(12)

United States Patent

Rupp

US006426648B1
(10) Patent No.: US 6,426,648 Bl
45) Date of Patent: Jul. 30, 2002

(54)

(76)

(%)

(21)

(22)

(60)

(51)

(52)
(58)

(56)

L T N N N R N N ———

CARRY LOOKAHEAD FOR FOREIGN PATENT DOCUMENTS
PROGRAMMABLE LOGIC ARRAY WO WO 98/51013 A 11/1998
Inventor: Charlé R. Rllpp, 17418 Bluejay Ct., OTHER PUBILICATIONS
Morgan Hill, CA (US) 95037
Rupp, Charles, “Fast Algorithms for Regular Functions 1n
Notice: Subject to any disclaimer, the term of this Field Programmab]e (;ate Arraysf Pl D93 (Conference
patent 15 extended or adjusted under 35 Paper, (1993) pp. 1-6.
U.S.C. 154(b) by 0O days. Hauck, S. et al., “High—Peformance Carry Chains {for
FPGAs,” ACM 6”Conf. (Feb. 22-24, 1998) pp. 223-233.
Appl. No.: 09/550,919 Anonymous: “Binary Adder,” IBM Tech. Disclosure Bulle-
Filed: Apr. 17, 2000 tin, vol. 6, No. 4, (Sep. 1, 1963), pp. 39-40.
o * cited by examiner
Related U.S. Application Data
Provisional application No. 60/174,004, filed on Dec. 30, Primary Examiner—Michael Tokar
1999. Assistant Examiner—Anh Tran
. (74) Attorney, Agent, or Firm—Cooley Godward LLP
Int. CL.7 ., HO1L 25/00
(57) ABSTRACT
U..S. Cl. 326/41, 326/38, 326/39 CElI'I'y lookahead tGChHiqUGS are adapted fOI' implementation
Field of Search 326/38, 39, 41 in a programmable logic device. In one example of the
_ invention, a carry result 1s computed for a block of function
References Cited cells, each function cell representing one bit in a multibat
U S PATENT DOCUMENTS operation }hat Uses carry. Th%s carry result 1s combm;:d with
the carry input from a function cell block representing less
5260611 A 11/1993 Cliffet al. ..ccuveu......... 307/465 significant bits 1n the operation and a carry output 1s pro-
5274581 A 12/1993 Cliff et al. ... 364/784 vided to a function cell block representing more significant
5,349,250 A 9/1994 NeW ..cooeeevrvrvereenenennen, 307/465 bits in the operation. The received carry can also be supplied
5,546,018 A 8/1996 New etal. 326/38 to adjust provisional carry results for each bit associated
5,629,886 A 5/1997 NeEW .ovvriiiiiiiiiiiiineinnns 364/787 with the function cells 1n the block. Accordingly? the
556315576 A 5/1997 Lee et Ell. 326/39 received Carry input need not be rlppled through all the
5,672,985 A /1997 1ee oveverveiiiiiiiinnannns 326/41 function cells in the block, thus reducing carry propagation
2,675,262 A 10/1997 Duong et al.c.c........ 326/41 delays. This technique 1s suitable for use 1n programmable
2,889,411 A . 3/1999 Chaudhary 326/39 logic devices because only minimal additional logic need be
0,898,319 A 41999 NeW ooveeiicniiiincinnnn 326/41 included in each block of function cells (such as the CLBs
5,926,036 A 7/1999 Cliff et al. 326/40 - - :
5977793 A 11/1999 Reddy et al 326/41 and LLABs in the prior art), and because few, in any, new
5082195 A 11/1999 CIiff et al. +ovvevevvevoen 326/41 nterconnections between blocks need be introduced.
6,140,839 A * 10/2000 Kaviani et al. 326/39
6,154,053 A * 11/2000 New ..coiviiririiiniininnnnn.. 326/41 20 Claims, 12 Drawing Sheets
N ,
Cin ; T - i
el] o2 i
O e
o ST e
"""" By iy I e
F E+L 5[
It
SR e — {1
6043 518" 6 =Kk
"""" A —
7 ,
ASAL P:,'I»LT
B$1B | GH—Hd—p—
s ST
i e
A& PH— L]
BIIB| GIr—t— HL
= =i
A P P17
BI3HB. | Gl p—a— i K
AU TP P
M-8} G lK KK
8" o 0L
600—"

