US006453383B1
a2 United States Patent (10) Patent No.: US 6,453,383 Bl
Stoddard et al. 45) Date of Patent: Sep. 17, 2002
(54) MANIPULATION OF COMPUTER VOLUME 5,956,745 A * 9/1999 Bradford et al. 711/137
SEGMENTS 6,185,575 B1 * 2/2001 Orcuttcoovvvvvenennne. 707,200
6,185,666 Bl 2/2001 Murray et al. 711/173
(75) Inventors: Theron M. Stoddard, Highland, UT
(US); Blaine S. Dennis, Alpine, UT OTHER PUBLICATIONS
(US); Robert S. Raymond, Orem, UT PCT/US99/18448 Written Opinion, Feb. 22, 2001.
(US) Response to Written Opinion, Feb. 28, 2001.
_ _ RESIZE.NLM, no later than Feb. 20, 1998.
(73) Assignee: PowerQuest Corporation, Orem, UT File Services, no later than Mar. 6, 1999.
(US) “Adding Vol. Segment in NetWare”, Sep. 22, 1998.
(*) Notice: Subject to any disclaimer, the term of this Bierer et alj’ NEIWW_E 4 for Prof e:sswnals, Ch. 23, 1993.
patent is extended or adjusted under 35 Custer, Inside the Windows NT File System, 1994.
US.C. 154(]3) by 0 days. * oited by examiner
(21) Appl. No.: 09/374,556 Primary Examiner—Do Hyun Yoo
(22) Filed Auo. 13. 1000 (74) Attorney, Agent, or Firm—Computer Law++
iled: ug. 13,
(57) ABSTRACT
Related U.S. Application Data | _ _ _
(60) Provisional application No. 60/124,401, filed on Mar. 15, Methods and systems are provided fO‘I' manipulating data 1n
1999, and provisional application No. 60/133,335, filed on segmented environments such as an instance of a NetWare
May 10, 1999. file system. Unlike the conventional approach that relies on
(51) Inte CL7 oo GO6F 12/02 I'PISK and the install.nlm and nweonfig.nlm utilities in
(52) U.S.CI T1/112: 707/205: 711/162: NetWare, the 1nvention does not destroy user data on the
R 711/170711 173: 275 1: 273 /2" 73 /106 disk after the data is copied to tape or other intermediate
: ’ ’ ’ ’ storage. Segment-related features such as limits on the
(58) Field O7f S?fg(l:h 162165170—17??117/0171 /12_015147’ 113%1’ number of segments; various configurations of segments,
’ ’ ’ ’ ’ 5 1 06 volumes and partitions among drives; and data mirroring,
’ are handled by the invention during “in place” manipula-
: fions. Segments, volumes, partitions, and segment clusters
(56) References Cited or blocks may each be resized. Segments may be merged.
U.S. PATENT DOCUMENTS Volumes may be consolidated on a single drive. Other
5675760 A 10/1997 Ruff et al T3 manipulations and various combinations of manipulations
675, utf etal.coooeenills -
5706472 A 1/1998 Ruff et al. .ooovvvvevvnn.. 1173 are also provided.
5,907,672 A 5/1999 Matze et al.c..ce.eenee. 714/8
5030831 A 7/1999 Marsh et al. 711/173 39 Claims, 6 Drawing Sheets

SELECT UNIT(S) (SEGMENT, VOLUME, PARTITION, DRIVE) 600

v

GAIN EXCLUSIVE ACCESS TO UNIT(S) 602

v

VERIFY INTEGRITY OF UNIT(S) 604

v

MANIPULATE UNIT(S) 606
CHANGE VOLUME SIZE 610 || CONSOLIDATE VOLUME 620

CHANGE SEGMENT SIZE 612 SCATTER SEGMENTS 622

CHANGE PARTITION SIZE 614| [COPY/MOVE SEGMENT 624

CHANGE CLUSTER SIZE 616 COPY/MOVE VOLUME 626

MERGE SEGMENTS 618 COPY/MOVE PARTITION 628
CONSOLIDATE SEGMENTED REDISTRIBUTE DATA
PARTITIONS 630 BETWEEN SEGMENTS 632
REPLICATE DATA BETWEEN UPDATE BAD SECTOR
DISKS 634 IDENTIFICATION 636
REBOOT 608
| !

VERIFY INTEGRITY OF UNIT(S) 604

Voo '

U.S. Patent Sep. 17, 2002 Sheet 1 of 6 US 6,453,383 Bl

100

102 Iu..

Fig. 1
204 300
302
302
302
200 202 310
IPL 204 304
204 304
204 304
204 308
206 306

Fig. 2 Fig. 3

U.S. Patent

DOS 404

Sep. 17, 2002

Sheet 2 of 6

NETWARE PARTITION 408

SYS

%

412,420,408 | VOL1

SYS VOLUME 420

.

NTFS 406 | SYS 4

US 6,453,383 Bl

414. 422 408 y— DPRIVE 400

T

VOL1 VOLUME 422

v

'SYST

L

416, 420, 410 | VOL1

~NETWARE PARTITION 410 —

418,422,410 |

DRIVE 402

Fig. 4

>

|EATA REPLICATOR 516

'COMPUTERA 502 | [COMPUTERB 502
'PROCESSOR 504 ' PROCESSOR 504
| | MEMORY 506 | ~ MEMORY 506
'SYSTEMTABLES| | | [SYSTEM TABLES
508 s |
SEGMENTED ~ SEGMENTED |
STORAGE 510 | I | STORAGE 510
DRIVE 512 | | DRIVE 512 |
DRIVE 512 | ' DRIVE 512
] L .___._
SYSTEM TABLE UTILIZER 514

1|
]

EM 500 I

INTEGRITY CHECKE

8

I

LUSER INTERFACE 920

Fig. 5

U.S.

Patent Sep. 17, 2002

Sheet 3 of 6

I

GAIN EXCLUSIVE ACCESS TO UNIT(S) 602

v _

VERIFY INTEGRITY OF UNIT(S) 604

SELECT UNIT(S) (SEGMENT, VOLUME, PARTITION, DRIVE) 600

US 6,453,383 Bl

!

|

MANIPULATE UNIT(S) 606
 CHANGE VOLUME SIZE 610 | [CONSOLIDATE VOLUME 620 |

CHANGE SEGMENT SIZE 612

J

ICHANGE PARTITION SIZE 614

CHANGE CLUSTER SIZE 616 |

s"CAT'__r_ER SEGMENTS 622 |

| COPY/MOVE SEGMENT 624

| COPY/MOVE VOLUME 626

f MERGE SEGMENTS 618 j

COPY/MOVE PARTITION g"g_ |

ﬁ

CONSOLIDATE SEGMENTED
PARTITIONS 630

| REPLICATE DATA BETWEEN | |
DISKS 634

 REDISTRIBUTE DATA
BETWEEN SEGMENTS 632

L

UPDATE BAD SECTOR

IDENTIFICATION 636

VERI

_y
REBOOT 608
v
FY INTE
T

GRITY OF UNIT(S) 604

Fig. 6

U.S. Patent Sep. 17, 2002 Sheet 4 of 6 US 6,453,383 Bl

FPR T YN RN IR FE RN
llll_iilil_liliii.'i

L L O L

.-I
&
L)

L]
L]

.i.-l
[
-
i‘il
L
u

B -
-:::-:;.*:-:::;:-:-:-:::-:-: e

F uEPrF

L}
1.‘1 I.fll.
L} L

] i'l -'.i. [
']

WAl
l":'

'-l:l:l

ity

'.‘I "
-l.‘l" - -. 1 -'. “I -I

.‘I" -'I“ I“I "“ L] ‘. *Ii‘ "

e

Fig. 7

‘I.I.IFI‘I-I‘I-.-.I‘II-.I‘I' I‘I‘l‘l‘l‘l.l-l-‘l [] L | R FENRERS
i T s at i e C e "
P i A L m amla T aTn T el e e e .
R SR 2 o e :
Bl Frenwema+ r - [3 - "
e e DR AR -
'ﬂ‘l‘l .#‘l '# .i‘i.i .‘i .-i .t.l.-! -I-.l.-l-

LI N NN)

R N N]

l‘-'l‘.'l‘..l.l.l.l'l'.l‘...

&]] u .
LN]
I-_I.I-I‘I‘ e ‘i‘. .1‘i“l L L "!-'.I-‘I"- .
ettt L] o e e Y
5 T F FE B I N RN BN "
rada k] .'I".I'I""l LN I) »
I‘I-I‘I L e
u_rw L ul o | Y
. FE9
s e)
"y u -~
44 & :....‘

AANAR R
%44 %4hd LI

704 30 Mb 802 804

Fig. 8

i.'.'1‘.1 - IlI.'lI'I. A A
e " 'I.l.i" LN e | -.:':':-
Lo I W »

ERE Ny PR &
rr e Rt d by B FIR
T

'III"IIII‘"I-I‘III
L] L LI |
L |

e
L]

L]
* Bk

- N
‘i‘.ﬁ
da m
L N
u

-+

'y
t_-:-t_
)

-.-."

Fig.

" e m——
- 'i:' L A T
l‘ - :‘: .
- -‘!. '. -I.q'-l
s wagee] e
ST a0y
AR o
ey a'-|:|:
i nww -
e % T
e . e e B
Pt B] * L L
e e :1.: ::: _:'ll'l"ll'l.i.l‘ll.'-.il- -
1 .‘r ." -' r:. - .:' .l-‘-
LN l‘l'l'l‘l‘l- :ll.

T0Mb 1000 1002

Fig. 10

U.S. Patent

'l:l:i'l-‘i.l:i-'l'i.- v
. l-‘l._I.I:I:‘I:llll:l: -I:I-:I:ll:i:
M A&

e

]
(]
o I |
n
]

T
ll'_l-"l-ﬂl'l

n I#I-‘-.I‘l' amErEw
e mw

LI

LK

+ H
I"‘

i.i.i

'y

el :-:t:i:-)
LI JE N N |

Sep. 17, 2002

ook d koA

.
YT T uw YT "‘-'.-“.-
L b i]

L
e T e s "
R A
l..ﬂl‘. :‘:‘:::.:.:‘*‘:':.' q:w.ll- -'-' L UL L

NN e RO W

Sheet 5 of 6

L LR

I'-‘l-‘.‘I

[

') Ll)

ran P

b L -I.

LR B B R R

14 i
L] l'i‘-i

I'I“I'i -

L ‘!1'- -; I:!: I: I:I : I:l-:_: ::::-

R]
li._illlrillllllllllllll-ll
[et ok g e |
LR e '

.

el
.I L |

". I‘-I 'I' :‘. .:

k] L R A) e E]
-.-'- -.-.-'_- U Sl e o 'l"‘l_.l.‘l'._ LN A
e e, l:l:l_:_l:l: ..'-...-.-'::::::'- . q'-.':'q.'

rd
- ok o

PN N
B gEs FIETFEEEN
R e R
L | '. -ll‘I'-l':..'lrl'.."‘l‘l‘:'i.-
R R AR
N P e e e e S
LI A B LEEBNEEELEELREEELEREERREREERENELRI]

)
ata e e

n Tntata

L L

- -

- et

nmE a'wnta”

i nm'n" "

t'_ll LI]
- nx"n

.I-il.l L] I.l-l

Hdhrd Ll]

-'.-.r‘] l‘l

anEm

ran

L

- E .

.-.-.‘-

h._l []

L | +*
L
. '!'1

L el le
L]

LI |
ST
L] + & & B d P
e i‘*'."-‘.'-'I'-I-I-I—I—l'-‘l"l‘i"'“

Ul el e i)

I'F‘_I‘a'l'l"'ll‘lil‘llll'l'l-

L]
ImrrFryeras L)

A :l-_:l- : * :i-: :: -":' .

