (FIG. 1)
indicates that no further request 200 (FIG. 2) is forthcoming.
A forresting type request 204 for governed content 110 waill
cause the session module 301 (FIG. 3) to index 1006 the

session list 1001 using the value of the forresta argument
206 (FIG. 2A). By this mechanism, a session node 1000 for

a particular client 100 (FIG. 1) 1s located. If the forresta
arcument 206 does not match a forresta value 1003 con-

tained within any node 1000 resident on the list 1001, the
request 204 1s 1gnored.

When the session node 1000 (FIG. 10) has become list
1001 resident, the session module 301 (FIG. 3) returns

control to the access module 300. The access module 300
then 1nstructs the form module 302 to discard the signature
value. The access module 300 then restarts the processing of
the forresting type request 204 (FIG. 2) unencumbered by
passing the session node 1000 as an input arcument 1n a
process call to the session module 301.

The state table 1006 (FIG. 10) 1s constructed during the
creation of a page 403 (FIG. 4) is by the form module 302
(FIG. 3). This process begins after the response page entry

701 (FIG. 7) identified by the destination 1004 has been
retrieved. Fragments 401 1identified by the build code
sequence 703 contained within the entry 701 are parsed for
link references 403. This 1s performed using the jump table

802 (FIG. 8) identified by the map identifier 716 contained
with the sequence 703. A jump table entry 803 yields the
substitution list 707 of the fragment 401. Each target 710
contained within the list 707 creates an entry in the state

table 1006.

The state table 1006 (FIG. 10) is used by the form module
302 (FIG. 3) to determine certain access violation condi-
tions. These conditions determine 1f a forresting type request
204 (FIGS. 2, 2A) 1s received outside of an expected order,
or there has been an alteration of the forresta value 206 (FIG.
2A) since it was assigned. Each state table entry 1008
contains one or more occurrences of the “entry field” 1009,
the “sorted order field” 1010 and the “expected forresta
field” 1011. The state table 1006 1s modified by the form
module 302 every time a privileged response 203 (FIG. 2)
1s created. Entries 1008 are made 1n the state table 1006 for
each build code list index 702 ((FIG. 7) used 1n constructing
the privileged response 203. If the destination 1004 could
not be generated or executed by the client 100 using the
values referenced by the state table 1006, the form module
302 raises an access violation and returns. If the destination
1004 and forresta 1003 are legitimate, the session node 1000
will be used as an 1nput argument to the form module 302.

The legitimacy of destination 1004 (FIG. 10) and forresta
1003 values 1s determined 1n the following manner. During
the creation of a page 403 (FIG. 4), the sorted order field
1010 and the expected forresta arcument field 1011 are also
created. This 1s accomplished as each substitution list 707
(FIG. 7) is processed for placeholders 511 (FIG. §). Each
position 709 and target 710 pair of an entry 708 1s used to
create an entry 1013 1n the sorted order field 1010. The entry
1013 1s indexed by a key, whose value 1s supplied by the
target 709. The position 710 1s stored as data particular to
that key. Each forresta value 1003 that 1s used 1n the creation
of a link reference 403 also creates an entry 1012 1n the
expected forresta field 1011. This entry 1012 1s indexed by
a key, whose value 1s supplied by the position 710. The
specific forresta value 1003 1s stored as data particular to that
key.

10

15

20

25

30

35

40

45

50

55

60

65

138

When a forresting type request 204 (FIG. 2) is received,
a specific session node 1000 (FIG. 10) is identified by the

matching the forresta argument value 206 (FIG. 2A) with the
contents of a forresta field 1003 contained within a session

node 1000. Once found, the destination field 1004 1s updated
using the value of the destination argument 207.
Alternatively, the session node 1000 may be located by
matching both forresta 206 and destination 207 arguments
before updating the destination field 1004. If a session node
1000 1s not found using this search, the access module 300
(FIG. 3) generates an access violation condition. Upon a
successful match, the destination value 1004 1s compared
against sorted order field entries 1013. If the destination
value 1004 fails to match any sorted order field entry 1013,
an access violation 1s returned. Next, the forresta value 1003
1s compared against entries 1012 within the expected for-
resta field 1011. If no match 1s found, an access violation 1s
returned. If the expected forresta field entry 1012 has already
been marked as being matched against a request 204 without
an 1mtervening update of the state table 1006, an access
violation 1s returned. If the position value of the expected
forresta field entry 1012 does not match the position value
of the sorted order field entry 1013, an access violation 1s
returned. If there 1s no access violation, the session node
1000 1s marked as “valid”. A valid session node 1000 may

use the value of the list entry 1009 to retrieve a build code
list entry 701 (FIG. 7).

