(12) United States Patent
Hoppe

US006426750B1
(10) Patent No.: US 6,426,750 Bl
45) Date of Patent: *Jul. 30, 2002

(54) RUN-TIME GEOMORPHS
(75) Inventor: Hugues H. Hoppe, Scattle, WA (US)
(73) Assignee: Microsoft Corporation, Redmond, WA
(US)
(*) Notice: This patent issued on a continued pros-
ecution application filed under 37 CFR
1.53(d), and 1s subject to the twenty year
patent term provisions of 35 U.S.C.
154(a)(2).
Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.
(21) Appl. No.: 09/115,572
(22) Filed: Jul. 14, 1998
(51) Int. CL7 ..o, G061 17/00
(52) US.CL .., 345/428; 345/423; 345/473;
345/475
(58) Field of Search 345/423, 473,
345/475, 428
(56) References Cited

U.S. PATENT DOCUMENTS

5.883.629 A
6,009,435 A

OTHER PUBLICAITONS

3/1999 Johnson
* 12/1999 Taubin et al. 345/423

Foley et al., Computer Graphics Principles and Practice,
Addison—Wesley Publishing Company, Inc., pp. 510-527,

1996.

Abi—-Ezzi et al, “Fast Dynamic Tessellation of Trimmed
NURBS Surfaces,” FEurographics 94, 13:C107-C126

(1994).

Bertolotto et al., “Multiresolution Representation of Volume
Data Through Hierarchical Stmplicial Complexes,” Aspects

of Visual Form Processing, 73-82 (1994).

(List continued on next page.)

Primary Examiner—Mark Zimmerman
Assistant Examiner—Philip H. Stevenson
(74) Attorney, Agent, or Firm—XKlarquist Sparkman, LLP

(57) ABSTRACT

Real-time rendering of large-scale surfaces with locally

adapting surface geometric complexity according to chang-
ing view parameters. A view-dependent progressive mesh
(VDPM) framework represents an arbitrary triangle mesh as
a hierarchy of geometrically optimized refinement
transformations, from which accurate approximating
meshes can be efficiently retrieved. The VDPM framework
provides temporal coherence through the run-time creation
of geomorphs. These geomorphs eliminate “popping” arti-
facts by smoothly interpolating geometry. The geomorphs
utilizes output-sensitive data structures to reduce memory
requirements.

29 Claims, 8 Drawing Sheets

(1 of 8 Drawing Sheet(s) Filed in Color)

US 6,426,750 Bl
Page 2

OTHER PUBLICAITONS

Bertolotto et al., “Pyramidal Simplicial Complexes,” Solid
Modeling °95, Department of Computer and Information
Sciences, University Of Genova, 153-162 (1995).

Cignomni et al, “Representation and Visualization of Terrain
Surfaces at Variable Resolution,” Scientific Visualization
"95, 50-68 (Sep. 1995).

Deering, “Geometry Compression,” Computer Graphics
Proceedings, Annual Conference Series, 13—-20 (1995).
DeHaemer et al., “Simplification of Objects Rendered by
Polygonal Approximations,” Computers & Graphics,
15:2:175-184 (1991).

Eck et al., “Multiresolution Analysis of Arbitrary Meshes,”
Computer Graphics Proceedings, Annual Conference
Series, 173—182 (1995).

Floriani et al, “Multiresolution Models for Topographic
Surface Description,”The Visual Computer, 12:317-345,
1996.

Foley et al, “The Quest for Visual Realism,” Computer
Graphics: Principles and Practice, 14:605-647 (1991).
Funkhouser et al., “Adaptive Display Algorithm for Inter-
active Frame Rates During Visualization of Complex Virtual
Environments,” Computer Graphics Proceedings, Annual
Conference Series, 247-254 (1993).

Gourdon, “Simplification of Irregular Surfaces Meshes 1n
3D Medical Images,” Computer Vision, Virtual Reality and
Robotics in Medicine, First International Conference,
CVRMed ’95, Nice, France, Proceedings, 413—419 (Apr.
3-6, 1995).

Gross et al., “Fast Multiresolution Surface Meshing,” Pro-
ceedings Visualization *95, 135-142 (Oct./Nov. 1995).
Hamann, “A Data Reduction Scheme for Triangulated Sur-
faces,” Computer Aided Geometric Design 11:197-214
(1994).

He et al., “Controlled Topology Simplification,” IFEEE
Transactions on Visualization and Computer Graphics,
2:2:171-184 (1996).

He et al., “Voxel Based Object Stmplification,” IEEE Visu-
alization, 95, 296-303, CP-35 (1995).

Heckbert et al., “Fast Polygonal Approximation of Terrains
and Heigh Fields,” CMU-CS-95-181, 1-54 (Aug. 1995).
Hinker et al., “Geometric Optimization,” IEEE Visualiza-
tion, '93, 189—195 (1993).

Hoppe et al., “Mesh Optimization,” Computer Graphics
Proceedings, Annual Conference Series, 19-26 (1993).

Hoppe, “Progressive Meshes,” Computer Graphics Pro-
ceedings, Annual Conference Series, 99—-108 (1996).

Kalvin et al., “Superfaces: Polyhedral Approximation with
Bounded Error,” SPIE, 2164:2-3 (1994).

Kirkpatrick, “Optimal Search 1n Planar Subdivisions,” Siam
J. Comput., 12:28-35 (1983).

Kumar et al, “Hierarchical Visibility Culling for Spline
Models,” Proceedings of Graphic Interface *96, 142-150,
(1996).

22

Kumar et al, “Interactive Display of Large—Scale NURBS
Models,” Symposium on Interactive 3D Graphics, 51-58
(1995).

Lindstrom et al, “Real-Time, Continuous Level of Detail

Rendering of Height Fields,” Computer Graphics SIG-
GRAPH ’96 (1996).

Mitchell et al., “Separation and Approximation of Polyhe-
dral Objects,” Computer Aided Geometric Design, 5:95-114
(1995).

Paoluzzi et al., “Dimension—Independent Modeling with
Simplicial Complexes,” ACM Transactions on Graphics,
12:1:56—-102 (1993).

Rockwood et al, “Real-Time Rendering of Trimmed Sur-
faces,” Computer Graphics, 23:108-116 (1989).

Rossignac et al., “Multi—Resolution 3D Approximations for
Rendermg Complex Scenes,” Modeling In Computer
Graphics, 455—-465 (1993).

Rushmeier et al., “Geometric Simplification for Indirect
[llumination Calculations,” Proceedings of Graphics Inter-

face °93, 2277-236 (1993).

Scarlatos, “A Refined Triangulation Hierarchy for Multiple
Levels of Terrain Detail,” Image V Conference, 115-122
(Jun. 1990).

Schautler et al., “Generating Multiple Levels of Detail for
Polygonal Geometry Models,” Virtual Environments, 54—62

(1995).

Schaufler et al., “Generating Multiple Levels of Detail from
Polygonal Geometry Models,” Virtual Environments 95
(Eurographics Workshop On Virtual Environments), 33—41
(1995).

Schroder et al., “Spherical Wavelets,” Computer Graphics
Proceedings, Annual Conference Series, 161-172 (1995).

Schroeder et al., “Decimation of Triangle Meshes,” Com-
puter Graphics, 26:2:65-70 (Jul. 1992).

Shirman et al, “The Cone of Normals Technique for Fast

Processing of Curved Patches,” Furographics 93,
12:C261-C272, (1993).

Spanier, “Algebraic Topology,” Umiversity of California,
Berkeley, Chapter 3, 107-153 (1966).

Taylor et al, “An Algorithm for Continuous Resolution
Polygonalizations of a Discrete Surface,” Graphics Inter-

face 94, 33-42 (May 1994).
Turk, “Re—Tiling Polygonal Surfaces,” Computer Graphics,
26:2:55-64 (Jul. 1992).

Varshney Hierarchical Geometric Approximations, Univer-
sity Microfilms International (1994).

Weliler, “The Radial Edge Structure: A Topical Representa-

tion for Non—Manifold Geometric Boundary Modeling,”
Geomeltric Modeling for CAD Applications, 3-36 (1988).

Xia et al, “Dynamic View—Dependent Simplification for
Polygonal Models,” IEEE, 327-498 (1996).

* cited by examiner

U.S. Patent Jul. 30, 2002 Sheet 1 of 8 US 6,426,750 Bl
_ computer —— 20 FIG' 1
. 21 o
processing unit | 1m— -
|
| | | operating system
A — | L — S
] —— 22 L T 36
/ system | applications
”3 memory o5 S |
| e e A I 37
> ram @4 P L___Tcldf I_ei F/
e T R B
ow - | i e
32 NN AR I
;‘ interface HARD —
DRIVE
33~ floppy drive || 28
» interface ¥
‘ disk |/*-""' 29
IR B . i/J 47
' monitor
34 ~____ cd-ROM drive [5
» interface |» 30 | 40
disk keyboard
31
- 48
» video adapter - mouse
/A_.-""
— 46 ?4 49
. serial port ° / 8
I interface ¢,| odermn e i._, remote computer
network ;’""” 03 |
adapter MEMORY
.' G,Q‘TEV\,,WJ< STORAGE
51 50 |

—

29

US 6,426,750 B1

Sheet 2 of 8

Jul. 30, 2002

U.S. Patent

N N A N
- r) b b a Ao =
- - r o ' ...n........__-....n.....-..__.........-..-_
a F b bk acr n non b n kA i doa Ak b X ko
4 a M a & or hoor a r b Jr & P e o A W
N N I N I O e e S I N N
s or mk a e k h koA ko N N NN N N WA N N N
- & b r r A d b dd dpodraroroaomonom I b i m a o m e & dp dp dp Jp o dr Jp B dp gF B dp
I R e ke b a woax kM howom dp B de b & ko kM
v or i r N kR r kb b b doaowom doaonon m am ki X b s h kA doa k dom dpdoir
- = & 2 m L - 1 & & o a mw & Jp b & Jpoua m § b w om om d B ok Jd i Jr b odp b 1 & b & & b Jd Jp 4 ok & b XN i -
......._.........._.........r.r.._..r.._......._..__.ti a bk oAk n.v....._......._.............._...................r? sk on s .rt.-_.-..r.-..-..-_l....-_"t.._.._.....t.....-_.-._-......r.r.__.._.__.r'.._ LN r
.- a wnr wa a x oaa - . -
A de d dp ol dedp ke Bk omom oo d kM dr dr Ol de b dp b A N it i oo dp g Rk dod o d ko ade k .

e = R MMk ke dp i dp dede dodrde o ror omomom ok dedp de dede de b ode ko om dr o o e ol gl kil

R e N o N L N e N A N RN N N) r
-||i}.#j.}.j.bb.b..rb.j.}.######}.}.b.._.r.r.-.......r.r.rt.r.__ T 1----hi.__i.-..-..-_.-...__.....-...r....-..?.-..-...r.__.._....i.-...rh 1._1.._.-...-.- :.l_.-.....r.-..r.__.—..r.r.-...r.._.._.r .M 3
. dr dr ok droip & b Jdr dr e om dr dr dr oo rodr droir it Jpoar e b o Jrodrar dr Bk A A rra A
LN M N IR AL R e e PRI AL N e X e LT R N '

r b & B b rodr s ok oira '
e orom sk ron
vk . -.1......_.... e .._..._..r.._..._......._n.r......_..._.l.r.._......._l.-.....l.....rr....__l
A T N R T I S T R o ar Sr R L O N NN W
T T T Ry
T e e e e S T T e A e N] Bpdg e dpode b e b b A 2 oo
N N e A) N
VT Y L
R A N N N N A R e e i b ki a o d e Rk

- .r.-..-.......r.r.r.r.r.r.....-...._ o .r.-. .r......_ .-..-..r.._ A .r.-.....h..-..-_.-_........l
B .
- r._._.._..r....__.._.....r“..__.f.1._1..”.._H-”.__”...“...H...H.r.._..“....___ -.-_H._._“...“.q... LA N Ak, H H "...H...”.._H...H.._H...H...”.ru » ettt
e -
N N N R ot o o W L s ol
R I A A ol ol o I L i i i
e el I i A i e e e R e e e A B e T Sl
L N N L A e e
S Jp b o m omodp o dr & Jude oo e e B
P A T N A L N e
-....-..-.-.-.t.-t.rl.._.tt.rl.__.:..._.._.-.
ek ¥ M ko b o dm ok & Jr Wi
.-_I_in.._.i.r....-_.-......__n.__.rl.-_-..__l..
s R -_i_.. N
D W Ty
.)