US 6,426,648 B1

Sheet 1 of 12

Jul. 30, 2002

U.S. Patent

| Cout

!
= m
A)
= m
Y “
/AR m
SENE w
.- w
-
O
e ”
I I R R O I O
2 e m@m _

FIG. 1 (Prior ART)

US 6,426,648 B1

Sheet 2 of 12

Jul. 30, 2002

U.S. Patent

(Y Y0rd ¢ "DJ[H

lllIlll“lllII_-In elL
I S S I B E— —
ﬁ — 1 — T T -m — T 1
— — T . B s S S —
— — T T nllnll —
— 1T — T — T I S N
— T 1 T T T 1
— —T T -nlnlllll
—T T — T — I I S R
—T 1T — 1T — T T 1 3
—T T — T T 1 — T T 11T (S[eUSIS
Vi “““I“Ill“““ ——— —- \ Induy
1T 11— — =
B s e _- —— 1
T 11 —]
2 _M||| = e e
__ — T I B —
—T T —
o\ T Tt an
N JUSUIS[[-N JUSWI[7 JUWI EDEQE AV &1
0 OI30'] JI50'] O30T JI30T

U]
N30T AL NS0T AR o& Al o& Al
) R E T e o) |- oo |
| \./ T JRII(]
_ q0L

- z.

S[eusdig ndinQ

@

U.S. Patent Jul. 30, 2002 Sheet 3 of 12 US 6,426,648 B1

U.S. Patent Jul. 30, 2002 Sheet 4 of 12 US 6,426,648 B1

400\ ___ 4 pm—m -]

F 5 - — >y
MR THST 404 - 5
Lo Mg e,
E% EF Sy
| P4 X i
B BF D ERG
A3 AF _ X :
B3—{B"| G ' ‘

G — el
o ————
BS BF —— 3 :

) >—+—Y9
AO—A| Ppe ¥ ‘

[_ | |
BB | GF—) >—=Yl0
All : 3 X I
BI0-{B| G =LY
BIIB' | G) OV
ARA T PH Iaadl
B1-{B' | GH — SN
. :) >+YR
Al3—A . | :

Fl AL — 3 .
BI3—B | GH —) >V
Al4 — ¥ i
e o
¢ (p——————————————— K

U.S. Patent Jul. 30, 2002 Sheet 5 of 12 US 6,426,648 B1

Pin

Cin
Gin

U.S. Patent Jul. 30, 2002 Sheet 6 of 12 US 6,426,648 B1

U.S. Patent Jul. 30, 2002 Sheet 7 of 12 US 6,426,648 B1

U.S. Patent Jul. 30, 2002 Sheet 8 of 12 US 6,426,648 B1

Cn —

3 ._—-= s
il —=

G7 s
o =K .
G15 R—1K Cout

FIG. 10A

US 6,426,648 B1

Sheet 9 of 12

Jul. 30, 2002

U.S. Patent

/; o et o e ot o

= O

S aa’s

=
J

= A OIS
3 3

F%MWMHM&M% F%MBAB

§=
-

- ol OOt MM I <t \O\O I OO OCOONCONCO O vt v

...............

