US006441835B1
a2 United States Patent (10) Patent No.: US 6,441,835 B1
Pazel 45) Date of Patent: Aug. 27, 2002
(54) RESOLUTION POLICY FOR DIRECT 6,208,344 B1 * 3/2001 Holzman et al. 345/853 X
MANIPULATION ON HIERARCHICAILLY 6,219,049 B1 * 4/2001 Zuffante et al. 345/764
STRUCTURED VISUALS 6,275,228 B1 * §&/2001 Cataudella 345/764

(75) Inventor:

(73) Assignee:

(*) Notice:

(21) Appl. No.:
(22) Filed:

(51) Int.CL ..

Donald P. Pazel, Montrose, NY (US)

International Business Machines
Corporation, Armonk, NY (US)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days.

09/440,654
Nov. 16, 1999
... GO6F 3/00

(52) US.CL ., 345/769; 345/853; 709/332
(58) Field of Search 345/769, 853,
345/804, 770, 781, 792, 767, 856, 764,
859, 860, 861; 709/331, 332, 315, 316
(56) References Cited

U.S. PATENT DOCUMENTS

5,754,178 A
5,764,873 A
5,956,030 A

* 5/1998 Johnston, Jr. et al. 345/769
* 6/1998 Magig et al. 345/769
*9/1999 Conrad et al. 345/769

* cited by examiner

Primary FExaminer—Raymond J. Bayerl
(74) Attorney, Agent, or Firm—Whitham, Curtis &
Christotferson, P.C.; Stephen C. Kaufman

(57) ABSTRACT

A method and apparatus for applying a resolution policy for
direct manipulation of nested graphical elements. This
policy resolves the allowance or disallowance of dragging
and dropping of a guest graphical element onto a host
oraphical element. This 1s particularly useful when applied
to hierarchically structured visual, wherein nested graphical
clements may delegate direct manipulation to parent graphi-
cal elements. A number of allowed manipulations are
defined for the guest and host visual objects. A guest visual
object may not have a defined manipulation with a host
visual object, but its immediate parent might. The present
invention resolves policies for defining allowed manipula-
tions for guest and host visual objects that do not have direct
definitions for manipulations and must rely on definitions
attributed to their parent.

8 Claims, 9 Drawing Sheets

800
S

A= MEMORY OBJECT FOR TARGET GRAPHICAL ELEMENT
B= MEMORY OBJECT FOR DRAGGING GRAPHICAL ELEMENT

VAt)\ 801
VB = B
(803
EXIT WITH
VB INTERACT YES | VA VB,
WITH VA YES, INTER-
2 ACTION POSSIBLE

| NO /804

VB= PARENT OF VB

VB

NO

INDICATES
T0P OF TREE
lp

805

VA= PARENT OF VA

809 \

INDICATES
10P OF
TREE
?

VB=B

YES

807

e 808

EXIT WITH

POSSIBLE

NC INTERACTION

U.S. Patent Aug. 27, 2002 Sheet 1 of 9 US 6,441,835 Bl

1

b2

5
DISPLAY
7
3 MEMORY _
KEYBOARD
VISUAL OBJECT
3

DATA
PROCESSOR

l IM

AND GRAPHICAL
A ELEMENT

INFORMATION POINTING
DEVICE
5 PROGRAMS (MOUSE)

