(12) United States Patent

Dreszer

US006442661B1

US 6,442,661 B1
Aug. 27, 2002

(10) Patent No.:
45) Date of Patent:

(54) SELF-TUNING MEMORY MANAGEMENT
FOR COMPUTER SYSTEMS
(75) Inventor: Timothy Dreszer, Santa Cruz, CA (US)
(73) Assignee: Quantum Corporation, Milpitas, CA
(US)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.
(21) Appl. No.: 09/515,416
(22) Filed: Feb. 29, 2000
(51) Imt. CL7 ...ccocovernnn, GO6F 12/02; GO6F 12/00;
GO6F 12/08
(52) US.CL ... 711/170; 711/171; 711/133;
711/159; 711/160; 707,205
(58) Field of Search 711/170, 171,

711/133, 159, 160; 707/205

References Cited

U.S. PATENT DOCUMENTS

5,075,848 A
5,408,650 A *
5030827 A *

(56)

12/1991 Taietal. .oooovvvenvvnnnnn... 395/425
4/1995 Arsenault 395/704
7/1999 Sturges 711/170

OTHER PUBLICAITONS

Hanson D.R., “Fast Allocation and Deallocation of Memory
Based on Object Lifetimes”, Soft Practice and Experience,
John Wiley & Sons, Ltd., vol. 20, No. 1. Jan. 1990, pp. 5-12.
Barrett D.A. and Zorn B.G., “Using Lifetime Predictors to
Improve Memory Allocation Performance”ACM SIG—Plan
Notices, “Online!”, vol. 28, No. 6, 1993 pp. 187-196.
Boehm H-J and Weiser M., “Garbage Collection 1n an
Uncooperative Environment”, Software Practice And Expe-
rience, John Wiley & Sons, Ltd., vol. 18, No. 9, Sep. 1988,
pp. 807-820.

Seidl M.L. and Zorn B.G., “Segregating Heap Objects by
Reference Behavior and Lifetime”, A SIG—Plan Notices,
“Online!”, vol. 33, No. 11, Nov. 1998 pp. 12-23.

Lu Xu et al., “Distributed Garbage Collection for the Par-
allel Inference Machine PIE64”, Proc. Information Process-
ing 89, San Francisco, Aug. 28-Sep. 1, 1989, pp.
1161-1166.

Cheng P. et al., “Generational Stack Collection and Pro-
file—Driven Pretenuring”, ACM SIG—-PL Nofices, vol. 33,

No. 5, May 1, 1998 pp. 162-173.

IBM Tech Daiscl. Bull. vol. 28, No. 4, Sep. 1985 pp.
1684—1686.

* cited by examiner

Primary Examiner—Do Hyun Yoo
Assistant Examiner—Mehdi Namazi

(74) Attorney, Agent, or Firm—Michael Zarrabian
(57) ABSTRACT

A method of memory management 1n a computer system
comprising memory. The method includes the steps of: in
response to requests for allocation of memory blocks that
remain allocated for different durations, allocating each
memory block from one of a plurality of regions in the
memory based on the duration that the memory block 1s to
remain allocated; and maintaining a plurality of memory
secgments of one or more sizes 1n the memory, and in
response to a request for allocation of a memory block if the
requested block size 1s less than a predetermined size, then
allocating the requested block from among said segments,
otherwise allocating the requested block from another por-
tion of the memory. The number of data segments are
changed 1n relation to memory requests. Further at least a
portion of the memory 1s allocated to a cache having one or
more buffers. The cache buffers can be allocated for non-
cache use, including increase the number of said data
secgments, and are then deallocated back to the cache.

38 Claims, 16 Drawing Sheets

Memoryv Manager System Level Schematic

Initialize Memory Manager L ~ 60

i

Allow Long Term Allocations of
Memory

v

62

Deallocation of Memory

Allow Short Termn Allocations and

64

v

Nize

Establish Size Queues and Allow
Allocations and Frees based upon|—"

66

;

managaer

Upon Full System Startup, convert
to Performance based memory

68

v

Upon Requirement, Allow Sizo
Queue Growth

70

h 4

Background process, if necessary,
performs Size Queue Trimming

72

US 6,442,661 Bl

Sheet 1 of 16

Aug. 27, 2002

U.S. Patent

—

8l

\

Jd HUST[0)

/

0c

81 81

.

. /J - \ A

Od U3 Jd WS

J o _J
A

———

JIAIDS 9l
uonjedrjddy

cl

O\
S o F—/

X
IIAIDS 31, 71

YIOM}ON Ealy [e007 B Ul J9AISS 3|l

US 6,442,661 Bl

Sheet 2 of 16

Aug. 27, 2002

U.S. Patent

\ARII =
vi

v

P

SS920Y 108l1g :Saul] pljos s|eubig :sauiq panoq |

AIOWAIN _

>

¢C

— <

(1dO

44

358I0IS YSI(]

2.N303}IY2JY [edI1sAud Janias 9|l

US 6,442,661 Bl

Sheet 3 of 16

Aug. 27, 2002

U.S. Patent

"Wwo

8¢

10d

Yy

145

d¢ 9la

WISAS 31

A3BIOIS NSI(]

desH asodind jelauag)

/

ve

6C

\ 42p10q AzzZnf\

AJOUWIIN

BYyoeD WasAg m__n__

¢t

\

’

H

9C

\|\ 198RURIA] ATOWIN

SuoI11ouUNn,j (9427 Y31H

WSAS sunesado

LE

21N]3=aiydlyy |EUOlOUn sAie§ 9|14

U.S. Patent

Aug. 27, 2002

Sheet 4 of 16 US 6,442,661 Bl

|
[ow Address

High Address |

LT me\mory | ST me/mory

36 38

—
FIG. 3A 26
Low Address 42\ /42 High Address
LT memory | SQ minimum | |...| | ... | | STmen}ory
e\ o \ ™~ h

36 40 42 42 40 38

FIG. 3B 26
l [ow Address High Address
LT memory | SQ minimum | FS cache | ...] | ST mem/ory
\ s

36 40 44 46 46 38
FIG. 3C 26
Low Address High Address_l
LT memory | SQ minimum | FS cilche | SQISTyem. growth | ST memory

T /

36 40 44 50 38
FIG. 3D 26
[ow Address High Address
LT memory | SQ minimum | F§ cache | ST m?ory |

T
38 40 44 38
S — I -

FIG. 3E 26

U.S. Patent Aug. 27, 2002 Sheet 5 of 16 US 6,442,661 B1

Memory Manager Svstem Level Schematic
| |

Initialize Memory Manager

— 60
| —

4

Allow Long Term Allocations of
Memory

62

Allow Short Term Allocations and
Deallocation of Memory 64

Establish Size QGueues and Allow
Allocations and Frees based upon
S1ze

66

Upon Full System Startup, conve;t

to Performance based memory | _—
| manager

63

Upon Requirement, Allow Size

Queue Growth

Background process, 1f necessary,
performs Size Queue Trimming — 72

M

U.S. Patent Aug. 27, 2002 Sheet 6 of 16 US 6,442,661 B1

/ Initialize Memory Manager

System Startup Create rleap Pool to marage |~
all memory | 82
80 l

. . |
Establish contiguous blocks

within Heap e

Establish Allocation Headers
to manage allocable
Memory

FIG. 5
Allow Long Term Allocation of Memo \
: : 104
OS request for_\ > Search Free Memory Link List -
[for a large enough memory
ong lerm
block
106
102 > |
No Yes

Block larger
than needed?

Remove Allocation Header Unthread block and switch

from Free Memory Link | Allocation Headers in Link
List List
108

L Return block address to OS _/

FIG. 7

U.S. Patent Aug. 27, 2002 Sheet 7 of 16 US 6,442,661 B1

FIG. 6A
90 02 94 92 94
Heap First | First Block Second | Second Block
Pool Block E Contiguous Block | Contiguous
Header Header: Allocable {eader « Aliocable
: Viemao =3 - E Mlemaq'{ .
96 *
34
FIG. 6B 94 94
. o . .
90 92 98 95 02 88 §< 08 95
I-kap \ : \ : \ \ : : AlA
Pool B ! Allocation ! Allocable (free)... B ! Allocation ! Allocable (free) IH | M
Header H | Header . Memory H . Header | Memory
i (AH) L (AM) 1 (AH) L (AM)
l . | M"@ I : /
Yﬂ) 100
96 100 \
34
FIG. 6C
90 02 08 95 92 08 95\ 98 95
*Xap \ ' \ : \ \ I : A A
Pool Bi Allocation EAllocabIe (free) B i Allocation EAIIocable (free) H [M
Header H ! Header ! Memory H ! Header ! Memory |
' (AH) i (AM) ___(AH) . (AM) |
) l / I | \/
. — - ~
\ \ h 100 /
Found Block &
06 100 96 \ Allocation Header
(allocate)

34

U.S. Patent Aug. 27, 2002 Sheet 8 of 16 US 6,442,661 B1

94
mmer 98 ‘
FIG. 6D Allocated Portion 95a

E-i) 92 9\8 9\5 92 / / 9/233 O5b 98 95
Heap \ | | \ A A | A A | A
Pool Bi Allocation i Allocable (free) B« H| M | HiAllocable (free) |H | M
Header H! Header ' Memory H | | ' Memory |

N | ' ' |
N ot 1 | |
\\m._,-«"’ | |

(AH) (AM) #mm |
P ““1?\(- "\ . //V
\ - /
00
/
* Remaining Free Portion 95b &
34 New Allocation Header 98a