L]
]
= .
b:_h
'err
r
]
r

.
L)
»
L
.
L
¥
X

L
T
r
|r

[]
r

F
¥

»

-
o

»

&

L]
L
Lt

¥
.
M)

=
L
.l‘

X r o
r F]
T g
l.-.l.._.;.....li - HIHHHI
-k bk * EEN
AN . A
e e e e S

-

o T P T O R A T a nl e Y 1y * Ko
) u........,.__...t.q.___.-.l_-.._-.........r"-_._.._-_.-........_-_.-_-.-”il R
Yy - " ! ! e

» ;
K s x ”Hxaxnna“..”n”x“
. .fxxfmxaauxna
3
ol
XN A KR
K e
XA A A
FOIE i,
e
ol
FY i
o
R R A A AR
o
o a a aK aK
A
o e a a Ke
[I I N T A e U Y] oM E XN LM NN
i & W F N F] . [[
S e R
LA A) .r.v.n xR “ _” wv_“anmn”xxx”x”x“x”x
g
FOE iy U o
o e A K e e
S
O i)
O ol N
o |
O i A i
KN K R R
o
A
i
N
KK R R AR R
e e
: nnannannlv
FO o
R R K e
A A M
A .
Py ol Er
P g e P)
A A AR n
F r
X K N e n
N ALK A
oK "
AR A e v
) o
K) l"ln *
AR A A KA » »
X e ey "
e
]
o
»
"

> F ¥

¥

el
e -
e
* & Ll

Pl nC ol)]
N)

A M) L]
Eaae

ERE R]
RO)
i dr oy
LR
*_%

>, I!"HMT'HHEH-H L]

M
i

i i i

o A M
o R K A
A
)

|

Al
A
H

A

E |
A
-
)

oA
A
o A
|
EY
F |
A
|
F N
F I
M

g
I-H
o

fors
-H
M

L] -I-I".-:. []

i

o ip |
|
XM X

»
L]

l.I o

oA N A KK

A

|
A

A
P
e
X
)
n
i
i |
)
.;::
|
e w a

2
2
|

| |
F
H
L |
»
»
M

]
»

4-:4-:4- »

X N ¥
o

-
'Exl
I:H
"i!
oy

-

L LK

F)

o

5
[a
ittty s
"u.."" . m"mu”.".
I-.i.-..l L] ik
l”' || L] .r' I"-.
. II Il.' .-."'i ”
o
N *
e
!
Ppe pe

e T T T e “lin »
a2

N I N

W ol ke N e i l?: "

»

I] & - 1] E
e M M M A I AERL MMM)
B R A ks Ak -
- Tt e T T e
\ Ak b b ko k k& Nk Ak ok A dod B _-_.4..._-.4"-_

LS

- r
. R
. L
I oar W
e

W

'

U.S. Patent Jul. 30, 2002 Sheet 3 of 8 US 6,426,750 Bl

FIG. 3

U.S. Patent Jul. 30, 2002 Sheet 4 of 8 US 6,426,750 Bl

FIG. 5

254 struct Vgeom // Vertex geometry
Point point // position
254a Vector normal // normal
254k
struct Vertex // Static vertex
236 AVertex* avertex I/ active vertex, 0 if inactive
256a Vertex® parent /l parent vertex, O if root 250
256b int | // index of vspliti, -1 if leaf
256¢
struct Face // Static face
258 AFace®* aface /l active face, 0 If inactive
zzza struct Vsplit // Vertex split
~Vgeom vu_vgeom /I geometry for child vertex
260a Face* fn[4] I/ required neighbors 0 fn1,fn2,fn3
260L Float radius // max extent of affected region
260c¢c float sin2alpha /l angle for cone of normals
float uni_error /[uniform error
float dir_error /l directional error
262 struct ListNode /l Node on doubly linked list
ListNode™ next, prev
262a — \H
struct SRMesh 262b /I Selectively refinable mesh (SRM)
264 Array<Vertex> vertices // all verticies in hierarchy [2n]
264a Array <Face> faces // all faces [2n]
264L Array <Vsplit> // vertex splits vsplit! [n]
264c ListNode active_vertices // head of active vertex list
264d ListNode active _faces// head of active face list
264e
266 struct Avertex /] Active vertex (on heap) [m]
ListNode listnode // list stringing active vertices
266a Vertex* vertices // pointer back to static vertex 252
266b VGeom vgeom // vertex coordinates (x,y,z)
VertexMorph* vmorph// not O if geomorphing
268
struct AlFace // Active face (on heap) [2m]
2682 ListNode listnode // list stringing active faces
268k AVertex* vertices|3] // ordered counter-clockwise
268¢ AFace™* neighbors{3] // neighbors [}] across from vertices [j]
268d Int texture_id // texture tile identifier
270
2703 struct VertexMorph // on heap [g]
270b bool coarsening // true If coarsening, false if refining
short gtime // # of geomorph frames remaining
270c —\V(Geom vg_refined // refined geometry (back-up copy)

270d VGeom vginc /I increment per frame during morph

U.S. Patent Jul. 30, 2002 Sheet 5 of 8 US 6,426,750 Bl

FI1G. 6

procedure vsplit(vs)

200~ Ve &vertices[|V°] + ve.i *2+1]

Vi v+ 1
3027 g : &faces||F°| + vs.i *2+1]
3047, f o fi+ 1
306 fro.3 « VSPIIts[vs.1].7[0..3]
vi.avertex . vs.avertex; vi.avertex.vertex . v
/‘ vs.avertex ._ 0

vy.avertex . new AVertex; v,.avertex.vertex . v,
314 v,.avertex.listnode.add to list (active vertices)

vy.avertex.vgeom _ vsplits[vs.ij.vu_vgeom

f.aface . new AFace; f.aface.listnode.add_to(active_faces)
[Fill in entries of f.aface]
fr.aface __new AFace; f.aface.listnode.add_to (active_faces)

[Fill in entries of f..aface]
[Update f,o_3.neighbors]..] to point to 7]
[For each face faround v,. update fvertices|..].vs _, v,];

316

FIG. 7

~ 362

U.S. Patent Jul. 30, 2002 Sheet 6 of 8 US 6,426,750 Bl

U.S. Patent Jul. 30, 2002 Sheet 7 of 8 US 6,426,750 Bl

FIG. 9

function is_invisible(vs)
_———.return outside view frustum(vs) or

420 oriented_away(vs)

22—

procedure vsplit(vg)
// Code from FIG. 6
if not is Invisible(vs) /l1.e. if is visible
424 - vy avertex.vgeom __ viavertex.vgeom
Vm Vu.avertex.vmorph . new VertexMorph

Vm.coarsenin false
Vo gt ?-‘_ T 428
~Vm.glime __ glime
A32 / vm.vg_refined __ vsplits|vs.ij.vu_vgeom
434 / vm.vginc . (vm.vg_refined — v,.avertex.vgeom) / gtime

436 — 2700 438 — _270b

FIG. 10

procedure update vmorphs()
for each v € active_vertices
446 — if v.vmorph
448 - _— v.vgeom __ v.geom + v.vmorph.vginc
450 / v.vmorph.gtime __ v.vmorph.gtime — 1
A52 if v.morph.gtime = Q delete v.vmorph

454

U.S. Patent Jul. 30, 2002 Sheet 8 of 8 US 6,426,750 Bl

FIG. 11

procedure adapt_refinement()
for each v € active_vertices

Vs « V.vertex
470 ; if vo.i <~ 0 and not is invisible(vs) and screen_error(vs) > 7
472

~force vsplit(vs)
474 else if vs.parent and ecol _legal(vs.parent)
476 — vmc « (v.vmorph and v.vmorph.coarsening)
if is_invisible(vs.parent)
e "S-

478 if vmc finish geomorph coarsening(v)
480 / ecol(vs.parent)

s else if screen_error(vs.parent) > t
— if vmce abort_geomorph_coarsening(v)
484 — else if vme
486 — — If v.vmorph.gtime = 1
488 — — finish_geomorph_coarsening(v)
490 — —- ecol(vs.parent)

492 — start geomorph-coarsening(vs)

US 6,426,750 B1

1
RUN-TIME GEOMORPHS

COPYRIGHT AUTHORIZATTION

A portion of this disclosure may contain copyrighted
material. The copyright owner has no objection to the
facsimile reproduction by anyone of the patent document or
the patent disclosure, as it appears 1n the Patent and Trade-
mark Office patent file or records, but otherwise reserves all
copyright rights.

FIELD OF THE INVENTION

The present invention relates generally to geometric mod-
eling using polygonal meshes for computer graphics, and
more particularly relates to techniques for optimizing com-
puter resource (e.g., memory, CPU, etc.) requirements for
the manipulation of large-scale meshes.

BACKGROUND AND SUMMARY OF THE
INVENTION

Rendering real-time views on a complex model 1s a
computation-intensive task. Current methods generally rely
on encoding real-world objects 1n a complex three-
dimensional geometric model which approximates the
surfaces, textures and locations of the real-world objects.
Objects are usually represented as a collection of polygons
(but can be a mathematical description, fractal or the like)
which are collected together to form a mesh having the
shape and visual and/or tactile characteristics of the encoded
real-world object. Realistic models of any reasonable size,
e.g., simulating large-scale terrain meshes (see FIG. 2), can
contain hundreds of meshes with millions of polygons to
represent a realistic view of reality. Consequently, enormous
computer resources are required to manipulate large meshes.

To simplify processing when rendering views of such
detailed scenes, view-dependent progressive-meshes
(VDPM) were developed. Hoppe shows a VDPM frame-
work that represents an arbitrary delta-mesh (base mesh plus
deltas required to produce a more detailed mesh)as a hier-
archy of geometrically optimized transformations. A series
of geomorph operations can be performed to convert
between differing levels of detail of the progressive mesh.
(For further information, see Hoppe, Progressive Meshes,
Computer Graphics Proceedings, Annual Conference Series
(ACM SIGGRAPH), pp. 99-108 (1996);, Hoppe, View-

Dependent Refinement of Progressive Meshes, ACM
SIGGRAPH, pp. 189-198 (1997).)

In accordance with Hoppe’s VDPM framework, a front
across a progressive mesh hierarchy 1s defined. The Hoppe
VDPM framework uses a progressive mesh representation
of the original mesh model, which represents the mesh
model as a simplified base mesh and a sequence of mesh
refinement transformations (i.e., vertex splits) that, when
applied to the base mesh, exactly reconstruct the original
fully-detailed mesh. The front 1s developed by incrementally
applying mesh refinement and coarsening operations subject
to certain legality considerations. The legality conditions
disallow some refinement operations unless other refine-
ments operations are performed, and disallow some coars-
ening operations unless other coarsening operations are
performed first

In addition, for a given mesh, a viewpoint 1s defined with
respect to the mesh. The viewpoint can correspond to what
a user/viewer might see of a mesh, or it can be the portions
of the mesh visible 1n a viewport. The phrase “selectively
refined mesh” (SRM) corresponds to a mesh that is altered

10

15

20

25

30

35

40

45

50

55

60

65

2

based on satisfying certain viewing criteria, such as changes
in the viewport. The result 1s view-dependent level of detail
(LOD) applied to different portions of a mesh. For example,
viewing conditions may depend on the location of a flight
simulator pilot in a mesh model, so that mesh detail centers
on those portions of the mesh near the pilot’s plane. For a
view-dependent LOD, the active front is traversed for each
frame being rendered, and every vertex of the front 1s either
coarsened or refined based on the view-dependent refine-
ment criteria. Examples of view-dependent criteria affecting
the occurrence of a vsplit (vertex split) operation is whether
a vertex’s neighborhood intersects the view frustum (see
FIG. 7), has a Gauss map not strictly oriented away, or has
a screen-projected deviation from M that exceeds a pre-
determined (user-specified) pixel tolerance. (M represents
an original fully-detailed mesh that has been deconstructed
into a base mesh, to which delta operations are applied to
obtain successively detailed meshes.)