<CAQ<CAQ<CA <A <CAA<CAA<CA<CM ABABAMMM

AR SRR 2R S

o,
3

e y— y— yp— yp— yp— pp— yg—

llllllll

<CA<CM-<CAM<CM

FlG. 11

U.S. Patent Jul. 30, 2002 Sheet 10 of 12 US 6,426,648 B1

US 6,426,648 B1

Sheet 11 of 12

Jul. 30, 2002

U.S. Patent

ll
-

1302

FIG. 13

Carry

Cout

rmination

Intermedhate
Dete

r'___—l--_'__—_-
L_____-l-l_'_———_

Cin

U.S. Patent Jul. 30, 2002 Sheet 12 of 12 US 6,426,648 B1

(Carry Enable) 140 — 1400
(Arithmetic On) —) e D Y
AR B
7 aropagei i) ||
(Generate Enable) -‘ 5 ‘

(Propa gate
Local)

(Generate
Local)

US 6,426,648 Bl

1

CARRY LOOKAHEAD FOR
PROGRAMMABLE LOGIC ARRAY

This application claims priority Provisional application
Ser. No. 60/174,004, filed Dec. 30, 1999.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present i1nvention relates to programmable logic
arrays, and 1n particular, to structures and techniques for
Improving carry propagation in programmable logic arrays.

2. Description of the Related Art

Techniques for implementing carry propagation in com-
mercially prevalent programmable logic devices (PLDs) or
arrays (PLAs) aim at fast carry propagation. FIG. 1 illus-
trates a configurable logic block (CLB) of a conventional
PLD or PLA made by Xilinx, Inc. This CLB is described 1n
more detail in U.S. Pat. No. 5,546,018. As shown, the Xilinx
CLB includes four four-input function generator F, G, H, J
cach comprising lookup tables for implementing one bit of
an arithmetic function of two variables which are received
on the mput terminals 0, 1, 2, 3 of each function generator.
Associated with each function generator 1s a fast carry mux
C1, C2, C3, C4. The purpose of these muxes 1s to propagate
carry based on the logical input CIN and the result of the
arithmetic function between 1nput variables A and B so as to
provide a cumulative carry output signal COUT.

In the conventional PLD described above, for multibit
operations of two variables greater than four bits, the carry
output signal of one CLB 1s provided to the carry input of a
higher-order CLLB 1n a chain of CLBs depending on the
number of bits desired. It should be noted that in the CLLB
illustrated 1 FIG. 1, a sum output stage i1s provided in

another CLB for finalizing the sum values using the outputs
of the CLB in FIG. 1.

FIG. 2 illustrates a logic array block (LAB) of a conven-
tional PLD made by Altera, Inc. This LAB 1s described 1n
more detail in U.S. Pat. No. 5,761,099. In this device, each
logic element 12 (typically eight or ten per LAB) can be
configured to perform one bit of an arithmetic operation of
two 1nput variables. Each logic element 12 further includes
logic 13 for providing a carry output signal based on a carry
input and the arithmetic operation of two variables. As
shown 1n FIG. 2, carry 1s propagated between logic elements
along lines 70a 1n ripple fashion as in the Xilinx device.
Lines 70b provide for multibit operations of two variables
orcater than the number of bits capable of being processed
by a single LAB. In such circumstances, the “direct carry
out” signal of one LAB 1s provided to the “direct carry mn”
signal of a higher-order LAB 1n a chain of LABs depending
on the number of bits desired.

The conventional ripple carry propagation technique
described above 1s slow because the highest order output 1s
not valid until a carry has rippled through all the lower order
bits.

Carry lookahead techmiques offer the promise of much
faster carry propagation than can be achieved with ripple
carry techniques. Such techniques have been 1implemented
in digital arithmetic structures for decades (e.g. the 74182
look-ahead carry generator). See, for example, Joseph D.
Greenfield, Practical Digital Design Using ICs, §14.11
(1983). Some theoretical discussions have addressed con-
siderations for extending such techniques to programmable
gate arrays. See, for example, Charle R. Rupp, “Fast Algo-
rithms for Regular Functions 1n Field Programmable Gate

10

15

20

25

30

35

40

45

50

55

60

65

2

Arrays,” Proceedings of the Third Annual PLD Conference
(1993). However, prior art structures for performing carry
lookahead features require a prohibitive number of elements
and complex interconnections therebetween that are not
suitable for implementation in a PLD or PLA. Accordingly,
carry lookahead techniques have not been seriously consid-
ered for use in conventional programmable logic devices.