FIG. 1

U.S. Patent Aug. 27, 2002 Sheet 2 of 9 US 6,441,835 Bl

101
106 10/ é

o] [o,
A |5 DATA
| N 12108 PROCESSOR

102

‘ i103

oy my
;_—GB_‘EEELM .) - ‘YI}Q(N
| START DRAG 200
.
é205
FIG. 3

PRIOR ART

U.S. Patent Aug. 27, 2002 Sheet 3 of 9 US 6,441,835 Bl

301

"""'""""I

03 | g
o “L*

b
{____bRAG OVER 304
5

i 305 306

FG. 4

PRIOR ART

401

I___—V
DRAG-DROP 2404

;:ﬂ i

405 406

FlG. 9

PRIOR ART

U.S. Patent Aug. 27, 2002 Sheet 4 of 9 US 6,441,835 Bl

200

GA 202
GB

204
G0

U.S. Patent Aug. 27, 2002 Sheet 5 of 9 US 6,441,835 Bl

=
O
é e
S = |
o o .
O
< L
)
|
SV
= =

U.S. Patent Aug. 27, 2002 Sheet 6 of 9 US 6,441,835 Bl

702
706
107

&,
<D
g ™
<
¢
<Ll
= >
MY
™~ ™= S
|"N..
&
D

700
%
G

GA

U.S. Patent Aug. 27, 2002 Sheet 7 of 9 US 6,441,835 Bl

300
. S
| A= MEMORY OBUECT FOR TARGET GRAPHICAL ELEMENT |
B= MEMORY OBJECT FOR DRAGGING GRAPHICAL ELEMENT

801

803

EXIT WiTH
YES VA, VB,

VB INTERACT
WITH VA
n

YES, INTER-
ACTION POSSIBLE

| NO 804
l VB= PARENT OF VB

809

VB

INDICATES

T0P OF TREE
7

| 0

I YES 806
VA= PARENT OF VA

VA 807
INDICATES
10P OF

TREE
n

NO

YES 808

EXIT WITH
NO INTERACTION
POSSIBLE

Ty i ———

FlG. 9

U.S. Patent Aug. 27, 2002 Sheet 8 of 9 US 6,441,835 Bl

900
A= MEMORY OBJECT FOR TARGET GRAPHICAL ELEMENT

B= MEMORY OBJFCT FOR DRAGGING GRAPHICAL ELEMENT

=0
RESOLVE (A,B) -> tf, VA, VB

902 @ "

903

YES "
R T Usk orag o
MAGE FOR
VB
906
HIGHLIGHT
VA
907
ALLOW
DROP
908
EXIT

FlG. 10

U.S. Patent Aug. 27, 2002 Sheet 9 of 9 US 6,441,835 Bl

1000

A= MEMORY OBJECT FOR TARGET GRAPHICAL ELEMENT
B= MEMORY OBJECT FOR DRAGGING GRAPHICAL ELEMENT

_1001
RESOLVE (AB) -> tf, VA, VB

DO DROP 1002

ACTION OF
VB ON VA

1003
EXIT

US 6,441,835 B1

1

RESOLUTION POLICY FOR DIRECT
MANIPULATION ON HIERARCHICALLY
STRUCTURED VISUALS

CROSS REFERENCE TO RELATED
APPLICATION

This application 1s related to U.S. patent applications Ser.
No. 09/409,277, entitled “Utilizing Programming Object
Visual Representations For State Retlection,” filed on Sep.
30, 1999, by D. Pazel; U.S. Ser. No. 09/431,153 entitled
“Utilizing Programming Object Visual Representations for
Code Generation”, filed on Nov. 1, 1999, by D. Pazel; and
concurrently filed U.S. patent application Ser. No. 09/440,
653 entitled “Means For Specifying Direct Manipulation
Relationships on Hierarchically Structured Visuals™, by D.
Pazel, all assigned to a common assignee, the entire subject
matter of which 1s incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to direct manipu-
lation of graphical objects on a visual display for a com-
puting system. It focuses specifically on graphical objects
that are hierarchically composed of other graphical objects,
any one of which may have direct manipulation properties
relative to other graphical objects. It specifies a definition for
direct manipulation between two or more distinct objects of
this type, focusing specifically on the defined direct manipu-
lations between the graphical objects composing them. A
process for detecting which manipulations take precedence
in practice 1s specified. The end process simplifies direct
manipulation in these circumstances as well as makes these
interactions more 1ntuitive.

2. Background Description

Direct manipulation, also referred to as drag-drop, in
window-based systems has existed for many years. Direct
manipulation concerns the relationship between any two
oraphical elements on a display screen and how they interact
when one 1s dragged over and possibly dropped onto the
other. This relationship 1s programmed 1nto an application or
system relating to the graphical elements. It 1s this program-
ming which both allows or disallows the dragging over, as
well as implements a semantic meaning to the drop opera-
fion.

The specification of direct manipulation relationships,
being programmed 1n detail per application, 1s tedious,
difficult, and prone to errors. It requires the specification of
a number of programming elements, such as specialized data
structures and display 1images, and 1ts programming 1s usu-
ally fragmented into several phases such as initialize drag,
drageing-over, and drag-drop. All of this makes the speci-
fication of direct manipulation difficult and non-intuitive.