With the receipt of a valid session node 1000 (FIG. 10),
the form module 302 (FIG. 3) begins assemblage of the
privileged response 203 (FIG. 2). What 1s to be included in
the response 203 1s determined by the destination value
1005. The form module 302 begins by requesting the
allocation of a new, empty file, denoted herein as the
“delivery file” within the governed content area 110 (FIG. 1)
of the storage device 103. This 1s achieved using the prior art
method of file management provided by the operating sys-
tem 113. The name identifier assigned to this file 1s random
and unique and 1n this preferred embodiment of the present
invention, 1s provided by the file management system at the
request of the form module 302. The form module 302 will
request one or more, new forresta values 1003 from the CFV
907 (FIG. 9) and enter them into the session node 1000 if the
privilege value 1005, using its designer assigned meaning,
indicates 1t. The form module 302 locates the response page
entry 701 (FIG. 7) using the value of the destination 1004 as
the mdex 702. The build code sequence 703 contained
within the entry 701, identifies all fragments 401 (FIG. 4)

that are required to create the response 203.

As a build code 600 (FIG. 6) is processed, the form
module 302 (FIG. 3) will test the privilege value 1005 (FIG.
10) against each permission value 804,805 (FIG. 8) retrieved
from the jump table entry 803. If the result of the operation
yields denial, the form module 302 checks the build code
entry for an alternate 712 (FIG. 7). If an alternate 712 exists,
the sequence 703 or build code 600 referenced by the
alternate 712 1s examined 1n the same manner to determine
if 1t may be used in constructing the privileged response 203
(FIG. 2). If no alternates 712 exist or qualify, the form
module 302 exits with an access violation. If the operation
yields an affirmative result, the form module 302 will
retrieve the jump table 802 or entry 803 identified by the
alternate 712. If the sequence permission 804 requires more
privilege than held by the client 100 (FIG. 1), the form
module 302 returns an access violation. If an entry 803
specifles fragment permission 8035 that 1s unequal to the
sequence permission 804, the form module 302 may skip
including the fragment 401 (FIG. 4) or return an access

US 6,466,983 B1

19

violation. Either action 1s dependent on the designer
assigned meaning of the permission values 800.

If the sequence permission 804 (FIG. 8) is satisfied by the
privilege value 1005 (FIG. 10), the form module 302 (FIG.
3) will permit access to the build codes 600 (FIG. 6)
contained within the sequence 703 (FIG. 7). If the fragment
permission 805 is satisfied by the privilege value 1005, the
corresponding fragment 401 (FIG. 4) is included within the

response 203 (FIG. 2).

After the form module 302 (FIG. 3) retrieves the fragment
401 (FIG. 4) from the storage device 103 (FIG. 1), it
re-examines the build code 600 (FIG. 6) value to determine
the fragment 401 type. If the fragment 401 1s a body or
artwork type, its contents are appended to the delivery file
and the form module 302 advances to the next entry 1n the
build code sequence 703 (FIG. 7). If the fragment 401 is a
target, the form module 302 parses the fragment 401 for link
references 403.

Because each link reference 403 (FIG. 4) does not change
its position relative to other references 403 that are found
within a fragment 401, the form module 302 (FIG. 3) can
construct a syntactically valid page 402 by using the jump
table 802 (FIG. 8). Proceeding in order through the list 707
(FIG. 7), each parse index 711 is used to retrieve the
corresponding substitution phrase 514 (FIG. §). This pro-
vides the syntax of the link reference 403 next to be
encountered within the fragment 401. When the substitution
phrase 514 1s recognized, the form module 302 reverses the
substitution supplying the parse phrase 515. In this manner,
link references 403 contained 1n a fragment 401 are unde-
cipherable until they are ready to be transmitted to the client
100 (FIG. 1). The target 710 is incorporated into the link
reference 403 as the destination argument 205 (FIG. 2A) and
the forresta value 1003 (FIG. 10) i1s coded as the forresta
arcument 206. If additional values are stored with the target
710, they are incorporated into the link reference 403 1n a
manner consistent with the syntax i use. When the link

reference 403 is executed by the client 100 (FIG. 1), a
request 200 (FIG. 2) is created.