What 1s needed 1n the art, therefore, 1s an 1improved carry
propagation technique that is suitable for implementation in
a programmable logic device. The present invention fulfills
this need, among others.

SUMMARY OF THE INVENTION

Accordingly, it 1s an object of the present invention to
overcome the above-described problems 1n the prior art.

Another object of the invention 1s to improve the speed of
operations 1n a programmable logic device.

Another object of the invention 1s to improve the speed of
operations that require carry propagation in a programmable
logic device.

Another object of the invention i1s to provide improved
performance 1n a programmable logic device with minimal
additional structure.

Another object of the mnvention 1s to minimize the number
of interconnections required to implement carry propagation
techniques 1n a programmable logic device.

Another object of the invention 1s to provide a carry
lookahead technique that is suitable for implementation 1n a
programmable logic device.

These and other objects are fulfilled by the present
invention, in which carry lookahead techniques are adapted
for use 1 a programmable logic device. In one example of
the invention, a carry result 1s computed for a block of
function cells, each function cell representing one bit 1n a
multibit operation that uses carry. This carry result 1s com-
bined with the carry input from a function cell block
representing less significant bits 1n the operation and a carry
output 1s provided to a function cell block representing more
significant bits 1n the operation. The received carry can also
be supplied to adjust provisional carry results for each bit
assoclated with the function cells 1n the block. Accordingly,
the received carry input need not be rippled through all the
function cells 1n the block, thus reducing carry propagation
delays. This technique 1s suitable for use 1n programmable
logic devices because only minimal additional logic need be
included in each block of function cells (such as the CLBs
and LABs in the prior art), and because few, in any, new
interconnections between blocks need be introduced.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects and advantages of the present
invention will become apparent to those skilled in the art
after considering the following detailed specification,
together with the accompanying drawings wherein:

FIG. 1 illustrates the carry technique used in a CLLB 1n a
conventional programmable logic device made by Xilinx,
Inc.;

FIG. 2 illustrates the carry technique used in a LAB 1n a
conventional programmable logic device made by Altera,
Inc.;

FIG. 3A 15 a block diagram illustrating an arithmetic logic
unit (ALU) in accordance with the present invention;

FIG. 3B 1s a logic symbol of a function cell such as that
included 1n the ALU of FIG. 3A;

US 6,426,648 Bl

3

FIG. 4 illustrates an ALU 1n accordance with an example
of the present invention implementing a ripple carry scheme;

FIG. 5 illustrates a K block such as that can be used to
implement the carry equations of the present invention;

FIG. 6 illustrates an ALU 1n accordance with another
example of the present mmvention implementing a minimum
delay balanced tree carry scheme;

FIG. 7 illustrates a PK block such as that can be used to
implement the carry equations of the present invention;

FIG. 8 1llustrates an ALU 1n accordance with another
example of the present mvention implementing a pyramid
carry scheme;

FIGS. 9A and 9B 1llustrate a CLLA block that results from
a decomposition of part of the structure in FIG. 8;

FIGS. 10A and 10B illustrate a CLU block that results
from a decomposition of remaining parts of the structure in
FIG. 8;

FIG. 11 illustrates how the blocks identified in FIGS. 9
and 10 can be interconnected to 1implement the ALU 1llus-
trated 1in FIG. §;

FIG. 12 1llustrates an ALU 1n accordance with a preferred
example of the present invention implementing a carry
lookahead scheme that 1s readily adaptable to programmable
logic devices;

FIG. 13 illustrates how a CLB 1n a conventional program-
mable logic device can be modified to implement the carry
lookahead scheme of the present invention;

FIG. 14 1llustrates a function cell such as that disclosed in
co-pending U.S. patent application No. 09/475,400 that 1s
modified to 1implement the carry lookahead scheme of the
present mvention; and

FIG. 15 1llustrates an arithmetic mode controller such as
that disclosed in co-pending U.S. patent application No.
09/4°75,400 that 1s modified to implement the carry looka-
head scheme of the present 1invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Although the following discussion will focus on multi-bit
addition operations, those of skill 1n the art will understand
that the discussion can be easily extended to apply to
subtractors, incrementers, decrementers, counters, and
acumulators, 1n addition to other operations that use carry
logic.