1
-.I".l‘:.:::::::::.lll.l.ﬁ.l‘-l.l.q“.‘.j.-

r -
L L} !‘-I'I‘l-:

AT

r "‘I ." ."ll¥ .'. Fl"‘I‘ "‘I *I'i‘
I.I b I‘l .‘I .‘-" .'. [] .". I.'.- 4 .l-.l

L]
."f .‘I !
SR
'.‘l L] - 1 -l '_I‘ '- ‘i -".‘I .‘i. [|
AR AN
AR ‘l.qll

SR

M
"

- L]
nFTEF+5

i'] I'l ‘l"l ':1 :‘-: ‘:‘ :-:

‘ - . ' '-lil- - L]
- -.I:-I:l‘-li'.l-l .i'l.l'l.lill'lil

Ay A i,

US 6,453,383 Bl

o

KA

T ."I-'-I‘I-I.
| | -. :‘
4
‘—. J L | & l' I'I.‘-.l-'ll

LK

L L L B L L
L I N R R
DM

R N
Ny

LB RN RN NN K]
T BT RN EEEEESAN
L

'I‘I.I"I.-
-

I.I‘E-I‘I.I'I.I.I.l"-l
.11-!-"
l"l'll L | 'I"lli_l'l'l_'l‘l'*l*

T ¥y ¥uEIF®sFr LI | BN |
L aw b R LI I I BN W]
by ‘l-‘!.!‘i-'i'l.l:i.l-l e
] = -

LN
-, . '.' . . . -:.:‘-‘. - .-I‘l'. :‘
L] - EEE RN L K | L | pLEkn L]
-I: n ':. ! :.i‘ o ! I.‘- I‘-I-‘.l "
a4 -, 1

.II
L] -I‘I

" ‘.I .i .l -:

"l‘ I'.. -l-

AN R A

"-'-'-:."-"'-'

.-.l...l‘l E
L i.lllli L

it

=
i-_-l il L]
wipy

U.S. Patent Sep. 17, 2002 Sheet 6 of 6 US 6,453,383 Bl

1500 —

Disk Partition Free Space Location

1 1 Sys(0), 500 Mb Free, Users(0)
Users(0), 500 Mb Free, Users(1)

1 1

1 1 Users(1), 300 Mb Free
3 2 1000 Mb Free
5 1

Staff(1), 800 Mb Free

Fig. 15

US 6,453,383 Bl

1

MANIPULATION OF COMPUTER VOLUME
SEGMENTS

RELATED APPLICATIONS

The present application relates to and incorporates by

reference commonly owned copending applications Ser. No.
60/124,401 filed Mar. 15, 1999 and Ser. No. 60/133,335 filed

May 10, 1999.

FIELD OF THE INVENTION

The present invention relates to manipulation of computer
volume segments without archiving or destroying user data,
and more particularly to tools and techniques for resizing,
moving, merging, consolidating, scattering, and/or mirror-
ing volume segments such as volume segments found in
secgmented partition computer systems.

TECHNICAL BACKGROUND OF THE
INVENTION

Computers utilize a wide variety of disks as storage media
for user data. Disk technologies currently provide optical
disks, magnetic disks, hard disks, floppy disks, and remov-
able disks, and new disk technologies are being actively
researched and developed. Indeed, some disks used by
computers 1n the future may be cubical or some other shape
rather than flat and circular. Investigation 1nto non-volatile
semiconductor storage devices 1s ongoing.

FIG. 1 illustrates a disk 100 attached to a disk drive 102.
The disk 100 illustrates physical characteristics of both
floppies and hard disks; cubical disks or other disks may
appear 1n different configurations than the one shown here.
The disk 100 contains a number of concentric data cylinders
such as the cylinder 104. The cylinder 104 contains several
data sectors, including sectors 106 and 108. The sectors 106
and 108 are located on an upper side 110 of the disk 100;
additional sectors may be located on a lower side 112 of the
disk 100. The sides 110, 112 of the disk 100 define a platter
114. A hard disk may contain several platters. The upper side
110 of the disk 100 1s accessed by a head 116 mounted on
an arm 118 secured to the drive 102. Optical or cubical disks
may be accessed by other means, such as photoemitters or
photoreceptors.

A given sector on the disk 100 may be identified by
specifying a head, a cylinder, and a sector within the
cylinder. A triplet specitying the head number, cylinder
number, and sector number 1n this manner 1s known as a
“physical sector address.” Alternatively, a given sector may
be 1dentified by a logical sector address, which 1s a single
number rather than a triplet of numbers.

An operating system manages access, not only to the disk
100, but to other computer resources as well. Resources
typically managed by the operating system include one or
more disks and disk drives, memory (RAM and/or ROM),
microprocessors, and I/O devices such as a keyboard,
mouse, screen, printer, tape drive, modem, serial port, par-
allel port, or network port.

Many disks mold the available space mto one or more
partitions by using a partition table located on the disk. A
wide variety of partitions are used, and more partition types
will no doubt be defined over time. A partial list of current
partitions and their associated file systems 1s given 1n U.S.
Pat. No. 5,930,831 and incorporated here by reference. The
list 1includes a variety of 12-bit, 16-bit, and 32-bit FAT file
systems and numerous other file systems. Tools and tech-
niques for manipulating FAT and certain other partitions are

10

15

20

25

30

35

40

45

50

55

60

65

2

described in U.S. Pat. Nos. 5,675,769, 5,706,472, and 5,930,
831 assigned to PowerQuest Corporation, incorporated
herein by this reference.

Some file systems provide useful features not available
under many existing FAT file systems. Examples include the

NT File System (“NTFS”) and the Novell NetWare file
system (“NetWare FS”) (NetWare is a mark of Novell, Inc.).
Discussions of NTFS are provided in “Inside the Windows
NT File System”, by Helen Custer, ISBN 1-55615-660-X, as
well as 1n marketing and technical materials available 1n
hard copy and on the Internet from Microsoft Corporation
and other sources. Discussions of NetWare FS are provided
in Chapter 23 of “NetWare 4For Professionals™, by Bierer et
al., ISBN 1-56205-217-9, as well as 1n marketing and
technical materials available 1n hard copy and on the Internet
from Novell, Inc. and other sources. Some of the comments
herein apply only to certain versions of NetWare, such as
those prior to version 5. Those of skill in the art will note that
these discussions sometimes involve unimplemented speci-
fications or mere speculations, particularly m the case of
NTEFES. NTES features include, without limitation: use of a
database paradigm to support indexing of file attributes;
multiple data streams per {file; blurring of the distinction
between system and user areas; recoverability by use of a
log; recoverability by use of transactions; support for large
disks; security descriptors constraining access to file objects;
Unicode names; support for POSIX features such as links;
bad cluster remapping; caching support; virtual memory
support; system structure compression; balanced tree direc-
tory structures; support for suballocation whereby a cluster
may hold data belonging to one or more files; support for
volume spanning, volume sets, stripe sets, mirror sets, and
other features which divide a file system’s contents between
disks or partitions; and a relocatable system area.

One partition table composition, denoted herein as the
“IBM-compatible” partition table, 1s found on the disks used
in many IBM® personal computers and IBM-compatible
computers (IBM is a registered trademark of International
Business Machines Corporation). Although IBM is not the
only present source of personal computers, server
computers, and computer operating systems and/or file
system software, the term “IBM-compatible” 1s widely used
in the industry to distinguish certain computer systems from
other computer systems such as Macintosh computer sys-
tems produced by Apple Computer (Macintosh is a market
of Apple Computer). IBM-compatible partition tables may
be used on a wide variety of disks, with a variety of partition
and file system types, 1n a variety of ways.

As shown 1 FIG. 2, one version of an IBM-compatible
partition table 200 includes an Initial Program Loader
(“IPL”) identifier 202, four primary partition identifiers 204,
and a boot 1dentifier 206. As shown 1n FIG. 3, each partition
identifier 204 includes a boot indicator 300 to indicate
whether the partition 1n question 1s bootable. At most one of
the partitions in the set of partitions defined by the partition
table 200 1s bootable at any given time.

Each partition identifier 204 also includes a starting
address 302, which 1s the physical sector address of the first
sector 1n the partition 1n question, and an ending address
304, which 1s the physical sector address of the last sector in
the partition. A sector count 306 holds the total number of
disk sectors 1n the partition. A boot sector address 308 holds
the logical sector address corresponding to the physical
starting address 302.

Some IBM-compatible computer systems allow “logical
partitions” as well as the primary partitions just described.

US 6,453,383 Bl

3

All logical partitions are contained within one primary
partition; a primary partition which contains logical parti-
tions 1s also known as an “extended partition.”

Each partition 1dentifier 204 also includes a system 1ndi-
cator 310. The system indicator 310 identifies the type of file
system contained in the partition, which 1n turn defines the
physical arrangement of data that 1s stored 1n the partition on
the disk 100 (FIG. 1). Values not recognized by a particular
operating system are treated as designating an unknown file

system. The file system associated with a specific partition
of the disk 100 (FIG. 1) determines the format in which data
1s stored 1n the partition, namely, the physical arrangement
of user data and of file system structures in the portion of the
disk 100 that 1s delimited by the starting address 302 and the
ending address 304 of the partition 1n question. At any given
time, each partition thus contains at most one type of file
system.

Some computer systems, such as many using NetWare FS
or NTFS, mold disk storage mto “segmented partitions” or
“segmented volumes™ with an approach somewhat different
from that described above. On such systems, a “volume” 1s
an mstance of a file system. Hard drives may be divided into
partitions, and volumes may be divided 1nto “segments”. A
“segmented volume™ 1s a volume which does or can contain
segments, 1.€., a segmentable volume. A “segmented parti-
fion” 1s a partition which does or can contain segments, 1.¢.,
a secgmentable partition. For instance, a type 06 partition 1s
not a segmented partition. A given partition may hold zero
or more segments from zero or more volumes which are
instances of one or more file systems; the cases of primary
interest here are those 1n which one or more segments from
one or more volumes are present.

The file system structures on disk do not necessarily
reflect the presence of segments. Some NetWare FS struc-
tures can define the location and/or extent of segments, for
example, but structures manipulated by NTFS routines do
not ordinarily define segment extent or location. Segments
may be created with conventional tools 1n order to improve
response times or to provide fault tolerance. For example, in
a Microsoft Windows NT environment, the Disk Adminis-
trator tool can be used to set up an NTFS volume that spans
multiple disk drives. As another example, FIG. 4 illustrates
a configuration in which two drives 400, 402 are molded.
Drive 400 includes a DOS partition 404 and a first NetWare
partition 408, while drive 402 includes an NTFS partition
406 and a second NetWare partition 410. A NetWare parti-
tion 15 a section of a disk 100 which i1s allocated to NetWare
by a partition table; the partitions 404, 406, 408, and 410 are
defined using a partition table such as the table shown in
FIG. 2. NetWare partitions may not span disks. Segmented
partitions 1n other environments may be subject to the same
or similar requirements. Although specific definitions of
“disk” and “drive” are given above, those of skill in the art
will recognize that these terms are sometimes used inter-
changeably when the distinction between the media and the
controller/drive mechanism 1s not important.

The first NetWare partition 408 includes two volume
scoments 412 and 414, and the second NetWare partition
410 includes volume segments 416 and 418. The volume
secgments 412 and 416 belong to SYS volume 420, while the
volume segments 414, 418 belong to a VOL1 volume 422.
More generally, a NetWare segment 15 a section of a Net-
Ware volume, and a NetWare volume 1s a section of one or
more NetWare partitions which 1s formatted for a file system
such as NetWare FS. NetWare partitions can include seg-
ments from more than one NetWare volume, but a given
NetWare partition can hold at most 8 segments. NetWare

10

15

20

25

30

35

40

45

50

55

60

65

4

volumes can 1nclude several NetWare segments on multiple
disk drives, and each volume may hold up to 32 segments.
Segments and volumes 1n other environments may be sub-
ject to the same or similar requirements.

Those of skill m the art will recognize that FIG. 4
illustrates only one of the many possible configurations. For
instance, all segments belonging to a given volume can be
stored on the same drive. Likewise, a given segmented
partition may hold several segments from a given volume. In
addition, a given system will not necessarily contain an

NTFS partition, and/or might contain several DOS, FAT16,
FAT32, HPEFS, NTFS, or other partitions. NetWare FS 1s a
widely used example of a file system whose 1nstances are
secgmented volumes, but other file systems may also be
instantiated with volumes, segments, and partitions 1n an
analogous manner and therefore be suitable for beneficial
manipulation according to the present mvention. Finally,
secgmented volumes are used most commonly on computer
network servers, but may also be used on client or standa-
lone machines.

It 1s sometimes desirable to alter the configuration of a
computer system which 1s using NetWare FS or another
secgmented partition environment. However, even sophisti-
cated approaches to partition manipulation, such as those
described in U.S. Pat. Nos. 5,675,769, 5,706,472, and 5,930,
831, or 1n the non-provisional pending applications 1denti-
fied herein, do not fully address either the complexities or
the opportunities presented by volume segments. Less
advanced approaches are even less helpful.

One conventional approach begins by copying all neces-
sary user and system data off the disk to a temporary storage
location such as a tape or additional disk(s). The data copied
includes without limitation the contents of files created by
the user such as textual documents and spreadsheets, the
contents of files required to run applications such as word
processors, and system data such as directory information.
Some mternal file system data such as sector allocation maps
may not need to be copied, but 1s often copied anyway.
Familiar disk utilities such as FDISK, the install.nlm and
nwconflg.nlm utilities 1n NetWare that manipulate partitions
and volumes, and formatting utilities are then used to update
the disks (thereby destroying some or all of the user data on
the disk). Finally, the data is copied back into the newly
coniigured disks. During this copying process the file system
copy or restore utility creates appropriate new file system
structures reflecting the current locations of data on the disk.