The direct manipulation of graphical objects 1s especially
useful 1n the area of visual programming languages. The
motivation behind visual programming language technology
1s to utilize visual representations of programming elements
to build and generate programs. The field 1s very large.
Generally however, the approaches to visual programming
may be classified into the following:

Visual Designers—These are visual programming
languages, which focus on the construction of user inter-
face applications. Much of the focus 1s on interface form
and presentation construction with caveats for generating
event code to facilitate textual programming of other parts
of an application.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

Wiring-Based Languages—These languages have visual
representations of programming entities, such as objects
or processes. Programming proceeds by creating and
connecting visual representations with lines, which typi-
cally indicate data or event flow.

Structured-Logic Based—These focus on structuring the
logic of a program. Typically logic 1s represented with
nested graphical figures which represent logical entities,
c.g. 1, loops, etc. Typically visual representations of
programming objects are not shown 1n these tools.

Form-Based—These are visual programming languages of
the spreadsheet genre. Typically represented as grids or
arrays of numbers, a textual macro language typically
accompanies the language to do more complex manipu-
lations.

Most visual programming languages are wiring-based.
The power of this type of language resides 1n 1ts ability to
represent parallelism. That 1s, 1ts power 1s 1ts ability to show
cither stmultaneous, concurrent, or alternate possible execu-
tions at the same time. The focus of these types of languages
has been a connection paradigm (wires) which generally
indicates either event or data flow.

Whereas the connectivity aspect 1s the chief asset of these
languages, 1t 1s also 1ts greatest liability. Wirebased language
programs become difficult to decipher even in modestly
complex examples, as the causal nature of execution rapidly
oets lost 1n the implicit parallelism of the diagram. Also, the
visual element that represents the object tends to be limited.
Generally, they are either named boxes representing
variables, or 1n iconic representations. In this case, the true
dynamic of the language 1s 1n connecting these
representations, not working with them. At heart, these are
execution-based languages to which the data model 1s sec-
ondary. Much more could be gained from clearer and more
expansive object detail as interaction amongst visual details
could lead to larger interpretations of corresponding inter-
programming object possibilities. As a simple example,
cross object property assignment could be done with a
simple drag-drop operation on graphical elements represent-
ing the source and target properties of the corresponding
programming objects.

While direct manipulation has been very successtiul as a
visual paradigm, one can run into problematic situations.
One situation m particular 1s when graphical elements are
nested within other graphical elements, and one wants to do
drag-drop with inner nested elements. The nesting aspect of
oraphical elements intuitively indicates that inner elements
are “part of” outer elements. However, defined behavior of
direct manipulation amongst graphical elements 1s indepen-
dent of that, for instance, when dragging and dropping is
allowed between graphical elements mndependently of the
nesting of graphical elements. In many cases, 1t would be
expedient and practical for an application to have a graphical
clement delegate the dragging and dropping capabilities to
its parent. For example, in dragging an inner element over an
clement that allows the mner’s parent to be dropped but not
the mner itself. In that situation, it would be 1ntuitive to
interpret this as a drageing of that parent and allow the drop.
The containment 1s intuitively suflicient to justify this action.
A statement of when similar actions should occur 1s a
formulation of a resolution policy on direct manipulation
that 1s the subject of this invention.

SUMMARY OF THE INVENTION

It 1s therefore an objective of the present invention to
provide a method and apparatus for applying a resolution
policy for direct manipulation. This policy would resolve the

US 6,441,835 B1

3

allowance or disallowance of dragging and dropping of a
oraphical element onto another. This 1s particularly useful
when applied to hierarchically structured visuals, wherein
nested graphical elements may delegate direct manipulation
to parent graphical elements.

According to the invention, a guest visual object 1s to be
manipulated with respect to a host visual object. Typically,
the guest object 1s drageed over and/or dropped onto the host
visual object. The guest and host visual objects may be
nested within other visual objects. If a first visual object 1s
immediately nested 1nside of a second visual object, then the
first visual object 1s called the child object and the second
visual object 1s called the parent object.

A number of allowed manipulations are defined for the
cguest and host visual objects. A guest visual object may not
have a defined manipulation with a host visual object, but
the guest’s immediate parent might. The present mnvention
resolves policies for defining allowed manipulations for
oguest and host visual objects that do not have direct defini-
fions for manipulations and must rely on definitions attrib-
uted to their parent.