In arithmetic logic, 1t 1s recognized that the sum Y of two

single-bit mputs A and B can be expressed by the logical
operation:

Y=A(XOR)B (Eq. 1)

The present invention builds upon carry lookahead theory

in which it 1s recognized that the carry output bit C_ of an

arithmetic operation between single-bit mnputs A and B and

a single-bit carry input C. can be expressed as:
C. =(A(AND)B)OR(C, (AND)(A(XOR)B))

el

(Eq. 2)

From this equation, a single-bit propagate (P) and gener-
ate (G) signal are defined in the conventional manner as:

P=A(XOR)B (Eq. 3)

G=A(AND)B (Eq. 4)

10

15

20

25

30

35

40

45

50

55

60

65

4
Accordingly, Eq. 1 can be simplified as:

Cbu=G(OR)(C,,(AND)P) (Eq. 5)

The above carry lookahead equations can be broken down
and re-expressed 1n many useful ways. Of particular note
with respect to the present invention, 1s that, for a particular
bit j in a multibit operation between multibit input words A
and B, the carry C; and sum Y, can be expressed in terms ot
same bit 1 and less-significant bit -1 values of P and G as:

C=(C;1(AND)P;_,)(OR)G;_, (Eq. 6)

and

Y=C,(XOR)P, (Eq. 7)

FIG. 3A 1s a block diagram illustrating an example
implementation of the present invention. As shown 1n FIG.
3A, a multi-bit operator 300 1n a programmable logic array
includes a plurality of function cells 302-0 to 302-n, each
conilgured to perform a single-bit operation based on data
inputs A and B and function input F, a carry lookahead stage
304 that receives the propagate (P) and generate (G) outputs
of each function cell 302, as well as a carry input value C, |
and provides preliminary sum outputs P' and G' correspond-
ing to each function cell, as well as a carry output value
Cout, and a sum output stage 306 that receives the P' and G
preliminary sum outputs corresponding to each function cell
and generates final outputs Y based thereon.

For the purposes of the present mnvention, function cells
302 are preferably those described 1n U.S. patent application
No. 09/475,400, filed Dec. 30, 1999, commonly owned by
the assignee of the present invention. However, 1t should be
noted that cells 302 can be conventional programmable
clements in programmable logic arrays such as those made
by Xilinx, Inc. and Altera, Inc. After being taught by the
illustrative examples provided 1n the present speciiication,
those of skill 1in the art will understand how such conven-
tional cells and/or groups of such cells such as CLBs or
[LLABs illustrated in FIGS. 1 and 2, may need to be modified
to provide appropriate P and G values as outputs or inter-
mediate values rather than, or 1in addition to, their existing
sum and carry outputs.

In the following figures, function cell 302 will be repre-
sented by the logic symbol shown in FIG. 3B. In general,
function cell 302 performs a one-bit operation on received
one-bit inputs A and B based on the received function input
F, and provides output signals based on those inputs. In the
example shown 1n the following figures, the outputs are
propagate and generate signals, although this example 1s
illustrative and not limiting.

Various examples of carry lookahead stage 304 and sum
output stage 306 1n accordance with the principles of the
present invention will now be described. Although shown
separately for illustration and for clarity of the present
invention, 1t will become apparent to those of skill in the art
that in practice, various components of stages 304 and 306
may actually be included within or grouped with function
cells 302, and vice versa. The actual collection and division
of components between cells 302 and stages 304 and 306 1s
considered to be a design choice, although preferable
examples will be illustrated below for a more complete
understanding of different aspects of the present invention.