Once all fragments 401 (FIG. 4) have been processed into
a privileged response 204 (FIG. 2), the form module 302
(FIG. 3) places the name of the delivery file into the session
node 1000 (FIG. 10) and updates the timestamp value 1002.
If the existence of previous delivery files 1007 1s indicated,
the form module 302 deletes them from the storage device
103 (FIG. 1) and updates the session node 1000 before
making 1ts return. Upon receiving the session node 1000
back from the form module 302, the access module 300
identifies the delivery file to communications process 104
for transmission of 1ts contents to the client 100 as the
response 201.

As 1llustrated by FIG. 11, fragments 401 (FIG. 4), whose
build code 600 (FIG. 6) value indicates a framing construct,
are processed as follows. As the fragment 401 1s parsed, a
target 710 (FIG. 7) of a link reference 403 that specifies a
framing sub-division. causes the form module 302 (FIG. 3)
to recursively invoke 1tself. Before the re-1nvocation occurs,
the form module 302 creates a primary delivery file 1100
into which the frame construct 1s copied up to the point of
the first link reference 403 that speciiies a sub-division. The
form module 302 then creates a temporary session node
1000 (FIG. 10) copying all values from the original except
for the destination 1004. The new destination value 1004
will contain the mndex 702 of the response entry 701 speci-
fied by the target 710 of the sub-division reference 403
currently being processed. The temporary session node 1000

10

15

20

25

30

35

40

45

50

55

60

65

20

will be used as the input argument 1n the re-invocation call.
When the form module 302 is re-entered, it processes the
temporary session node 900 (FIG. 9) as if it were the original
unless another frame construct 1s specified by the destination
1004 contained within the temporary node 900. If this
occurs, the re-invocation will repeat using the same 1nput
protocol.

Continuing with FIG. 11, frame constructs cause the form
module 302 (FIG. 3) to create more than one delivery file.
There will be at least one delivery file 1100 whose contents
describes the framing information and, one delivery file
1101 to provide content for each created frame 1102. Assum-
ing there 1s no access violation, the name of each delivery
file 1102 created by a re-invocation 1s recorded 1n the session
node 1000 (FIG. 10) followed by a return to the previous
process 1nstance of the form module 302. Upon 1ts return,
the form module 302 codes the name of the delivery file
1102 as the destination argument 207 (FIG. 2A) of the link
reference 403 (FIG. 4) that instigated the call. The form
module 302 then continues the link reference 403 parse on
any remaining fragment 401 content. This process continues
until the build code sequence 703 (FIG. 7) is completed. If
there 1s an access violation, the form module 302 abandons
the sequence 703 and returns to the access module 300
indicating the fault. With the absence of a violation, the
name 1103 of the primary delivery file 1100, which contains

the framing instructions, 1s 1ndicated in the session node
1000 as the response 204 (FIG. 2) to be transmitted.

Framing constructs have one additional limitation with
regards to targets 710 (FIG. 7) used in link references 403
(FIG. 4) that specify a sub-division. The target 710 of such
a reference may not have a permission requirement greater
than the permission 804 (FIG. 8) of the sequence 703 that
created the frame construct, even if the client 100 (FIG. 1)
1s authorized for the higher permission. When permissions
800 are assigned by the repository designer, the reference
tool 500 (FIG. §) will not allow such a construct.