This approach to volume segment and partition manipu-
lation has several drawbacks. A temporary storage device
with adequate storage capacity may not be readily available
or affordable under the circumstances. Even if temporary
storage 1s available, copying large amounts of data from the
disk to temporary storage and then back again can take a
substantial period of time. In addition, manipulating disks in
this manner 1s confusing and dangerous for many computer
users. Users who are unfamiliar with the numerous technical
details required as input to the conventional utilities may
casily and inadvertently destroy data and/or make 1t neces-
sary to further modify the disks with FDISK or the install or
nwconflg NLMs again, to reformat again, and to once again
copy all the data from temporary storage into the reformat-
ted partition. Even 1f everything works as desired the first
time, this approach to partition and/or volume segment
modification can be very time-consuming. With a typical
disk holding several gigabytes of data the process may
require several hours to complete successiully.

Manipulation of volume segments 1s further complicated
when disk contents are subject to disk mirroring or disk

US 6,453,383 Bl

S

duplexing. Disk mirroring and disk duplexing are collec-
fively referred to herein as “data duplicating”. Under disk
mirroring, two hard disks are accessed through a single disk
channel. Each time data 1s sent to the first disk, the same data
1s subsequently sent to the second disk through the shared
channel so that the data will be preserved even if the first
disk crashes. Under disk duplexing, two copies of data are
sent at the same time through two disk channels to two hard
disks. Once again, the goal is to protect the data against loss.
With either form of data duplication, volume segment
manipulation i1s complicated by the need to perform the
manipulation(s) without substantially increasing the risk of
data loss by unsuitable interference with the data duplication
Process.

Thus, 1t would be an advancement in the art to provide
improved tools and techniques for manipulating volume
secgments and their attendant partitions.

It would also be an advancement to provide such
improved tools and techniques which operate safely and
ciiciently in the presence of data duplicating.

Such improved tools and techniques are disclosed and
claimed herein.

BRIEF SUMMARY OF THE INVENTION

The present mvention provides tools and techniques for
manipulating volume segments. Possible manipulations
include resizing a volume segment, moving a volume seg-
ment within a given partition or between partitions, merging
two volume segments to create a single volume segment
containing the data previously found in the two segments,
and variations on these manipulations such as consolidating
the segments of a given volume on the smallest possible
number of drives or on a given set of drives, scattering the
secgments of a given volume among several drives, and
manipulating mirrored volume segments. The 1nvention also
provides tools and techniques for safely and efficiently
manipulating a partition that contains volume segments,
including the manipulation of volume segments when a
NetWare FS or other segmented partition i1s resized by
moving the partition’s left boundary (the boundary closest to
the file allocation table).

One embodiment resizes a single segment of a segmented
volume by moving the left or right segment boundary and
making appropriate adjustments to system tables. This may
require relocating the system tables as necessary to make
them be correctly located i1n the segment, that 1s, to place
them where the file system or other system software expects
to find them. A segment can be reduced to a minimum size
to reduce the amount of space used by the segment. A
segment can also be enlarged to a maximum size to 1include
available free space which 1s adjacent to the segment. The
amount of free and used space in other segments of the same
volume 1s not necessarily changed.

Volume segments are reduced by relocating all used
blocks as necessary mnto an arca of the segment which 1is the
desired reduced size, and then adjusting file system or other
system tables to reflect the new size. Volume segments are
enlargced by increasing file allocation tables to reference
newly added space and by adjusting system tables to reflect
the new size. The NetWare partition “redirection area”, also
known as the “hot fix” area, 1s resized down to the default
size when resizing the partition to make the partition smaller.

One embodiment moves a volume segment to free space
within a NetWare or other segmented partition. The free
space may be adjacent to the segment which 1s being moved,
or the free space may be within the same segmented partition

10

15

20

25

30

35

40

45

50

55

60

65

6

but not adjacent because other volume segments are located
between the segment which 1s being moved and the free
space. The free space may also be on a segmented partition
on another disk. The user selects a volume segment and
selects the free space to which the volume segment will be
moved. Only free space that 1s within a segmented partition,
or free space that 1s not in any partition and that 1s large
enough to accommodate the segment being moved, can be
selected. After the volume segment 1s successiully copied to
its new location, the original copy of the segment 1s deleted.
System tables within both the source and destination
partitions, such as volume definition tables, are updated to
reflect the change.

Sectors that go bad 1n a NetWare partition are marked and
the data that would have been stored in the bad sector is
moved to a safe sector in the NetWare redirection area. Bad
sectors are similarly avoided 1n other segmented partitions
by using a bad sector file, a bad sector list, or a similar
mechanism. During the read portion of a move, the bad
sector table 1s checked, the bad sectors are 1gnored, and the
ogood sectors and the redirected sectors are moved directly to
the new partition, so fewer unnecessary reads of bad sectors
are performed. The destination partition may also have bad
sectors to avold by redirecting data. The invention checks
the destination’s bad sector table, so that data 1s written
directly to the redirection area instead of onto the bad sectors
in the destination partition.

One embodiment combines two NetWare or other seg-
ments. The segments must be from the same volume and
they must be adjacent to each other in the same segmented
partition. They must also be sequential, e.g., volume seg-
ment) next to volume segment 1, or volume segment 4 next
to volume segment 5, but not volume segment 3 next to
volume segment 5. The resulting combined volume segment
contamns all of the original segments’ data, in the same
logical location as 1n the original two segments. The number
of segments 1n the volume and 1n the segmented partition 1s
reduced by one. This ability 1s especially useful when users
have reached the maximum number of eight volume seg-
ments in a NetWare partition (at least two of which are
segments from the same volume) and need to create addi-
fional segments in that partition.

The user determines which two volume segments will be
combined. If necessary, any free space between the two
segments 1s removed so that the two segments are directly
adjacent to each other. Free space between the segments may
be unaccounted space 1nside the left segment which 1s
beyond the last block of that segment, or free space may be
located between the two segments and not be 1n use by either
secgment. If the free space 1s not on a block boundary of the
secgments’ volume then all sectors 1n one segment must be
moved until the free space between the segments 1s on a
block boundary or there 1s no free space between them. Once
the segments are directly adjacent to each other, the merge
1s completed by adjusting the left segment’s size to include
the right segment’s data and relocating the file allocation
tables as necessary. The left segment becomes the single
resulting segment.

Resize, move, and merge manipulations may be combined
in various ways to consolidate the segments of a given
volume, to scatter the segments of a given volume among
several drives, and to efficiently manipulate segments when
data duplication (mirroring or duplexing) is being used.
Manipulations are performed 1n a manner which 1s safe and
ciiicient. Other features and advantages of the present inven-
tion will become more fully apparent through the following
description.

US 6,453,383 Bl

7
BRIEF DESCRIPTION OF THE DRAWINGS

To 1illustrate the manner in which the advantages and
features of the i1nvention are obtained, a more particular
description of the 1nvention will be given with reference to
the attached drawings. These drawings only illustrate
selected aspects of the mvention and thus do not limit the
invention’s scope. In the drawings:

FIG. 1 1s a partial cut-away view of a computer disk.

FIG. 2 1s a diagram 1illustrating an IBM-compatible par-
fition table.

FIG. 3 1s a diagram further 1llustrating a portion of the
partition table shown 1n FIG. 2.

FIG. 4 1s a diagram showing one of many possible
conflgurations which illustrate the relationship between seg-
mented partitions, other partitions, volume segments,
volumes, and disk drives 1n a computer; these relationships
are pertinent both to the prior art and to the present inven-
fion.

FIG. § 1s a diagram 1llustrating systems according to the
invention.

FIG. 6 1s a flowchart 1llustrating methods according to the
invention.

FIGS. 7 through 14 are diagrams of segmented partitions
illustrating manipulations according to the nvention.

FIG. 15 1llustrates a user mterface structures in an 1mple-
menting program according to the invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The present invention relates to computer systems,
methods, signals, and configured storage media for manipu-
lating volume segments and associated system data
structures, and manipulating associated partitions and/or
volumes, 1n computers which utilize segments.

Systems Generally

FIG. § illustrates a system 500 according to the invention.
The system 500 shown 1ncludes two computers 502 1n order
to make the point that segment manipulations may be
performed remotely, that 1s, the manipulations may be
controlled from a first computer 502 while being performed
on segments of the second computer 502. However, a system
500 according to the invention may also contain only a
single computer 502 (networked or standalone), or the
system 500 may contain two or more computers 502 1n a
computer network which does not necessarily allow remote
segment manipulation.

Each computer 502 includes at least one processor 504 for
executing 1nstructions, a memory 3506 for storing
instructions, system tables 508, and a segmented storage
medium 3510 for holding data in sectors in segments,
partitions, and volumes. System tables 508 include, for
instance, partition tables such as the partition table 200, file
allocation tables, and NetWare volume definition tables
familiar to those of skill in the art. The segmented storage
medium 510 includes one or more non-volatile storage
devices, such as magnetic or optical disk drives like the
drives shown 1 FIGS. 1 and 4. The memory 506 and the
secgmented storage medium 510 can be written and read by
execution of appropriate processor 504 instructions.

The 1llustrated embodiment includes two computers 502
connected by a network, modems, or other familiar means;
some alternative embodiments include just one computer
502, while others mnclude more than two computers 502.
Each computer 502 1s typically a server computer, but a
computer 502 may also be a client 1n a server-client network

10

15

20

25

30

35

40

45

50

55

60

65

3

Or a peer 1n a peer-to-peer network or a standalone computer.
A server computer 502 may be configured as an Internet
SEIVEr, as an intranet Server, as a name Server, as a file server,
as an applications server, or as a combination thereof A
orven computer 502 may also function both as a client and
as a server; this may occur, for instance, on computers 502
running Microsoft Windows N'T or Windows 2000 software.
The processor 504 may be a uniprocessor or a multiproces-
sor. Suitable computers 502 include, without limitation,
servers, personal computers, laptops, and work-stations.
Although particular computer system 500 components are
identified herein, those of skill 1in the art will appreciate that
the present invention also works with a variety of other
systems.

The system 500 also 1ncludes a system table utilizer 514
which 1s capable of extracting from the system tables 508
information such as partition boundaries, partition sizes,
partition types, whether a partition 1s bootable, whether a
partition 1s a segmented partition such as the NetWare
partitions 408 and 410, secgment boundaries, scgment sizes,
free space size and location, volume names, and other
conilguration information of the type illustrated 1n FIG. 4.
The system table utilizer 514 1s also capable of modifying
the system tables 508 to reflect changes 1n such information
once the changes are specified to the system table utilizer
514 and 1s capable of performing the modifications subject
to locks and/or semantic constraints to maintain the integrity
and selt-consistency of the data which 1s stored 1n the system
tables 508.

The system table utilizer 514 may be embodied in soft-
ware which runs on the computer 502 and which reflects the
semantic constraints imposed on partitions, segments, and
volumes. Such constraints include without limitation the
following;:

no single sector belongs to two primary partitions, two
logical partitions, two different segments, or two dif-
ferent volumes;

a scgmented partition may not cover more than one drive;

a segmented NetWare partition can have at most 8 seg-
ments;

a NetWare volume can have at most 32 segments;

a volume set contains two or more partitions on one or
more disks;

file allocation tables are typically installed at the begin-
ning of each segment;

up to 16 mirrors of a given segmented NetWare partition
can exist;

if one segment of a segmented NetWare partition 1s
mirrored, all must be mirrored; and

the file allocation table of one segment may point 1into data
stored 1n another segment, including another segment
on a different drive, so that a given file can span
segments.

Other semantic constraints on partitions, segments, and
volumes are also well-known. The system tables 508 and an
executable copy of the system table utilizer 514 may be
stored on one or more of the disk drives 512 in the
segmented storage 510, but they are shown separately 1n the
Figure for clarity of illustration.

One or more selected segments 1n the storage medium 510
may be moved, copied, resized, or merged to produce
corresponding modified segment(s). During such manipula-
fions 1t may be necessary to move user or system data from
one location to another in the medium 510, or to update
system structures. Such manipulations preferably move the
data and system structures as little as necessary (unlike the

US 6,453,383 Bl

9

FDISK or NetWare Administrator utilities approaches), and
preferably always keep at least one copy of user data and
system 1nformation stored on the disks to allow recovery it
the manipulation 1s interrupted by power loss or another
event that requires rebooting. The user data and system
structures are copied, moved, and/or updated, as necessary,
by a data replicator 516. Some environments allow files to
be marked for purging; 1in such cases, the data replicator 516
may be configured to avoid copying purged (or to-be-
purged) files.