FIG. 4 1llustrates a first example of a 16-bit ALU circuit
400 1n accordance with the invention. As can be seen, 1n this
example of structure 300, carry lookahead stage 304 1mple-
ments a ripple carry technique wherein K blocks 402 imple-
ment Eq. 6 to derive the carry C; for each bit j from the 1nitial

US 6,426,648 Bl

S

P;_; and G,_; signals from the previous bit j—1 and the carry
signal C,_; from bit j-1. As can be further seen, sum output
stage 306 imncludes XOR gates 404 which respectively form
the sum Y, from the carry signal and propagate signal for
cach bit j 1n accordance with Eq. 7. The output of K block
402 for each bit 1s thus used both to provide the carry for the
bit for use 1 deriving the sum for that bit, and for input to
deriving the carry for the next significant bit in ripple
fashion.

This 1s the least expensive implementation of structure
300 in terms of number of components required, but results
In a worst case propagation time which 1s directly propor-
tional to the number of bits of the operands. This can be seen
in the figure by tracing a change 1n the value of A0 signal to
the final carry output signal C_ . In this path, the change 1n
the extreme case must traverse each of the sixteen K blocks.
Although this carry chain structure suffers from the same
carry propagation delays common in the prior art, it 1s
relatively simple to implement in PLDs or PLAs with only
minor modification of commercial FPGA products, and so 1s
presented herein for illustration.

FIG. 5 1llustrates an example of K block 402 that can be
used 1n the structure 400. As shown 1 FIG. 5, K block 402
includes AND gate 502 forming the logical AND result of
received propagate and carry signals, and OR gate 504
forming the logical OR result of the output of AND gate 502
and the received generate signal. As explained above, K
block 402 can be readily adapted for use 1n implementing
carry lookahead Eq. 6.

A “mmimum delay balanced tree” structure 600 for
implementing a 16-bit AL U 1n accordance with the present
mvention 1s illustrated in FIG. 6. As can be seen, 1n this
alternative implementation of structure 300, carry lookahead
stage 304 includes thirteen K blocks 402 and twenty PK
blocks 602 that are arranged and interconnected for simul-
taneously propagating carry and forming P and G outputs for
sum output stage 304, which includes XOR gates 404 for
cach bit as in the previous example.

The carry lookahead stage 304 in structure 600 1mple-
ments a “fan-out” technique whereby carry results from a
k-th stage are fanned out to the carry determination blocks
for the next 2* significant bits. For example, as shown in
FIG. 6, the carry result from the K block 1n stage 604-1 that
determines carry for bit 1 1s fed to the K block and PK block
in stage 604-2 for determining the carry for bits 2 and 3.
Likewise, the carry result from the PK block in stage 604-2
1s fed to the three K blocks and one PK block in stage 604-3
that determine the carry for bits 4, 5, 6 and 7.

This technique results from recalling from Eq. 6 that, in
general:

C=(C,_,(AND)P,_)(OR)G,_, (Eq. 6)
Accordingly, 1t immediately follows that:

C; 1=(C; 2(AND)P; ,)(OR)G; (Eq. 8)
and by substitution of Eq. 8 back into Eq. 6:

C=((C; 5(AND)P; ,)(OR)G; ,)(AND)P; ;)(OR)G, , (Eq. 9)

It should be apparent that this substitution process can be
performed 1teratively to determine carry for any bit j based
on any known carry from a prior bit j—x and all intervening
X P and G values, that 1s:

Cj=f(Cj_x: P_f—]_ . n o P G

j_-:'-':: j_l TR

Gy (Eq. 10)

It should be further apparent that logical combinations of
input values A and B can be substituted for equivalent values
of P and G and C in various ways to arrive at the same final
carry value.

10

15

20

25

30

35

40

45

50

55

60

65

6

An 1mportant feature of Egs. 9 and 10, and uniquely
applied 1n the present 1invention, 1s that the carry for each
intervening bit between C; and C;_ need not be expressly
calculated before determining the desired carry value.