SN

96 100

95 92 08 95 98 95

I W N

AlA
H | M

| | | |
i Allocable (free) B | Allocation i Allocable (free) |
' Memory H ' Header ' Memory |]
' AM > L (AH) v {(AM) |]
\\\
100 -
Found Block &
\ Allocation Header
(allocate)
34
94
R
Existing Aliocation header 98
FIG. 6F Remaining Free Portion 95a
90 92 98 05 92 98a 95b 9|8 95‘
H\ap \\ : \ \ A |é: \ A | A
Pool Bi Allocation Allocable (free) B i H| M | H: Alocated IH | M
Header H! Header t Memory H ! | ' Memory | |
L (AH) : AM) l | | | |
L | |

et
o
-'-ﬁ'""'ﬁ

\ / 100

Allocated Portion 95b &
34 New Allocation Header 98a

X
3
\<
\
\

U.S. Patent Aug. 27, 2002 Sheet 9 of 16 US 6,442,661 B1

FIG. 6G
94 04
M_ _ —

- ™~ . o
90 92 98 42 92 98 .~:< 98 42
S\Q \ : \ : \ \ : \ : |A | A
Pool Bi Allocation i Allocable (free) B i Allocation | Allocable (free) |H | M
Header H! Header ! Memory H ! Header | Memory |

' (AH L (AM) ' (AH L (AM) I
Y " I o ﬂwﬂwﬂ@* | :
N wﬁw _' - I

TN/ o

96 100 96 100 \

40

FIG. 6H o7

94 94 97

90 92 '98 42 9842 ' 9842 98 42 92 / 98 42 98 42 98 42 gla 42 gls 4<
SQ \: IR // 814|Z\LA]A|/A|A|A|A\A
Pool Bi Al A LA AL ATALALA Hi H|M[HIM[H|MIH|M|H M
Header HHHM HIMIH M{H M | | N R |]
_ A O S N S S S S S —
R
- NN N\
T 100 100 100 100

U.S. Patent Aug. 27, 2002 Sheet 10 of 16 US 6,442,661 B1

FIG. 6]
94

K—’/_/\ _'ﬁ
9\0 92 98 42 58 42 98 42 38 42
SQ \:\ .FiXEXSiZEbUﬁer IAIAIA\AlAIAIA]AIAIA
Pool Bi Allocation { Allocable (free) H|M|HL1M]HI|M|E|IMI|HI|NM
Header H! Header ! Memory |

I l |

FIGG. 6J 94 97 (from 46)

Pool B
Header H

U.S. Patent

Aug. 27, 2002

Sheet 11 of 16

Short Term Allocation and Freeing of Memory

Remove Allocation Header from Free
Memory Link List

126

Search Free Memory Link List for a

‘Sh‘(:))r? ii?;liite:gr L large enough block
\ y N B __\ 1
122
120 / 124
Block larger
than needed?
128

Unthread block and switch
Allocation Headers in Link List

A 4 130

Return Memory Address to OS)

OS Request to release
temp. memory block

Find Allocation Header for

block to be freed

142

140 ~
Yes
Free memory
after block?
Find position in Free 144 Thread block to memory that
l Memory Link List follows 1t
| 146 / No Yes
Free memory
before block?
Add Allocation Header for 14 Thread block to memory that
block 1nto Free List | precedes it
/ >
152 154

156

FIG. 8

US 6,442,661 Bl

U.S. Patent Aug. 27, 2002 Sheet 12 of 16 US 6,442,661 B1

Establish Size Queues and Allow Allocations and Frees based upon Size

Calculate and Allocate amount of memory \
After Heap needed for the minimum segments

required for one Size Queue

e
160 o ¢

[nitialize minimum number of segments in
Sd1ze Queue and create Free Memory

164 Link List

—1 Repeat steps 162 and 164 for each Size
Queue as required

166

168
Wait

P Determine Size Queue to Allocate from
/ 172 Satisfy allocation request by unlinking first
1'70 - block from Free Link List of Size Queue

Upon OS request tor \

small short term memory

176 — C Return memory address to OS)

small short term block

7 / : B

180 182

Upon OS request to frea) " Determine Size Queue to Free the block into

Link block’s Allocation Header to beginning
of Free Link List for Stze Queue

Y

184
126 ,/’C RetumtoOS)

FIG. 9

U.S. Patent Aug. 27, 2002 Sheet 13 of 16 US 6,442,661 B1

Performance Tuning
0S notification of \ Bulk rin il e:le Tegmrﬂ provided / | "\;—_‘
startup Completion)\ apportioned to Cache ait
192 194
OS Allocation Request Treat requests for long term memory as
_ requests for short term memory ~——
- _ 198

196

NoO Yes

Request larger
than Si1ze Queue

Handle Request
from Size Queue Yes

206
~

No

Enough free
memory in heap to
handle reauest?

Handle Request
from Heap

Borrow File System Cache
butter to handle request

AN

210 208
T Return memory to OS

/ (OS request to free memory ;1 4

Y
312 No s
Memory borrowed 16
from FS Cache? /
Release to Heap or Return borrowed File System
Size Queues Cache bufter
|

218/

—~ 220

FIG. 10

U.S. Patent Aug. 27, 2002 Sheet 14 of 16 US 6,442,661 B1

Upon Requirement, Allow Size Queue Growth
OS5 request for -:}""/\...)

Size Queue No S1ze Qucue has a free Yes |
sized block segment?
\
222 —
v 224
One or more File System Cache buffers is / 226
| borrowed and added to the Size Queue 232
/"
— Vv

Requested block is allocated
from Size Queue
segments as usual

Each block is divided into proper 228

sized size queue segments

Start Background Process to I

periodically trim Size 730
Queues - Return memory to OS
\. y, :
\
126 234
OS request to free size —
queue memory segment
238
No Memory part of a FS Yes
Cache butfer?
v N h 4
Buffer is returned to beginning 6.e) Buffer 1s returned to end of
| of Free Memory Link List Free Memory Link List

2~ S 244

246

FIG. 11

U.S. Patent Aug. 27, 2002 Sheet 15 of 16 US 6,442,661 B1

Backeround task, if necessar erforms Stze Oueue Trimmin

_..--*A.
No T
Wait for Time to attempt Size All Size Queues back Yes
rd Queue Trimming to Minimum?
250 ~—
262
‘ \ 4
I For a Grown Size Queue find a
borrowed File System Cache block No
that may be returned
Y
A ©> Another Grown
S1ze Queue?
252 254
K +
Yes No 260
— v
Remove borrowed buffer from Size
Queue and return it to File System
| Cache 4 2587
< No
/ All growth |
756 blocks trimmed?
Yes
A 4
Mark Size Queue backto [
minimum size

- Gﬂp background trim process
258 red” | _::

FIG. 12

U.S. Patent

FIG. 13

Aug. 27, 2002

Sheet 16 of 16

US 6,442,661 Bl

Cursor Control Input Device Display N
Device
316 314 312
X A A
—— —
Memory ROM Storage Device
306 .. 308 310
A o A
\ 4 h 4 Y
BUS
302
301 — I l
CPU Communication
304 Interface
318
Web Server 27g T 120
330

[SP
326 /

322 324

Client Computer

- 305

Chient

Computer

System
301

| Computer
305

US 6,442,661 B1

1

SELF-TUNING MEMORY MANAGEMENT
FOR COMPUTER SYSTEMS

FIELD OF THE INVENTION

The present mvention related to memory management,
and 1n particular, to memory management for computer
systems including {file servers.

BACKGROUND OF THE INVENTION

Networked computer systems typically include at least
one file server data processing system. A file server can
comprise a computer ncluding a processor, memory, com-
munication interface, and storage device such as a disk
drive, configured by a {file system program to provide file
server functions. The performance of a file server 1s depen-
dent upon several factors, one of the most important of
which is the amount of physical memory (e.g., RAM)
available for buffering/caching disk reads/writes. The lim-
ited amount of memory leads to intense competition
between the file system and other system needs for memory.
Further, the speed of memory block allocation for buffering
data upon demand degrades over time primarily due to
memory fragmentation. Without an abundance of physical
memory, efficient memory management 1s required to ensure
sustained performance without degradation.

However, conventional memory management methods,
while enhancing performance 1n one network environment,
often degrade performance in another. Even within one
network environment, load changes from hour to hour can
very widely and static memory management and tuning
methods lead to degradation of the file server performance
In many circumstances. Some conventional methods attempt
to manage competition for memory by adding more physical
memory or by using virtual memory methods, which rely on
paging memory to buffer data to and from the storage system
(e.g., disk drive). However, adding more physical memory is
costly, requires space and consumes power. Further, virtual
memory methods invariably lead to slow processing and
unacceptable file server performance as they defeat the
purpose of file system caching. Other conventional systems
attempt to solve memory fragmentation by threading adja-
cent memory blocks together when freed. However, memory
rethreading takes time, leading to reduced file server per-
formance.

There 1s, therefore, a need for a memory management
method and system for network file servers which acceler-
ates memory allocation/deallocation for buifering data,
reduces memory fragmentation, 1ncreases available memory
for the file server file system I/O buflers while optimizing
the amount of memory available for other uses, and manages
competition for different memory uses, across different
network environments and over time within one network
environment.

BRIEF SUMMARY OF THE INVENTION

The present i1nvention satisfies these needs. In one
embodiment, the present invention provides a method of
managing memory including the steps of: 1n response to
requests for allocation of memory blocks that remain allo-
cated for different durations, allocating each memory block
from one of a plurality of regions in the memory based on
the duration that the memory block 1s to remain allocated;
and maintaining a plurality of memory segments of one or
more sizes 1n the memory, and 1n response to a request for
allocation of a memory block if the requested block size 1s

10

15

20

25

30

35

40

45

50

55

60

65

2

less than a predetermined size, then allocating the requested
block from among said segments, otherwise allocating the
requested block from another portion of the memory.