The data replicator 516 replicates system and user data in
one or more selected segments to produce corresponding
modified segments, taking into account the requirements of
the file system stored in the segment(s) and the semantic
constraints on segments, volumes, and partitions. Partition
manipulation and data replication systems and methods are
discussed 1n general, and with attention to FAT, HPFS, and
NTES file systems specifically, in the following United
States Patents (“incorporated patent documents™); those
discussions are incorporated herein by reference:

U.S. Pat. No. 5,706,472 1ssued Jan. 6, 1998
U.S. Pat. No. 5,675,769 1ssued Oct. 7, 1997

U.S. Pat. No. 5,930,831 1ssued Jul. 27, 1999

In particular, some file systems, such as NetWare FS,
support suballocation within clusters. In such file systems a
ogrven cluster may contain data belonging to more than one
file. In this situation (and others) clusters are sometimes
referred to as “blocks” or “file system allocation units”.
Suballocation may be supported to reduce the amount of
allocated space that 1s not actually being used to hold data,
when relatively large blocks are being used.

If a suballocated cluster needs to be resized, care 1s taken
to correctly update the file allocation table or other file
system structure that maps clusters to files. For example,
suppose a suballocated cluster XY holds data from file XX
and also holds data from file YY. If the cluster size i1s
decreased, then clusters X and Y which are created from the
larger cluster XY may each contain data from only one file.
Of course, other new clusters may still contain data from
more than one file, depending on the cluster sizes and data
placement 1involved.

If the cluster size i1s being increased, then suballocation
may make 1t possible to avoid moving data to make room for
cluster expansion. Instead of moving the data, changes are
made 1n the file allocation table to correctly map the larger
clusters to the files whose data they hold. For example,
suppose cluster A holds data only from file AA and suppose
cluster B, which 1s adjacent to cluster A, holds data only
from file BB. Then increasing the cluster size may create a
suballocated cluster AB from the two smaller clusters A and

B, with cluster AB holding data from both file AA and file
BB.

The segment manipulations of the present invention may
be used 1n conjunction with partition manipulations
described 1n the incorporated patent documents. For
Instance, suppose a given server disk includes both a DOS
partition and a NetWare partition. Tools and techmiques
described in the incorporated patent documents may be used
to resize the DOS partition, while tools and techniques
described 1n the present application may be used to resize the
NetWare partition. In particular, during an upgrade process
it may be helpiul to resize a NetWare partition to make room
for a larger DOS partition.

The software which facilitates data replication and
embodies the system table utilizer 514 and/or the data
replicator 516 may be loaded for execution from a drive 512
on the computer 502 that holds the selected partition.

10

15

20

25

30

35

40

45

50

55

60

65

10

Alternatively, the implementing software may be loaded
over a network or other connection from a file server or
some other computer 502.

Strictly speaking, there 1s no modified segment, modified
volume, or modified partition until the appropriate system
tables 508 are updated, even if all the disk sectors that will
lie 1n the modified unit have been updated to contain
appropriate system structures and user data, because
segments, volumes, and partitions are defined by entries in
the system tables 508. However, for convenience the term
“modified unit” means “intended or actual modified unit”
where a umit 1s a segment, volume, or partition. That 1s,
“modified unit” 1s used to denote both the unit that is
produced from the selected unit and the collection of disk
sectors which that modified unit 1s intended to occupy.
Accordingly, one may speak of a modified partition, a
modified segment, and/or a modified volume, based on an
identified selected unit and an 1dentified manipulation to be
performed on the selected unit, even before the system tables
508 are updated and even if the replicating step 1s stopped
before the system tables 508 are updated.

An 1ntegrity checker 518 performs checks to avoid data
loss by veritying the integrity and internal consistency of
data before segments, volumes, and/or partitions are
manipulated. These integrity checks are discussed 1n detail
clsewhere, including within the discussion of FIG. 6.

A user mterface 520 provides users with control of the
implementing program and feedback from that program.
The interface 520 may be graphical or limited to text, and 1t
may run locally and/or remotely with respect to a given
computer 502. Particular embodiments of the user interface
520 may present users with menu structures including the
ones shown below and with information tables like the one
shown 1n FIG. 15. Technical details on performing the
manipulations identified 1n the menus are given elsewhere
herein.

Segment Options

Move Segment
Move Segment Left
Move Segment Right
Move to Other Free Space entry

The Move Segment entries produce dialog boxes which
show the free space before the segment, the free space after
the segment, the valid movement range, and the amount by
which the segment should be moved. The Move to Other
Free Space entry shows a list of disks 512, corresponding
secgmented partitions, and corresponding free space loca-
tions and segments within the partitions.

A menu structure associated with a Move Volume Seg-
ment option 1s shown below Technical details on performing
the manipulations 1dentified in the menus are given else-
where herein.

Move Volume Segment
Move Left

Move Right
Move to Other Free Space
The user must select a current volume segment. The Move

Volume Segment option 1s only enabled if there 1s valid free
space to which the volume segment can be moved. When the
user selects the Move Volume Segment option from the
Volume Segment Options menu the valid options for that
volume segment are displayed. If more than one of the Move
Left, Move Right, or Move to Other Free Space options are
available then the user chooses between them; otherwise
only the Move to Other Free Space option 1s displayed. It
Move Left or Move Right 1s selected, then the limits on how
far this segment can be moved are displayed and the user
enters the number of megabytes to move the volume seg-
ment.

US 6,453,383 Bl

11

If the Move to Other Free Space option 1s selected, then
the user 1s presented with a list of available free space areas
to which the volume segment can be moved. The user may
also be given the names and locations of volume segments
on cither side of free space regions to help the user identily
a desired free space region. The user selects one of the free
space arecas In the list, and a confirmation message 1s
presented to the user to accept the move. As with other
manipulations described herein, progress indicators may
display the progress of the move as 1t proceeds. After
completion of the move, the user 1s presented with a success
message.

Discussion of the behavior of the system 500 components
oenerally pertains to the methods of the mvention, and
discussion of the method steps likewise generally pertains to
the system 500 and other systems according to the invention.
Methods Generally

FIG. 6 illustrates methods of the present invention for
performing manipulations in systems that use segments.
During a reading step (not shown), the system table utilizer
514 reads the partition table 200 and/or volume definition
tables from the storage medium 510 into one or more
corresponding memory structures, such as a C or C++ struct,
a Pascal record, or the like.

During a selecting step 600, one or more units (segments,
volumes, and/or partitions) is selected. Segments reside in
volumes and partitions, so that selecting a segment 1mplic-
itly also selects a volume and a partition. Likewise, selecting
a volume implicitly selects all segments of the volume.
Drives may also be selected units, depending on the manipu-
lation. For instance, a target drive would be selected when
segments scattered among several drives are to be consoli-
dated on a single drive. Unit selection may be performed
automatically by software driving the data replicator 516,
but 1s more commonly accomplished interactively by a
human user using an interface such as a graphical user
interface (GUI) 520.

During a locking step 602, implementing software gains
exclusive access to the segmented storage medium 510, or
at least to the part of that medium 510 which holds and/or
will hold the system tables 508, the selected unit(s), and the
modified unit(s). This step is discussed in greater detail
hereafter.

A verifying step 604 may be performed before and/or
after a unmit manipulating step 606 to check the internal
consistency and integrity of system structures 1n the selected
unit(s). Suitable verifying steps include steps performed by
commonly used tools such as NetWare Administrator
utilities, or VREPAIR; mtegrity checking functionality may
be provided by a separate integrity checker 518 or by calling,
a suitably integrated conventional utility. Some file systems,
including N'TFS, include redundant copies of system infor-
mation. This may be done by repeating structures such as the
boot sector, or by storing the same information in different
ways 1n different system structures, such as placing alloca-
fion 1nformation 1n both a bitmap and in system structures.
The verifying step 604 preferably checks the internal con-
sistency of all redundant copies of system information, in
addition to checking the mtegrity of the system 500 in other
ways.

The unit manipulating step 606 may perform one or more
of the 1llustrated steps. These steps 610 through 636 arc
discussed 1n details at various points herein, and summa-
rized here for convenience.

A step 610 resizes a selected volume by resizing its
segments, a step 612 resizes a selected volume segment and
a step 614 resizes a segmented partition; 1 each case,

5

10

15

20

25

30

35

40

45

50

55

60

65

12

resizing changes the number of sectors in the selected unat.
The step 606 can proportionally resize all volume segments
of a given NetWare partition, 1n place or during a move to
a new larger or smaller drive. The segment clusters may be
resized during a step 616 that changes the number of sectors
per cluster.

Volume segments can be merged during a step 618 or
consolidated by gathering segments onto a single drive
during a step 620 through a combination of resizing and/or
moving. The system 500 may also separate existing seg-
ments by scattering them (through repeated segment moves)
differently among several drives during a step 622.

During steps 624, 626, and 628, a copy of a segment,
volume, or segmented partition, respectively, may be
created, copied, or moved.

During a step 630 two or more adjacent segmented
partitions are consolidated. Segment definitions and
segment-specific file system structures such as file allocation
tables are unchanged by partition consolidation. However,
system tables such as NetWare volume definition tables are
updated so that after consolidation the region which was
previously split between the selected partitions belongs to
the consolidated partition that was created from those
selected partitions. For instance, i1f partition X contained
secoments A and B, and partition Y contained segment C,
then consolidated partition XY will contain segments A, B,
and C.

During a step 632 the system 500 may redistribute data
between segments by moving data from one segment to
another segment.

During a step 634 a segment, volume, or segmented
partition can be moved to a different location in the storage
medium 510.

In conjunction with one or more of these steps 610
through 634, a step 636 updates bad sector 1dentifications,
whether used for redirection or not. In at least some
embodiments, all component steps 610 through 636 of the
unit manipulating step 606 can be performed 1n the presence
of data duplication, whether it 1s by data mirroring or by data
duplexing.

An optional rebooting step 608 occurs 1n two situations.
First, 1f the manipulating step 606 1s interrupted by a power
failure, process termination, or similar fatal event then
rebooting may be needed to restart the system 500 and finish
the manipulation. To avoid data loss in such cases, the
implementing software should keep a copy of user data in
persistent storage such as a hard disk at all times. Arecovery

partition indicator may also be placed in the system 1ndicator
310, 1n a manner similar to that described 1n U.S. Pat. Nos.
5,675,769 and 5,706,472. Checkmarking, journaling, and/or
other data recovery tools and techniques may be used to
allow the implementing software to safely resume manipu-
lation near the point of interruption.

A second situation 1nvolving rebooting arises when
changes to the partition table 200, volume definition tables,
or other system data need to be conveyed to an operating
system. Some operating systems, such as Microsoft Win-
dows operating systems, only read such system data from
disk during the boot process. When no run-time API 1is
available to update the operating system and the risk of data
loss 1s severe without such an update, a reboot 1s needed.

The method steps discussed above and elsewhere herein
may be performed in various orders and/or concurrently,
except 1n those cases in which the results of one step are
required as input to another step. Likewise, steps may be
omitted unless called for i1n 1ssued claims, regardless of
whether they are expressly described as optional in this

US 6,453,383 Bl

13

Detailed Description. Steps may also be repeated, or
combined, or named differently.
More on Protecting Data

During an 1dentifying step, the file system being used in
the selected unit 1s 1dentified by checking the system indi-
cator 310 1n the partition table 200. The system indicator
may 1dentify a segmentable file system such as NetWare FS
or NTFS. However the identifying step may also identify a
proprietary or 1n-progress unit which indicates that the
manipulating step 606 was interrupted. Such system indi-
cators 1nclude recovery partition indicators of the kind
discussed 1n the 1ncorporated patent documents, If the recov-
ery partition indicator 1s present, recovery proceeds as
discussed 1n the incorporated patent documents, subject to
the specific requirements of segmented environments dis-
cussed here. For ease of illustration, we therefore concen-
frate now on the case in which a segmented partition and/or
segmented volume is identified (the presence of one or the
other might be easier to detect on a given system).

During a checking step, the file system status 1s checked
to determine whether the system 500 1s in a known state, that
1s, a state 1n which necessary assumptions about file system
structures hold true. In NTFS, the system 500 1s presumed
to be 1n an unknown state 1f a volume’s “dirty bit” 1s set. The
dirty bit may be set, for instance, if power to the computer
1s shut off before the file and operating systems have shut
down, or 1f a disk I/O operation 1s mterrupted. Presence of
a recovery partition indicator does not necessarily indicate
an unknown state; the state may be unknown to conventional
operating system or file system software but known to
implementing software m an embodiment of the present
invention.