It 1s understood by those skilled in the art that view
dependencies concern the relationship between a viewpoint
(e.g., camera location, user’s eye, etc.), a defined viewing
frustum (see FIG. 7), and a “current mesh” defined by a base
mesh M"+a set of refinement operations. When adjusting a
SRM'’s coarseness, the change 1s either effected instantly, or
geomorphed (interpolated) over time. Which method is used
depends on whether an affected mesh region 1s entering,
leaving, or staying within a particular viewing frustum. Only
portions of a mesh remaining in view (i.c., within the
frustum) need to be geomorphed to avoid “popping” the
mesh alteration into place. In fact, geomorphs should be
avolded for vertices entering and leaving the frustum, as

discussed later.

Preferably, vertices entering and leaving the frustum are
instantly adjusted, and vertices remaining in view are geo-
morphed over time. In addition, polygon orientation and
distance from the frustum can be used to determine whether
a local region of the mesh should be further refined or
coarsened. For example, those polygons 1dentified as facing
away from a viewing position, or having too little impact on
the display device, can be 1ignored without affecting output.
The 1mpact of a triangle’s rendering to an output device
(e.g., display monitor or video output) is dependent on the
resolution of the device; if rendering only changes one or
two pixels on the output device, rendering the triangle may
cost more 1n computer time and resources than the visual
benelit obtained from the rendering.

In addition, another significant problem with prior art
mesh-based rendering systems 1s that notwithstanding using
simplified meshes, these systems consume computer
resources proportional to the size of the fully-detailed mesh
M". That 1s, 1n the prior art, 1if M™ has p faces, but has been
simplified into a simpler mesh M" having only g faces,
where q<<p (much less than), memory and other computer
resources are allocated on a scale proportional with the
connectivity of the larger mesh M”. For example, to compute
a geomorph between two selectively refined meshes pro-
cured from the progressive mesh hierarchy, prior art meth-
ods may require geomorph computations mnvolving all active
vertices, rather than on just those vertices needed for a
view-dependent computation. And, once begun, the geo-
morph had to complete (or be reverted) before a new
gecomorph operation can be initiated. Consequently, com-
puter resources (¢.g. CPU speed, time, and storage space) to
store and process the fully-detailed mesh are required even
though the view 1s rendered based on only a small subset of
its vertices.

For further mmformation regarding techniques for con-
structing and using progressive meshes, view-dependent

US 6,426,750 B1

3

progressive meshes, and geomorphs, see: U.S. Patent AA for
Encoding And Progressive Transmitting Of Progressive

Meshes, bearing application Ser. No. 08/586,953 and filed
Jan. 11, 1996; U.S. Patent BB for Selective Refinement Of
Progressive Meshes, bearing application Ser. No. 08/797,
501 and filed Feb. 7, 1997; U.S. Patent CC for View-
Dependent Refinement Of Progressive Meshes, bearing
application Ser. No. 08/826,570 and filed Apr. 3, 1997; U.S.
Patent DD for Adaptive Refinement Of Progressive Meshes,
bearing application Ser. No. 08/826,573 and filed Apr. 3,
1997; and U.S. Patent EE for a Method For Creating
Progressive Simplicial Complexes, bearing application Ser.
No. 08/880,090 and filed Jun. 20, 1997. These patents are
incorporated herein by reference.

To overcome these limitations of prior art systems, the
invention optimizes storage requirements by utilizing
dynamic data structures for storing and manipulating a mesh
that allocate storage based on the active vertices of the mesh
(determined according to view-dependent criteria). This
contrasts the prior art teachings of using static data struc-
tures proportional to the fully-detailed mesh. So, instead of
statically storing mesh connectivity for an entire fully-
detailed mesh M"™ (prior art), static data structures only
encode the vertex hierarchy of the simplest mesh M” and the
refinement dependencies required to produce M”™. Separate
dynamic data structures encode, according to changes in
view-dependent parameters, vertices and morph states for an
active mesh. This results in substantial resource savings
when (as is typical) the fully-detailed mesh is large, but the
number of active vertices 1s just a small subset of the overall
number of vertices.

The invention optimizes resource usage (e.g. storage and
processor) by imperceptibly spreading transaction costs
across multiple stages. Thus, for example, when performing
a view-dependent selective refinement operation, rather than
computing refinements for all active vertices 1n every frame,
instead only a subset of the vertices might be considered 1n
a given time period (or frame range). And, of those vertices
determined to require alteration by geomorph or otherwise,
only a subset of those vertices might be altered 1n a given
fime period.

Preferably, each stage 1s selected such that the multi-stage
process 1s 1mperceptible to a viewer. For example, assume it
1s not noticeable 1f vertex evaluation 1s staged across Y%
second of video. If the frame rate 1s 30 frames per second
(fps), then the vertex evaluation can be spread across 15
frames, say one third processed each 5 frames. For each
stage, a vertex can be determined as requiring refinement or
coarsening. In this fashion, the invention can tailor rendering
to the available resources of a host computing environment.

As a further optimization, when performing refinement
operations, one of the new vertices from a vertex split
(vsplit) operation can be required to assume the position of
the ancestor vertex. This then ensures that only one new
vertex need be allocated 1in the mesh data structures at every

split.

As a further optimization, if i1t 1s determined that a
geomorph refinement 1s required, a time limit can also be set
for applying the geomorph. In effect this 1s the inverse of
multi-staging the vertex evaluations. That 1s, 1n the former,
a maximum number of frames is determined (e.g., 15), and
the evaluation process distributed across them. Here, a
maximum time limit for the geomorph 1s selected, and this
determines the size of the incremental step taken i1n each
video frame. For example, a geomorph can be set to occur
over a one second period, so that the number of interpolation

10

15

20

25

30

35

40

45

50

55

60

65

4

steps equals the frame rate fr (e.g., 60 frames/sec=60 tran-
sition steps, each having duration fr™"). And, as with multi-
stage vertex evaluations, one can also distribute geomorphs
across multiple stages.

As a further enhancement over the prior art, geomorphs
are overlapped to more efficiently process them. Geomor-
phing means, by definition, a mesh alteration that 1s being
spread over time. A common problem 1is that a rapid change
in viewing perspective can cause the end result of an
in-progress geomorph to become 1nvalid before it has com-
pleted. With prior art systems, before the new geomorph can
be applied, the ongoing geomorph has to be completed
normally, nstantly “popped” to completion, or reverted. In
cach case, either time 1s wasted or visual artifacts introduced
into the rendered output. To overcome these limitations,
illustrated embodiments allow a geomorph to be altered
mid-morph.

For example, assume an ongoing geomorph between first
and second selectively refined meshes, SRM, and SRM.,.
For these two SRM paths, a geomorph g(1) is constructed at
run-time having all the lowest level vertices from both SRM
paths through the refinement hierarchy. Vertices from active
mesh SRM, then start gravitating towards SRM,,. Vertices
from g(1) supply required ancestors/descendants for moving
between SRM, and SRM,. Now assume the viewpoint
changes because a simulator combat-pilot maneuvers her
plane to avoid being destroyed. This results in a SRM..
Currently-morphing vertices will now gravitate towards the
new requested SRM,. When one introduces a new SRM,
path across the hierarchy, this results in a new geomorph
g(2) corresponding to the vertex states from g(1) and SRM.,.
Intermediate vertices, which are at some 1nterpolated posi-
tion between SRM; and SRM,, stop gravitating towards
SRM, and mstead begin gravitating towards SRM,. By
calculating these geomorph operations at run-time, 1t 15 no
longer necessary to compute geomorphs between entire
mesh levels (1.e. for all active vertices).

When a geomorph 1s imterrupted with a new geomorph, 1n
some embodiments, the motion of the vertex will simply
stop progress on the original path, and will instead begin to
move towards the new destination. In other embodiments,
the path of the interrupted vertex follow a spline path having
the original interrupted destination as a control point along
a path terminating with the new destination. These 1nterme-
diate control points can be stacked as new destinations
interrupt the geomorph in progress.

Additional features and advantages of the invention will
be made apparent from the following detalled description of
an 1llustrated embodiment which proceeds with reference to
the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The file of this patent contains at least one drawing
executed 1n color. Copies of this patent with color drawings
will be provided by the Patent and Trademark Office upon
request and payment of the necessary fee.

FIG. 1 1s a block diagram of a computer system that may
be used to implement a method and apparatus embodying
the 1nvention for run-time geomorphs and optimizing
resource requirements for meshes.

FIG. 2 shows an exemplary complex mesh.
FIG. 3 illustrates an edge collapse operation.
FIG. 4 shows a progressive mesh hierarchy.

FIG. § shows pseudocode for output sensitive data struc-
tures.

US 6,426,750 B1

S

FIG. 6 shows pseudocode for an 1nstantaneous vertex split
transformation.

FIG. 7 shows a top-down view of forward motion of a
viewer through a mesh.

FIG. 8 shows changes to the FIG. 7 mesh resulting from
the viewer’s forward movement.

FIG. 9 shows pseudocode for a refinement operation.

FIG. 10 shows pseudocode for an update_ vmorphs()
procedure which updates the positions of morphing vertices
at each frame.

FIG. 11 shows an adapt_refinement() function for tra-
versing the set of active vertices at each frame 1n order to
perform refinements and coarsening transformations.

DETAILED DESCRIPTION OF ILLUSTRATED
EMBODIMENTS

The present invention 1s directed toward geometric mod-
cling using polygonal meshes for computer graphics. In
particular, a view-dependent progressive-mesh framework
allows view-dependent level-of-detail control over arbitrary
triangle meshes. Such view-dependent control over mesh
rendering 1s particularly well-suited for interactive
environments, such as 3D games presenting flights over
background meshes, or fly-through reviews of multi-
dimensional models (e.g., a real-time fly-through of a CAD/
CAM project). In such situations, a viewer/user only sees a
small portion of an entire mesh model, and within the visible
portion of the mesh many regions are distant and can
therefore be represented at a coarser level-of-detail.

The 1nvention conserves computer resources by limiting,
most resource allocation to those areas of the mesh that are
visible (or near) to the viewer/user. Known progressive-
mesh techniques are extended to achieve temporal coher-
ence through the runtime creation, in real-time, of geomor-
phs. Creating geomorphs at run-time allow the mesh to
remain 1n a coarse state until such time as user movement
requires relining portions of the mesh.

The invention also conserves computer processing
resources by distributing active-vertex evaluations and geo-
morph operations across multiple (but possibly overlapping)
operations.

Exemplary Operating Environment

FIG. 1 and the following discussion are intended to
provide a brief, general description of a suitable computing,
environment in which the invention may be implemented.
While the invention will be described 1n the general context
of computer-executable instructions of a computer program
that runs on a personal computer, those skilled 1n the art will
recognize that the invention also may be implemented in
combination with other program modules. Generally, pro-
oram modules include routines, programs, components, data
structures, etc. that perform particular tasks or implement
particular abstract data types. Moreover, those skilled 1n the
art will appreciate that the invention may be practiced with
other computer system configurations, including hand-held
devices, multiprocessor systems, microprocessor-based or
programmable consumer electronics, minicomputers, main-
frame computers, and the like. The illustrated embodiment
of the mvention also 1s practiced 1n distributed computing
environments where tasks are performed by remote process-
ing devices that are linked through a communications net-
work. But, some embodiments of the invention can be
practiced on stand alone computers. In a distributed com-
puting environment, program modules may be located in
both local and remote memory storage devices.

10

15

20

25

30

35

40

45

50

55

60

65

6

With reference to FIG. 1, an exemplary system for imple-
menting the invention includes a conventional personal
computer 20, including a processing unit 21, a system
memory 22, and a system bus 23 that couples various system
components 1including the system memory to the processing
unit 21. The processing unit may be any of various com-
mercially available processors, including Intel x86, Pentium
and compatible microprocessors from Intel and others,
including Cyrix, AMD and Nexgen; Alpha from Daigital;
MIPS from MIPS Technology, NEC, IDT, Siemens, and
others; and the PowerPC from IBM and Motorola. Dual
microprocessors and other multi-processor architectures
also can be used as the processing unit 21.

The system bus may be any of several types of bus
structure including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of
conventional bus architectures such as PCI, AGP, VESA,
Microchannel, SSA, ISA, EISA, IEEE1394, Fibre Channel,
and SCSI-FCP, to name a few. The system memory includes
read only memory (ROM) 24 and random access memory
(RAM) 25. A basic input/output system (BIOS), containing
the basic routines that help to transfer information between

clements within the personal computer 20, such as during
start-up, 1s stored 1n ROM 24.