The resolution policy of the preferred embodiment of the
invention first determines whether any object in the chain of
parents and children for the guest visual object have defined
manipulations with the host visual object before looking to
the parent of the host visual object for a definition. This
policy could also be defined to traverse the host visual object
first, for each guest visual object. Similarly, 1t 15 not neces-
sary to traverse the chain from bottom up, 1.e., the oldest
parent could be checked first before the most immediate
parent.

Once the desired manipulation has been resolved as
allowed or disallowed, the graphical display 1s updated 1n a
desired manner to indicate the results of the resolution. For
instance, 1f a dragging-over or dropping 1s not allowed, the
cursor could be modified, or the screen could blink 1n
alternating patterns of light and dark, or positive and reverse
images. When a visual object 1s dragged a special drag
image could be displayed. Similarly, when a visual object 1s
dropped the graphical displayed 1s updated to reflect its new
location.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects and advantages
will be better understood from the following detailed
description of a preferred embodiment of the invention with
reference to the drawings, in which:

FIG. 1 depicts a block diagram of a data processing
system pertaining to this ivention;

FIG. 2 depicts the elements for direct manipulation 1n a
computing system;
FIG. 3 depicts the 1nitialization of direct manipulation;

FIG. 4 depicts the dragging process of direct manipula-
tion;

FIG. 5 depicts the dropping process of direct manipula-
tion;

FIG. 6 depicts a hierarchically structured visual on a
display screen;

FIG. 7 depicts a memory object structure corresponding,
to a hierarchically structured visual;

FIG. 8 depicts an example for two hierarchically struc-
tured visuals towards illustrating the use of resolution
policy;

FIG. 9 depicts the logic for a resolution policy;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 10 depicts the use of a resolution policy during the
drageing phase of direct manipulation; and

FIG. 11 depicts the use of a resolution policy during the
drop phase of direct manipulation.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT OF THE INVENTION

The present invention relates to a method and apparatus
for applying direct manipulation, also known as drag-drop,
to a specific but typical visual graphical object called a
hierarchically structured visual, or visual object for short. In
the present invention, a visual object 1s a distinct graphical
enfity displayed on a computer display.

The preferred embodiment of the invention is used with a
visual programming language that provides a programmer
the ability to generate code by manipulating graphical
objects on a display device and 1s best practiced with a visual
programming language incorporating the methods of related
patent applications entitled “Utilizing Programming Object
Visual Representations for State Reflection”, U.S. patent
application Ser. No. 09/409,277, supra, describing the uti-
lization of graphical elements for representing objects used
in programming, “Utilizing Programming Object Visual
Representations for Code Generation”, U.S. patent applica-
tion Ser. No. 09/431,153, supra, describing a method for
utilizing a programming object’s graphical elements to
ogenerate computer programs, and “Means For Specilying
Direct Manipulation Relationships on Hierarchically Struc-
tured Visuals”, U.S. patent application Ser. No. 09/440,653,
supra, describing a method for defining direct manipulation
relationships between graphical objects, and a means for
using that information in applications.

In the preferred embodiment, a number of different types
of programming objects may be graphically represented
including but not limited to local and global variables. These
include variables of common types such as, but are not
limited to, integer, real, string, character, and Boolean, as
well as untyped objects. They also include objects that are
derivatives or composites of these and other variables, such
as 1s taught 1n object-oriented technology, 1.€. programming,
objects based on the classic object-oriented methodology.

In order to generate executable code by manipulating
oraphical objects, one must define an action to be taken
when objects are manipulated 1n a desired manner. As
illustration, suppose a name field on a new object 1s repre-
sented by a graphical object N. A string 1s represented as
oraphical object S. A desired action could be that when one
drags the graphical object S over graphical object N that the
resulting action 1s to generate code that assigns the string s
to the name object. The present invention allows a program-
mer to detect which object manipulations take precedence
and resolve contlicts when newly defined actions for newly
defined objects are based on those defined objects and
actions. One can then generate code based on the actions
resulting from the predetermined drag-drop manipulations.
This method utilizes hierarchically structured objects to be
discussed 1n more detail below.

A visual object 1s comprised of a set of nested graphical
clements, which are structured hierarchically composing the
visual object. However for clarification, in general, in the
preferred embodiment of the present invention, graphical
elements 1nclude visual artifacts such as, but not limited to,
squares, cllipses, text, and irregular shapes. Properties of
these elements include, but are not limited to, size, color,
border line type, and border color.