I claim:

1. In a computer system having means for allowing access
to a repository of data by a plurality of clients over at least
one communications link connected to said computer
system, data access control means comprising:

means for interpreting the format of a data transmission
occurring between said computer system and each of
said clients wherein the transmission itself contains and
1s 1dentified by one or more forresta identities, each of
said forresta identities may be acted upon indepen-
dently; and each of which 1s unique and unrelated to
any means used to identify the parties receiving or
sending such transmission;

means for creating said forresta identity as an n-byte
character sequence having no conflicting meaning
within the coding constructs of a transmission;

means for creating a unique session node managed by the
data access control method, wherein said session node
exists to 1dentify and validate recognized forresta 1den-
tities contained within each such transmission; and

means for creating a construction sequence for each new
transmission, said sequence i1dentifying the compo-
nents and forresta 1dentities used to form the transmis-

sion and where said sequence results from interpreting,
forresta identities.

2. The system of claim 1, wherein said data access control
means further includes:

means for recognizing a part of each transmission as
being a umique forresta identity, which recognition

US 6,466,983 B1

21

means connects to further means for parsing and sub-
stituting constructs that are components of fragment

files;

means for accessing a substitution table containing a set
of substitution records, said substitution records includ-
ing one each of a parse phrase, a substitution index and
a substitution phrase;

means for examining the content of a fragment file, each
said parse phrase being compared with the content of
the fragment file to 1dentify constructs;

means wherein said substitution index is paired with the
object of the construct, said object being a reference to
tangible data held by the repository and contained
within the syntax of the construct, said pairing used as
the placeholder value for the syntax of said construct;
and

means wherein within said means for identifying place-
holders said substitution phrase 1s used as a replace-
ment for a substitution index and object parir.

3. The system of claim 2, further including means for
assigning a specific attribute value to the fragment file when
the content of said fragment file contains a construct that
indicates that the viewable area of the client display device
should be sub-divided into separate areas of information
display.

4. The system of claim 2, further including means for
constructing a response page table that contains a unique
entry for each fragment file list, said list to be used as the
template for selecting and assembling data held by the
repository 1nto a transmission response as a result of receiv-
ing a forresta identity associlated with a separate transmis-
sion; and further including:

means for constructing a reference map table for each said
fragment file list contained within the response page
table, said reference map table containing an entry for
cach placeholder found within fragment files 1dentified
by the list, said entry containing a position field whose
value describes the relative offset position of the place-
holder to other placeholders within the content of the
fragment file, a parse index field whose value 1s the
substitution index of the placeholder and a target field,
whose value 1dentifies the data held by the repository,
said target field value representing the object of the
placeholder.

5. The system of claim 2, wherein the data access control

means further includes:

means for requesting one or more blocks of un-initialized
memory from the operating system of the server com-
puter that 1s the host of the repository, the size of said
memory blocks specified by the value of one or more
obtained random numbers;

means for detecting a signature value present within said
memory block, said signature value 1dentified by exam-
ining the memory block for a repeating value;

means for using the data bits contained within each said
memory block as input to a data field to determine the
values that may be stored as individual entries in the
forresta map table, proceeding to the next memory
block when said data bits of the current block have been
exhausted;

means for creating an entry 1n the forresta map table when
the contents of the comparison field equate to an
cligible symbol;

means for moditying the contents of the comparison field
by bit shifting the contents of the comparison field 1nto

10

15

20

25

30

35

40

45

50

55

60

65

22

discard and supplying new bits from the current
memory block 1 use when the content of the compari-
son field does not equate to an eligible symbol; and

means for increasing the shift count used to modily the
comparison fleld by one each time the contents of said
comparison field equate to a symbol already present as
an entry in the forresta map table, until such time that
the shift count 1s equal to a value that 1s more than half
of the size of the current memory block 1n use, then
resetting said shift count back to one.

6. The system of claim 4, further including means for
permitting a repository designer through a user interface
means to assign a permission value to each and every
fragment file and response table entry.

7. The system of claim 4, further including means for
permitting a repository designer through a user interface to
select zero or more alternates, each said alternate being a
representation of either of a fragment file or response page
table entry, and for permitting said repository designer to
assign each said alternate as an alternative choice to the
original object of a placeholder.