Preferably, 1n response to requests for allocation of long
term memory blocks, long term memory blocks are allo-
cated from a first region of the memory; and in response to
requests for allocation of short term memory blocks, short
term memory blocks are allocated from a second region of
the memory. The number of data segments are changed in
relation to memory requests. Further at least a potion of the
memory 1s apportioned for other use such as to a cache
having one or more buflers. The cache buflers can be
allocated for non-cache use, including increase the number
of said data segments, and are then deallocated back to the
cache.

In another aspect the present invention provides a
memory manager including means for implementing the
above steps 1n a computer system comprising memory and
a CPU for managing the memory. Further, the present
invention provides a computer program product comprising
a computer readable medium including program logic for
conliguring said computer system to perform the steps of
managing memory according to the present invention.

BRIEF DESCRIPITION OF THE DRAWINGS

These and other features, aspects and advantages of the
present invention will become understood with reference to
the following description, appended claims and accompa-
nying figures where:

FIG. 1 shows a block diagram of an example architecture
of an embodiment of a computer network mm which the
present 1nvention can be implemented;

FIG. 2A shows a block diagram of an example system
architecture of an embodiment of the file server of FIG. 1;

FIG. 2B shows a block diagram of an example functional
architecture of the file server of FIG. 2A;

FIGS. 3A-3E show example memory maps according to
an embodiment of the memory management of the present
mvention;

FIGS. 4-5 show example tlow diagrams of embodiments
of the memory management method of the present inven-
tion;

FIGS. 6 A—B show example memory maps for a heap
according to the present 1nvention;

FIGS. 6C-D show example memory maps of the heap of
FIG. 6B for long term memory allocation;

FIGS. 6 E-F show example memory maps of the heap of
FIG. 6B for short term memory allocation;

FIGS. 6G-H show example memory maps of the size
queue heap allocation and growth;

FIGS. 61-J show another example memory map wherein
a size queue (FIG. 6I) grows by borrowing a cache buffer

(FIG. 6J);

FIGS. 7-12 show example flow diagrams of embodiments
of the memory management method of the present inven-
tion; and

FIG. 13 shows a block diagram of an example architecture
of an embodiment of another computer system in which the
present invention can be implemented.

To facilitate understanding, 1dentical reference numerals
have been used, where possible, to designate structurally/
functionally 1dentical or similar elements that are common
throughout the figures.

DETAILED DESCRIPTION OF THE
INVENTION

In one embodiment, the present mvention provides a
method of managing competition for memory by various

US 6,442,661 B1

3

processes 1n computer systems which utilize a cache system
for managing at least a portion of the memory. For example,
In a computer system without virtual memory which relies
upon cache memory (e.g., in order to increase performance
for repetitive disk reads), requests by processes in the
computer system for allocation of general purpose memory
can lead to wasteful competition for limited memory
between cache and general purpose needs. In one
embodiment, the present invention manages such competi-
fion problems in such computer systems, and minimizes
memory fragmentation and dynamically tunes memory
resources to minimize memory waste, 1n order to maximize
the cache resource. For example, a memory management
method and system according to the present invention can be
implemented 1n network systems, network computers, sub-

scriber management systems, network file servers, etc.

In one example version, the present mvention can be
implemented 1n a computer network including a network file
server and a file system. FIG. 1 shows a block diagram of an
example architecture of an embodiment of a computer
network 10 (e.g. local area network) in which the present
invention can be implemented. The network 10 comprises a
hub 12 to which a file server 14, an application server 16 and
client computers 18 (e.g., personal computers) are intercon-
nected for communication therebetween and with other
computer/network systems via a router 20. The file server
provides functions, including data storage and retrieval, for
at least the network.

FIG. 2A shows a block diagram of an example system
architecture of an embodiment of the file server 14 of FIG.
1. The filer server 14 comprises a storage device 22 such as
a disk drive, CPU 24, memory 26 and a communication
interface 28 (e.g., Ethernet Port) connected to the hub 12.
FIG. 2B shows a block diagram of an example functional
architecture of the file server 14 of FIG. 2A, wherein the file
server 14 1s configured to provide functions including
memory management and file system management. In one
embodiment, memory management methods according to
the present invention are implemented as a memory manager
module (e.g., software) 30 in an operating system (OS) 29
for execution by the CPU 24 to configure the file server 14
to manage the memory 26. The operating system 29 can
further include high level functions including functions for
implementing a network {file server including e.g. protocol
handling, user interface functions, etc. In general, the
memory 26 includes a cache 32 for use by e.g. a file system
software, and a general purpose heap 34 for other memory
requirements/allocations.

In one embodiment, a memory management method
according to the present invention, implemented as the
memory manager 30, provides rapid memory allocation and
de-allocation, reduced memory fragmentation, maximizes
the amount of memory available for a cache (e.g., file system
[/O buffers) while optimizing the amount of memory avail-
able for other uses, and manages competition for different
memory uses by system self-adaptation to different usage
levels across different network environments and over time
within one network environment, including self-tuning to
optimize performance to a variety of environments and
dynamic conditions.

Referring to FIG. 3A, in one version, to effectively
climinate fragmentation of the memory 26, at file server
startup/initialization the memory manager 30 scgregates
memory block allocations that are to remain allocated for
long periods of time, long term (L'T) memory blocks, to a
first region LT memory 36 of the memory 26 from the heap
34 (preferably the low address end of the memory 26).

10

15

20

25

30

35

40

45

50

55

60

65

4

Further, the memory manager 30 segregates memory block
allocations that are to remain allocated for short periods of
time, short term/transient (ST) memory blocks, to a second
region ST memory 38 of the memory 26 from the heap 34
(preferably the high address end of the memory 26). Refer-
ring to FIG. 3B, the memory manager 30 then creates and
maintains size queues 40 (SQ) including plurality of
memory segments 42 of varying predetermined sizes, or
separate memory pools, 1n a third region of the memory
from the heap 34, to satisfy smaller short term efficient
memory block allocation requests (e.g., requiring few/brief
allocation steps). As such, smaller short term memory block
allocations are segregated by the use of the size queues 40
(e.g., six queues), dedicated to predetermined sizes of
memory allocation requests (e.g., memory block allocations
ranging from 32 up to 1024 bytes, with odd sizes rounded
up).

In addition to the size queues 40, the ST memory 38 can
also be used to satisty short-term memory block allocations,
however, preferably size queues 40 are utilized for smaller
short term memory block allocations (e.g., 1024 bytes or
less) while the ST memory 38 is utilized for larger short term
memory block allocations. In one example, after long term
memory block allocations are processed (e.g., after
initialization), thereafter the memory manager 30 treats all
LT memory allocation requests as ST requests. Size queues
40 are used for small sized requests. This avoids fragmen-
tation by handling memory allocation requests according to
size and by duration. LT memory allocation requests can be
handled differently from ST memory allocation requests
after mitialization, if a large memory allocation request 1s
preferentially allocated from ST memory or by cache.

As such a memory management method according to the
present invention effectively eliminates fragmentation of the
memory 26 1 a computer system including memory gen-
erally partitioned/apportioned for at least cache use and
general purpose (e.g., such as in the networked file server
appliance 14). The method of the present invention allevi-
ates fragmentation of the memory by preventing mixing of
small and large memory block allocations, and by prevent-
ing mixing short and long term memory block allocations, in
the memory 26. There 1s no need for processing time to
thread memory together from smaller adjacent buifers to
larger ones 1n the size queues 40, nor 1s it necessary to keep
track of the positions of buflers in the size queues 40.
Referring to FIG. 3C, the memory manager 30 provides
control of almost all 1dle memory to the file system for use
as the file system cache 44 (FS cache) including buffers 46.

The requested memory block allocations are segregated
by duration (e.g., long term, short term, etc.) and by use of
size queues 40. Further, the separate memory pools/size
queues 40 are not threaded together, wherein memory allo-
cations take memory segments 42 from the size queues 40
and memory deallocations return memory segments 42 to
the size queues 40, without further processing. The size
queues 40 allow reduction of processing overhead for
buffer/segment 42 threading and eliminate ordering by posi-
tion. The si1ze queues 40 can be utilized as pools of memory
for allocation similar to a heap.

In another embodiment, according to the memory man-
agement method, the memory manager 30 dynamically
tunes the size queues 40 (e.g., by dynamically changing the
number of data segments 42 therein) to afford adaptation to
varylng memory requirements in the file server. The method
allows managing competition for memory between the {ile
system cache buffers 46, and other memory requirements of
the file server 14. After system initialization/start-up, under

US 6,442,661 B1

S

control of the memory manager 30, memory block alloca-
flons 1n response to memory requests are limited to no more
than is needed for a single file system cache buffer 46 (e.g.,
8192 bytes). Further, all memory remaining in the heap 34
after 1mitial long term memory block allocations 36, size
queuc 40 creation and optionally the ST memory 38, is
provided to the file system for use i1n the cache 44 to
maximize the number of buflers 46 therein.

The memory manager 30 manages competition for
memory by providing most of the available memory to the
cache 44 and then borrowing one or more of the cache

buifers 46 when needed for: memory block allocations of a
certain size, for use as the size queues 40, for use as the ST
memory 38, etc. Thereafter, the memory manager returns
(deallocates) said borrowed buffers 44 back to the cache 40

when released by the operating system.