The personal computer 20 further includes a hard disk
drive 27, a magnetic disk drive 28, €.g., to read from or write
to a removable disk 29, and an optical disk drive 30, ¢.¢g., for
reading a CD-ROM disk 31 or to read from or write to other
optical media. The hard disk drive 27, magnetic disk drive
28, and opftical disk drive 30 are connected to the system bus
23 by a hard disk drive interface 32, a magnetic disk drive
interface 33, and an optical drive interface 34, respectively.
The drives and their associated computer-readable media
provide nonvolatile storage of data, data structures,
computer-executable 1nstructions, etc. for the personal com-
puter 20. Although the description of computer-readable
media above refers to a hard disk, a removable magnetic
disk and a CD, 1t should be appreciated by those skilled 1n
the art that other types of media which are readable by a
computer, such as magnetic cassettes, flash memory cards,
digital video disks, Bernoulli cartridges, and the like, may
also be used 1n the exemplary operating environment.

A number of program modules may be stored 1n the drives
and RAM 23§, including an operating system 35, one or more
application programs 36, other program modules 37, and
program data 38.

A user may enter commands and information into the
personal computer 20 through a keyboard 40 and pointing
device, such as a mouse 42. Other input devices (not shown)
may 1nclude a microphone, joystick, game pad, satellite
dish, scanner, or the like. These and other mnput devices are
often connected to the processing unit 21 through a serial
port interface 46 that 1s coupled to the system bus, but may
be connected by other interfaces, such as a parallel port,
game port or a universal serial bus (USB). A monitor 47 or
other type of display device 1s also connected to the system
bus 23 via an interface, such as a video adapter 48. In
addition to the monitor, personal computers typically
include other peripheral output devices (not shown), such as
speakers and printers.

The personal computer 20 may operate 1n a networked
environment using logical connections to one or more
remote computers, such as a remote computer 49. The
remote computer 49 may be a server, a router, a peer device
or other common network node, and typically includes many
or all of the elements described relative to the personal

US 6,426,750 B1

7

computer 20, although only a memory storage device 50 has
been 1llustrated 1n FIG. 1. The logical connections depicted

in FIG. 1 include a local area network (LAN) 51 and a wide
area network (WAN) 52. Such networking environments are
commonplace 1n offices, enterprise-wide computer
networks, intranets and the Internet.

When used mm a LAN networking environment, the per-
sonal computer 20 1s connected to the local network 51
through a network interface or adapter 53. When used 1n a
WAN networking environment, the personal computer 20
typically includes a modem 54 or other means for establish-
ing communications over the wide area network 52, such as
the Internet. The modem 54, which may be internal or
external, 1s connected to the system bus 23 via the serial port
interface 46. In a networked environment, program modules
depicted relative to the personal computer 20, or portions
thereof, may be stored 1n the remote memory storage device.
It will be appreciated that the network connections shown
are exemplary and other means of establishing a communi-
cations link between the computers may be used.

In accordance with the practices of persons skilled 1n the
art of computer programming, the present invention 1s
described below with reference to acts and symbolic repre-
sentations of operations that are performed by the personal
computer 20, unless indicated otherwise. Such acts and
operations are sometimes referred to as being computer-
executed. It will be appreciated that the acts and symboli-
cally represented operations include the manipulation by the
processing unit 21 of electrical signals representing data bits
which causes a resulting transformation or reduction of the
clectrical signal representation, and the maintenance of data
bits at memory locations in the memory system (including
the system memory 22, hard drive 27, floppy disks 29, and
CD-ROM 31) to thereby reconfigure or otherwise alter the
computer system’s operation, as well as other processing of
signals. The memory locations where data bits are main-
tained are physical locations that have particular electrical,
magnetic, or optical properties corresponding to the data
bits.

Exemplary Complex Mesh

FIG. 2 shows an exemplary complex mesh containing
4,097 by 2,049 vertices, corresponding to roughly 17 million
triangles. This complex mesh cannot be realtime rendered on
conventional computing hardware with prior art rendering
systems.

The problem with such a large mesh is that the general
approach for rendering such surfaces 1s to exploit the
traditional 3D graphics pipeline, which 1s optimized to
fransform and texture-map triangles. The graphics pipeline
has two main stages: geometry processing and rasterization.
Typically, the rasterization effort 1s relatively steady because
the rendered surface has low depth complexity. In the worst
case, the model covers the viewport, and the number of filled
pixels 1s only slightly more than that in the frame buffer.
Current graphics workstations (and soon, personal
computers) have sufficient fill rate to texture-map the entire
frame buffer at 3072 Hz, even with advanced features like
trilinear mip-map {iltering and detail textures. Such 3D
processing speed 1s largely due to the advent of mnexpensive
consumer-oriented 3D graphics boards optimized for pro-
cessing 3D graphics languages used to encode the models.
Consequently, geometry processing proves to be the bottle-
neck. (Note that the techniques discussed herein can be
applied to speed-up hardware-based geometry processors,
for 3D graphics languages such as OpenGL, which are
designed to widen the processing bottleneck.)

10

15

20

25

30

35

40

45

50

55

60

65

3

Due to this bottleneck, 1n the prior art, complex meshes
require specilalized hardware 1n order to render them 1n real
time, since most high-end graphics platforms can not
process, 1n real time, the geometry for more than a small
fraction of the 17 million triangles. The invention overcomes
this problem by optimizing the representation of the com-
plex mesh. A progressive mesh hierarchy, having multiple
simpler meshes, 1s substituted 1n real-time for portions of the
fully-detailed (original/complex) mesh. Substitutions are
made 1n real-time with respect with a viewer/user’s chang-
ing viewing perspective (viewpoint) within the mesh, thus
providing for real-time processing of complex meshes.

Fundamental to the invention’s approach to handling such
complex meshes 1s the realization that there 1s little point in
rendering more triangles than there are pixels on an output
device. For example, as noted, the FIG. 2 mesh has 17
million triangles. Output devices, such as monitors, com-
monly have about one million pixels. 17 million triangles
represent a level of detail unnecessary to for the display
output device, and many of the triangles can be removed
without appreciably altering output quality. In addition,
another 1nsight 1s recognizing that a mesh surface usually
exhibits significant spatial coherence, so that 1ts perspective
projection can be approximated to an accuracy of a few
pixels by a much simpler mesh. For example, for the
complex FIG. 2 mesh, a simpler mesh having only
2,000-20,000 triangle faces can serve as a reasonable sub-
stitute for the 17 million triangles.

Mesh Alteration

In order to simplify a fully-detailed mesh M"™ such as FIG.
2, the mesh M” is decomposed (see FIG. 3 discussion) into
multiple level of detail (LOD) layers arranged in a vertex
hierarchy (see FIG. 4 discussion). The original mesh 1is
simplified through a sequence of n edge collapse transfor-
mations. These edge collapse transformations (or their
inverse vertex splits) define a vertex hierarchy. Note that the
number of layers 1n this hierarchy 1s generally much smaller
than n (and closer to log,n). For choosing the sequence of
edge collapses, the goal is to let the simplified meshes M’ be
most “like” the original mesh M”. (The layers/levels in the
hierarchy do not guide the simplification process). In deter-
mining cach level of the hierarchy, the goal 1s to provide
simpler meshes that are most “like” the more detailed mesh.
There are many possible ways to simplify a mesh.

The best representative meshes are potential meshes MP
having the least amount of error with respect to a more
detailed mesh. Comparisons can be made between more-
detailed intermediate meshes M, or more preferably,
against the fully-detailed mesh M". A heuristic h 1s
employed to compute the error between a more detailed
mesh and the potential mesh, and quantify the degree of
similarity between the meshes. The potential mesh MP
having lowest error is selected to be the simplified mesh M’
for a given level 1 of the hierarchy. In other words, a potential
mesh M” results from applying collapse/split operations to
a previous mesh, where the goal 1s to apply a heuristic to
determine the “best” possible potential mesh. The term
“heuristic” includes evaluating each and every collapse/split
operation, as well as after a group of such modifications.

An edge collapse (ecol) is the fundamental operation for
simplifying a mesh. During an edge collapse, an edge within
the mesh 1s removed, and the associated vertices collapsed
into a single vertex. Similarly, but in reverse, a vertex split
takes a single vertex and breaks it into two separate vertices,
and an edge and two faces 1s added between them. In both

US 6,426,750 B1

9

operations, mesh connectivity 1s updated to reflect the
changes to the mesh, and as discussed below, the effects can
be spread over time (geomorphed) to reduce “popping” and
“snapping” of mesh alterations.

FIG. 3 1illustrates an edge collapse 100 operation.
Preferably, identifying and updating meshes 1s performed
dynamically as viewing parameters change, and 1s referred
herein as view-dependent level-of-detail (LOD) control. The
ogeneral 1ssue 1s to locally adjust the complexity of the
approximating mesh to satisty a screen-space pixel tolerance
while maintaining a rendered surface that 1s both spatially
and temporally continuous. To be spatially continuous, the
mesh should be free of cracks and T-junctions. To be
temporally continuous, the rendered mesh should not visibly
“pop” from one frame to the next (as discussed below,
real-time geomorphs are used to smooth mesh rendering).

The illustrated edge collapse (ecol) 100/vertex split
(vsplit) 102 operation involves two vertices v, v,, each
vertex containing color data. The collapse combines the two
vertices 1to a single vertex, and readjusts triangle sides and
faces accordingly. The reverse operation 1s a vertex split.
When rendering terrains, some special optimizations can be
made, such as the omission of normals 1n the data structures,
and other elements discussed in the text. (It should be
emphasized, however, that the disclosed framework 1s valid
for arbitrary triangle meshes.) The visual result of these two
operations 1s to have the vertices gradually shift position
over time. The triangle faces 1l and fr disappear after the
collapse 1s completed, and the connectivity for facesf ., 1 .,
f ., and f ; 1s readjusted. Splits are used to define multi-
resolution hierarchies for arbitrary meshes. The vertex hier-
archy (FIG. 4) is constructed from a geometrically optimized
sequence of edge collapse/splits 1n a progressive mesh
representation. As shown v, and v, are collapsed into vertex

A

)

In order to simplify a mesh, a set of all possible edge
collapses have to be generated and evaluated. For any
potential collapse, a heuristic h evaluates the effect of edge
collapse operation, and this information 1s used to identily
which collapses result in a mesh “most like” a more detailed
mesh.

Note that comparisons can be made between any mesh
LOD, not just an immediately preceding/following mesh
level. For example, the heuristic h can compare any potential
mesh (defined by proposed edge collapse operations) against
the original fully-detailed mesh M”. (Comparing to M™ is the
preferred method for approximation-error calculation.)

Progressive Meshes

FIG. 4 shows a progressive mesh hierarchy formed from
applying the FIG. 3 edge collapse operations to the FIG. 2
exemplary mesh.

The complex triangular mesh of FIG. 2 can be partially
replaced by a set of pre-computed level of detail (LOD)
approximations that are stored within a progressive mesh. A
progressive mesh (PM) is a fully detailed mesh M” that has
been deconstructed into n levels of detail, each LOD pro-
oressively simplifying a preceding mesh, until a base mesh
M is reached (see FIG. 4); M” represents the simplest form
of mesh M” 1n use 1n the system, which may correspond to
just a few triangles. A progressive mesh representation for
M" 1s obtained by simplifying M"™ using n successive edge
collapse transformations and recording their inverse. That 1s
an edge collapse operation between two vertices, ecol({v_,
v,}), unifies two adjacent vertices v, and v, into a single
vertex v.”, the vertex v, and two adjacent faces F, ({v, v,

v, D) and F, ({v,, v, V5 }) vanish in the process (see FIG. 3).

10

15

20

25

30

35

40

45

50

55

60

65

10

The particular sequence of edge collapse operations must
be chosen carefully since they determine the quality of the
intermediate levels of detail. Each of the n LOD operations
can be stored in data structures (see FIG. 5) tracking the
series of vertex splits (a vsplit 1s the inverse of an ecol
operation) which, when applied to a current mesh M’, results
in a more refined mesh M**'. Applying all n transformations
results 1n the original detailed mesh M"™.