FIG. 7 illustrates an example of PK block 602 having an
OR gate 702 forming the logical OR result of received
propagate and carry/generate signals, AND gate 704 form-
ing the logical AND result of the propagate signals from the
current and previous stages, and AND gate 706 forming the
logical AND result of the output of OR gate 702 and the
received generate signal. As seen 1n FIG. 7, PK block 602,
alone or cascaded with other PK blocks and/or K blocks 402
depending on the number of mtervening propagate and
ogenerate values required, 1s useful for implementing Egs. 9
and 10.

Although this type of structure achieves minimal carry
propagation delay, the cost to implement it 1n terms of
number of components required 1s prohibitive for most
ogeneral purpose programmable logic arrays. Furthermore,
the 1rregular nature of the interconnections deteriorates the
performance and makes it difficult to define a regular pattern
for tiling the programmable structure.

A variation of the balanced tree principle 1s called the
“pyramid structure,” a 16-bit ALU example implementation
of which 1s illustrated in FIG. 8. As shown 1n FIG. 8, carry
lookahead stage 304 of structure 800 includes fifteen PK
blocks 602 and sixteen K blocks 402 that are arranged for
simultaneously propagating carry and forming P and G
outputs for sum output stage 304, which includes XOR gates
404 for each bit as 1n the previous examples.

This 1s a variation of the fan-out technique described
above. However, rather than fanning out intermediate carry
results as much as possible, only the intermediate carry
result of one set of four bits 1s supplied to the next higher
order set of four bits. Intermediate PK blocks are then used
to collect propagate and generate signals from each set of
four bits and supply them to the next set of four bats.

The worst case carry propagation delay of this circuit 1s
about twice that of the previous case. Although highly
irregular, this structure has a very useful decomposition
property by noting that all of the blocks labeled 802 1n the
circuit are the same. Similarly, all of the blocks labeled 804
are the same. By combining each logic block of type 802 on
the left with a corresponding logic block of type 804 on the
right, a simpler form 1s achieved that allows the construction
of a more complex circuit. This stmpler logic circuit 900 and
its corresponding block diagram symbol are shown 1n FIGS.
9A and 9B.

The remaining circuitry of the original 16-bit structure
(the logic circuit box labeled 806 in the figure) is then
collected and forms the Carry Lookahead Unit (CLU) 1000
as shown 1n FIG. 10A, and 1ts corresponding block diagram
symbol 1s shown 1 FIG. 10B. FIG. 11 then shows the
construction of 16-bit ALU 800 using these 4-bit blocks.
This 1s essentially the same interconnection of signals used
to construct a 16-bit ALU using the 74181 and *74182
circuits. Larger ALUs can then be constructed by forming
larger trees using these building blocks.

Although this form of carry propagation 1s popular in the
design of computers due to its relatively low cost and
significant performance improvement compared to the
ripple structure, 1t 1s undesirable for the construction of a
regular programmable logic array since the wiring and
placement of the K and PK blocks 1s highly 1rregular.

FIG. 12 1llustrates yet another example implementation of
a 16-bit ALU structure 1200 1n accordance with the present
invention. As shown 1n FIG. 12, carry lookahead stage 304

US 6,426,648 Bl

7

of structure 1200 includes twelve PK blocks 602 and sixteen
K blocks 402 that are connected and arranged for simulta-
neously propagating carry and forming sum and carry pre-
cedent outputs for sum output stage 304, which includes
XOR gates 404 for forming the sum output from the
propagate and carry signals for each bit as in the previous
examples.