It may be possible to move the system 500 into a known
state by rolling back operations logged 1n a log file or other
means. However, 1t 1s presently preferred that unit manipu-
lation software according to the invention simply clean up
and exit during an exit step if the system 500 i1s 1n an
unknown state. Cleaning up mvolves releasing temporarily
allocated memory or disk space, replacing any recovery
partition 1ndicator with a conventional value, and otherwise
placing the partition 1n a condition that presents no unpleas-
ant surprises to NetWare Administrator utilities, VREPAIR,
other pertinent software, or the user. If the system 500 is
found or placed in a known state, unit manipulation may
proceed.

During the locking step 602, software embodying the
invention gains exclusive access to at least the pertinent part
of the segmented storage medium 510. For instance, caching
and virtual memory must be disabled, or at least restricted,
fo prevent any inconsistency between sector locations that
are 1ndicated 1n the memory 506 and the actual location of
the sectors on the drives 512. This could be accomplished by
flushing and then disabling the cache. In some embodiments,
exclusive access 1s obtained by performing critical disk
operations under an operating system such as DOS which
does not support multitasking. In other embodiments, such
as some Windows NT embodiments, exclusive access 1S
obtained by running unit manipulation software before the
boot process 1nitializes virtual memory and caching sub-
systems of the system 500.

During a target identifying step, the software identifies
source and target replication areas, based on the
manipulation(s) to be performed. Checks are made using the
system table utilizer 514 to ensure that the target area 1s not
already 1n use. Source and target areas identified by a user
during step 600 through a GUI or other mterface 520 are
translated into drive i1dentifiers, partition i1dentifiers, logical

10

15

20

25

30

35

40

45

50

55

60

65

14

sector numbers, <cylinder, track, sector> triplets, and/or
other identifiers as appropriate, to 1dentify the areas to the
data replicator 5§16. Checks are made to determine whether
volume spanning, volume sets, stripe sets, mirror sets, or
other mechanisms that divide data between disks or between
partitions are 1n use, and the source and target areas are
identified on multiple disks as appropriate whenever units
may span drives.

During bad sector handling in steps such as step 636 and
other portions of step 606, measures are taken to detect and
handle bad sectors. For instance, a selected unit may be
expanded to cover additional area, which 1s preferably
checked for bad sectors to avoid attempts to write data to a
bad sector. Likewise, copying or moving a unit may produce
a modified unit that covers an area of the storage medium
510 containing bad sectors that should be avoided. Areas
that already contain data are vacated 1if they either need to
receive different data or need to be emptied to create holes
that will match bad sectors. Bad sector handling may be
file-system-specific. For instance, NTFES allocates bad clus-
ters to the bad cluster file 1n a sparse file format when those
clusters are 1dentified as bad during an 1mitial FORMAT
invocation. The sparse file format recalls the sparse file
approach used in UNIX and POSIX systems. Bad sectors
may also be found during ordinary use of the file system
when an attempt 1s made to access data. Bad clusters are
added to the bad cluster file in a compressible sparse file
format.

The data 1s replicated during a replicating step and
corresponding adjustments are made to the system structures
during step 636. One procedure for relocating data in NTFES
or similar file systems 1s the following:

While there are set bits 1n the volume bitmap for the region

of clusters being vacated,
For each file in the master file table (“MFT"),

For each run of clusters contained 1n the file being tested
(all data streams),

If the run being tested 1s wholly or partly 1n the region
ol

clusters being vacated,
If there 1s a blank area in the region of clusters being,
retained that 1s the size of the run being tested,
Set the bits for the blank area 1n the volume bitmap.
Copy the data from the area mapped by the old run
to the blank area.
Change the run in the file to point to the new area.
Clear the bits representing the old run in the volume
bitmap.
Else
Locate several runs in blank areas whose sizes total
the size of the portion of the run that is in the region
of clusters being vacated.
Set the bits for the new areas in the volume bitmap.
Copy the data from the arca mapped by the old run
that are 1n the area beimng vacated to the new runs.
Calculate the new run map for the file.
If the new run map 1s too large for the current MET
File
Record for the file, including all of its extensions
If the MFT does not contain any blank entries,
If the MFT has a multiple of 64 entries,
Add 64 clear bits to the MFT bitmap.
End if
Add blank entries to the MFT, adding enough
clusters to it to hold the new File Records and
formatting the entries as blank entries, and prei-
erably adding
enough to give the MFT a multiple of 8 entries.

US 6,453,383 Bl

15
End if
Format the next available position in the MFT as
an

extended File Record.
Sect the bit in the MFT bitmap for the new File
Record.
If this is the File Record for the MFT itself (File
Record 0),
Move the run map minus the runs describing
the
first 16 File Records from the base File Record
to
the new File Record.
Else

Move the entire run map from the base File
Record

to the new File Record.
End if
If the base File Record lacks an ATTRIBUTE
LIST
attribute,
Create an ATTRIBUTE_ LIST attribute.
End 1if
Store the calculated run map in the File Record.
Clear the bits representing the old run in the
volume
bitmap.
End 1if
End 1if
End if
End for

End for

End while

When replicating or vacating, the following aspects of
manipulating partitions containing NTFS and similar file
systems should be noted.

If multiple data streams are allowed, each file must be
checked for them. Thus, the software may contain an outer
loop that steps through the files, with an inner loop that steps
through the data, replicating or vacating the data streams.
The MFT and other system structures are treated in many
ways as 1f they were simply user files, at least as far as
moving their constituent sectors 1s concerned. The log file
and the security descriptors, for instance, are replicated
and/or vacated just like user data. Compressed files are
preferably not decompressed, but merely treated as bit
streams.

Full support for large disks may require the use of
sixty-four bit variables to hold sector numbers. Although
shorter variables (such as thirty-two bit variables) may be
used with many partitions on many systems, the larger
variables are preferred. Similar considerations apply to
variables that hold cluster numbers and file descriptors.

Some file systems use Unicode names for files and
directories. If file names are required to be kept alphabetical,
for 1nstance, during a resizing manipulation, 1t 15 necessary
for the software to be capable of sorting Unicode strings. It
1s also desirable to be able to display Unicode names to the
user 1n status and error messages. If the file system uses
case-1nsensitive names, the verifying step 84 may also check
the Unicode case equivalency table.

POSIX or similar file systems may create multiple names
for a given file, often called “links.” This should be consid-
ered during the verifying step 84, so that links do not lead
{0 Spurious error messages.

The difference between system and user areas, which 1s

quite well defined in FAT, 1s blurred in NTFS and may be

10

15

20

25

30

35

40

45

50

55

60

65

16

blurred in other file systems. User data may be resident in
NTFS system structures or it may be external to them. This
must be kept mn mind when file system structures are
manipulated to avoid losing user data or damaging system
integrity. Also, 1f all user data 1s resident there 1s no need to
check for it during replication after the system structures
have been copied or moved, because the resident user data
will already have been copied or moved with the system
structures.

The format of the balanced trees, balanced B trees, B+
trees, and other directory tree data structures used to hold
directory information in some file systems must be reflected
in the software; these structures are radically different from
the directory structures used in FAT file systems, but are
well-documented. Those of skill mm the art will readily
combine programming skills and knowledge of directory
tree data structures with partition manipulation techniques of
the type discussed here and in the incorporated patent
documents 1n order to maintain the internal consistency and
integrity of file system directories during manipulations.

File system structures which are maintained as files may
ogenerally be relocated to new positions within a partition
(new relative to an edge of the partition) just as any user file
1s relocated. However, some versions of NTFS store the boot
sector or boot sector copy at a predetermined location, such
as at one end of the partition or in the middle of the partition.
Thus, when an NTFS partition 1s manipulated, 1t may be
necessary to move the boot sector or boot sector copy to the
corresponding location (e.g., end or middle) within the
modified partition, having first ensured that the new location
has been properly cleared.

In one embodiment, a journal 1s kept in which the
operations performed by the software’s system table utilizer
514 and data replicator 516 are recorded in order. This
allows the same sequence of manipulation operations to be
automatically” repeated on another unit and/or another
computer, thereby making 1t easier to modity a large number
of units on one or more computers 502 1n a given way. For
instance, 1t may be desirable to create a new segment on each
machine. This might be done with a playback sequence that
shrinks an existing large segment and then creates a new
small segment 1n the space just made available. In one
embodiment, the list of operations can be edited. In some
embodiments, the operations can be undone, either one-by-
one or all at once. This allows a user to recover the original
selected unit(s) from the modified unit(s). The undo facility
also allows administrators to experiment with different pos-
sibilities while creating a playback sequence. Journaling 1s
discussed at least in U.S. Pat. No. 5,675,769. Operation lists
may be readily implemented by those of skill in the art using
C++ classes, or similar linked structures or arrays.

In one embodiment, system tables are written to disk 1n a
fail-safe manner. For instance, a new updated copy of a file
allocation table 1s written to disk 1n a different location than
the old copy while the old copy 1s still on disk and 1s still
referred to by the system tables. When the new file allocation
table 1s safely written to disk, the system table that identifies
where the file allocation table 1s located 1s updated to refer
to the new file allocation table. After this the new file
allocation table 1s rewritten 1n its default location and the
system tables that refer to the file allocation table are again
updated to refer to this final copy of the file allocation table.
If a system failure occurs while the file allocation table is
being written out to disk, the file system 1s still intact
because the previous file allocation table is still referenced
by the system tables. This same approach applies to the
directory table.

US 6,453,383 Bl

17

Resizing Segmented Partitions: Proportionality, “Inch-
worm” Approach

When resizing a segmented partition during step 614, the
secgments may be resized proportionally to achieve the
desired partition size. In one embodiment, this involves
taking the desired partition size specified by the user and
rounding it to a cylinder boundary. If one 1s reducing the
partition size, the default redirection area (if present) is
determined. The remaining space 1n the resulting partition 1s
then divided among the segments in the partition. Each
secgment’s new size 1s calculated on a proportional basis
relative to the total free space 1n all segments. For example,
if a segment contained 10% of the unused sectors of all the
secgments 1n the partition before resizing, then 1t will still
have 10% of the unused sectors after resizing the partition.

If the right edge 1s being changed to achieve the resize,
then the new sizes and positions of the segments are calcu-
lated from left (the fixed boundary) to right. If the left edge
1s being changed, then the new sizes and positions are
calculated from right (the fixed boundary) to left, that is, in
the opposite direction. This order 1s used because each
secgment’s new starting position 1s dependent upon the
previously calculated segment’s position and size. The first
segment calculated 1s always the one with the fixed bound-
ary. As ecach segment 1s reduced in size, the free space
recovered from the segment will be between it and the next
segment to be resized. This free space must be calculated to
be on a block boundary that 1s a multiple of the following
segment’s volume block size, so that the free space can be
temporarily incorporated into the following segment as 1t 1s
positioned 1n 1ts new location and resized to its new size.

This “inchworm”™ approach optimizes the task of resizing
a partition smaller. The entire segment 1s not moved to 1its
new position. Instead, only the sectors 1n a segment that
must be vacated to make room for the following segment are
moved sequentially.

As another example, resizing a partition smaller by
adjusting the right edge 1s 1llustrated in FIGS. 7 through 14.
Assume a segmented partition 700 has three 100 Mb
segments, each of which has 50 Mb of unused sectors. Thus,
segment 1 mncludes 50 Mb of data 702 and 50 Mb of unused
space 704. Segment 1 1s near the left partition boundary 706,
and segment 3 1s near the right partition boundary 708. The
partition 1s bemng reduced by 60 Mb, so each modified
segment will be 80 Mb 1n size instead of the current 100 Mb.
For clarity, assume the data in each segment 1s only 1n the
first 50 Mb of each segment. For instance, in the {first
secgment the unused space 704 1s to the right of the used
space 702.

The starting positions of the second and third segments
must be changed to consolidate all the segments at the left
of the partition. FIG. 8 shows the first step, by which the
right boundary 802 of segment 1 1s moved to the left of
segment 2°s left boundary 804 by 20 Mb. The free space 704
now contains 30 Mb, and segment 1 1s now 80 Mb 1n size.

To shift and resize segment 2 1n this example, no data are
moved. FIG. 9 shows the left boundary 804 of segment 2
after 1t 1s moved 20 Mb to the left; the left boundary 902 of
the data block 904 1s unchanged. As shown 1 FIG. 10, the
right boundary 1000 of segment 2 1s then moved 40 Mb to
the left. Because the boundary 1000 moves only through free
space 1002, no data need to be moved.