Smooth transitions (geomorphs) can be created between
two meshes M° and M’ by defining intermediate meshes M/
having vertex positions which interpolate between the posi-
tions of M° and M. Use of interpolating intermediate
meshes allows smooth transitions without visible snapping
of the meshes. As with vertex positions, scalar attributes
defined on mesh faces can also be interpolated. There 1s a
slight problem for corner (v, f) nodes in a mesh M, in that
this node 1s not associated with an ancestor comer 1n a
coarser mesh M. Nonetheless, values can be inferred by
examining the mesh M’ in which the corner is first
introduced, locate a neighboring corner (v, f'), whose
attributes are the same as (v, f), and recursively backtrack
from (v,) to a comer present in M. (If there is no such
identical (v, {'), then the value of (v, f) 1s left constant.)
Interpolation of vertices and associated attributes need not
be linear (e.g., colors can be interpolated in RGB or other
color spaces, and normals interpolated over the unit sphere.)

Each of the LOD refinements can be stacked to form a
tree-like vertex hierarchy (See FIG. 4). Root nodes corre-
spond to the vertices of the base mesh M°, and leaf nodes
correspond to the fully detailed mesh M”. It 1s important to
note that the sequence of vsplit refinements required to
perform a view-dependent refinement uniquely define a
vertex hierarchy, and permits the creation of selectively
refined meshes, or meshes not 1n the original pre-computed
refinement sequence. Although there 1s a particular ordering
to the edge split or collapse operations, dependent on how
the coarse mesh M® was developed, preferably all operations
for a given LOD need not be performed. Instead, a vertex
front can be defined through the vertex hierarchy. This front
deflnes an active mesh, representing a particular series of
edge collapse and vertex split operations.

In a view-dependent progressive-mesh (VDPM)
framework, a sequence of refinement transformations
uniquely defines a vertex hierarchy 200, 1n which the root
nodes 202-206 correspond to the vertices of a base
(simplest) mesh M°, and the leaf nodes 208—224 correspond
to the fully detailed mesh. This hierarchy permits the cre-
ation of selectively refined meshes, which as discussed
above, are meshes not necessarily in the original sequence.

A selectively refined mesh 1s defined by a “vertex front”
226 across the vertex hierarchy, and 1s obtained by incre-
mentally applying and transformations subject to a set of
legality conditions/viewing constraints. Applying a particu-
lar sequence of refinements or coarsening operations results
in a particular “active mesh,” which 1s much simpler than the
fully-detailed mesh M". This simplicity allows real-time
manipulation of the simpler mesh.

Prior to rendering frame, the active vertex front 1s
traversed, and each vertex 1s either coarsened or refined
based on view-dependent refinement. Reflnement 1s per-
formed if a vertex’s neighborhood satisiies predetermined
criteria set according to the type of data being rendered. For
large terrain meshes (for large triangle meshes), the pre-
ferred criteria 1s that the neighborhood satisty 3 require-
ments: (1) i1t intersects the view frustum (the region of a
mesh visible to a viewer/user), (2) its Gauss map 1s not

US 6,426,750 B1

11

strictly oriented away, and (3) its screen-projected deviation
from exceeds a user-specified pixel tolerance. For efficient
and conservative runtime evaluation of these criteria, each
vertex 1n the hierarchy stores the following: a bounding-
sphere radius, a normal vector, a cone-of-normals angle, and
a deviation space encoded by a uniform component and a
directional component. It 1s understood that other criteria,
such as color or other characteristics, may also be stored
therein.

It is assumed that the size of an active mesh M’ (having
m vertices) 1s insignificant compared to that of the fully
refined mesh M” (having n vertices). Therefore, a fully
detailed mesh has order n vertices and 2n faces, and the
simpler mesh has order m vertices and 2m faces.

Storage-Optimizing Data Structures

A limitation of other progressive mesh methods, such as
the VDPM taught 1n U.S. patent application Ser. No. 08/586,
053, 1s that all data structures scale proportionally with the
size n of the fully refined mesh. In particular, static storage
1s allocated to represent the mesh connectivity for all faces
in the mesh even though only a small fraction are usually
active at any one time. Introduction of time-efficient geo-
morphs would therefore require the introduction of new data
elements within all O(n) vertex/face structures. This requires
extensive resources 1n order to compute geomorph trans-
forms. The invention, 1n contrast, allows geomorph trans-
formations without prohibitive memory use. Instead of
having static allocation based on the size of the fully-
detailed mesh, most memory allocations are deferred and
implemented for vertices present in an active mesh.

FIG. § shows the data structures used by illustrated
embodiments. As shown the structures are separated into
two parts: a static part 250 encoding a vertex hierarchy 200
(FIG. 4) and refinement dependencies, and a dynamic part
252 encoding the connectivity of just the active mesh M.
The static part 1s of size order n (here 88n bytes), and the
dynamic part 1s of size order m (here 112m bytes). The static
structures Vertex 256, Face 258, Vsplit 260, are allocated for
cach vertex 1n the hierarchy 200, as reflected by the arrays
vertices 264a, faces 264b, and vsplits 264c¢ 1n the SRMesh
structure 264. The dynamic structures AVertex 266, AFace
268, VertexMorph 270, as discussed below, are allocated on
an as needed basis.

The first of the static structures 1s VGeom 254, which
contains the geometry for a point. Elements of the structure
are a point 254a of type Point and a normal 254b of type
Vector. The point represents the location within 3D space
(which can be real-world or unit space), and the normal for
the point. VGeom 1s never allocated on 1ts own, but 1s used
as a type declaration (like ListNode) and is allocated within
the Vsplit, AVertex, and VertexMorph structures.

Structure Vertex 256, (of which there are 2n in array
vertices 264a), contains pointers 256a, 256b to a dynami-
cally allocated A Vertex 266, and its parent Vertex structure,
and an index 1 256c¢ of the vsplit. operation that creates 1its
children. Index 1 1s set to —1 1if the vertex 1s a leaf node of
the hierarchy. Since vertices are numbered consecutively,
the index 1 1s suflicient to compute the indices of the two
child vertices v, and v, and vsplit operation, and of the
one/two child faces f; and f. (see FIG. 3). This is accom-
plished by allocating two Face 258 structures to each vsplit
even 1n the rare case that the vsplit creates only one face.

Structure Face 258, (of which there are 2n in array faces
264b), contains a pointer 258a to a dynamically allocated
AFace 268 structure The pointer 258a is set to O (or other

10

15

20

25

30

35

40

45

50

55

60

65

12

value mdicating disuse or NULL) if the face is not active. An
active face 1s one that i1s presently in the active mesh.

Structure Vsplit 260 (of which there are n in array vsplits
264c) contains a geometry element 260a a child vertex vie

An array 260b for storing the four neighboring faces f .,
f £, [, (See FIG.3.) And four floating point values for

rl1>n2? n3

a bounding-sphere radius 260c¢ which contains the maximum
extent r, of an affected region, a cone-of-normals angle
sin“a.,, 260d, a uniform error u,, 260¢e, and a directional error
0,, 260f. (See also screen-space error discussion below.)

Structure Listnode 262 defines a general doubly-linked
list. This structure contains pointers to the previous 262a and
next 2625 nodes 1n the node list. The list 1s used both by the

Aface and by the AVertex nodes, as well as the head of lists
active_ vertices 264d and active_ faces 264¢ to keep track of
active faces and vertices.

Structure SRMesh 264 corresponds to a particular selec-
tively refinable mesh M’. Within SRMesh are three arrays
and two ListNode lists. The first array 264a, of size order 2n,
1s an array containing all vertices in the hierarchy. The
second array 264b, of size order 2n, 1s an array containing
all faces in M". (Note that any selectively refined mesh
contains a subset of the faces of M"™]. The third array 264c,
of size order n, 1s an array containing the chain of vertex split
operations encoding how to generate the completely detailed
mesh M” from current mesh M*. Recall that the vertex split
lists are generated by recording, 1n reverse order, the gen-
eration of the base (i.e., most simplified) mesh M". The first
ListNode list 264d tracks the head of the active vertex list,
and the second ListNode list 264¢ tracks the head of the
active face list. Since 2,000-20,000 triangles may only be
active our of 17 million triangles 1n a mesh, only allocating
space for active vertices and faces greatly reduces memory
consumption.

The dynamically allocated structures 252 require order m
storage space (recall that m is the number of active vertices),
which is significantly less space then order n (FIG. 4
discussion above, m<<n). One can also optimize access as
well as storage requirements through register-variable
optimizations, optimizing memory boundaries, in-line
coding, loop-reductions, etc. For clarity, these compile-time
optimizations have been omitted.

The first dynamic structure of FIG. 5 1s the AVertex 266
structure, of which there are m, that contains the active
vertices 1n the hierarchy. Contained within the structure 1s a
ListNode 2664 reference to a doubly-linked list of all active
vertices 1n the mesh hierarchy. A Vertex pointer 266b points
back to the static Vertex 256 referencing this structure. A
VGeom element contains the X, y, z coordinates for the
Vertex 256 allocating this structure (266). Unless a vertex is
in use, this structure 1s not allocated. This contrasts other
progressive-mesh schemes which allocated storage for every
node 1n the hierarchy irrespective of its activity. Element
vmorph points to a VertexMorph structure (described below)
which tracks morphing vertices. It 1s set to O if the vertex 1s
not currently morphing.

Structure AFace 268, of which there are approximately 2
m, tracks the active faces in the selectively refined mesh.
This structure contains a Lisotode list 268a tracking the list
of active faces. An AVertex pointer 269b points to the three
vertices, ordered counter-clockwise, that make up the face
defined by this structure 268. An APace pointer 268c¢ points
to the (up to) tree neighboring faces of the face defined by
this structure. Recall that these are the neighboring faces
bordering the current triangle face, and they are numbered
such that a neighboring face j 1s located across from/
opposite to a vertex 1 of the current triangle face.

US 6,426,750 B1

13

The final element 1s an mteger 268d referencing a texture
file identifier for the face. Rather than storing textures
themselves, only 1ndices 2684 into a texture mapping are
tracked.

Structure VertexMorph 270, of which there are g (the
number of geomorphing vertices), represents each vertex
that 1s 1n the process of geomorphing. This structure contains
a boolean value 2704 indicating whether the vertex 256
associlated with this structure
(Vertex—AVertex— VertexMorph) 1s undergoing coarsen-
ng.

There are two options for handling geomorph coarsening.
The FIG. § data structures shown here, for simplicity,
presume the simpler method for coarsening is 1n effect, 1.¢.,
one cannot overlap the coarsening operations as one can do
with the refinements. In a first alternate method, the struc-
tures are modified to contain duplicate AVertex 266 and
AFace 268 entries 1n each Vertex and Face structure. In
ciiect, two meshes are tracked, one for rendering, and the
other for determining dependency evaluation. Thus the
number of active records linearly increases by a factor of 2.

In another alternate method, a different structural frame-
work 1s used 1n which dependencies between transforma-
fions are stored explicitly, so that evaluating dependencies
does not require modifying the connectivity of the mesh.
Overlapping transformations concerns when mesh connec-
fivity 1s altered. Presently, for a coarsening operation, con-
nectivity 1s only updated after completing the operation,
hence preventing overlaps. In this alternate method, this
overlap restriction 1s removed by use of a framework such
as that proposed by Xia and Varshney could be used to
explicitly store for each vertex split the list of prior vertex
splits on which it depends. (Xia and Varshny, Dynamic
view-dependent simplification for polygonal models, In
Visualization 96 Proceedings (1996), IEEE, pp. 327-334.)
Although the Xia and Varshny framework requires variably
sized records, overlapping geomorph coarsenings can be
ciiciently implemented.

Although allowing overlapping coarsening increases
memory requirements, static data allocation 1s not greatly
impacted. The extra data will be dynamically allocated for
the active vertices m, resulting 1 a linear increase linear
with respect to m.

Also within structure VertexMorph 270 1s a gtime counter
2706 indicating the number of remaining frames in the
assoclated vertex’s 256, and two VGeom elements. The first
VGeom entry veg_ refined 270c stores a backup copy of the
morphing vertex’s refined geometry, and 1s used as a tem-
porary placeholder 1n functions such as vsplit to maintain the
vertex’s current state before 1t 1s altered. One skilled 1n the
art will recognize that the vg_ refined 270c¢ variable can be
removed from the vsplit function by increasing the com-
plexity of the code.

To enable geomorphs, each active vertex has a field
vmorph 266d, which points to a dynamically allocated
VertexMorph record 270 when the vertex 1s morphing. In
practice, the number g of morphing vertices 1s only a
fraction of the number m of active vertices, which 1s 1tself
only a small fraction of the total number n of vertices.
Overall, then, the data structures need 88n+112m+52g bytes
(or 12(2n)+4(2n)+56n+40m+36(2m)+52¢). This is much
less than the storage requirements of other methods. For
example, the prior progressive-mesh method of application
Ser. No. 08/586,953 required 224n memory resources.