8. The system of claim 1, wherein the means for the
maintenance of forresta identity information of future trans-
missions further comprises:

means for creating and maintaining an expected forresta
identity list, said list having its elements appearing 1n a
order determined by the current execution state, said
clements composed of a pre-determined forresta 1den-
tity that may appear on a future transmission, and
assoclated with said identity, a position value that
specifies the expected relative position of the fragment
file or other forresta 1dentity recognized within a trans-
miss1on;

means for comparing the forresta idenftity recognized
within a transmission with the values maintained by the
expected forresta list to determine 1if the entire trans-
mission should be inhibited; and

means for comparing the forresta identity recognized
within a transmission with the values maintained by the
expected forresta list to determine 1f fragment files
assoclated with the expected forresta list position value
should be inhibited.

9. In a computer system allowing access to a repository of
data wherein access of the repository by a plurality of clients
1s permitted over a network communications link that may
be connected to a server computer that 1s the custodian of the
data repository, comprising 1n combination:

a source of data that comprises the content of the
repository, said data being eligible to be returned to a
client as a result of an access request made by the
client;

means for organizing data into groups of one or more

clements through a user interface based on criteria
established by the designer of the repository;

means for using said groups individually or in combina-
tion 1n the formation of a response to a client based on
the access made by the client;

means for controlling an access that may be executed by
a client, said access being mncluded as a component of
group content,

means for the selective assignment of a permission value
to said group through a user interface, said permission
value specilying the access and combination scope of
the group to which it 1s assigned;

means for determining when the intent of an access 1s to
retrieve data held by the repository;

US 6,466,983 B1

23

means for determining when an access or sequence of
accesses 1s mvalid for the repository;

means for control of accesses that may be executed by a
client, said accesses being components of a named data
Input stream, comprising means for examining the
content of a fragment file to 1dentifty embedded con-
structs that act as an access of data held by the
repository when said constructs are executed by a
client; means for identifying the data that 1s the object
of the access; display means by which the content of
fragment files 1s presented to the repository designer
with said constructs displayed uniquely from other
content; means for permitting the retention, deletion or
alteration of said constructs by the repository designer
through a user interface; and means for substituting
said constructs with a placeholder value;

means for parsing and substituting constructs that are
components of fragment files; further including means
for accessing a substitution table containing a set of
substitution records, said substitution records including
one cach of a parse phrase, a substitution index and a
substitution phrase;

means for examining the content of a fragment file, said
parse phrases are used 1n comparison with the content
of the fragment file to i1dentily constructs;

means wherein said substitution imndex 1s paired with the
object of the construct, said object being a reference to
tangible data held by the repository and contained
within the syntax of the construct, said pairing used as
the placeholder value for the syntax of said construct;
and

means wherein within said means of i1dentifying place-
holders said substitution phrase 1s used as a replace-
ment for a substitution index and object pair.

10. The system of claim 9, further including means for
assigning a specific attribute value to the fragment file if the
content of said fragment file contains a construct that
indicates that the viewable area of the client display device
should be sub-divided into separate areas of information
display.

11. In a computer system allowing access to a repository
of data wherein access of the repository by a plurality of
clients 1s permitted over a network communications link that
may be connected to a server computer that 1s the custodian
of the data repository, comprising 1n combination:

a source of data that comprises the content of the
repository, said data being eligible to be returned to a
client as a result of an access made by the client;

means for organizing data into groups of one or more
clements through a user mterface based on criteria
established by the designer of the repository;

means for using said groups individually or in combina-
tion 1n the formation of a response to a client based on
the access made by the client;

means for controlling an access that may be executed by
a client, said access being included as a component of
group content,

means for the selective assignment of a permission value
to said group through a user interface, said permission
value specilying the access and combination scope of
the group to which it 1s assigned;

means for determining when the intent of an access 1s to
retrieve data held by the repository;

means for determining when an access or sequence of
accesses 1s mvalid for the repository;