As shown 1n FIGS. 11 through 14, segment 3 1s shifted
and resized without moving all of its data; only 10 Mb of
data 1s moved. First, as shown 1n FIG. 11, the left boundary
1100 of segment 3 1s moved 40 Mb to the left. Then the right

boundary of modified segment 3 1s determined by measuring,

10

15

20

25

30

35

40

45

50

55

60

65

138

80 Mb to the right from the new left boundary 1100. The
measurement reveals that 10 Mb of data 1200 would lie
outside of the modified segment right boundary 1202. This
10 Mb of data 1s moved from 1its original location to a new
location within free space 1n segment 3. Finally, the right
partition boundary 708 1s moved left to 1ts new location.

This “inchworm” method 1s much faster than moving all
100 Mb of data 1n the second and third segments, as one
could do by moving each segment left en masse after
resizing 1t smaller. A similar procedure applies to resizing
when moving the left edge, but the segment positions and
sizes are calculated from right to left.

Although this discussion speaks of “moving” boundaries,
a second and equally valid perspective takes the view that a
boundary 1s removed and then replaced by a new boundary
which plays a role similar to the former boundary but does
so 1n another location. Thus, one could also say that the right
partition boundary 708 i1s removed and a replacement right
partition boundary 1400 1s created. Similar observations
apply to segment boundaries, and to data blocks such as the
block i1denftified as 1200 or alternatively as 1402. The
question of whether boundaries and data are (a) moved, or
(b) removed and replaced, is a matter of definitions and
possibly of specific implementations, and so 1s separate from
the fundamental teachings and beneficial results of the
present mvention.
Resizing a Segmented Partition by Moving 1ts Left Bound-
ary

In some embodiments, a segmented partition such as a
NetWare partition can only be resized by moving the par-
tition’s right (distant from the file allocation table) boundary.
However, 1n some embodiments such a partition can be
resized by moving its left (near the file allocation table)
boundary. One method for resizing a NetWare partition from
its left boundary 1s described 1n detail below. Those of skill
will readily adapt these details for use in resizing other
segmented partitions from the left, and to a lesser extent, in
resizing segmented partitions from the right boundary.
Pre-Resize

1) Get limits

a) Get partition limits

1) Determine free space in the partition
(1) Get free space for each volume segment
i1) Force partition to be no larger than the maximum of

the smallest mirror

b) Get redirection area limits

c) Get logical data area limits
2) Validate new size specified by user

a) Force desired size to be on a cylinder boundary

b) If reducing partition size, calculate default redirection
areca size based on new partition size
1) Adjust free space between redirection area and first
volume segment to be on the first volume segment’s
block boundary
i1) If changing left boundary, force alignment of redi-
rection area and logical data area (“LDA”).

(1) The free space on the right side remaining after
the redirection arca must be on a block boundary
that 1s the same as the first segment so the free
space can be incorporated into the first segment
during resize. This 1s the case when the {irst
segment’s block size 1s larger than the redirection
areca’s block size.

(2) Also, the size of the redirection area must end so
that the existing (selected) LDA still starts on a 4k
block boundary. Sectors that are not on a block

US 6,453,383 Bl

19

boundary between the size of the new (modified)
partition and the new redirection arca + new LDA
must be added back into the end of the redirection
areca to keep the LDA on the 4K block boundary.
(3) If there is no redirection area and the resize will
cause the new LDA to not be on a block boundary
from the new start of the partition, then force the
partition to have a minimum size redirection area
so we can add the unaligned sectors to its size to

make the LDA align on a 4K block boundary with
the partition start.

¢) Force new logical data area to be no larger than the
maximum logical data area of the smallest mirror
1) Calculate proportional volume segment sizes based
on new logical data area size. Count free space
between end of logical data area and end of partition
as available free space.
i1) Don’t count non-block sectors between the last
segment and the end of the LDA if anchor (non-
moving boundary) is on the right since they can’t be
incorporated into the last segment doing an “inch-
worm’” type move.
ii1) Determine free space to be removed from volume
segment
iv) Force end of new volume segment to be on a
volume block boundary
v) Try to recover lost blocks due to boundary rounding
vi) If there 1s a volume segment that will be moved next
to the segment being worked on, adjust the free space
between the segments so i1t ends on a block boundary
of the next volume segment
vil) Set new starting location of segment directly after
the previous segment or redirection area
Resize
3) Check integrity of partition, volume segments, and
assoclated volumes
4) If resizing the right boundary, resize the redirection
arca 1f present
5) Resize volume segments within the partition if reduc-
Ing partition size
a) If free space exists between LDA end and partition end,
increase LDA si1ze to include 1t so the last segment can
move as far to the end of the partition as possible.

b) If resizing the left edge and there are sectors unac-
counted for between the last block of the segment and
the end of the segment, realign the end of the segment
so the unaccounted sectors are moved 1nto the unused
LDA space after the segments.

c) If there 1s free space after the volume segment increase

segment size to include it

1) Set internal tables for volume segment and volume to
the new segment size

i1) Create a new file allocation table object based on
volume size

111) Insert entries 1n file allocation table for new blocks
(1) Generate a “moved map” of blocks whose index
has been adjusted

iv) Update directory from moved map of blocks whose
index was adjusted

v) Temporarily extend the file allocation table using any
free blocks available

vi) Write new volume definition tables, file allocation
table, and directory to disk

vil) Generate a “vacate map” of blocks that need to be
moved to make room for system blocks

viil) Vacate blocks needed for system blocks specified
in the vacate map

10

15

20

25

30

35

40

45

50

55

60

65

20

1X) Generate new file allocation table chain in default
location of file allocation table

X) Write new volume definition tables and file alloca-
tion table directory to disk

d) Reduce segment size

1) Get a file allocation table for the segment’s volume
and restrict it to the blocks 1n the segment

i1) Generate a vacate map of blocks that need to be
moved to make room for system blocks
(1) Insure there is enough free space to vacate future

system blocks

111) Add to the vacate map the blocks that are to be
relocated to reduce segment size
(1) Insure there are enough free blocks to vacate

blocks
(2) For each block in the region select a block outside
the region to where 1t will be moved
(3) Mark target block as unavailable
1v) Vacate the blocks specified in the vacate map
(1) Check integrity of vacate map
(2) Move blocks that can be moved directly (their
target block is free) until all are moved
(3) Build a job list until no more free jobs
(a) Place blocks in active job list
(b) Update moved map and file allocation table
for blocks put on active list; file allocation
table target entries still have old “next” values
In them.
(c) Set flag to update directory entry if block is

first 1n file chain
(4) Read all blocks on the job list

(5) Write all blocks on the job list
(6) Move blocks that must be moved indirectly (their
target block is not free) until all are moved
(7) Update the children of each file allocation table
entry; “next” values in all file allocation table
entries are updated to have the values from the
vacate map
(8) Write file allocation tables to disk
(9) Update directories if update directory flag was
set; update first block value that was moved to
have the value from the file allocation table map
(10) Update the job list to write the indirect moves to
their final location
v) Delete entries from file allocation table for blocks
that have been relocated (1) Generate a “moved
map”’ of blocks whose index has been adjusted
vi) Set internal tables for volume segment and volume
to the new segment size
vil) Generate new file allocation table chain in default
location of file allocation table
viil) Update directory from moved map of blocks
whose 1ndex was adjusted
ix) Write new file allocation table, directory, and vol-
ume definition tables to disk
6) If increasing partition, update partition table
7) Change logical data area size in NetWare tables
8) If resizing left edge and there needs to be a redirection
arca where there was not one before, create 1t. If one already
exists, resize it down 1if partition size 1s decreasing.
9) If decreasing partition size, write new partition size to
partition table
10) Clear any redirected blocks that will be outside the
new LDA, and adjust redirection tables due to removing or
adding blocks 1n the LDA.
11) Resize mirrored partitions
12) Check integrity of partition, volume segments, and
assoclated volumes

US 6,453,383 Bl

21

Resizing Volume Segments

One process for resizing a volume segment during step
610 or step 612 begins by reading in the file allocation table
for the segment’s volume and restricting 1t to the blocks in
the segment. If the segment 1s increasing in size the
in-memory copy of the system tables describing the seg-
ments are updated to reflect the larger resulting segment.
Also, the file allocation table 1s temporarily extended using
any available free blocks to match the new larger size of the
scgment. At the same time, the 1in-memory copy of the
directory 1s updated so that all entries which refer to sectors
beyond the new area being added have their sector values
increased to reflect the new sectors added 1n the segment
being resized. Each of these in-memory system structures 1s
then written to disk.

If the segment 1s decreasing 1n size, a “vacate map’~ 1S
ogenerated 1dentifying blocks that need to be moved from the
arca 1n the segment being deleted. File allocation table
entries for blocks that have been relocated are updated 1n the
file allocation table, the directory 1s updated for any blocks
that were moved, and the file allocation table and directory
are written to disk. Then the in-memory copy of the system
tables describing the segments are updated to reflect the
smaller resulting segment. The 1n-memory copy of the
directory 1s updated so that all entries which refer to sectors
beyond the area being deleted have their sector values
decreased to reflect the sectors being deleted in the segment
being resized. Each of these in-memory system structures 1s
then written to disk.

Next, whether one 1s increasing or decreasing the
segment, the embodiment generates a “vacate map”™ 1denti-
fying blocks that need to be moved to make room for system
blocks that will be written out 1n their default location. The
blocks specified in the vacate map are copied to free blocks
in the area of the segment that will remain after the resize has
completed, thereby freeing that space. A new file allocation
table chain 1s generated at the default location of the file
allocation table and written to disk. If the beginning location
of the file allocation table changed when 1t was written to its
default location, then the volume definition tables are again
written to disk, so they refer to the correct starting location
of the file allocation table.

More particularly and with regard to the user interface,
because either the left or right edge of a volume segment can
be moved to resize the segment, there may be two options
on a Segment Options menu 1n some embodiments: one for
moving the right boundary and one for moving the left
boundary. One, both, or neither of the options may be
displayed on the menu, depending on which boundaries can
be moved.

After selecting resize from the Segment Options menu,
the user 1s presented with a dialog describing the limits of
how the segment can be resized. This dialog displays the
current volume segment size, the free space after and/or
before the segment, and may also show the minimum and
maximum sizes to which the segment can be resized. FIG.
15 shows an example table 1500 which 1llustrates informa-
tion that can be provided to users. Raw information of the
type shown can be given directly to users, or the information
can be processed to determine constraints such as the
maximum or minimum size of a unit and the free space
locations large enough to receive a (copy of a) unit. In the
case of segment resizing, the user enters a value for the new
secgment size between the minimum and maximum valid
values. A confirmation dialog preferably follows this dialog.
If free space 1s only available on one side of the volume
segment, then only a single Resize option will be available
on the Volume Segment Options menu.

10

15

20

25

30

35

40

45

50

55

60

65

22

With regard to data structures, significant additions and
changes would need to be made to a product such as the

PowerQuest PartitionMagic product (PARTITIONMAGIC
is a registered mark of PowerQuest Corp.) to implement the
present invention. For instance, new classes would be added
to describe the limits to which a volume segment can be
moved during steps 624, 634 or resized during step 612.
New classes would be added to model the NetWare file
allocation table and the NetWare directory, to describe
entries 1n the directory, and otherwise represent the system
tables 508 as needed. In a product according to the incor-
porated patent documents, existing classes might be
expanded to provide functionality which supports resizing
volume segments (as opposed to resizing non-segmented
partitions such as FAT partitions). Information maintained
on disk 1n the volume definition table may be managed 1n a
NetWare-specific partition class, a NetWare volume class,
and a volume segment class. Changes to conventional sys-
tem tables are not necessary except as described herein.

In one embodiment, errors are passed up to the user
interface 520 through an error return code, and any errors
during a resize process during steps 610 through 616 would
end the resize prematurely. The resize would still be fail-
safe, because each incremental operation 1n the process can
be completed imndependently of the other operations. The
process can be halted between operations without causing
damage to the user’s data.

During implementation, the developer should use the
parameters described below to test reliability. Segment
resize should be tested using each possible volume block
size (e.g., 4 KB, 8 KB, 16 KB, 32 KB, and 64 KB for
NetWare FS). Segment resizing implementation should be
tested by resizing a volume segment that has a long
namespace 1n 1t with file names longer than 128 characters.
Segment resizing should be tested with a NetWare volume
that has a Macintosh namespace added to i1t and 1n which a
Macintosh client has put files on the volume. Tests should
resize a volume segment that has a file with redirected
blocks that are in the area of the segment being vacated to
reduce the segment size. In particular, the developer should
verily that the file containing the redirected blocks 1s still
correct after the resize.