Other geometric shapes such as trapezoids, triangles, and
the like are contemplated for use as graphical elements by

US 6,441,835 B1

S

the present mnvention. In addition, non-traditional, graphical
clements which rely on techniques of 3-dimensional figures,
animations, and the like, are also contemplated.
Accordingly, the method and apparatus of the present inven-
fion 1s not limited to any one type of graphical element.

Referring now to the drawings, and more particularly to
FIG. 1, there 1s shown a block diagram of a data processing
system for the present 1nvention, as described above. In the
preferred embodiment, the data processing system 1 1s a
personal computer (PC) such as an IBM APTIVA computer
(IBM and Aptiva are both registered trademarks of the
International Business Machines Corporation). However,
other data processing systems 1 are also contemplated for
use by the present mvention.

Referring again to FIG. 1, the data processing system 1 of
the present invention comprises a data processor 2 having a
memory 3. The memory 3 1s coupled to the data processor
2 via a bidirectional bus. In the preferred embodiment, the
memory 3 includes program and data memory. The memory
also 1ncludes information about the visual objects and their
oraphical elements 4, and programs for manipulating the
ographical elements 3.

The graphical information 4 (e.g. visual, objects com-
posed as graphical elements) 1s displayed on the display 6,
which 1s coupled to the data processor 2. In the preferred
embodiment, a user data entry device 7, (e.g. keyboard or
other interactive device) and a pointing device 8, for
example, a mouse or a trackball, are also coupled to the data
processor 2.

In the preferred embodiment, the display 6 provides a
presentation space 1n order to display the visual objects of
the present invention. In alternative embodiments, either the
pointing device 8 or predefined keys of the data entry device
7 may be used to manipulate the data in conformity with the
present mvention.

Referring now to FIG. 2, there 1s shown a reference
diagram 1llustrating the 1dea or concept of direct manipula-
fion as background relating to the present invention. A
display device 100 1s attached to a data processor 101 that
1s also attached to a keyboard 102 and mouse 103. The data
processor 101 1s also attached to memory 104 by a high-
speed bus 105. Shown on the display 100 are two graphical
objects GA 106, and GB 107. There 1s also a pointer or
mouse indicator 108, which corresponds and reacts 1n posi-
fion to the mouse 103. In memory, the information about the
visual state of GA and GB, such as but not limited to size,
position, and visual composition, 1s encapsulated within
corresponding memory objects A 109, and B 110.

Basic operations for direct manipulation, as background
reference for this invention, are 1initializing direct
manipulation, dragging a graphical object over another, and
dropping a graphical object onto another. These are 1llus-
trated 1n FIGS. 3, 4, and 5 respectively. These three phases
are typically delimited by inmitializing when a mouse button
1s depressed, dragging while the button remains depressed
and possibly moved, and dropping when the button 1s
released. It should be noted that while direct manipulation 1s
typically mnitialized with the depression of a mouse button,
it 1s not a necessary element, provided that some action or
activity delineates the three phases so mentioned. We use the
typical mouse depression/release convention for descriptive
purposes of this teaching. Also, 1t 1s common to augment
these phases of direct manipulation by detecting key depres-
sion from a keyboard, wherein at each of the three phases so
described, additional or alternative activity may be com-
menced or carried out during direct manipulation. Finally, as

10

15

20

25

30

35

40

45

50

55

60

65

6

a matter of terminology, the drageing wvisual object or
assoclated memory objects are designated as acting 1n a
ouest role, while drop-area visual objects or associated
memory objects are designated as acting 1n a host role. The
following explanation of direct manipulation 1s commonly
implemented 1n window operating systems.

In FIG. 3, there 1s 1llustrated the 1nitialization of a direct
manipulation. Direct manipulation typically commences
with a mouse button depression operation while the mouse
pointer 201 1s over a graphical object GB 200. The appli-
cation program 202 that manages these graphical objects 1s
then called by the data processor providing the memory
object B 205 corresponding to the graphical object GB 200.
At that point, the application program 202 indicates an
appropriate drag image GB' 203, to use for the drag opera-
tion. After that, motion of the mouse pointer 204 will move
the drag image according as long as the mouse button 1is
depressed. Typically, the original visual object, GB 200,
remains at 1ts original position to the beginning of this
operation, maintaining 1its original appearance.