As such, 1n one version the memory manager 30 dynami-
cally changes the dividing line (e.g., fuzzy dividing line) in
memory between the cache 40 and the heap 34 comprising
the SQ memory 40 and the ST memory 38, 1n relation to
memory allocation requests. In one example, under the
control of the memory manager 30, memory block alloca-
tions of a predetermined size (e.g., 8192 bytes) are borrowed
directly from the cache 44 (e.g., from cache buffers 46 of
8192 bytes in size) and returned directly to the file system
cache 46, without requiring memory threading or further
processing. The memory manager 30 borrows memory from
the cache 44 when for example: (a) the ST memory 38 is
cxhausted, whereimn the memory manager 30 borrows a
buffer 46 to satisty allocation requests above a predeter-
mined size (e.g., 1024 bytes), (b) no ST memory 38 is
reserved, wherein the memory manager 30 borrows one or
more buifer 46 from the cache 40 to satisfy one or more
allocation requests, or (c) the memory manager distin-
ouishes between allocation requests and determines that
borrowing one or more cache buffers 46 1s more efficient
where e.g. an allocation request 1s for long term memory,
and even though the system 1s fully mitialized, the memory
manager allocates long-term memory requests from the
cache 44 (e.g., the file system requests memory and the
memory manager 30 allocates the memory from the cache

44), Efc.

Referring to FIG. 3D, further, the memory manager 30
increases the number of segments 42 1n the size queues 40
when depleted by borrowing one or more file system cache
buffers 46 to create additional data segments 42, included in
SQ growth 50, for one or more size queues 40. Each size
queue 40 can grow independently, borrowing one or more
file system cache buifers 46, thereby allowing the file server
14 to self-tune to the sizes of allocations required by
different networking environments.

The file system cache 44 1s for the use of the file system,
while the ST memory 38 and the size queues 40 1n the heap
34 serve the system as a whole for general memory needs
such as the file server’s operating system needs for allocat-
ing memory for storing information including e.g. network
protocol specific code to store mmformation about a user
connection, or administrator utility for sorting a list of
currently open files or system database needs for block
writes to flash memory, or many other uses. Both the ST
memory 38 and the size queues 40 can borrow memory from
the file system cache 46 (ec.g., FIG. 3D) and return the
borrowed memory (e.g., FIG. 3E), to manage competition
for memory, wherein dynamic borrowing/returning memory
provides self tuning.

The s1ze queues 40 can be passively trimmed to allow
return of borrowed buflers 46 to the file system cache 44

10

15

20

25

30

35

40

45

50

55

60

65

6

when no longer required by system needs. For example, a
background trimming process determines if all segments 42
within a single borrowed file system cache bufller 46 1n the
SQ growth 50 are free, so that buifer 46 can be returned to
the file system cache 44. As such, dynamic tuning by using
the file system cache buflfers 46 to temporarily increase size
queues 40 (and/or heap space), allows managing competi-
tion for memory.

In the example operation shown FIGS. 3A-E, mapping of
the memory space by the memory manager 30 includes five
states, wherein: (1) as shown in FIG. 3A, the memory space
in heap 34 1s divided to LT memory 38 for long term (LT)
allocations from low address memory, and to ST memory 38
for short term (ST) allocations from high address memory,
(2) as shown in FIG. 3B, size queues (SQ) 40 are then
created as pools of memory including a minimum number of
memory segments 42 allocated from e.g. the low address
memory region, wherein allocations from size queues 40 are
for short term memory blocks; (3) as shown in FIG. 3C,
when system initialization 1s complete, most unallocated
memory is provided to the file system (FS) for use as cache
44; (4) as shown in FIG. 3D, thereafter, if size queues 40
need to grow as described above, the needed memory 50 1s
borrowed from the file system cache 44; and (5) as shown in
FIG. 3E, when size queues 40 are trimmed back to minimum
by returning the borrowed memory 50 to the file system
cache 44, the memory layout returns to the post-
initialization state 1n FIG. 3C. By performing self-tuning
(e.g., FIGS. 3D-E), the memory manager 30 adapts itself to
a wide variety of network environments, which a networked
file server appliance can expect to encounter.

As such, during startup, all memory (not previously
dedicated) is in the form of the heap 34, comprising the LT
memory 36, the ST memory 38, and the SQ memory 40.
After startup, the LT memory 36 1s no longer available for
ogeneral use as 1t has been allocated for long term allocations.
After startup, the memory manager 30 converts as much
remaining memory in the heap 34 as possible to the cache
44. Therefore, what remains 1n the heap 34 for general
purpose allocation are the minimum reserved SQ memory
40 and a small reserved portion of the heap 34 for the ST
memory 38. The cache 44 1s not a heap and so not for general
use allocations, rather the cache 44 1s for specialized use
such as for the file system I/O buifers. When needed, cache
buffers 46 are borrowed to temporarily provide heap
memory for general allocation, and then returned to the
cache 44. The ST memory 38 is structured as a heap (small
heap) comprising ordered link list of memory blocks which
are unthreaded and threaded when allocated and deallocated,
respectively, (described further below). Optionally, the
memory manager 30 can convert all ST memory 38 to the
cache 44, and then fulfill all allocation requests above the
size queue segment limit (e.g., 1024 bytes) using borrowed

ES cache butters 46.

The method of preventing memory fragmentation can be
used alone or with the methods for managing competition
and for self-tuning. Further, size queue dynamic tuning can
be utilized without the method for managing memory com-
petition. In that case, instead of borrowing builers 46 from
file system cache 44 to grow the size queues 40, the memory
manager 30 can borrow the additional needed memory from
a general heap such as the ST memory 38. Further, the
competition for memory between the file system cache 44
and the ST memory 38, can be managed as described
without preventing fragmentation or performing self-tuning.

The methods for preventing fragmentation (e.g., segre-
cgating allocations by duration and the use of size queues 40

US 6,442,661 B1

7

) can be accomplished without method for managing com-
petition for memory (e.g., between cache 44 and general
purpose size queues 40 and heap 38) or dynamic tuning
(c.g., growing the size queues 40 on demand and trimming
them passively). However, without utilizing the method for
managing competition for memory, suificiently large
amounts of memory must be 1nitially reserved for the size
queues 40 to avoid competition with the FS cache 44,

wherein either more memory 1s required or else less memory
can be dedicated to the FS cache 44. The methods for

preventing fragmentation can also be implemented without
the methods for dynamic tuning, wherein the size queues 40
and the ST memory 38 include suificient memory to satisty
the maximum memory use the system can anticipate. This
requires upper limits on the size queues 40 and the ST
memory 38.

Further, the methods for dynamic tuning can be 1mple-
mented without the methods for managing competition
between the FS cache 44 and general use allocations from
the size queues 40 and the ST memory 38. Dynamic tuning
1s an aspect of managing competition, but can be imple-
mented merely to manage the competition for memory
between the different size queues 40 and the ST memory 38.
While it would be entirely possible and appropriate to
implement dynamic tuning without concern for the needs of
an FS cache 44, 1t 1s preferable to 1implement methods for
dynamic tuning and preventing fragmentation together.

Implementing the methods to manage memory competi-
tion between the FS cache 44 and general allocation needs
(e.g., by providing all available memory to the FS cache 44
then borrowing back buffers 46) can be implemented with-
out using dynamic tuning. As such, a borrowed FS cache
buffer 46 can be utilized for general ST memory 38, rather
than for specific size queue growth. Additionally, it 1s not
required to return borrowed buifers 46 back to the FS cache
44 (i.e., tuning one way—borrowing but not returning FS
cache buffers 46). However, one way tuning can lead to
inefficient memory use over time, while excluding size
queues from self-tuning can lead to size queue exhaustion
and allocation failure, or fragmentation. As with dynamic
tuning, 1t 1s preferable to manage competition between the
ES cache 44 and general purpose needs (e.g., the size queues
40 and/or the ST memory 38), while alleviating fragmenta-
tion. Therefore, the methods of managing competition and
dynamic tuning collaborate to prevent memory waste, and
are not dependent upon mimimizing fragmentation. Over
fime, fragmentation consumes memory and processing time,
unless the operating system 1s restarted regularly after only
short duration of running to reinitialize the memory. A
combination of the methods for managing competition,
dynamic tuning and minimizing fragmentation can provide
most efficient memory management.

FIG. 4 shows an example top level flow diagram of an
embodiment of the memory management method of the
present 1nvention implemented 1n one version as the
memory manager 30, including the steps of: mitializing the
memory manager 30 (step 60), allocating long term memory
buffers from low address end of memory (step 62)
allocating/deallocating temporary/short term memory buil-
ers from high address end of the memory 26 (step 64),
cgenerating size queues 40 and allocating/deallocating
memory blocks from segments 42 therein (step 66), after
system 1nitialization/startup, managing memory to increase
performance (step 68), increasing/decreasing size queues 40
in relation to memory requests (tuning) (step 70), and
performing trimming of size queues 40 (step 72). One or
more of the above steps can be repeated. Example embodi-
ments of the above steps are described further below.

10

15

20

25

30

35

40

45

50

55

60

65

3

FIG. 5§ shows an example flow diagram of an embodiment
of step 60 1n FIG. 4, for initializing the memory manager 30.
During initial system startup (step 80), the memory manager
30 1s imitialized by steps including: establishing a heap 34 1n
the memory 26 by creating a heap pool header 90, shown 1n
FIG. 6A, to manage all memory available for general-
purpose allocation (step 82), and establishing a block header
92 at the start of each contiguous block of memory 94
available for allocation, initializing the entirety of each
block 94 with a known value (e.g., ‘M’), and establishing a
link list 96 connected to the heap pool header 90 to chain
together all of the blocks 94 (step 84), leading to a system
memory map as shown by example in FIG. 6A.