10

15

20

25

30

35

40

45

50

55

60

65

24

means for delineating data into groups comprising input

means for reading a named sequence of data, said data

intended for use as a component of repository content,

by separating said data sequence into one or more
fragment files, the content and number of resulting said
fragment files determined by the repository designer
through a user interface; means for associating a frag-
ment file with the data input stream from which 1t was
created, wherein said association causes the enumera-
tion of the fragment file; means for generating a data
structure that lists one or more fragment files, said
structure specifying the re-assembly order of fragment
files, said re-assembly order describing the reconstruc-
tion of the data input stream from which the fragment
files were created;

means for constructing a response page table that contains
a unique entry for each fragment file list, said list to be
used as the template for selecting and assembling data
held by the repository into a client response as a result
of an access made by the client; and

means for constructing a reference map table for each said
fragment file list contained within the response page
table, said reference map table containing an entry for
cach placeholder found within fragment files means for
constructing a reference map table for each said frag-
ment {ile identified by the list, said entry containing a
position field whose value describes the relative offset
position of the placeholder to other placeholders within
the content of the fragment file, a parse index field
whose value 1s the substitution index of the placeholder
and a target field, whose value 1dentifies the data held
by the repository, said target field value representing
the object of the placeholder.

12. The system of claim 11, further including means for
permitting the repository designer through a user interface to
assign a permission value to each and any fragment file or
response table entry.

13. The system of claim 11, further including means for
permitting the repository designer through a user interface to
select zero or more alternates, each said alternate being a
representation of either of a fragment file or response page
table entry, and assign each said alternate as an alternative
choice to the original object of a placeholder.

14. The system of claim 11, wherein further imcluding:

means for determining access to said repository compris-
ing a reference field means, a forresta i1dentity field
means, a destination field means and a supplementary
items field means;

wherein said reference field means identifies the reposi-
tory;

wherein said forresta identity field means conveys the
privilege level and identity of the transmission;

wherein said destination field means identifies the speciiic
data held by said repository that 1s to be assembled 1nto
a transmission for use by the client;

wherein said supplementary 1tems field means contains
zero or more values that are required to qualify the
specific data being retrieved; and

the forresta identity field means 1s adapted to convey the
privilege value and identity of the transmission of
which 1t 1s a component, further comprising means for
creating a forresta map table, each entry in said table
containing one symbol whose appearance within said
table 1s unique, and each said symbol being one of the
upper-case characters “A” through “Z” inclusive, the
lowercase characters “a” through “z” inclusive, and the

US 6,466,983 B1

25

character representations of the digits “1” through “9”
inclusive, wherein one value of the forresta 1dentity 1s
created by selecting at least eight values from the
forresta map table.

15. The system of claim 14, wherein the destination field
means 1dentifies the data held by the repository, further
comprising means for using the identifier of a response table
entry as the value of the destination field.

16. In a computer system allowing access to a repository
of data wherein access control means includes means for
organizing data 1into groups of one or more elements through
a user mterface based on criteria established by the designer
of the repository mncluding:

means for using said groups mndividually or in combina-
tion 1n the formation of a response to a client based on
the access made by the client;

means for controlling an access that may be executed by
a client, said access being included as a component of
group content;

means for the selective assignment of a permission value
to said group through a user interface, said permission
value specilying the access and combination scope of
the group to which it 1s assigned;

means for determining when the intent of an access 1s to
retrieve data held by the repository;

means for determining when an access or sequence of
accesses 1s mvalid for the repository;

means for determining access to said repository compris-
ing a reference field means, a forresta field means, a
destination field means and a supplementary 1tems field
means wherein said reference field means 1dentifies the
repository; wherein said forresta field means conveys
the privilege level and idenfity of the access; wherein
said destination field means 1dentifies the specific data
held by said repository that 1s to be returned to the
client as a result of the access; wherein said supple-
mentary 1tems field means contains zero or more values
that are required to qualily the specific data being
retrieved;

means wherein the forresta field means 1s adapted to
convey the privilege value and identity of the access of
which 1t 1s a component, further comprising means for
creating a forresta map table, each entry in said table
containing one symbol whose appearance within said
table 1s unique, and each said symbol being one of the
upper-case characters “A” through “Z” inclusive, the
lowercase characters “a” through “z” inclusive, and the
character representations of the digits “1” through “9”
inclusive, wherein one value of the forresta field 1s
created by selecting at least eight values from the
forresta map table;

means for requesting one or more blocks of un-initialized
memory from the operating system of the server com-
puter which 1s the host of the repository, the size of said
memory blocks specified by the value of one or more
obtained random numbers;

means for using the data bits contained within each said
memory block as 1nput to a data field to determine the
values that may be stored as individual entries 1n the
forresta map table, proceeding to the next memory
block when said data bits of the current block have been
exhausted;

means for creating an entry 1n the forresta map table when
the contents of the comparison field equate to an
cligible symbol;