In FIG. 4, there 1s 1llustrated the dragging phase of direct
manipulation. Here it 1s assumed that graphical object GB
300 has been 1nitialized for direct manipulation. Its drag
image GB' 301 1s also shown at a distinct location as dictated
by the mouse pointer 302. Being the intermediate phase of
direct manipulation, 1t 1s assumed 1n accordance with typical
practice of direct manipulation, that the mouse button used
to mitialize 1t 1s currently being depressed. FIG. 4 shows that
the drag image GB' 301 partially overlaps another graphical
object GA, 303. This constitutes what 1s known as a “drag
over’ process. Typically, but not by necessity, “drag-over”
requires not only the overlap of images as shown, but also
that mouse pointer 302 be inside host 1mage 303. This
practice 1s assumed here, but not as a requirement to the
practice of the mvention.

The application program 304 that manages these graphi-
cal objects 1s then called by the data processor, providing the
memory objects A 305 and B 306 corresponding to the
oraphical objects GA and GB respectively. The application
program then indicates whether or not the graphical object
GB 300, as indicated by 1ts drag image GB' 301, may be
“dropped” onto GA 303. Typically, if yes, the point indicator
302 remains a pointer; otherwise, a refusal indicator (not
shown).

FIG. 5 illustrates the dropping phase of direct manipula-
tion. Here it 1s assumed that graphical object GB 400 has
been 1itialized for direct manipulation. Its drag image GB'
401 1s also shown at a distinct location as dictated by the
mouse pointer 402. Also shown 1s graphical object 403, with
the drag 1mage GB' overlapping 1t with allowance to drop
from the dragging operation (i.e., the mouse indicator is a
pointer). When the mouse button is release, this is an
indication of making a drop of GB, as represented by the
drag 1mage GB' 401, onto graphical object GA. When this
happens, the application program 404 1s called by the data
processor system, providing the memory objects A 405 and
B 406 corresponding to the graphical object GA and GB
respectively. The program then performs some activity,
typically relating to the memory objects A and B.

The present invention pertains to the use of direct manipu-
lation on hierarchically structured visuals. FIGS. 6 and 7
illustrate the composition of a visual object by nested
oraphical elements. FIG. 6 shows a visual object on a display

screen 500. The visual object 1s composed a main graphical
object GA 501, which contain graphical objects GB 502 and

GC 503. GB contains graphical object GD 504. GC contains

US 6,441,835 B1

7

ographical objects GE 505 and GF 506. In many window
systems, hierarchical graphical containment of this sort is
achieved by nesting windows within windows. The present
invention should not be construed to this limitation. Other
techniques such as drawing nested 1mages would also sui-
fice. What 1s required however 1s that the underlying graphi-
cal system 1s capable of mnitiating direct manipulation on any
nested graphical element.

FIG. 7 depicts the organization of objects 1n memory 600
corresponding to the graphical elements depicted in FIG. 6.
Herein 1s shown a hierarchical structure of memory objects.
The implementation of the hierarchy 1s of no relevance to the
implementation of the present invention except that a com-
puter program be able to traverse the tree node to node.
There 1s shown 1n FIG. 7 a memory object A 601 corre-
sponding to graphical element GA 501, which has as chil-
dren memory objects B 602 and C 603, corresponding to

ographical elements GB 502 and GC 503. Object B has object
D 604 as a child, corresponding to GD 504. Object C has
children objects E 6035 and F 606, corresponding to graphical

elements GE 505 and GF 506.

This present invention concerns the behavior of direct
manipulation between graphical elements of visual objects.
An 1mportant 1ssue 1s related to the nesting of element. The
nesting aspect of graphical elements in a visual object
intuitively indicates that inner elements are “part of” outer
clements. However, defined behavior of direct manipulation
amongst graphical elements 1s i1ndependent of that, for
instance, drageing and dropping could be allowed between
ographical elements independently of the nesting of graphical
clements. In many cases, 1t would be expedient and practical
for an application to have a graphical element delegate the
drageing and dropping capabilities to its parent. The state-
ment of when that should occur 1s a formulation of a
resolution policy on direct manipulation.