Referring to FIG. 6B, cach block 94 can be divided into

one or more bulfers/blocks 95 for general purpose
allocation, wherein an allocation header 98 1s established at

the beginning of each block 95 to manage each block 95 for
general-purpose use/allocation. The allocation headers 98
for allocated blocks 95 are marked as ‘allocated’, and the
allocation headers for the remaining allocable blocks 95 are
marked as ‘free’ and chained together 1n a two-way Iree
memory link list 100 maintained in memory address order
and connected to the heap pool header 90 (step 86), leading
to a system memory map as shown by example in FIG. 6B.
The memory manager 30 then awaits requests from the
system operating system (OS) (step 88).

FIG. 7 shows an example flow diagram of an embodiment
of step 62 m FIG. 4, for allocation of long term memory
from the heap 34 during startup as shown 1 FIG. 6 B. Upon

receiving a request from the operating system for long term
allocation of a memory block (step 102), the memory
manager 30 performs steps including: traversing through all
available (free) allocation headers 98 in the heap 34, starting
at low memory address (LT memory 36), to find the first
memory block 95 larege enough for the size of requested
memory block (step 104); determining if the found allocable
memory block 95 1s significantly larger than the requested
size (step 106); if not, as shown by example in FIG. 6C,
removing the allocation header 98 of the found block 95
from the link list 100 and re-linking the link list 100 (step
108); otherwise, as shown by example in FIG. 6D, unthread-
ing a portion 95a of the found block 95, the portion 954
being of the size requested, by adjusting the size in the
found/existing allocation header 98 of the found block 95
(e.g., subtracting the requested size from the size of the
allocation header 98) and creating a new allocation header
984 1n memory beyond the portion 95a of the block 95 for
the remaining free portion 95b of the found block 95, and
replacing the allocation header 98 1n the allocation header/
free link list 100 with the new allocation header 98a by
placing the new allocation header 98a 1n the link list 100
(step 110); and marking the existing allocation header 98 for
said memory portion 95a as ‘allocated’ (not free) and
returning the memory address immediately following the
existing allocation header 98 to the operating system
requestor (step 112).

Threading includes the steps of joining two adjacent
buffers (e.g., blocks 95) of memory into a single buffer
cgoverned by only one allocation header 98. Threading can
be performed when a freed bulfer 1s adjacent to another free
buffer, to join into a larger buifer, thereby reducing frag-
mentation. Unthreading includes the steps of dividing a
single buffer (e.g. block 95) with a single allocation header
98 into e.g. two smaller buffers with two corresponding
allocation headers 98 (¢.g., when part of an available buffer
is allocated, and the remaining part is left behind as free).

FIG. 8 shows an example flow diagram of an embodiment
of step 64 1n FIG. 4, for temporary/short term allocation/

US 6,442,661 B1

9

deallocation of memory blocks from the heap 34 of FIG. 6B.
Upon receiving request from the operating system for short
term allocation of a memory block (step 120), the memory
manager 30 performs steps including: traversing through all
available (free) allocation headers 98 in the heap 34, starting
at high memory address (ST memory 38), to find the first
memory block 95 that 1s large enough for the size of memory
requested (step 122); determining if the allocable memory
block 95 is significantly larger than requested size (step
124); if not, as shown by example in FIG. 6E, removing the
found allocation header 98 from the free link list 100 (step
126), and returning the memory address immediately fol-
lowing the found allocation header 98 to the operating
system requestor (step 130); otherwise, as shown by
example 1 FIG. 6F, unthreading the requested memory by
modifying the size 1n the found/existing allocation header 98
(e.g., subtracting the requested size from the size in the
found allocation header 98); dividing the block 95 to a
portion 954 to remain free and a portion 95b of the requested
size to be allocated; creating a new allocation header 98a
beyond a portion 95a of the found block 95 in memory to
manage the portion 955 to be allocated (unlike allocation
from the low address of memory for long term allocations,
the allocation header link list 100 is not altered here) (step
128); marking the new allocation header 98a for said
memory portion 95b being allocated as “allocated’ (not free)
and returning the memory address immediately following
the new allocation header 98a to the operating system
requestor (step 130).

Upon release by the operating system of short term
allocated memory (step 140), the memory manager 30
performs steps including: finding the allocation header 98 in
the heap 34 (FIGS. 6B,E-F) for a memory block 95 being
freed, located immediately before the memory address pro-
vided for the released block 95, and marking the found
allocation header 98 as ‘free’ (step 142); then attempting to
perform threading by determining if there 1s a valid free
allocation header 98 immediately following the block 95
being freed (step 144); if not, traversing through the link list
100 1 heap 34 from highest memory address to lowest
memory address to find the position in the free link list 100,
in memory address order, where the allocation header 98 of
the block 95 being freed should be inserted (step 146);
otherwise, if a valid allocation header 98 exists immediately
following the block 95 being freed, and the memory block
corresponding to said following allocation header 1s also
free, then threading the block 95 being freed to the 1mme-
diately following memory, by adding the size 1n said fol-
lowing allocation header 98 to the size in the allocation
header being freed, and removing said following allocation
header from the free link list 100, marking 1t as no longer
valid (step 148).

The memory manager 30, then performs steps including:
determining if the allocation header 98 for the memory
immediately preceding the allocation header 98 of the block
95 being freed 1n the free memory link list 100 1s contiguous
with the block 95 being freed (step 150); if not, adding the
allocation header 98 for the block being freed into the link
list 100 (step 152); otherwise if the allocation header 98
immediately preceding the allocation header of the memory
being freed 1n the link list 100 1s contiguous with the block
being freed, threading the preceding memory to the block
being freed, by altering the size 1n said preceding allocation
header 98, and marking the allocation header for the block
being freed as no longer valid, wherein the free memory link
list 100 1s not altered (step 154); and returning to the
operating system (step 156).

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 9 shows an example flow diagram of an embodiment
of step 66 1n FIG. 4, for establishing and creating size queues
40 for memory allocations/deallocations based upon size.
After long term allocations from the heap 34 (step 160), but
before the file server’s operating system 1s fully 1nitialized,
the memory manager 30 establishes size queues 40 for short
term allocations of small blocks of memory, by steps includ-
ing: for a memory 26 of certain size, estimating the mini-
mum number of scgments 42 required to create an efficient
size queue 40 (e.g., 100 segments of memory 32 bytes long
each); calculating the amount of memory necessary to create
the size queue 40 as a heap/memory pool (e.g., 100 segments
times 32 bytes plus the size of 100allocation headers 98 plus
one block header 92); allocating the memory from the heap
pool 34; and establishing each size queue 40 (e.g., FIGS.
6G—H) similar in structure to the heap 34 described above
(FIGS. 6A-B), by creating the segments 42 in memory
(preferably contiguously allocated), separated by allocation
headers 98 for managing each segment 42 (step 162);
creating a free memory link list 100 for the size queue 40
chaining all of the allocation headers 98 together, much the
same way as shown i FIGS. 6 A—B and described above
(step 164); repeating steps 162 and 164 for each size queue
40 (e.g., multiple size queues of data segments of 32 bytes,

64 bytes, 128 bytes, 256 bytes, 512 bytes, 1024 bytes etc.)
(step 166); and waiting for requests from the OS (step 168).

Upon receiving operating system requests for short
memory allocations at or below the size of the largest
segments 42 (e.g., 1024 bytes) in a size queue 40 (step 170),
the memory manager 30 performs steps including: deter-
mining which size queue 40 to utilize to satisty the request
(step 172). For example, a jump table of e.g. 32 slots can be
utilized, wherein by taking the requested size minus one and
dividing the result by 32, an appropriate size queue 40 with
scoments 42 sufliciently large to satisfy the request, 1is
selected directly.

The memory manager 30 selects a size queue 40 1n
response to allocation requests, by e.g. subtracting 1 from
the requested memory size, dividing the result by 32 and
truncating the answer to an integer, to quickly generate a
number between O and 31. (e.g., for request of 32 bytes,
trunc((32-1)/32)=0; for a request 33 bytes, trunc((33-1)/
32)=1, for a request of 1024 bytes, trunc((1024-1)/32)=31;
etc). A 32 member array (e.g., jump table) is maintained,
providing 32 slots, wherein the calculated values are
between 0 and 31 (array slot number). If the calculated value
1s 1 or 2 then jump to a size queue with 64-byte segments 42;
if the calculated value 1s 3, 4, 5 or 6 then jump to size queue
with 128-byte segments 42, Etc. As such each member
points to the proper size queue (i.e. 2, 64, 64, 128, 128, 128,
128, 256, . . .). Therefore, with minimum processing, the
memory manager 30 quickly resolves a size queue 40 to
allocate memory from. When segment allocations are freed
back to the size queue, the size queue pointer 1n the
allocation header for a given segment 42 1s utilized to find
the appropriate size queue. However, instead of the pointer,
other methods such as the using a lookup array similar to
that used for allocation, can be utilized.

The memory allocation request 1s satisfied by obtaining a
secgment 42 from the beginning of the free link list 100 1n a
size queue 40 (step 174). Because all segments 42 in the
selected size queue 40 are the same size, no searching for a
scoment 42 of size large enough 1s necessary, and no
‘unthreading” 1s required. The memory manager 30 then
return the memory address of the allocated segment 42 to the
OS (step 176).