In some embodiments users can select various options
when resizing two or more segments within a volume. For
instance, the following choices could be allowed:

cach segment 1n the volume can be resized down to its
used space; and

a given segment can be resized below the apparent
minimum threshold (namely, its used space) by moving
data from that segment 1into one or more other segments
of the volume, resizing the receiving segment(s) larger
if that 1s necessary and possible.

More generally, some embodiments allow blocks to be
relocated from one segment to another segment within the
same volume. This allows a user to decrease the size of the
secgment even below the amount of used space within the
segment, 1f there 1s free space available 1n one or more other
segments of the volume.

A combination of moves and/or resizes can be used to
place all segments of a volume on a single drive (i.e.,
consolidate the segments during step 620), thereby increas-
ing fault tolerance. For instance, suppose a first drive D1
contains segment SO and segment V0 belonging to volume
SYS and volume Voll, respectively, and a second drive D2
contains segment S1 and segment V1 which belong to the
SYS volume and the Voll volume, respectively. With the
invention, the segments can be rearranged so that segments

US 6,453,383 Bl

23

S0 and S1 are adjacent to each other on drive D1 and
segments VI and V1 are adjacent to each other on drive D2.
The 1nvention can then be used to merge segments so that a
single seement SO contains all data of the SYS volume on
drive D1, and a single segment V0 contains all data of the
Voll volume on drive D2. Of course, many other manipu-
lations are likewise made possible by the 1nvention.

The tools and techniques used 1n moving, copying, and
resizing entire volume segments may also be adapted for use
in moving data from one segment of a volume to another
secgment of that volume during the data redistribution step
632. Segments may be resized larger to receive data being
redistributed, and segments may be resized smaller after
some of their data 1s redistributed to one or more other
secgments. However, segment resizing 1s not needed 1n every
case of redistribution, since free space may already be
available 1n the target segment and adding free space to the
source segment may be acceptable, or may even be a goal of
the redistribution.

Resizing Clusters

A NetWare or other administrator may wish to change the
allocation block size (i.e., cluster size). Cluster size affects
disk utilization because the system 3500 wastes different
amounts of disk space based on the choice of block size.

Resizing clusters larger during step 616 1s accomplished
generally by changing the “blocks 1n the segment™ and the
“sectors 1n the segment” 1n the system tables 508 to reflect
the new volume segment size. Then the 1mplementing
program calculates the added file allocation table blocks
needed and extends the file allocation table chain associated
with the file allocation table blocks by the appropriate
amount.

More precisely, the implementing program traverses the
file allocation table chain of each file, vacates the block in
the file allocation table allocated immediately following the
current file allocation table block (if it 1s used), moves the
next block in the file allocation table chain to the next
consecutive just-freed-up block, and repeats until the new
larger block size 1s filled. When a consecutive larger block
has been built by moving the smaller blocks next to each
other, the larger block 1s allocated 1n a new file allocation
table which 1s being manipulated along with the old one.
Lastly, the file allocation table chain for the file allocation
table 1s adjusted to a new size which reflects the size of the
volume and how many entries are required with the new
block size to address all the volume blocks. The beginning,
of the Logical Data Segment (the data segment of the
volume) may be aligned by padding or adjusting the “start-
ing sector” variable in the Volume Segment Definition Table.

Resizing clusters smaller during step 616 1s accomplished
ogenerally as follows. The “blocks in the segment” 1is
reduced, the “sectors 1n the segment” 1s decreased, and then
the file allocation table 1s evaluated. Each allocated block
beyond the designated end 1s replaced by allocating a file
allocation table block which does fit 1n the new segment
size. Lastly, the file allocation table chain 1s reduced 1n size
so that 1t reflects the new segment size.

That 1s, changing the block size to make 1t smaller 1s
accomplished by building a new file allocation table, tra-
versing the old file allocation table, and adding blocks to the
new file allocation table chain so that what was pointed to by
one block may now be pointed to by multiple file allocation
table entries. Care 1s taken to mark the new file allocation
table when unused portions are large enough to be allocated
to a complete block, considering the new block size. These
new blocks are marked as unused in the new file allocation
table.

10

15

20

25

30

35

40

45

50

55

60

65

24

Cluster resizing teachings from the incorporated patent
documents may also assist those of skill 1n implementing
cluster resizing in segmented partitions.

Moving or Copying Segments

One process for moving segments begins by checking the
integrity of the source and destination partitions and the
segment’s NetWare volume (for instance, by checking vol-
ume information in a volume object in memory) during step
604. This will in turn check the integrity of each of the
volume’s segments. Next, the software obtamns handles to
the source and destination NetWare partitions.

If the move 1n step 624 1s an overlapping move to the left
or right, the system 3500 temporarily resizes the volume
secgment to a larger size so that it includes the number of
blocks 1n the free space by which the segment will be
moved. This 1s done by moving the side of the volume
scgment 1n the direction of the move, ¢.g., moving the
secgment right side out to move the segment to the right.
Then the segment 1s shrunk back down to 1ts original size by
moving the other edge 1n the direction of the move, e.g.,
moving the segment left side further to the right to restore
the segment’s original size.

In a non-overlapping copy or move to the left or right, or
a copy or move to other free space, the following operations
are performed. First, as much memory as possible 1s allo-
cated to the buifers which will be used to copy sectors of the
volume segment. A used block bitmap for the segment being
moved 1s then generated. An optional bad sector check is
performed on the destination sectors; this check may be
omitted, subject to the risks and speed trade-oifs discussed
in the mcorporated patent documents.

The data replicator 516 then loops, repeatedly assigning,
as many disk blocks to memory buffers as buifer size will
allow, reading the source blocks, and writing to the desti-
nation blocks, until the entire segment has been copied or
moved. If source blocks have been redirected to a redirection
area, due to bad sectors 1n the source or destination partition,
then the blocks are correspondingly read from or written to
the redirection area. This 1s accomplished by the data
replicator 516 checking the source and destination block
ranges against sectors that are known to be redirected in
cither the source or destination partitions. Then the redi-
rected blocks are relocated from the redirection area to the
new segment location and the logical data area.

In the case of a move, the volume segment 1s removed
from the source partition’s list of volume segments and
linked 1nto the destination partition’s list. The moved seg-
ment’s position on 1its volume’s list of segments remains
unchanged, because the moved segment’s ordinal position in
the volume stays the same. In the case of a copy, the copy
1s treated as a new segment which happens to contain data
identical with the data in the original segment. The volume
definition tables of the source and destination partitions are
updated to reflect the movement or addition of the segment.
The process of moving a segment requires changing the
pointers 1n the volume definition table so that the “starting
sector” number 1s modified to show the new starting place on
the disk. Finally, the mtegrity of the volume of the segment
that was moved and the mntegrity of the source and destina-
tion partitions 1s re-verified.

Errors are handled as discussed in connection with the
segment resizing process. With regard to testing an imple-
mentation of this section of the invention, a volume segment
should be moved to:

a partition where no other segments of the same volume
eX1St;
a partition that 1s on a different physical disk 512; and

US 6,453,383 Bl

25

new locations to the left and the right in the same free
space area.
A volume segment which has a file with redirected blocks
should be moved to a new location and then it should be
verified that the file containing the redirected blocks 1s
correct.

Moving or copying one or more segments which are
subject to data duplication through mirroring or duplexing
proceeds much as described above. However, the invention
can detect that a segment 1s being mirrored, for instance, and
move or copy the segment from a single source to dual
destinations by invoking the mirroring capabilities of Net-
Ware or another data duplicating means which coordinates
with the data replicator 516. For instance, suppose a Net-
Ware partition on a 4 GB drive 1s mirrored to a second 4 GB
drive, and the partition 1s to be moved with the invention to
a new 9 GB drive. The new 9 GB drive 1s accompanied by
a second 9 GB drive for mirroring. By enabling mirroring
during the data replication, the 1nvention can automatically
produce a mirrored target partition on the 9 GB drive.
Similar coordination may be provided for data duplexing.
The data replicator 516 and system table utilizer 514 may
also manage volume sets and/or stripe sets 1n an analogous
manner.

Merging Segments

One method for merging segments begins by checking the
integrity of the two segments” NetWare volumes. This
should, 1 turn, check the mtegrity of each of the segments.
If the left segment has unaccounted space that 1s at the end
of the segment, the segment size 1s adjusted to end at the last
accounted block. Unaccounted-for-space 1s now between the
two segments. If there 1s free space between the two
segments, the method moves (or resizes and moves) the right
secgment so that it 1s directly adjacent to the left segment.

Next, step 618 changes the left volume segment object in
memory to mclude the space that 1s managed by the right
volume segment, and to delete the right volume segment
object. Note that VREPAIR expects to find file allocation
tables at the beginning of each segment, because that is
where they are 1nitially placed during NetWare 1nstallation;
however, the NetWare operating system does not require this
condition to operate normally with the file system. The file
allocation table 1s relocated to the default location where
NetWare creates 1t; otherwise some integrity checking utili-
fies such as vrepair.nlm will corrupt the volume by trying to
“fix” the file allocation table chain entries. The NetWare
operating system, however, works without the file allocation
table being relocated to the default location, as 1t accepts the
file allocation table chain for the file allocation table 1tself as
correct.

The integrity of the NetWare volume and all 1ts volume
segments 1s re-verifled. In addition, the method verifies the
integrity of all volumes that have any volume segment 1n the
partition containing the segments being merged.

Finally, the system 3500 writes to the volume definition
tables 508 with the new volume segment values, which are
based on the volume segment objects in memory. In doing
this, all entries 1n the volume definition table are listed
contiguously so that there 1s a new empty entry after all the
used entries 1n the volume definition table. An alternative
embodiment allows users to merge segments which are not
on the same partition 1 there 1s enough adjacent free space
on the partition of the selected volume segment to accom-
modate the segment being merged there.

With regard to the user interface 520, the user must have
selected a current volume segment. In one embodiment, a
Merge Volume Segments option will only be enabled if the

10

15

20

25

30

35

40

45

50

55

60

65

26

selected volume segment has a volume segment next to 1t
(on either side) that is from the same volume and the ordinal
values of the segments are consecutive. The user selects the
Merge Volume Segments option from a Volume Segment
Options menu. The user 1s then presented with a list of one
or two volume segments that may be on the left, right, or
both sides of the segment and which belong to the same
volume, similar to the lists shown 1n table 1500. It would be

helptul to also display the block size and the amount of used
blocks 1n each segment 1n this list. The user selects one of
the volume segments 1n the list, and a confirmation message
1s presented allowing the user to accept the proposed merge.
After completion of the merge the user i1s presented with a
success message. Errors are handled as discussed 1n con-
nection with segment moves and resizes.

Testing of the implementation should attempt to merge a
left volume segment that has unused space between the last
accounted for block 1 the segment and the segment end.
Testing should also attempt to merge with free space
between segments that 1s not on a block boundary for the
block size of the volume. In addition, testing should attempt
to merge the last two segments of a NetWare partition which
has eight volume segments.

Moving Volumes

A logical NetWare or other segmented volume may be
moved during step 626, regardless of the location of its
volume segments, to a single free space location within a
partition large enough to contain the entire volume. This 1s
accomplished as follows.

The user selects a logical volume on the server; free space
within a NetWare or other segmented partition 1s selected as
the destination of the volume. If the logical volume contains
only a single segment then the same move options are
available as if the user had selected Move from a Volume
Segment menu. If the volume contains multiple segments
the user 1s then asked whether the system 3500 should
combine all the segments after the move is complete (step
620).

In one embodiment, once the user selects a volume to
move a Volume Limits Object 1s created and filled 1n by a
NetWare Volume Object or the like, which specifies the size
of the entire volume. If the volume contains only a single
segment then the move changes to a volume segment move,
which 1s described elsewhere herein. Otherwise, NetWare or
other segmented partitions are searched for free space of
adequate size to hold the volume. Those that qualily are
displayed and the user selects one. The integrity of the
volume to be moved and the destination partition containing
the free space are both checked. Checking the volume
involves checking the integrity of each of the volume’s
segment objects.

In one embodiment, the volume object guides the move-
ment of each of the volume’s segments to the destination
free space. The volume object guides creation of each
segment’s partition object that performs the actual moving
of the individual segment. In an 1implementing program, a
class may be mcluded for the volume limits that delimit the
size, used space, and free space of the volume. The segments
of the volume are moved 1n ordinal sequence so that when
the move 1s complete the segments are 1n the correct order
to be merged. If the user has chosen to merge all segments,
upon successiul completion of the move, the volume object
calls the destination partition object n—1 times (where n is
the number of segments in the volume) to perform step 618
and merge each segment with the segment on its right, until
only a single segment remains.