By way of 1llustration of the utility of a resolution policy,
consider FIG. 8. Herein are two visual objects, the first
visual object, A 700 of which comprises graphical elements
GA 701, GB 702, and GC 703. The second visual object, A
704 1s composed of GA' 705, GB' 706, and GC' 707.
Consider the following three cases where GC' 1s dragged
over GC.

Case 1: Suppose GC' and GC have no direct manipulation
interaction, but GC' and GB do. Also no parent of G

interacts with GC. Then 1t 1s preferred for the direct manipu-
lation behavior of GC' over GC to behave like that of G

over GB, 1.e. using the same drag 1mage and drop logic, etc.

Case 2: Suppose GC' and GC have no direct manipulation
interaction, but GB' and GC do. Then it 1s preferred for the
direct manipulation behavior of GC' over GC to behave like

that of GB' over GC.

Case 3: Suppose GC' and GC have no direct manipulation
interaction, but GB' and GB do. Also GC' interacts with no

parent of GC. Then 1t 1s preferred for the direct manipulation
behavior of GC' over GC to behave like that of GB' over GB.

The resolution policy, according to the preferred embodi-
ment of the present invention, 1s shown 1n FIG. 9. The policy
can be thought of as a program with the inputs being the
memory objects corresponding to the graphical element over
which drageing or dropping 1s occurring, and the graphical
clement on which the direct manipulation was initiated. The
idea behind this policy 1s that precedence 1s given to finding
a matching graphical element from the dragging element’s
visual object over the drop-area element’s visual object. The
outputs of this program are:

10

15

20

25

30

35

40

45

50

55

60

65

3

An 1ndication if dragging/dropping 1s allowed.

A memory object for the drop-area graphical element, which
may be the object over which the initiating drag object
overlaps, or some parent thereof.

A memory object for the drageing graphical element, which
may be the 1nitiating object or some parent thereof.

The mnput parameters are given by A and B 1n block 800.
A 1s the memory object for the graphical element being
dragged over, and B 1s the memory object for the dragging
ographical element. First two “loop” variables, VA and VB,
are assigned A and B respectively 1 block 801. A check 1s
made to see 1if VB has a direct mamipulation with VA 1n
decision block 802. If so, the program returns VA and VB
and an indication that drageing/dropping 1s allowed 1n block
803. Otherwise, VB 1s assigned the parent of itself 1n block
804. A check 1s made to see 1f the parent 1s past the root of
the B’s visual object tree 1n decision block 805. If not, the
process resumes at the check for resolution in block 802.
Otherwise, VA 1s assigned the parent of itself 1n block 806.
A check 1s made to see 1f the parent 1s past the root of A’s
visual object tree 1n decision block 807. If yes, the program
returns an indication that no dragging/dropping 1s allowed 1n
block 808. Otherwise, VB 1s reset to B 1n block 809, and
control passes back to the resolution check in block 802.

It should be noted that this algorithm 1s 1ndependent of
whether the two visual objects are the same or not. As well,
many times direct manipulation implementations are aug-
mented with interpretations of keyboard keys. In that case,
additional logic would be added as application-level adjust-
ments which are additional but not essential to the 1mple-
mentation of the present invention.

FIG. 10 1s a flow diagram for how the resolution policy
would be invoked during the drageing-over phase of direct
manipulation. In this case, the mnput parameters are given by

A and B in block 900. A i1s the memory object for the
oraphical element being drageed over, and B 1s the memory
object for the drageing graphical element. A call 1s made to
the resolution policy passing A and B 1n block 901, and a
return 1s made of whether or not drag-drop is allowed (tf),
and the memory objects for the drop-area and dragging
object that can be used (VA and VB). A test is made to see
if drag-drop 1s allowed 1n block 902. If not, disallowing
drag-drop 1s mdicated to the direct manipulation system 1n
block 903, and the program exits 904. If drag-drop 1s
allowed, the drag image could be set to that of VB 1n block
905. This possible setting of the drag 1mage 1s optional to the
algorithm, but doing so would improve usability of direct
manipulation relative to the resolution policy. Also, the
drop-area given by VA could be highlighted in block 906.
This 1s also optional to the algorithm, but doing so would
improve usability of direct manipulation relative to the
resolution policy. Allowing drag-drop 1s indicated to the
direct manipulation system 1n block 907, and the program
exits 908.