Upon release of short term allocated memory at or below
the size of the largest segments 42 (e.g., 1024 bytes) in a size

US 6,442,661 B1

11

queue 40 (step 180), the memory manager 30 determines
which size queue 40 the memory block should be released
to by using the memory address of the size queue 40
embedded within the allocation header 98 of the segment 42
(step 182). The memory manager 30 then frees/deallocates
the released segment 42 by marking the Allocation Header
98 of the segment 42 as ‘free’ and adding the allocation
header 98 to the beginning of the free memory link list 100
of the size queue 40 (step 184). The memory manager 30
then return status to the OS (step 186). Because all segments
42 1n the size queue 40 are the same size, no threading is
required, and because no threading 1s necessary, minimal
processing 1s required to maintain the link list 100 in
memory address order. The link list 100 1s not maintained in
address order, wherein a freed buffer 1s added to the begin-

ning (or ending) of the link list 100.

After allocation of long term and short memory blocks
and the size queue 40 during startup, the heap 34 comprises
the long term allocated blocks from the LI memory 38, short
term allocated blocks from the ST memory 38, and the
mimmum size queues 4. Thereafter, after system startup,
the memory manager 30 provides most of the free memory
remaining in the heap 34 as cache 44 to the file system,
leaving a small reserved amount to a minimum size queues
40 and a small reserved amount to the ST memory 38 for
ogeneral purpose allocations, thereby entering a performance
based memory management mode described below.

In one version, a minimum size queue 40 comprises a
minimum number of segments 42 that are maintained 1n the
size queue 40 without reduction. The minimum number can
be tuned such that no size queue growth 1s necessary to
achieve desired performance criteria.

FIG. 10 shows an example flow diagram of an embodi-
ment of step 68 1 FIG. 4, for performance based memory
management (e.g., tuning) after full system startup/
initialization. Upon receiving notification from the operating
system that all file server modules have successfully been
initialized (step 190), the memory manager 30 completes its
initialization whereby all contiguous, free memory, except
for small predetermined amounts reserved for the ST
memory 38 and size queues 44, 1s allocated and prewded to
the file system to be used as the cache 44 including buifers

46 (c.g. 8192 bytes each) (step 192), and the memory
manager 30 then awaits requests from the OS (step 194).

Thereafter, upon receiving memory allocation requests
(step 196) the memory manager 30 treats requests for long
term memory and short term memory allocations alike (step
198), wherein the memory manager 30 determines if a
requested memory block size 1s larger than that available in
the segments 42 of the size queues 40 (step 200); if not,
allocation requests less than or equal to the largest segment
42 of the size queues 40 (e.g., 1024 bytes) are satisfied from
the size queues 40 (step 204). Otherwise, the memory
manager 30 then determines if there 1s sufficient memory 1n
the ST memory 38 of the heap 34 to satisfy the memory
allocation request (step 202), and if so, a requested memory
block larger than the largest segment 42 of size queues 40 1s
satisfied from the ST memory 38 (step 206). The ST memory
38 confinues to maintain an address position link list 96 and
unthreads and rethreads buffers as required (e.g., the same
way as described above for the heap 34 in conjunction with
FIGS. 6 A-B). If sufficient memory is not available in the ST
memory 38 to handle a non-size queue request, and if the
request is less than a predetermined size (e.g., cache buffer
size of 8192 bytes), then a single file system cache buffer 46
is borrowed to satisfy the request (step 208). The borrowed
file system cache buifer 46 1s not divided into smaller buifers

10

15

20

25

30

35

40

45

50

55

60

65

12

and so 1s not managed by the block link list 96 or free link
list 100 of the ST memory 38. The integrity of the borrowed
file system cache buffer 46 1s maintained (1.€., the buffer 46
is not divided into smaller portions) to allow returning the
borrowed cache bufler 46 to the file system cache 44 as soon
as the single allocation 1s released. Upon saftistying the
request, the memory manager 30 then returns the memory
address following the allocation header 98 to the OS as the
start of the memory allocated to the OS requestor to use for
general purpose (step 210).

When the operating system releases a short term memory
block allocation (step 212), the memory manager 30 deter-
mines 1f the allocation was satisfied from a borrowed file
system cache buffer 46 (step 214), and if so the cache buffer
46 1s immediately returned to the file system cache 44 (step
216) to optimize the file system cache 44; otherwise the
released memory 1s returned to the structure that it was
allocated from (e.g., the ST memory heap 38 or the size
queues 40) as appropriate (step 218). The memory manager
30 then returns to the operating system (step 220).

FIG. 11 shows an example flow diagram of an embodi-
ment of step 70 m FIG. 4, for adjusting the size queues 40
in relation to memory requests/requirements. When the
operating system requests the allocation of a memory block
of a size to be satisfied by a size queue 40 (step 222) (i.e.,
the memory block size requested 1s no larger than the largest
size queue segment 42), the memory manager 30 determines
if a size queue 40 includes a free segment 42 to fulfill the
request (step 224). If not, the memory manager 30 “grows”
a selected size queue 40 by increasing the number of
secgments 42 therein. As shown by example 1n FIG. 6H, one
or more lile system cache buffers 46 are borrowed and
treated as new blocks 97 to be added to the block list 96 of

the size queue 40, and each block 97 1s initialized to a known
value (e.g., ‘Q’) (step 226). Each new block 97 is then
divided into as many segments 42 of the required size for the
size queue 40, and an allocation header 98 1s created for each
segment 42; any remaining memory ol the predetermined
size (e.g., 8192 bytes) of file system cache buffer 46 remains
with the last size queue bufler to be created. For example, 1n
a size queue 40 mcluding segments 42 of size 64 bytes and
allocation headers 98 of size 16 bytes, the number of
secoments 42 generated from the block 97 of 8192 bytes 1s:
8192/(64+16)=102 segments 42 with 32 bytes left over. The
unused 32 bytes remains along with the last segment 42
created, untouched but governed by that last segment’s
allocation header 98, and accounted for when returned to FS

cache 40).

The size queue’s free memory link list 100 1s updated with
the new allocation headers 98 and the new segments 42 (e.g.,
as described 1n relation to FIGS. 6 A—B); and the size queue
pool header 90 is marked as having grown/increased (step
228). FIGS. 6I-J show another example wherein a size
queue 40 (FIG. 6I) grows by borrowing a buffer 46 (FIG.
6J). If this is the first growth of a size queue 40 then a
background process can be launched to periodically
reorganize/trim the size queue 40 and attempt to release file
system cache buffers 46 back to the file system (step 230).
In satisfying memory requests, the new size queue segments
42 are allocated 1n the same manner as other size queue
secgments 42, by taking the first one off the beginning of the
size queue link list 100 (step 232). In step 224 above, the
selected size queue 40 includes a free segment 42 of
suflicient size, wherein that segment 42 1s allocated to satisty
the request (step 232). The memory manager 30, then returns
the memory address of the segment 42 to the operating
system (step 234).

US 6,442,661 B1

13

Upon rece1ving an operating system request to deallocate/
free a released size queue segment 42 (step 236), the
memory manager 30 determines if the released segment 42
is part of a borrowed file system cache buffer 46 (¢.g., a

block 97) (step 238). If not, the released segment 42 is
returned to the beginning of the free memory link list 100 of
the size queue 40 as described above (step 242). Otherwise,
the released segment 42 1s added to the end of the free
memory link list 100 for that size queue 40 (step 244). This
ensures that the original size queue segments 42 are used 1n
preference to the segments borrowed from a file system
cache bufler 46. As a result, over time, the segments 42 used
from borrowed FS cache buifers 46 tend to be free more than
the original segments 42 created during size queue 1nitial-
1zation. When an optional background trim process searches
the size queues 40 for blocks 97 that were borrowed from FS
cache 44, all segments 42 of those blocks 97 will more likely
be free, therefore, increasing the likelihood that the bor-
rowed block 97 can be trimmed and returned to FS cache 40.
The memory manager 30 then returns to the operating
system (step 246).

The 1nitial mmimum sized size queue 40 represents a
single block of memory 94 broken 1nto same sized segments
42. A size queue 40 that has grown includes one or more
additional blocks 97 broken into same sized segments. The
blocks are linked together by a link list 100 and attached to
the size queue’s header 90. FIG. 12 shows an example flow
diagram of an embodiment of step 72 in FIG. 4, for an
optional background process to perform size queue trim-
ming. Once one or more size queues 4 grow as discussed
above, a background process can periodically attempt to
trim the size queues 40 to return borrowed memory. For each
size queue 40 that has grown beyond a minimum established
during system startup, the memory manager 30 selects e.g.
idle time to begin trimming (or periodically, in order to more
aggressively tune in the file server) (step 250), and examines
the block link list 96 of the size queue 40 for blocks 97
borrowed from FS cache 44 that can be released from the
size queue 40; each block 97 that 1s marked as having been
borrowed from the file system cache 44, 1s examined to
determine 1f all the size queue segments 42 that the block 97
has been divided into are currently free (step 252). Because
the size queue free memory link list 100 1s not kept 1n strict
memory address order, 1t cannot be used to traverse the
blocks 97. However, the original size queue segments 42 are
always releaded to the beginning of the free link list 100, and
new growth segments 42 are always released to the end of
the free memory link list 100, while allocations are from the
beginning of the link list 100. Over time, the segments 42
borrowed through size queue growth tend to be more likely
free than the original segments 42. A block 97 that was
borrowed from the file system cache 44 1s traversed by
examining the known memory oflsets therein where alloca-
tion headers 98 are located. The memory oflsets are easily
determined because all segments 42 (with the possible
exception of the last in the block 97) are of fixed size.