In addition, because 1n practice the number of active faces
2m 1s generally about 12,000, and 12,000 1s less than 65,536,

10

15

20

25

30

35

40

45

50

55

60

65

14

the AVertex™ 256a and AFace* 258a pointers 1n the static
structure can be replaced by 16-bit indices. Additionally, 1n
Vsplit 260 we can quantize the coordinates to 16 bits and use
256-entry lookup tables for {r,, u >, o, sin“a,}. Static
storage 1s then reduced from 88n to 56n bytes. In
comparison, a standard representation for a pre-simplified,
quantized, irregular mesh uses 42n bytes of memory, (n)(12)
bytes for positions and normals, and (2n)(3)(4) bytes for
connectivity). Thus the illustrated view-dependent
progressive-mesh framework only requires a 33% increase

in memory over static non-LOD representations.

FIG. 6 shows pseudocode for an instantaneous vertex split
(vsplit) transformation. The illustrated transformation modi-
fies prior split implementations so that dynamically allo-
cated data structures can be used. (Code for an ecol()
procedure is defined analogously.)

As compared, for example, with U.S. patent application
Ser. No. 08/586,953, geometry storage 1s considerably
reduced by moditying the vsplit I ecol transformations to
force vertices v_and v, to have the same geometry, as shown
in FIG. 3. This optimization, while optional, results in an
average 1ncrease of 15% 1n active faces. Additionally,
instead of storing the texture identifiers for the new faces 1l
and fr, in the Vsplit structure 260 (FIG. §), they are mferred
during a vsplit from the adjacent active faces fn, and fn,
respectively.

Shown 1s pseudocode for applying to the selectively
refined mesh the vertex split vsplit. that splits a vertex v_into
two vertices, v, and v,,. (See also FIG. 3.) The value of the
vertex pointer to v, 1s obtained by computing the address 1n
the array vertices 264a by setting v, equal to element no.
IV°|+2v..i*2, where |V®| is the number of vertices V" in the
base mesh M,,, and v_.11s the index 256b of vsplit,, with the
vsplits 264c¢ array. Thus, at step 300 vertex v, gets the
vertices of v_ as determined by taking the vertices V° of base
mesh M° and indexing into the list of split operations by i
(times 2) steps; at step 302 v, gets the position in the vertex
array of v +1. (The vertex pointer to v, is simply v,+1 since
the two children v,, v, are always placed consecutively 1n the
array vertices.) Irrespective of whether the hierarchy is
stored as an array, linked list, or other construct, split and
collapse operations, and texture values, are tracked by
simple indices. These indices can be also be compression-
encoded to compactly represent the data inter-relationships.

For the new left and right faces f,, f, at step 304 (the
pointers to faces il and fr are derived from the index vs.1 of
the vertex split that splits vs, much as above) {; is assigned
its value from v, (indexed into the faces 264b array by v_’s
index 256c¢ value). Due to how the storage hierarchy is
represented 1n the FIG. § data structures, at step 306 f s
value 1s the subsequent array entry. Recall that a selectively
refinable mesh 1s represented as an array of vertices and an
array of triangle faces, where only a subset of these vertices
and faces are active 1n a current mesh M.. The two doubly-
linked lists 264d—e (FIG. 5) thread through a subset of all
vertex and face records. In the Vertex structures, the vsplit
index 1 and parent 256b pointers allow traversal of the entire
vertex hierarchy. When v, can be split, the function vsplit(
) requires v’sneighbors f, (FIG. 3) which are encoded in
v’s associated Vsplit structure 260, and faces f, and { , which
are accessed through splitting vertex v_’s vsplit index value
1, which 1s used to index into the current mesh M.’s faces

264b array.

So, at step 310 v, acquires v_’s avertex pointer reference,
but at step 310 v, replaces v_’s avertex.vertex back-reference
with v,’s back-reference. At this point, v_’s useful data 1s

US 6,426,750 B1

15

exhausted and the v_node 1s released. Alternatively, rather
than creating a new vertex v, and deleting old-vertex v, the
contents of v_can just be modified with v,’s new data (shown
in FIG. 6). For new vertex v, since vu is not inheriting data
from a pre-existing vertex, at step 312 v, 1s initialized as a
new node and added to the vertex list-node tracking list 312.
Finally, at step 314 1nitialization for the left and right faces
1s completed.

Run-time Geomorphs

FIG. 7 shows a top-down view of the forward motion of
a viewpoint 370 through an active mesh 350. Shown 1s a
view on the model from above, with a first outline indicating,
the present viewing frustum 354, the previous viewing
frustum 356, and the advancing geomorph refinements 358
occurring due to the user’s forward movement 352. As the
viewpolnt moves forward through the mesh 350, the current
1s level of detail either remains stable or 1s refined. If the
viewpoint were to retreat, as discussed above (FIG. 5) mesh
data 1s coarsened.

In a highly visual environment, such as a flight simulator,
it 1s crucial that the rendered scenes be (1) presented
smoothly to a viewer/user, (2) but without mesh popping. At
first, these two goals seem contradictory, since the common
method for no obtaining high frame rates 1s (1) dropping
intermediate frames, resulting 1n large “steps” from frame to
frame, or (2) maintaining screen-space error tolerance at a
value of 1 pixel, with a constant error tolerance, resulting in
the number of active faces varying greatly depending on the
model complexity near the viewpoint, and a non-uniform
frame rate.

It 1s preferable that a constant frame-rate be maintained.
This can be accomplished by adjusting the screen-space
error tolerance, and eliminating resulting mesh popping by
smoothly morphing the geometry (hence the term
“geomorphing”) over time. Therefore, even though the
model may (at times) have a projected geometric error of a
few pixels, the error 1s 1mperceptibly smoothed over a
gcomorph transition. In addition, because geomorphs hide
disconfinuities 1n a mesh, pixel error tolerance can be
increased to allow higher frame rates (e.g., 72+frames/sec).

As discussed above, view-dependent LOD results in mesh
complexity controlled by predetermined refinement criteria
which indicates the need for an edge collapse (ecot) or
vertex split (vsplit). To reduce unnecessary popping of a
mesh rendering, the rate of mesh transformation (e.g. the
number of steps, or length of time to perform the
transformation) depends on whether a given portion (e.g.
mesh elements such as vertices or faces) of an active mesh
1s entering 360, leaving 362, or staying within 364 the
current viewpoint’s viewing frustum 354. For mesh portions
staying within the frustum 354, instead of performing
Instantaneous transformations, they are performed as a geo-
morph by gradually changing the vertex geometry over
several frames. A transformation 1s not performed as a
gcomorph unless the region of the atfected surface 1s facing
the viewer. Note that for height fields (i.e. terrains or
elevation data), facial orientation is not determined since
vertex normals are a discarded to reduce memory require-
ments. However, this does not impose a significant penalty
since surface meshes are viewed essentially horizontally
(e.g. from on-high, looking across the breadth of the mesh,
and there 1s only a small fraction of triangles that are
completely facing away and unnecessarily rendered. (Due to
how textures are mapped onto surfaces, the important thing
is that the mesh is not viewed from below/underneath.) In

10

15

20

25

30

35

40

45

50

55

60

65

16

addition, if face orientation were needed, it can be deter-
mined from geometric analysis of vertex positions in the
model-space (e.g., within the model’s coordinate system).

A transformation 1s also not performed unless the affected
region overlaps the view frustum 354. It 1s undesirable to
initiate a geomorph on a region 362 known to be invisible,
because according to the refinement criteria, such a region
may have unbounded screen-space error. (See also FIG. 9
discussion; the decision to geomorph and the decision to
refine the mesh must both either use or both 1gnore face
orientation.) If such a region were to become visible prior to
the end of the geomorph, 1t could lead to an arbitrarily large
screen-space displacement. For example, as the frustum 354
pans left, the nearby off-screen region 366 should not be
morphing from 1ts coarse state as it enters the left edge 368
of the viewport.

Note that although the above discussion focuses on
manipulating vertex positions, 1t 1s understood that besides
position information, vertices contain other attributes such
as a normal, color, texture coordinates, alpha, blend data,
etc. Preferably, normals are interpolated over the unit sphere,
and other attributes linearly interpolated.

Also, texture coordinates are generated implicitly rather
than explicitly during rendering using a linear map on vertex
positions. Each AFace structure 268 (FIG. 5) contains a
texture_ 1d 268d identifying the relevant texture data.
Because the map 1s linear, these texture coordinates are
identical to those that would result if texture coordinates
were tracked explicitly at vertices.

Geomorph Refinement

FIG. 8 shows changes to an active mesh 400 resulting
from the forward movement of the viewpoint 370 (FIG. 7)
through the mesh 350. Here, mesh 400 i1s obtained by
applying three vertex splits to mesh 402. To obtain a smooth
transition between the two mesh states, the geometry for
vertices {v,s, V41, V- } are gradually interpolated from those
of their ancestors as indicated by the arrows 404—408. As an
optimization to the interpolation process, as discussed above
(FIG. 6), one of the vertices 1in a vsplit operation remains at
the position of the ancestor vertex. Thus, position v,,=v, and
V.=V, SO no 1nterpolation 1s necessary for these vertices.
Geomorph refinement can use essentially the same Vsplit

procedure and related data structures as discussed for FIGS.
S and 6.

FIG. 9 shows pseudocode for a preferred refinement
operation. This code extends the pseudocode of FIG. 6 to
detect and perform geomorph refinement using a vertex split
transformation. (Refinement geomorphs can be
overlapping.) An is_ invisible() function incorporates the
determination of whether a vertex meets the view-dependent
criterta for rendering. Generally, two basic tests are per-
formed. The first test 420 1s to determine whether a vertex
v, 1s outside the viewing frustum 304 (FIG. 7), and the
second test 422 1s whether the vertex 1s oriented away from
the viewpoint 370 (FIG. 7). The first test simply requires
evaluating the position of the vertex in the model’s 3D
space. But, the second test ordinarily requires evaluating the
normal vector 254b (FIG. 5) for the vertex v.. But, some
embodiments of the invention may choose reduce storage
requirements by not tracking the normal vector. In this
circumstance, there are three options. The first 1s to disregard
the test, and the second 1s to perform backfacing surface
removal, and the third is to analyze triangle face orientation
based upon the position of vertices to effect hidden surface

removal. (Hidden surface removal 1s a more difficult

US 6,426,750 B1

17

problem, and if surface removal 1s required, a backface
removal is preferred). For most configurations, the first
option of rendering irrespective of orientation 1s reasonable
if 1t 1s likely that a small percentage of faces are invisible.
In this circumstance, the time required to compute an
orientation analysis can exceed the time required to unnec-
essarily render them.

Assuming is_ invisible() returns false, then a modified
vsplit() procedure is called to split a node v_. (If “not
is_ Invisible(v_)” evaluates True, then is_ Invisible(v_) must
evaluate False, i.e., v, is visible.) After execution of the
initialization code 300-316 (FIG. 6), vertex v_ is tested to
verily it 1s presently visible 424. If so, the coordinates for v,
is assigned the values for v,. If v_1is not visible (with respect
to a viewing perspective and viewing frustum), then the
transformation 1s not performed as a geomorph over time,
and mstead the vertex 1s instantly updated. As with the FIG.
6 refinement operation, mesh connectivity can still be
instantly modified, but here the new vertex v, 1s itially
assigned the same geometry as its sibling v, rather than
directly assigned v_’s values. V ’s geometry 1s then gradu-
ally modified to the geometry of 1ts eventual refined state
over the next gtime 432 frames.

A new VertexMorph structure 270 (FIG. §) 1s created 428
for morphing vertex 442. Since this 1s a refinement
operation, structure member coarsening 270a 1s set false,
and element gtime 2700 1s set 432 to the number of frames
over which to spread the refinement operation. The param-
cter gtime can be user-specified. By default, gtime 1s equal
to the frame rate (e.g., 30—72 frames/sec), so that geomorphs
have a lifetime of one second. Note that the geomorphs do
not require the itroduction of additional faces, as the mesh
connectivity 1s exactly that of the desired refined mesh. The
1ssue 1s not one of adding vertices or faces, but the relocation
of vertices and the associated readjustment of facial con-
nectivity.