10

15

20

25

30

35

40

45

50

55

60

65

26

means for moditying the contents of the comparison field
by bit shifting the contents of the comparison field mnto
discard and supplying new bits from the current
memory block 1n use when the content of the compari-
son field does not equate to an eligible symbol; and

means for increasing the shift count used to modily the
comparison field by one each time the contents of said
comparison field equate to a symbol already present as
an entry 1n the forresta map table, until such time that
the shift count 1s equal to a value that 1s more than half
of the size of the current memory block 1n use, then
resetting said shift count back to one.

17. The system of claim 16, further including means for
creating a forresta value to be used as the value of the
forresta 1dentity, further including means for obtaining a
random number whose value 1s the range of indices that
reference entries 1n the forresta map table; using said ran-
dom number as the index to retrieve the value of the entry
found at that location in the forresta map table and by
repeating the retrieval until sufficient values have been
obtained from the forresta map table to construct a forresta
identity of a length determined by the repository designer;
and further including means to alter the position values
within the forresta map table upon detection of an access
violation.

18. The system of claim 16, further including means for
the 1dentification of an transmission sent by the client to the
repository comprising:

means for allowing a client to send a transmission to the

repository, said transmission containing a forresta 1den-
tity whose value allows acceptance and processing of
the transmission by the repository, said transmission
containing a forresta identity without an assigned privi-
lege level;

means for then assigning to said forresta 1identity a privi-
lege level value;

means for creating a session node data structure that
maintains mmformation particular to forresta i1dentities
supplied by a client, a state table data structure that
maintains historical information regarding previous
transmissions made by the client, a value that repre-
sents the moment 1n time the repository last received a
transmission from the client, a value that represents the
level of privilege assigned to transmissions made by the
client, said privilege level created by the repository
designer through a user interface, a field containing the
destination value of the current transmission, and a data
structure that identifies the data elements of the reposi-
tory that are currently eligible to be used in the con-
struction of a transmission to the client;

means for using a forresta identity assigned to a session
node as the value of the forresta field contained within
a transmission format, said transmission format being a
component of data managed by the repository, and

means for using a forresta identity, unique from identities
contained within transmissions exchanged between the
client and the repository, to 1dentify a session node
within a table of zero or more session nodes.
19. The system of claim 18, wherein the maintenance of
historical 1nformation regarding previous fransmissions
made by the client further comprises:

means for creating and maintaining a destination list, said
list having elements appearing 1n a specific order, said
clements each having a value that specifies a recog-
nized transmission format and a position value speci-
fying the relative position of said format within a data
stream, said list being updated on demand;

US 6,466,983 B1

27

means for creating and maintaining an expected forresta
list, said list having elements appearing in a speciiic
order, said elements each having a value that specifies
a recognized forresta identity and a position value
specitying the relative position of a transmission format
within a data stream, said list being updated on
demand; and

means for comparing the values of the forresta and
destination fields of a transmission with the values of
cither of the destination and expected forresta lists, to
determine whether or not said transmission should be
inhibited.

20. A data access control method for dynamically con-
structing a transmission for use by a client, said transmission
individualized by including at least one forresta identity
within the transmission, said transmission comprised of data
clements maintained by a repository and assembled together
and delivered to the client as a result of a recognized forresta
identity being received by the repository from said client,
comprising the steps of:

said repository first recognizing said forresta identity by
examining at least one known location within the
syntax of the transmission for a value that represents an
n-byte character sequence having no conflicting mean-
ing within the coding constructs of a transmaission;

creating a session node associated with the transmission
containing the recognized forresta identity, said format
of the session node indexing at least one forresta
identity within the transmission and identifying and
validating recognized forresta identities contained
within each such transmission, and using the contents
of said session node to determine 1f the forresta value
1s valid within the context of the transmission 1n which
it was recognized;