If all segments 42 within a borrowed block 97 (i.e., file
system buffer 46) are free (step 254), the segments 42 are
removed from the size queue’s free memory link list 100,
and the block 97 (buffer 46) 1s then removed from the size
queue’s block link list 96 and returned to file system cache
44 (step 256). Otherwise, the memory manager 30 deter-
mines if all growth segments 42 have been trimmed (step
257), if so, the size queue pool header 90 1s marked to its
original minimum size (step 2588). Otherwise, the memory
manager 30 determines 1f any other size queue has grown 1n
size (step 260). If so, steps 252-258 can be repeated,

5

10

15

20

25

30

35

40

45

50

55

60

65

14

otherwise the memory manger 30 determines 1f all queues
40 are back to minimum (step 262). If not, steps 250-260

can be repeated at an appropriate time. When all size queues
40 have been trimmed back to their original sizes the
background process ends (step 264).

In another version, a memory management method
according to the present mvention can be implemented 1n a
storage system including a central processing unit (CPU),
memory and at least one storage device wherein data is

transterred to/from the storage device via at least a portion
of the memory, wherein the memory management methods
are performed by the CPU. The storage system can comprise
a network server, wherein the memory manager 30 operates
in response to calls made from one or more server resident
programs running in the network server, where the server 1s
operating under control of a network operating system
including said memory manager 30 comprising system
memory allocation functions callable by the one or more
server resident programs for making desired memory allo-
cations and deallocations. In addition to the example net-
work filer server in which a memory management method
and module/system according to the present invention can
be implemented, other examples can include personal digital
assistants, routers, subscriber management systems, com-
puter systems with in-memory cache, embedded operating
system controlled devices, etc.

Further, the present invention can be 1mplemented 1n
computer systems having one or more of the following
characteristics: the computer system includes a closed oper-
ating system, with no outside applications running on the
computer system; the computer system does not utilize
virtual memory; performance and functionality of the com-
puter system are bound by in-memory cache; and/or the
computer system encounters varying processing €nviron-
ments and processing/data transfer loads. In an example
computer system (e.g., file server) a memory management
method according to the present invention includes one or
more of the following features: limiting the maximum size
of memory requests; efficiently managing RAM memory,
especially to reduce fragmentation and increase access
speed, essential for better performance; managing competi-
fion to maximize in-memory cache without restricting gen-
eral purpose use memory; and optimizing memory manage-
ment by self-tuning to adapt to different/varying processing/
data transfer requirements.

Limiting memory request size 1s optional and 1s useful 1n
computer systems with closed operating systems, or to only
a portion of the operating system that is closed (i.e. the
kernel, but not the user layer of the OS). Further, the present
invention can be implemented in computer system which
utilize virtual memory, for efficient RAM management as
described. The present mvention can be implemented in
computer systems/devices which rely upon in-memory
cache for maximizing 1n-memory cache. However, the
present 1nvention can be implemented in computer system
which do not use in-memory cache. Further, the present
invention can be utilized in computer systems wherein the
computer system includes closed operating system, or, the
memory manager restrict memory requests to within a set
size; the amount of in-memory cache has a direct bearing
upon performance and/or functionality of the computer
system; and/or the number and/or type of operations the
computer system performs varies from time to time or from
installation to 1nstallation.

FIG. 13 shows a block diagram of an example architecture
of an embodiment of a computer system 300 1n which the
present invention can be implemented. The computer system

US 6,442,661 B1

15

300 includes one or more computer systems 301, wherein a
memory manager according to the present invention can be
implemented 1n one or more of the computer systems 301.
A computer system 301 (e.g., network file server) includes
a bus 302 or other communication mechanism for commu-
nicating information, and a processor 304 (e.g., CPU 24 in
FIG. 2A) coupled with the bus 302 for processing informa-
tion. The computer system 301 also includes a main memory
306, such as a random access memory (RAM) (e.g., memory
26 in FIG. 2A) or other dynamic storage device, coupled to
the bus 302. The memory 306 1s managed by e.g. the
memory manager 30. Further, a portion of the memory 306
1s used for storing information and instructions to be
executed by the processor 304, and another portion of the
memory 306 1s used for storing temporary variables or other
intermediate mformation during execution or instructions to
be executed by the processor 304. The computer system 301
further includes a read only memory (ROM) 308 or other
static storage device coupled to the bus 302 for storing static
information and mstructions for the processor 304. A storage
device 310, such as a magnetic disk (e.g. disk storage 22 in
FIG. 2A) or optical disk, is provided and coupled to the bus
302 for storing information and instructions. The bus 302
may contain, for example, thirty-two address lines for
addressing the main memory 306 or video memory. The bus
302 can also include, for example, a 32-bit data bus for
transferring data between and among the components, such
as the CPU 304, the main memory 306 and the storage 310.
Alternatively, multiplex data/address lines may be used
instead of separate data and address lines.

In one embodiment, the CPU 304 comprises a micropro-
cessor manufactured by Motorola(R) such as 680x0
processor, or a microprocessor manufactured by Intel(R),
such as the 80x86, or Pentium(R) processor, or a SPARC(R)
microprocessor from Sun Microsystems(R). However, any
other suitable microprocessor or microcomputer may be
utilized, based on the processing requirements for the com-
puter system 101. The main memory 306 can comprise
dynamic random access memory (DRAM). And video
memory (not shown) can comprise a dual-ported video
random access memory.

The computer system 301 can be coupled via the bus 302
to a display 312, such as a cathode ray tube (CRT), for
displaying information to a computer user. An input device
314, including alphanumeric and other keys, 1s coupled to
the bus 302 for communicating information and command
selections to the processor 304. Another type or user 1nput
device comprises cursor control 316, such as a mousse, a
trackball, or cursor direction keys for communicating direc-
fion mformation and command selections to the processor
304 and for controlling cursor movement on the display 312.
This mput device typically has two degrees of freedom 1n
two axes, a first axis (e.g., x) and a second axis (e.g., y) that
allows the device to specily positions 1n a plane.

According to one embodiment of the invention, the steps
of the memory manager 30 described above, 1s performed by
a computer system 301 1 response to the processor 304
executing one or more sequences of one or more 1nstructions
contained 1n the main memory 306. Such instructions may
be read into the main memory 306 from another computer-
readable medium, such as the storage device 310 or floppy
disks. Execution of the sequences of instructions contained
in the main memory 306 causes the processor 304 to perform
the memory management process steps described herein.
One or more processors 1n a multi-processing arrangement
may also be employed to execute the sequences of nstruc-
fions contained in the main memory 306. In alternative

5

10

15

20

25

30

35

40

45

50

55

60

65

16

embodiments, hare-wired circuitry may be used in place of
or 1n combination with software instructions to implement
the mvention. Thus, embodiments of the invention are not
limited to any specific combination of hardware circuitry
and software.

The term “computer-readable medium” as used herein
refers to any medium that participated 1n providing instruc-
tions to the processor 304 for execution. Such a medium
may take may forms, including but not limited to, non-
volatile media, volatile media, and transmission media.
Non-volatile media includes, for example, optical or mag-

netic disks, such as the storage device 310. Volatile media
includes dynamic memory, such as the main memory 306.
Transmission media includes coaxial cables, copper wire
and fiber optics, ncluding the wires that comprise the bus
302. Transmission media can also take the form of acoustic
or light waves, such as those generated during radio wave
and 1nfrared data communications.

Common forms of computer-readable media include, for
example, a tloppy disk, a flexible disk, hard disk, magnetic
tape, or any other magnetic medium, a CD-ROM, any other
optical medium, punch cards, paper tape, any other physical
medium with patterns of holes, a RAM, a PROM, an
EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave as described hereinafter, or any
other medium from which a computer can read.

Various forms of computer readable media may be
involved 1n carrying one or more sequences of one or more
instructions to the processor 304 for execution. For example,
the instructions may 1nitially be carried on a magnetic disk
of a remote computer. The remote computer can load the
instructions into 1ts dynamic memory and send the nstruc-
tions over a telephone line using a modem. A modem local
to the computer system 301 can receive the data on the
telephone line and use an mnfrared transmitter to convert the
data to an 1nfrared signal. An infrared detector coupled to the
bus 302 can receive the data carried in the infrared signal
and place the data on the bus 302. The bus 302 carries the
data to the main memory 306, from which the processor 304
retrieves and executes the instructions. The instructions
received from the main memory 306 may optionally be
stored on the storage device 310 either before or after
execution by the processor 304.

The computer system 301 also mcludes a communication
interface 318 (e.g., Ethernet port 28 in FIG. 2A) coupled to
bus the 302. The communication mterface 318 provides a
two-way data communication coupling to a network link
320 that 1s connected to a local network 322. For example,
the communication interface 318 may be an integrated
services digital network (ISDN) card or a modern to provide
a data communication connection to a corresponding type of
telephone line, which can comprise part of the network link
320. As another example, the communication interface 318
may be a local area network (LAN) card to provide a data
communication connection to a compatible LAN. Wireless
links may also be implemented. In any such implementation,
the communication interface 318 sends and receives elec-
trical electromagnetic or optical signals that carry digital
data streams representing various types of information.
Further, the communication interface 318 can comprise a
USB/Tuner and the network link 320 may be an antenna or
cable for connecting the computer system 301 to a cable
provider, satellite provider or other terrestrial transmission
system for receiving messages, data and program code from
another source.

The network link 320 typically provides data communi-
cation through one or more networks to other data devices.