The veg_ refined 270c backup copy of the refined geom-
etry 1s set 434 to the child vertex geometry for v_1, where 1
1s the vsplit index entry for vertex v.. Vg_ refined 270c
represents the ultimate refined position for a geomorphing
vertex, and 1s used to determine an interpolation increment
436 based on the distance between the starting 438 and
ending 270c (FIG. 5) positions of the morphing vertex. This
total distance 1s then divided by gtime 270b to determine
how far the vertex i1s to move 1n a given frame.

A key feature of the illustrated geomorph refinement 1s
that the refinement operations may overlap; that is, since
vertex connectivity 1s updated before the geometry 1s
interpolated, a new geomorph process can be applied to a
vertex v_ already undergoing morphing. Causing a new
refinement generates two new nodes v, and v, as discussed
herein, where one node continues along v_’s original path,
and the other continues on towards the new refilnement
position for that vertex. When an overlap occurs, the vsplit
procedure (FIG. 6) simply advances the vertex front down
the vertex hierarchy (possibly several “layers”), and modi-
fles mesh connectivity instantaneously while deferring geo-
metric changes. FIG. 8 shows the results of three vertex
splits. Since the refinements overlap, there 1s some ability to
perform operations 1n parallel to achieve performance gains.
(See references cited in the background for more informa-
tion regarding is__invisible() and vsplit() procedures.)

FIG. 10 shows pseudocode for an update_ vmorphs()
procedure which updates he positions of morphing vertices
at each frame. At each frame, the set of active vertices (264d
of FIG. 5) is traversed 446, and for each morphing vertex v,

10

15

20

25

30

35

40

45

50

55

60

65

138

448, its geometry 1s advanced 450 and its gtime 270b
counter decremented 452. When the gtime reaches 0, vertex
v, 448 has reached its goal geometry and the VertexMorph
record 270 1s deleted 454. Geomorph coarsening operations
reverse a series of refinement operations. As discussed
above, when performing a refinement operation, the con-
nectivity of the old and new nodes 1s updated first, and then
the nodes gravitate to their new locations over gtime number
of incremental steps. When performing the coarsening
operation, similar steps can be implemented to, in effect,
reverse a reflnement operation.

Geomorph Coarsening,

In the basic case, geomorph coarsening requires that
geometry interpolation take place first, and then mesh con-
nectivity can be updated to reflect the changed geometry.
This contrasts refinement operations, in which connectivity
is updated first (the node is split), and then geometry
positions mterpolated over gtime. In this configuration, there
cannot be multiple overlapping coarsening operations
because the connectivity 1s not updated until after the
coarsening operation 1s complete, resulting 1n an ancestor-
vertices problem. That 1s, 1t 1s impossible to detect whether
the second coarsening operation 1s legal, to determine if the
proper neighborhood of faces is present around v, (v, for
moment, since v, will become v_) and v, to allow that
second edge collapse to occur 1n the future.

For example, 1f a {first coarsening operation were to
collapse v, and v, into v, (see FIG. 3), and a second
coarsening operation were to collapse v_and v, mto v_, this
second operation could not be performed until the first
coarsening operation completed and created v_. (Note that
coarsening difficulties are not inherent to the VDPM
framework, and also arise in multiresolution hierarchies
based on uniform subdivision.)

Disallowing overlapping coarsening operations avoids the
1ssue of ensuring properly configured ancestor vertices for
dependents. Thus, 1n this basic case, geomorph coarsening 1s
only allowed “one layer at a time”. Out of the set of desired
geomorph coarsenings, all currently legal ones are simulta-
neously performed, and their dependents are required to wait
for the initial geomorphs to complete. To help make the
process appear more ecificient, the gtime parameter for
geomorph coarsening can be set to one half the time for
gcomorph refinement. By reducing the number of incremen-
tal steps for coarsening is one half for refinement, coarsening
occurs over fewer frames. Thus, coarsening appears twice as
fast as refinement, but less smoothly due to the reduce
number of times over which the geomorph 1s processed. But,
since geomorph coarsening 1s required only when the viewer
1s moving backwards, an infrequent situation, the degrada-
fion 1n output 1s not very noticeable.

To overcome this restriction on overlapping geomorph
coarsening, as discussed above for FIG. 5, the data structures
tracking a mesh can be altered to allow for immediate
response to coarsening requests.

Modified Screen-space Error Metric

For the illustrated embodiments, a geomorph refinement
(forced_ vsplit(v)) is initiated only when the screen-
projected deviation of i1ts mesh neighborhood exceeds a
pixel tolerance T. (See Hoppe, supra, View-Dependent
Refinement of Progressive Meshes, at 193.) This prevents
wasting processing resources on rendering faces having too
little effect on output. A problem arises in that the viewer 1s
moving (see FIG. 3, item 302), and the mesh neighborhood

US 6,426,750 B1

19

1s likely to be closer to the viewer by the time the geomorph
completes; this then invalidates the error estimate. This 1ssue
can be resolved by anticipating the viewer location gtime
frames into the future, and evaluating the screen-space error
metric from that future configuration. This future location
can be estimated by extrapolation based on the current
per-frame viewer velocity Ae. (A more rigorous, and com-
putation intensive, solution i1s to account for changes in
velocity, and altering the lifetimes of ongoing geomorphs as
necessary.)

The original refinement criterion from application Ser.
No. 08/586,953 is: (8./|[v—¢|) sqrt(1-(((v—-e)-A,)/|[v—e|)*)>Kk
where ¢ 1s the viewpoint, v the mesh vertex, fi, its normal,
0, 1ts neighborhood’s residual error, and k=2t tan (1/2)

3}

accounts for field-of-view angle 1 and pixel tolerance t. The
square-root factor allows greater simplification when the
surface 1s viewed along the direction of its normal. (For
meshes with fixed T, this factor only reduces the average
number of active faces by about 3%, so it can be omitted.)
The denominator |v—¢|| is an estimate of the z coordinate of
the vertex v 1n screen space. We replace this denominator

—>
with the linear functional L, (v)=(v-¢)- ¢ which computes
this z coordinate directly (e is the viewing direction). Thus,
the screen-space error criterion 1s 8,>KL. .(v), in which the

pomnt €' 1s either the current viewpoint or the anticipated

future viewpoint e+gtime Ae depending on whether Ac ¢ is
negative or positive respectively.

FIG. 11 shows an adapt_refinement() function for tra-
versing the set of active vertices at each frame 1n order to
perform refinements and coarsening transformations.
(Refinement geomorphs can be overlapping, but coarsening
geomorphs are independent.) FIG. 11 is the loop that is
performed at each frame to determine whether active verti-
ces should be refined or coarsened, and whether those
refinements or coarsenings should happen imstantly or as
gcomorphs. For each active vertex v 1n the active vertices
array 264a (FIG. 5), v_ is initialized 470 to point at v’s
back-reference to v’s static vertex structure 256. The next
step 1s to determine that vertex v_ 1s not a leaf node of the
hierarchy (i.e., index i1<0), that v_ is visible, and that screen
error 1s greater than error tolerance t. If these conditions 472
are met, then a vsplit 1s forced.

If these conditions 472 are not met, then a split 1s not
appropriate and checks are made 474 to determine whether
an edge collapse 1s appropriate. If vertex v_has a parent and
it 1s legal to perform an edge collapse, then boolean variable
vmc 1s assigned 476 the logical-and result between active
vertex v’s current morphing state and whether v 1s already
undergoing a coarsening operation (i.e. vmc is true if and
only if the vertex v 1s currently undergoing geomorph
coarsening.) The v’s parent vertex v.parent is then checked
478 for visibility. If the parent is invisible (i.e., rendering
rejected based upon selected viewing criteria), then if vmc
1s true, v 15 allowed to immediately finish 1ts geomorph
coarsening transformation 480 (i.e., its position jumps to its
final coarsened state). Otherwise, the parent is visible, its
screen error 1s checked 482 to determine 1f 1t 1s greater than
error tolerance T. If the parent’s error tolerance 1s more than
T, then there 1s no point to coarsening the mesh, and the
gecomorph coarsening 1s cancelled 484, thus instantly return-
ing the vertex v to 1ts refined state. Alternatively, 1f the
parent’s error tolerance 1s less than or equal to T, vinc 1s true,
and 1f v’s morphing gtime 27056 (FIG. 5) equals one 486
(c.g., almost done), then the steps of the geomorph are
completed 488 and vertex connectivity adjusted 490 to
reflect the edge collapse that required the vertex position
manipulations.

10

15

20

25

30

35

40

45

50

55

60

65

20

If none of these conditions apply, then the parent 1s visible
478, screen error 1s acceptable 482, and vinc 1s not true 480
(i.e., no coarsening is being performed). Therefore, a coars-
ening geomorph 1s started 492. Note, however, that this
implementation of adapt_ refinement() does not allow over-
lapping coarsening gromorphs. (But see FIG. § discussion
regarding modifying data structures to handle the more
complex case of overlapping coarsenings.)

The 1nvention teaches avoiding inefficiencies inherent to
progressive mesh rendering systems. In particular, discus-
sion has focused on relieving processor and storage require-
ments by reducing the number of vertices that are processed
during any given block of time (or output frames). Having
described and 1llustrated the principles of our invention with
reference to an illustrated embodiment, it will be recognized
that the illustrated embodiment can be modified 1n arrange-
ment and detail without departing from such principles. The
programs, processes, or methods described herein are not
related or limited to any particular type of computer
apparatus, unless 1indicated otherwise. Various types of gen-
eral purpose or specialized computer apparatus may be used
with or perform operations 1n accordance with the teachings
described herein. Elements of the illustrated embodiment
shown 1n software may be implemented 1n hardware and
vice versa, and 1t should be recognized that the detailed
embodiments are 1llustrative only and should not be taken as
limiting the scope of our invention. What 1s claimed as the
invention are all such embodiments as may come within the

scope and spirit of the following claims and equivalents
thereto.

What 1s claimed 1s:

1. A computer-implemented method for computer-
oenerated graphics of an object using a mesh, the mesh
representing a multi-dimensional model of the object, the
mesh having geometric elements and associated resources
encoding attributes of the geometric elements, the method
comprising:

producing sequential graphic images depicting a changing

view from a viewpoint of the mesh;

evaluating the geometric elements relative to the changing

view of the mesh from the viewpoint to determine mesh
alterations to be applied to the mesh to effect view-
dependent adaptive level of detail adjustment of the
mesh, wherein the evaluation of the geometric elements
for view-dependent adaptive level of detail adjustment
1s apportioned over the producing of multiple of the
sequential graphic images such that evaluation of the
geometric elements 1s apportioned into multiple non-
empty sets of geometric elements and portions having,
fewer than all geometric elements then present 1n the
mesh are evaluated per graphic 1mage produced; and

varying the geometric elements from a first state towards
a second state of the mesh after application of a first set
of the mesh alterations, wherein the varying the geo-
metric elements also 1s distributed 1n time over multiple
of the sequential graphic 1images.

2. The method of claim 1, in which the mesh 1s rendered
into a frame based output format having plural frames, and
wherein the evaluating the geometric elements 1s appor-
tioned over at least two such frames.

3. The method of claim 1, wherein the varying the
geometric elements 1s distributed over multiple time periods
of varying duration.

4. The method of claim 1 further comprising overlapping
said evaluating geometric elements to determine mesh alter-
ations to effect view-dependent adaptive level of detail
adjustment of the mesh and said varying the geometric
clements from the first state towards the second state of the
mesh.

US 6,426,750 B1

21

5. The method of claim 1, wherein the varying geometric
clements comprises constructing a first geomorph having the
geometric elements variable between the first and second
states of the mesh.

6. The method of claim 5 further comprising:

while at an i1ntermediate point in varying the geometric
clements from the first state towards the second state
using the first geomorph, determining a third state of
the mesh after application of a further set of the mesh
alterations;

constructing a second geomorph at run-time having the
geometric elements variable between the intermediate
point between {first and second states of the mesh and
the third state of the mesh; and

further varying the geometric elements from the interme-
diate point between first and second states of the mesh
toward the third state of the mesh using the second
geomorph, with said further varying the geometric
clements distributed 1n time over a further multiple of
the sequential graphic 1mages.