extracting destination and supplementary 1tems fields that
are mdependent of the forresta 1identity from the format
of a transmission associated with a recognized forresta
1dentity received by the repository, using said extracted
fields to determine what data 1s eligible to be returned
as part of a new transmission created by a construction
sequence;

creating a construction sequence that indexes the compo-
nents and forresta identities used to form a new
transmission, and where the values of said sequence
result from recognizing and validating forresta 1denti-
ties so received; and

processing an entry in a response page table identified by
the value of the destination field, said processing
including the assemblage of a transmission which
includes forresta 1dentities, said transmission com-
posed of fragment files 1dentified by their association
with said response page table entry, said transmission
suitable for use by the client, said assemblage remain-
ing 1ntact at the repository until received by the client.

21. The method of claim 20, including the further step of
selecting alternates in succession until one or none succeeds
in the processing of a response page table entry, if the
privilege value of the session node, said session node
containing a destination field that references said response
page table entry, does not equal or exceed the permission
value assigned to the original object to which the alternates
exist.

22. The method of claim 20, including the further step of
interpreting a placeholder contained within a fragment file
and deciding from its placement and structure the destina-
tion value and forresta identity that may replace the
placeholder, said step:

5

10

15

20

25

30

35

40

45

50

55

60

65

23

including the use of a jump table, said jump table con-
taming a list of parsing references, each such reference
identifying a substitution phrase that is recognized as
being the next expected placeholder contained within
the fragment file;

cach such recognized substitution phrase identifying the
reference back to the original parse phrase for which
the placeholder was originally substituted; and

cach such entry 1n the jump table possessing a permission
value, assigned through a user interface, to be used 1n
comparison with the permission value assigned to the
forresta 1dentity associated with the current transmis-
s101.

23. The method of claim 20, further comprising the steps
of:

determining when the processing of a transmission will
subdivide the display of the client mto multiple view-
able areas;

creation of a transmission that exists in multiple parts,
cach said part wholly contained and wherein at least
one part describes the characteristics of one or more of
the subdivisions and there exists at least one part for
cach subdivision that provides the display content of
sald subdivision;

cach of said parts existing temporarily and being
destroyed upon being de-referenced or due to a per-
mission violation attributed to the session node to
which the parts by way of their forresta 1dentities are
assoclated or due to a transmission containing a forresta
identity whose reception was outside a permitted
per1od;

preventing the assemblage of a transmission from any
said parts that provide content, said transmission con-
taining a forresta 1dentity possessing a permission
higher than that assigned to the part that describes the
subdividing;

updating of a session node associated with the forresta
1dentity of a transmission part providing content to said
display subdivisions; and

conversion of a placeholder contained within any said
part, said placeholder representing a new 1nstance of a
subdivision, mnto a transmission format that permits
inclusion of a transmission part, said transmission part
being void of a forresta identity or destination value
and remaining executable by the client.

24. The method of claim 20, further comprising the steps
of:

creating and updating a session node list dynamically, said
l1st containing one entry for each session node that has
an assigned privilege value;

validating the authenticity of a session node using a value
equivalence by comparison test, said values being one
cach of the repository memory address of the session
node and the repository memory address of session
nodes stored as entries 1n the session node list;

further validating the authenticity of a session node using
a value equivalence by comparison test, said values
being one each of a signature value assigned to a
session node by the client and the signature value found
attached to a session node by the repository, both said
signature values being comprised of a forresta identity,
said 1denfity unique from 1dentities contained within
transmissions; and

examining each session node present on the session node
list for a permitted reception of transmission period

US 6,466,983 Bl
29 30

failure, said failure being tested for at each instance of status of all outstanding forresta identities each time

receipt of any access intended for the repository, and by any forresta identity 1s recognized; and

removing all said nodes that show said failure from the examining forresta identities for their use and placement

session node list, said list having one entry for each within the current transmission, any said violation of

session node. 5 said expected use and placement 1nhibiting the use of
25. The method ot claim 20 further including the steps of: any other transmissions containing a forresta identity
determining if any client has failed to make a transmission between the client and the server.

containing one or more forresta identities to said
repository within a permitted period by examining the %k ok k%

	Front Page
	Drawings
	Specification
	Claims