FIG. 11 1s a flow diagram for how the resolution policy
would be 1mnvoked during the drop phase of direct manipu-
lation. In this case the input parameters are given by A and
B 1n block 1000. A 1s the memory object for the graphical
clement being dragged over, and B 1s the memory object for
the dragging graphical element. A call 1s made to the
resolution policy passing A and B 1n block 1001, and a return
is made of whether or not drag-drop is allowed (tf), and the
memory objects for the drop-area and dragging object that
can be used (VA and VB). Since this phase can only be called
if the dragging-over phase had approved the drop, there 1s no
need to check tf for proceeding, 1.e., VA and VB should be
valid. The drop action corresponding to VB being dropped
on VA 1s then executed 1n block 1002. The program exits

1003.

US 6,441,835 B1

9

It should be noted that this method 1s immdependent of
whether the two visual objects are the same or not. As well,
many times direct manipulation implementations are aug-
mented with interpretations of keyboard keys. In that case,
additional logic would be added as application-level adjust-
ments which are additional but not essential to the teaching
of this invention.

While the mvention has been described 1n terms of a
single preferred embodiment, those skilled 1n the art will
recognize that the mvention can be practiced with modifi-
cation within the spirit and scope of the appended claims.

I claim:

1. Amethod for resolving policies for direct manipulation
on hierarchically structured visuals, said method comprising
the steps of:

initializing a first visual object VA 1n a first chain of nested
visual objects represented as parent/child relationships
for the first visual object and a second visual object VB
in a second chain of nested visual objects represented
as parent/child relationships for the second visual

object, wherein the second visual object VB 1s manipu-
lated with the first visual object VA;

determining for the second visual object VB, a third visual
object VC 1n the second chain for the second wvisual
object that has a manipulation definition with a fourth
visual object VD 1n the first chain for the first visual
object, but 1f there 1s no direct manipulation defined for
any visual object VC 1n the chain of visual objects for
the second visual object VB that corresponds to a fourth
visual object VD 1in the chain of visual objects for the

first visual object VA, then indicating that no manipu-
lation definition exists; and

returning an indication that the desired manipulation of
the second visual object VB with the first visual object
VA 1s allowed if a VC and VD were determined,
otherwise returning an indication that the desired
manipulation of the second visual object VB with the
first visual object VA 1s not allowed.

2. A method as recited 1in claim 1, wherein the step of
determining the visual object VC takes precedence over
determining the visual object VD, such that each visual
object in the chain of the second visual object VB 1is
traversed for a visual object 1n the chain of the first visual

10

15

20

25

30

35

40

10

object VA before traversing the next parent i the chain of
the first visual object VA to determine the visual object VC.

3. A method as recited 1n claim 1, wherein the first visual
object 1s a host object and the second visual object 1s a guest
object.

4. A method as recited in claim 3, wherein the direct
manipulation 1s defined as dragging a guest visual object
over or onto a host visual object.

5. A method as recited in claim 1, further comprising the
step of displaying a drag image of the visual object VB.

6. A method as recited 1n claim 1, further comprising the
step of displaying a drop area with a form of highlighting.

7. A method as recited 1n claim 1, further comprising the
step of displaying an image of the visual object VB 1n a place
corresponding to a drop area.

8. A computer readable medium containing code for
resolving policies for direct manipulation on hierarchically
structured visuals, the code implementing the steps of:

initializing a first visual object VA 1n a first chain of nested
visual objects represented as parent/child relationships
for the first visual object and a second visual object VB
in a second chain of nested visual objects represented
as parent/child relationships for the second visual
object, wherein the second visual object VB 1s manipu-
lated with the first visual object VA;

determining for the second visual object VB, a third visual
object VC 1n the second chain for the second visual
object that has a manipulation definition with a fourth
visual object VD 1n the first chain for the first visual
object, but if there 1s no direct manipulation defined for
any visual object VC 1n the chain of visual objects for
the second visual object VB that corresponds to a fourth
visual object VD 1n the chain of visual objects for the
first visual object VA, then indicating that no manipu-
lation definition exists; and

returning an indication that the desired manipulation of
the second visual object VB with the first visual object
VA 1s allowed 1f a VC and VD were determined,
otherwise returning an indication that the desired
manipulation of the second visual object VB with the
first visual object VA 1s not allowed.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