7. The method of claim 6, wherein the varying the

geometric elements from the first state towards the second
state varies at least one of the geometric elements along an
initial trajectory between positions of the at least one geo-
metric element at the first and second states, and where the
at least one geometric element follows a revised trajectory
upon the further varying the geometric elements from the
intermediate point towards the third state, such revised
frajectory being a combination of the mitial trajectory
between the first and second states, and a new ftrajectory
between a position of the at least one geometric element at
the mtermediate point and a position of the at least one
geometric element at the third state of the mesh.

8. The method of claim 7 further comprising forming the
revised trajectory with a curve fitting algorithm, such algo-
rithm using the positions of the at least one geometric
clement at the first state, the intermediate point, and the third
state as control points.

9. The method of claim 1, 1n which application of the first
set of mesh alterations determines a final position of the
geometric elements at the second state of the mesh, and
wherein the varying the geometric elements over time
further includes:

identifying a first set of vertices of the mesh that are
entering a viewing frustum while the view of the mesh
from the view point changes, and directly altering such
vertices to their final position;

1dentifying a second set of vertices of the mesh that are
leaving the viewing frustum, and directly altering such
vertices to their final position; and

identifying a third set of vertices of the mesh that are
remaining in the viewing frustum, and altering such
vertices by a geomorph operation to their final position.
10. The method of claim 9, in which each vertex has a
spatial coordinate representing such vertex’s position the
mesh, and wherein an ongoing geomorph operation, having
plural vertices undergoing vertex split transformations, 1s
modified to split a parent vertex, the split resulting 1n a first
and a second vertex, the method further comprising;:

allocating a resource for the first vertex;

assigning to the second vertex the spatial coordinate for
the parent vertex;

immediately updating mesh connectivity to reflect the
introduction of the first vertex; and

adjusting the spatial coordinate of the first vertex over the
predetermined time period, so as to gradually effect the
result of the geomorph operation.

10

15

20

25

30

35

40

45

50

55

60

65

22

11. The method of claim 10, in which the graphic 1mages
of the mesh are rendered to an output device having a
rendering frame rate, and wherein the geomorph operation 1s
performed 1n a number of mncrements equal to the rendering
frame rate.

12. The method of claim 10, 1n which the graphic 1mages
of the mesh are rendered to an output device having a frame
rate per second, and each geomorphing vertex has a prede-
termined distance to travel, the method further comprising:

retrieving a complexity estimate for performance of the
geomorph operation;

multiplying the rendering frame rate by a multiplier
proportional to the complexity estimate, so as to define
an adjusted frame rate; and

determining a geomorph increment as the predetermined

distance divided by the adjusted frame rate.

13. A computer-readable medium having stored thereon
programming code for implementing the method of claim
11.

14. The method of claim 1 wherein the evaluating com-
prises a multi-stage evaluation of a plurality of geometric
clements for a view-dependent adaptive level of detail
adjustment of the mesh, and the multi-stage evaluation of the
plurality of geometric elements for the view-dependent
adaptive level of detail adjustment 1s apportioned over a
plurality of stages during which multiple sequential graphic
images are produced.

15. A computer readable medium having data structures
stored thereon, the data structures including a plurality of
data structure elements for storing a progressive mesh
representation of a fully-detailed mesh as a base mesh and
a sequence of mesh alteration operations, the data structures
for use 1n a computer graphics imaging system for producing
ographics 1mages depicting the mesh, wherein the computer
oraphics 1maging system selectively alters the progressive
mesh connectivity according to a changing view of the mesh
from a viewpoint to define an active mesh having a selec-
tively refined level of detail, the data structures comprising:

a static vertex-array for encoding all vertices in the
progressive mesh;

a static face-array for encoding all faces 1n the progressive
mesh;

a static sequence-array for encoding the sequence of mesh
alteration operations; and

a dynamically allocated face-list tracking each face in the
active mesh;

whereby the computer graphics imaging system adds and
removes the entries 1n the face list from the list as the
mesh connectivity 1s selectively altered according to
the changing view.

16. The computer readable medium of claim 15, wherein
the data structures further comprise a dynamically allocated
vertex-list for tracking each vertex of the active mesh.

17. The computer readable medium of claim 16, 1n which
the data structures stored thercon further include a vertex
data structure for encoding a vertex of the fully-detailed
mesh, the vertex data structure comprising;:

a first reference referring to a dynamically allocated
vertex-conflguration data structure, such reference hav-
ing a valid reference-state and an 1nvalid reference-
state,

wherein the first reference has the valid reference-state 1t
the vertex 1s in the dynamically allocated vertex-list.

18. The computer readable medium of claim 17, 1n which

the valid reference-state 1s a reference to the dynamically

US 6,426,750 B1

23

allocated vertex-configuration data structure, the vertex-
conflguration data structure comprising:

a second reference referring to the dynamically allocated
vertex-list;

a back-reference to the vertex data structure referencing
the vertex-conflguration data structure; and

a geometry structure containing geometry data for the

vertex.

19. The computer readable medium of claim 18, in which
the vertex-conflguration data structure further includes a
Boolean flag indicating whether the vertex i1s part of a
geomorph operation.

20. The computer readable medium of claim 15, 1n which
the data structures stored thercon further include a face data
structure for encoding a face of the progressive mesh, the
face data structure comprising:

a first reference to a dynamically allocated face-
conflguration data structure, such reference having a
valid reference-state and an 1invalid reference-state;

wherein the first reference has the valid reference-state 1t

the face 1s in the dynamically allocated face-list.

21. The face-configuration data structure of claim 20, in
which the valid reference-state 1s a reference to the dynami-
cally allocated face-configuration data structure, and where
cach polygon face of the progressive detailed mesh 1is
defined by a plurality of vertices, the face-configuration data
structure comprising:

a second reference referring to the dynamically allocated
face-list;

a first plurality of references referring to the vertices
defining the polygon face; and

a second plurality of references, each such reference
referring to a neighboring-face for the polygon face
within the progressive mesh.

22. The face-configuration data structure of claim 21,
wherein each neighboring-face for the polygon face within
the progressive mesh and each vertex defining the polygon
face are numbered such that a neighboring face j opposes a
vertex] across the polygon face.

23. A computer-implemented method for computer graph-
ics 1imaging based on view-dependent level of detail adjust-
ment of an arbitrary progressive mesh over a predetermined
number of time periods, the mesh representing a multi-
dimensional model having elements including vertices and
assoclated resources encoding attributes of each vertex, the

method comprising:

(a) determining a set of mesh alterations based on changes
between a first and a second viewing frustum, such
frustum determined according to a view point relative
to the progressive mesh;

(b) 1n a single time period, selecting a proper, nonempty
subset of the mesh alterations, and varying positions of
the mesh elements according to the proper, nonempty
subset of mesh alterations;

(¢) repeating step (b) so that all mesh alterations are
performed 1n the predetermined number of time peri-
ods; and

(d) producing computer graphics images based on the
mesh 1n at least some of the predetermined number of
fime periods.

24. The method of claim 23, 1n which all mesh alterations

are performed 1n one second.

25. A computer-implemented method for view-dependent

level of detail adjustment of an arbitrary progressive mesh
over a predetermined number of time periods for computer

10

15

20

25

30

35

40

45

50

55

60

65

24

ographics, the mesh representing a multi-dimensional model
having elements including vertices and associated resources
encoding attributes of each vertex, the method comprising:

(a) determining a set of mesh alterations based on changes
between a first and a second viewing frustum, such
frustum determined according to a view point relative
to the progressive mesh;

(b) selecting a proper, nonempty subset of the mesh
alterations; and

(c) varying positions of the mesh elements according to
the proper, nonempty subset of mesh alterations;

(d) overlapping repetition of steps (b) and (c) so that all
mesh alterations are performed in the predetermined
number of time periods; and

(¢) producing computer graphics images based on the
mesh 1n at least some of the predetermined number of
fime periods.

26. A method of distributing geometry processing of
vertices of a mesh over a predetermined number of time
periods for computer graphics, the mesh representing a
multi-dimensional model having elements including vertices
and associated resources encoding attributes of each vertex,
the method comprising:

(a) determining a set of mesh alterations for X vertices
based on changes between a first and a second viewing
frustum, such frustum determined according to a view
point relative to the progressive mesh;

(b) in a single time period, selecting a proper, nonempty
subset of the mesh alterations for Y vertices, where Y
1s less than X, and adjusting over time the positions of
the Y vertices according to the proper, nonempty subset
of mesh alterations; and

(c) repeating step (b) until all vertices have been adjusted
in the predetermined number of time periods; and

(d) producing computer graphics images based on the
mesh 1n at least some of the predetermined number of
fime periods.

27. A computer-implemented method for view-dependent
level of detail adjustment of an arbiter mesh for computer
oraphics, the mesh representing a multi-dimensional model
having elements including vertices, the method comprising;

(a) in a single time period, traversing a portion of a list of
active vertices, where the portion 1s less than all but at
least one vertex 1n the list;

(b) for each vertex in the portion, evaluating whether to

reflne or to coarsen the vertex; and

(¢) repeating steps (a) and (b) in subsequent time periods

for successive portions of the list; and

(d) producing computer graphics images based on the

mesh 1n at least some of the predetermined number of
fime periods.

28. A computer-implemented method for view-dependent
level of detail adjustment of an arbitrary progressive mesh
for computer graphics, the mesh representing a multi-
dimensional model having elements including vertices, the
method comprising;;

(a) in a single time period, traversing a portion of a front
across the progressive mesh, the front identifying a set
of vertices of the progressive mesh, and the portion
having fewer vertices than the front and at least one
veriex;

(b) for each vertex in the portion, evaluating whether to
refine or to coarsen the vertex; and

(c) repeating steps (a) and (b) in subsequent time periods
for successive portions of the front; and

US 6,426,750 B1

25

(d) producing computer graphics images based on the
mesh 1n at least some of the predetermined number of
fime periods.

29. A computer-readable medium having stored thereon
programming code for implementing a method for
computer-generated graphics 1maging of an object using a
mesh, the mesh representing a multi-dimensional model of
the object, the mesh having geometric elements and asso-
clated resources encoding attributes of the geometric
clements, the method comprising;:

producing sequential graphic images depicting a changing
view from a viewpoint of the mesh;

evaluating the geometric elements relative to the changing
view of the mesh from the viewpoint to determine mesh

I

alterations to be applied to the mesh to effect view-

10

26

dependent adaptive level of detail adjustment of the
mesh, wherein the evaluation of the geometric elements
for view-dependent adaptive level of detail adjustment
1s apportioned 1nto multiple nonempty sets over the
producing of multiple of the sequential graphic 1images
such that portions having fewer than all geometric

clements then present 1n the mesh are evaluated per
ographic 1mage produced; and

varying the geometric elements from a first state towards

a second state of the mesh after application of a first set
of the mesh alterations, wherein the varying the geo-
metric elements also 1s distributed 1 time over multiple
of the sequential graphic images.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,426,750 B1 Page 1 of 2
DATED : July 30, 2002
INVENTOR(S) : Hoppe

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Title page,
Item |56], OTHER PUBLICATIONS, for the “Kalvin” reference, “2-3” should read

213 --.

Column 1,
Line 59, “refinements” should read -- refinement --.
Line 62, “first” should read -- first. --.

Column 11,
Line 2, “from exceeds” should read -- exceeds --.
Line 67, “structure” should read -- structure --.

Column 12,

Line 4, “Vie” should read -- V. --.

Line 23, “M"].” should read -- M".) --.

Line 32, “our” should read -- out --.

Line 59, “Listotode” should read -- ListNode --.
Line 60, “269b” should read -- 268b --.

Column 14,
Line 19, “vsplit I ecol” should read -- vsplit/ecol --.

Line 34, “vsplit,” should read -- vsplit; --.
Line 44, “be also be” should read -- also be --.

Column 15,
Line 19, “1s level” should read -- level --.
Line 45, “(ecot)” should read -- (ecol) --.

Column 16,
Line 61, “choose reduce” should read -- choose to reduce --.

Column 17,
Line 65, “he” should read -- the --.

Column 18,
Line 49, “reduce” should read -- reduced --.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,426,750 B1 Page 2 of 2
DATED : July 30, 2002
INVENTOR(S) : Hoppe

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 21,
Line 55, “the mesh” should read -- within the mesh --.

Column 24,
Line 40, “arbiter” should read -- arbitrary --.

Signed and Sealed this

Eighteenth Day of March, 2003

JAMES E. ROGAN
Direcror of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