In one embodiment, two main menu options are available:
“Select a NetWare Volume™, and “Volume Options”. When

US 6,453,383 Bl

27

Volume Options 1s selected, the Move Volume option 1s
available on the menu if there 1s non-adjacent free space
available to where the volume can be moved. When this
option 1s selected the user either 1s prompted to merge
multi-segment volumes or 1s taken directly to a dialog for
selecting the free space as appropriate. Before selecting the
free space to where a multi-segment volume will be moved,
the user 1s asked if the volume segments should be combined
after the move. This decision may affect which partitions are
available, depending upon the number of segments 1n the
combined partition.

If the selected volume has only a single segment then the
options available to the user are the same as the “Move a
Volume” segment menu option with text strings changed to
indicate that a logical volume is being moved. (See the
discussion of moving volume segments and 1ts description
of the interface 520 for moving volume segments.) If there
1s no valid free space to receive the volume to be moved, the
Move Volume option will not be available on the Volume
Options menu. This behavior 1s similar to what 1s done for
moving/copying a partition during step 628.

Errors are passed up to the user mterface 520 through an
error return code. Any foreseen errors during the move
process would end the move prematurely. The move,
however, should be fail-safe since each step can be com-
pleted independent of the other steps. Like other manipula-
tions described herein, this manipulation should be designed
to be halted between any of the steps without causing
damage to the user’s data.

Additional Examples

Further comments may be made with regard to specific
uses of the invention. For instance, as newer versions of
NetWare come out more files have been needed on the DOS
partition from which NetWare boots. Sometimes this creates
a problem because there 1s not enough space on the DOS
partition. Thus, 1t would be usetul to be able to increase the
size of the DOS partition, shrinking the NetWare partition 1f
necessary to obtain space into which the DOS partition will
be expanded. Sometimes, the opposite situation exists in that
the DOS partition was 1nitially created too big, so space 1s
being wasted 1n the DOS partition. In such a situation, the
user would like to be able to resize the DOS partition smaller
and then make the NetWare partition larger. In either
situation, the partition manipulation functionality discussed
in the incorporated patent documents can be used to resize
the DOS partitions, and the invention provides partition
manipulation functionality to resize the NetWare partitions.

Another situation that NetWare administrators run into 1s
replacing the original drive which had the DOS partition and
the SYS: volume on 1t, and possibly other volumes as well.
Because the servers involved are older the size of drives may
be much smaller than what i1s currently available on the
market today. This replacement task involves putting 1n a
new boot drive, copying all mformation to it, and then
booting.

For example, suppose the original drive was a 500 Mega-
byte drive. To replace 1t the administrator could put 1n a 4-—8
Gigabyte drive or higher. To use all that space the server
could be re-installed to specity the larger drive size, then all
the data would need to be restored from tape. This conven-
fional approach 1s very time consuming. A much quicker
way 1s to use the present invention in a process that copies
over the information, resizes the copied partitions as needed,
and then extends the NetWare partition to use up the
complete new drive. The NetWare system tables 508 are
modified to allow NetWare to see the additional drive
sectors. This 1s accomplished by modifying the partition

10

15

20

25

30

35

40

45

50

55

60

65

23

table to show the larger partition and then modifying the
redirect structure to let 1t be available.

One use of step 634 1s to remove all data and partitions on
a physical drive by moving the data and file allocation table
to the other drives defined 1n the volume. This will allow
someone to physically remove a hard drive from the file
server. A volume could have segments on the drive being
removed as well as other drives, or all the segments could be
on the drive being removed. One approach makes room on
other drive(s) for the data that is on the drive being removed
through resizing and vacating as needed, and moves the
volume segments from the drive being removed onto one or
more other drives. Another approach adds a new empty drive
to the system 500, and then replicates data onto the new
drive from the drive being removed. This could be done by
a direct copy followed by resizing the target volumes so all
of the new drive’s storage will be used.

Summary

In summary, the present invention provides a system and
method for efficient, correct, and safe manipulation of vol-
ume segments and their accompanying volumes and parti-
tions. Units in NetWare and other segmented environments
can be resized larger or smaller, their clusters can be resized,
and segments and volumes can be copied or moved. A
volume may be consolidated by moving 1ts segments to a
single drive, or 1ts segments can be distributed among
drives, as the user sees fit. Volume segments can be merged
to reduce to total number of segments, thereby avoiding (at
least for a time) the limits imposed by NetWare or similar
file systems. All these manipulations can be done safely even
when fault-tolerance data duplication 1s enabled.

Articles of manufacture within the scope of the present
invention include a computer-readable storage medium in
combination with the specific physical configuration of a
substrate of the computer-readable storage medium. The
substrate configuration represents data and instructions
which cause the computers to operate 1 a speciic and
predefined manner as described herein. Suitable storage
devices include floppy disks, hard disks, tape, CD-ROMs,
RAM, and other media readable by one or more of the
computers. Each such medium tangibly embodies a
program, functions, and/or instructions that are executable
by the machines to perform segmented partition unit
(partition, volume, segment, and/or drive) manipulation
steps substantially as described herein.

Although particular methods and signal formats embody-
ing the present invention are expressly illustrated and
described herein, 1t will be appreciated that system and
configured storage medium embodiments may be formed
according to the signals and methods of the present inven-
tion. Unless otherwise expressly indicted, the descriptions
herein of methods and signals of the present invention
therefore extend to corresponding systems and configured
storage media, and the descriptions of systems and config-
ured storage media of the present mvention extend likewise
to corresponding methods and signals.

As used herein, terms such as “a” and “the” and 1tem
designations such as “segment” are inclusive of one or more
of the indicated item. In particular, in the claims a reference
to an item means at least one such item 1s required. When
exactly one item 1s intended, this document will state that
requirement expressly.

The mvention may be embodied 1n other specific forms
without departing from 1ts essential characteristics. The
described embodiments are to be considered 1n all respects
only as illustrative and not restrictive. Headings are for
convenience only. The scope of the mnvention 1s, therefore,

US 6,453,383 Bl

29

indicated by the appended claims rather than by the fore-
ooing description. All changes which come within the mean-
ing and range of equivalency of the claims are to be
embraced within their scope.

What 1s claimed and desired to be secured by patent 1s:
1. A computer-implemented method for manipulating disk
contents, comprising the steps of:

selecting a unit located on at least one drive, the unit
containing a plurality of sectors holding user data and
system data 1n at least one volume segment, the select-
ing step comprising at least one of the following unit
selecting steps:
selecting a segment;
selecting a segmented volume;
selecting a segmented partition;
selecting a drive containing a segmented partition; and

manipulating the selected unit(s) in place to produce at

least one modified unit, the manipulating step compris-

ing at least one of the following steps:

changing the number of sectors in at least one selected
unit;

decreasing the cluster size in at least one selected unit;

merging two selected volume segments to produce a
single volume segment;

consolidating a selected volume by gathering segments
onto a single drive through some combination of
resizing and/or moving;

scattering selected segments differently among several
drives;

redistributing data between selected segments by mov-
ing data from one segment to another segment;

moving a selected segment without necessarily moving
the surrounding partition and the other partition
contents; and

copying a selected segment without necessarily copy-
ing the surrounding partition and the other partition
contents.

2. The method of claim 1, further comprising the step of
gaining exclusive write access to the selected unit prior to
the manipulating step.

3. The method of claim 1, further comprising the step of
rebooting after the manipulating step.

4. The method of claim 1, wherein the manipulating step
comprises updating a redirection area which identifies bad
seclors.

5. The method of claim 1, wherein the manipulating step
comprises updating a file system structure which identifies
bad sectors.

6. The method of claim 5, wherein the manipulating step
comprises updating a bad sector file.

7. The method of claim 1, further comprising the step of
verifying the integrity and consistency of file system data.

8. The method of claim 1, wherein the manipulating step
comprises preserving at least one copy of all user data on the
disk at all times during the manipulating step, thereby
reducing the risk of loss of user data 1f operation of the disk
drive 1s temporarily interrupted during the manipulating
step.

9. The method of claim 8, wherein data duplication 1s
being used to duplicate the user data.

10. The method of claim 1, wherein the manipulating step
comprises resizing a selected volume segment by changing
the number of sectors in the volume segment.

11. The method of claim 1, wherein the manipulating step
comprises resizing a selected volume by changing the num-
ber of sectors 1n the volume.

10

15

20

25

30

35

40

45

50

55

60

65

30

12. The method of claim 1, wherein the manipulating step
comprises resizing a selected segmented partition by chang-
ing the number of sectors in the partition.

13. The method of claim 1, wherein the manipulating step
comprises resizing a selected unit by changing the number
of sectors 1n the presence of data duplication.

14. The method of claim 1, wherein the manipulating step
comprises copying a segment.

15. The method of claim 1, wherein the manipulating step
comprises copying a volume.

16. The method of claim 1, wherein the manipulating step
comprises copying a segmented partition.

17. The method of claim 1, wherein the manipulating step
comprises shrinking a segmented partition by resizing the
segments within the partition.

18. The method of claim 17, wherein the shrinking step
comprises resizing the segments within the partition propor-
tionally smaller.

19. The method of claim 18, wheremn the segmented
partition has a fixed edge and the segments are shrunk
sequentially starting with segment closest to the partition’s
fixed edge.

20. The method of claim 1, wherein the segmented
volume 1s a NetWare volume.

21. The method of claim 1, wherein the segmented
volume 1s an NTFS volume.

22. The method of claim 1, wherein the manipulating step
comprises moving the left edge of a segment.

23. The method of claim 1, wherein the manipulating step
comprises replicating data between two disks.

24. A computer system for manipulating units, compris-
Ing:

a computer having a processor, a memory, and a seg-

mented storage medium for holding data according to
a partition table and a volume definition table;

selection means for selecting at least one unit from a
collection of units which includes zero or more
segments, zero or more volumes, and zero or more
segmented partitions, the unit located on the segmented
storage medium and containing user data and system
data; and

manipulation means for manipulating the selected unit 1n
place to produce a modified unit from the selected unit
without destroying user data and without merely
increasing cluster size 1n the selected unait.

25. The system of claim 24, further comprising a jour-
naling means for recording operations performed by the
manipulation means.

26. The system of claim 25, further comprising a playback
means for repeating the recorded operations on a second
selected set of one or more units to produce a second set of
one or more modified units.

27. The system of claim 26, further comprising an undo
means for sequentially undoing the recorded operations on
the one or more modified units to recover the one or more
selected units.

28. The system of claim 24, wherein the user data 1s
divided between disks or partitions according to a volume
set definition.

29. The system of claim 24, wherein the user data is
subject to a mirror set definition.

30. The system of claim 24, wherein the manipulation
means comprises a data replicator which moves the user data
to two or more destinations.

31. The system of claim 30, wherein at least one of the
destinations comprises a mirrored target partition.

US 6,453,383 Bl

31

32. A computer storage medium having a configuration
that represents data and instructions which will cause at least
a portion of a computer system containing at least one
NetWare partition to perform method steps for manipulating
a unit, the method steps comprising the steps of

selecting a unit located on at least one drive, the unit
containing a plurality of sectors organized by a Net-
Ware file system into user data and system data in at
least one volume segment; and

manipulating the selected unit(s) in place to produce at
least one modified unit without destroying user data
and without merely increasing cluster size 1n the
selected umnit.

33. The configured storage medium of claim 32, wherein
the manipulating step comprises resizing a selected NetWare
volume segment by changing the number of sectors in the
volume segment.

34. The configured storage medium of claim 32, wherein
the manipulating step comprises resizing a selected NetWare
volume by changing the number of sectors 1n the volume.

10

15

32

35. The configured storage medium of claim 32, wherein
the manipulating step comprises resizing a selected NetWare
secgmented partition by changing the number of sectors in
the partition.

36. The configured storage medium of claim 32, wherein
the manipulating step comprises resizing NetWare segment
clusters by decreasing the number of sectors per cluster.

37. The configured storage medium of claim 32, wherein
the manipulating step comprises merging two NetWare
volume segments to produce a single NetWare volume
segment.

38. The configured storage medium of claim 32, wherein
the manipulating step comprises consolidating a NetWare
volume by gathering segments onto a single drive through a
combination of resizing and/or moving.

39. The configured storage medium of claim 32, wherein

the manipulating step comprises redistributing data between
NetWare segments by moving data from one NetWare
secgment to another NetWare segment.

	Front Page
	Drawings
	Specification
	Claims