US 6,442,661 B1

17

For example, the network link 320 may provide a connection
through the local network 322 to a host computer 324, to one
or more client computer 305 (e.g. Client PC 18 or Applica-
tion Server 16 in FIG. 1), or to data equipment operated by
an Internet Service Provider (ISP) 326. The ISP 326 in turn
provides data communication services through the world
wide packet data communication network now commonly
referred to as the “Internet” 328. The local network 322 and
the Internet 328 both use electrical, electromagnetic or
optical signals that carry digital data streams. The signals
through the various networks and the signals on the network
link 320 and through the communication interface 318,
which carry the digital data to and from the computer system
301, are exemplary forms or carrier waves transporting the
information. The computer system 301 can send/receive
messages/data, including program code, through the net-
work link 320 and the communication interface 318. The
received code may be executed by the processor 304 as it 1s
received, and/or stored 1n the storage device 310, or other
non-volatile storage for later execution. In this manner, the
computer systems 301 can obtain application code 1n the
form of a carrier wave.

The example versions of the invention described herein
(c.g., memory manager 30) are implemented as logical
operations 1n computing systems 301. The logical operations
of the present invention can be implemented as a sequence
of steps executing on the computing system 301, and as
interconnected machine modules within the computing sys-
tem 301. The implementation 1s a matter of choice and can
depend on performance of the a computer system 301 and/or
network 300, implementing the invention. As such, the
logical operations constituting said example versions of the
invention are referred to for €.g. as operations, steps or
modules.

In this description the term computer system includes the
computer system shown and described here, and to logic
circuits, dedicated computing devices, etc. The present
invention can be implemented 1n a system comprising a
processor (¢.g., CPU) and memory. For example, referring to
FIG. 13, the present invention can be implemented 1n a
computer system 301 which does not include one or more of
the storage device 310, the communication interface 318, the

ROM 108, the display 312, the input device 314, and/or the
cursor control 316.

The present invention has been described 1 considerable
detail with reference to certain preferred versions thereof;
however, other versions are possible. Therefore, the spirit
and scope of the appended claims should not be limited to
the description of the preferred versions contained herein.

What 1s claimed 1s:

1. A method for managing memory, comprising the steps

of:

(a) 1n response to requests for allocation of memory
blocks that remain allocated for different durations,
allocating each memory block from one of a plurality
of regions 1in the memory based on the duration that the
memory block is to remain allocated, such that: (1) in
response to requests for allocation of long term
memory blocks, long term memory blocks are allocated
from a first region of the memory; and (ii) in response
to requests for allocation of short term memory blocks,
short term memory blocks are allocated from a second
region of the memory; and

(b) maintaining a plurality of memory segments of one or
more sizes 1n the memory, and 1n response to a request
for allocation of a memory block less than a predeter-

5

10

15

20

25

30

35

40

45

50

55

60

65

138

mined size, then allocating the requested block from

among said segments, otherwise allocating the

requested block from another portion of the memory.

2. The method of claim 1, wherein step (b) further
comprises the steps of:

1in response to requests for allocation of one or more short
term memory blocks less than the predetermined size,
then allocating each requested block from among said
segments.

3. The method of claim 1, further comprising the steps of
limiting the size of each allocated memory block to no more
than a predetermined maximum.

4. The method of claim 1, further comprising the steps of
changing the number of said data segments in said memory
in relation to requests for memory blocks less than the
predetermined size.

5. The method of claim 4, further comprising the steps of
changing the number of said data segments in said memory
in relation to requests for short term memory block alloca-
tions less than the predetermined size.

6. The method of claim 4, further comprising the steps of:

increasing the number of said data segments 1n said
memory 1n relation to 1ncreasing requests for memory;
and

decreasing the number of said data segments in said
memory 1n relation to decreasing requests for memory.
7. The method of claim 1, further comprising the steps of:

apportioning at least a portion of the memory for main-

taining therein at least one or more data buflers.

8. The method of claim 7, wherein the data buffers are for
cache use.

9. The method of claim 8, further comprising the steps of
using one or more of the data buffers for allocating memory
blocks therefrom for non-cache use.

10. The method of claim 9, further comprising the steps
of deallocating memory blocks allocated from the cache
back to the cache.

11. The method of claim 7, further comprising the steps of
changing the number of said data segments 1n relation to
requests for memory less than the predetermined size.

12. The method of claim 11, further comprising the steps
of changing the number of said data segments in relation to
requests for short term memory block allocations less than
the predetermined size.

13. The method of claim 11, further comprising the steps
of changing the number of said buffers in substantially
inverse proportion to changes in the number of said data
segments, 1n relation to memory requests.

14. The method of claim 7, further comprising the steps
of increasing the number of said data segments by allocating
one or more data buffers for use as one or more additional
data segments 1n relation to memory requests.

15. The method of claim 14, further comprising the steps
of decreasing the number of said data segments by deallo-
cating one or more of said additional data segments back to
the data buifers.

16. The method of claim 7, further comprising the steps

of:

in relation to requests for allocation of short term memory
blocks, using one or more of the data buffers for
allocating short term memory blocks therefrom.

17. The method of claim 16, further comprising the steps
of deallocating said short term memory blocks allocated
from the data buffers back to the data buflers.

18. A memory manager for a computer system including
a central processing unit (CPU) and memory, comprising:

US 6,442,661 B1

19

an allocator that allocates memory blocks in response to
requests for allocation of memory blocks that remain
allocated for different durations, by allocating each
memory block from one of a plurality of regions in the
memory based on the duration that the memory block
is to remain allocated, wherein the allocator: (1) allo-
cates long term memory blocks from a first region of
the memory 1n response to requests for allocation of
long term memory blocks, and (i1) allocates short term
memory blocks from a second region of the memory 1n
response to requests for allocation of short term

memory blocks; and

a controller that maintains a plurality of memory seg-
ments of one or more sizes in the memory, and 1n
response to a request for allocation of a memory block
less than a predetermined size, allocates the requested
block from among said segments, otherwise allocates
the requested block from another portion of the
memory.

19. The memory manager of claim 18, wherein the
controller further allocates one or more segments from
among saild segments 1n response to requests for allocation
of short term memory blocks less than the predetermined
S1Ze.

20. The memory manager of claim 18, wherein the
controller further changes the number of said data segments
in said memory 1in relation to requests for memory blocks
less than the predetermined size.

21. The memory manager of claim 18, further comprising
an allotter for apportioning at least a portion of the memory
for maintaining therein at least one or more data buifers.

22. The memory manager of claim 21, wherein the data
buffers are for cache use.

23. The memory manager of claim 22, wherein the allotter
further uses one or more of the data buffers for allocating
memory blocks therefrom for non-cache use.

24. The memory manager of claim 23, wherein the allotter
further deallocates memory blocks allocated from the data
buflers back to the data buifers.

25. The memory manager of claim 21 wherein the con-
troller further changes the number of said data segments 1n
relation to requests for memory less than the predetermined
S1Z€.

26. The memory manager of claim 25, wherein the
controller further changes the number of said data segments
in relation to requests for short term memory block alloca-
tions less than the predetermined size.

27. The memory manager of claim 21, wherein the
controller further increases the number of said data segments
by allocating one or more data buflers for use as one or more
additional data segments 1n relation to memory requests.

28. The memory manager of claim 27, wherein the
controller further decreases the number of said data seg-
ments by deallocating one or more of said additional data
segments back to the data buffers.

29. The memory manager of claim 21, wherein the allotter
further uses one or more of the data buffers for allocating
short term memory blocks therefrom 1n relation to requests
for allocation of short term memory blocks.

30. The memory manager of claim 29, wherein the allotter
further deallocates said short term memory blocks allocated
from the data buffers back to the data buffers.

10

15

20

25

30

35

40

45

50

55

60

20

31. The memory manager of claim 18, wherein the
computer system comprises a network file server.

32. A computer program product for use with a computer
system including a central processing unit (CPU) and
memory for memory management, the computer program
product comprising:

a computer-readable medium;

means, provided on the computer-readable medium,

allocation of memory blocks 1n response to requests for
allocation of memory blocks that remain allocated for
different durations, by allocating each memory block
from one of a plurality of regions in the memory based
on the duration that the memory block 1s to remain
allocated, such that long term memory blocks are
allocated from a first region of the memory in response
to requests for allocation of long term memory blocks,
and short term memory blocks are allocated from a
second region of the memory 1n response to requests
for allocation of short term memory blocks; and

means, provided on the computer-readable medium, for
maintaining a plurality of memory segments of one or
more siZzes 1n the memory, and 1n response to a request
for allocation of a memory block less than a predeter-

mined size, then allocating the requested block from
among sald segments, otherwise allocating the
requested block from another portion of the memory.

33. The computer program product of claim 32, wherein
sald means for maintaining the plurality of memory seg-
ments further comprises means for changing the number of
said data segments 1n said memory 1n relation to requests for
memory blocks less than the predetermined size.

34. The computer program product of claim 32, further
comprising means, provided on the computer-readable
medium, for apportioning at least a portion of the memory
for maintaining therein at least one or more data builers for
cache use.

35. The computer program product of claim 34, further
comprising means, provided on the computer-readable
medium, for using one or more of the data buffers for
allocatmg memory blocks therefrom for non-cache use and
deallocating memory blocks allocated from the data buifers
back to the data buffers.

36. The computer program product of claim 34, wherein
saild means for maintaining the data segments further
includes means for changing the number of said data seg-
ments 1n relation to requests for memory less than the
predetermined size.

37. The computer program product of claim 36, wherein
saild means for maintaining the data segments further
includes means for increasing the number of said data
segments by allocating one or more data buffers for use as
one or more additional data segments and for decreasing the
number of said data segments by deallocating one or more
of said additional data segments back to the data buflers.

38. The computer program product of claim 34, further
comprising means, provided on the computer-readable
medium, for using one or more of the data buffers for
allocating short term memory blocks therefrom and for
deallocating said short term memory blocks allocated from
the data buffers back to the data buffers, in relation to

requests for allocation of short term memory blocks.

[

101

	Front Page
	Drawings
	Specification
	Claims