As 1n the immediately preceding example implementation
of structure 300, due to the similarity of arrangement and
interconnections, useful decomposition properties are appar-

ent. For example, the 16-bit ALU structure can be broken up
into 1dentical 4-bit ALLU blocks 1202, four identical incre-

ment adjustment blocks 1204, and an intermediate carry
block 1206. In this example shown 1n FIG. 12, each ALU

block 1202 and increment adjustment block processes four
bits for illustration, but 1t should be noted that the principles

of the 1nvention can be extended to other numbers of bits.
For example, if each ALU block 1202 processed eight bits,

the chain of PK blocks would be extended to a length of
seven rather than three, the intermediate carry block 1206
would only include two K blocks, and each increment
adjustment block 1204 would include seven K blocks rather
than three. It should be apparent that a multiplexer could be
provided between chains of K blocks and increment adjust-
ment block 1204 to allow for dynamic selection between
different ALU block sizes. It should be further apparent that
cach ALU block need not process the same number of bits.

As shown 1n FIG. 12, for each 4-bit ALU block 1202,
cumulative propagate and generate signals are formed by a
short ripple pattern using PK blocks 602. The outputs of the
final PK block are fed to intermediate carry block 1206 and
combined with the carry output from the previous 4-bit stage
to form an mtermediate carry out signal using a single K
type logic block 402 (i.e. an intermediate carry calculator).
The K block in intermediate carry block 1206 and the
preceding three PK blocks thus implement a four-bit 1tera-
tion of Eg. 9 to generate a true intermediate carry output for
each four bits (1.e. C,, Cg, C,, and C_,)).

In addition to propagating them forward to the next K
block 1n mntermediate carry block 1206 for use in determin-
ing the next intermediate four-bit carry result, the K blocks
in 1ntermediate carry block 1206 distribute the true inter-
mediate carry out signals to the increment adjustment block
1204 for use 1n determining the sum output associated with
cach bit 1n the next most significant block as will be
explained below.

As shown 1n FIG. 12, for the least significant bit 1n
increment adjustment block 1204, output Y can be simply
determined from the XOR operation between the received
carry mput and the P output from the function cell 302
associated with that bit in ALU block 1202 1n accordance
with Eq. 7. For the next most significant bit, the associated
K block recerves the P and G outputs from the function cell
302 associated with the next least significant bit in ALU
block 1202, and the received carry input, and computes the
carry for that bit in accordance with Eq. 6 for logical XOR
combination with the P signal for that bit in accordance with
Eq. 7. For more significant bits, associated K blocks receive
the carry input and outputs from associated PK blocks 1n
ALU block 1202, and thus they together implement 1tera-
tions of Eq. 9 to determine carry for XOR combination with
the P signal for the bit. In essence, the carry for each bit 1s
provisionally computed 1n ALU block 1202 based on an
assumption that the input carry is zero (because the output
propagate and generate values from block 1202 are not a
function of the carry input to the block), and this assumption
1s corrected 1n increment adjustment block 1204 for each bat
based on the actual received carry.

10

15

20

25

30

35

40

45

50

55

60

65

3

It should be noted that, unlike the previous examples, the
highly regular form of this carry chain circuit is very suitable
to the construction of high speed programmable logic array
devices.

For example, 1t 1s only necessary to add structure to
compute and propagate the intermediate carries (as per-
formed by K blocks in intermediate carry block 1206) to
cach CLB or LAB of the devices shown 1n FIGS. 1 and 2,
respectively. Appropriate configuration switches that specily
whether the CLB or LAB 1s the starting point for an ALU

chain may also need to be added as well.

It should be further noted that this carry propagation can
yield dramatic improvements 1n computation speed. That 1s,
rather than requiring the carry input for each CLB or LAB
to ripple through each logic element 1 a chain of CLBs or
[LLABs forming the multibit operator, a received carry input
for the CLLB or LAB can just be combined with the carry for
that CLB or LAB and propagated to the next CLB or LAB

in the chain. Moreover, the propagation of carry between
CLBs or LABs can use existing interconnections.

FIG. 13 1llustrates a CLLB 1300 that has been modified 1n
accordance with this example of the invention. As shown 1n
FIG. 13, the carry mux C1 of the lowest order bit of CLB
1300 receives a zero mput rather than the carry input of the
previous CLB, and the resultant carry for the CLB 1s
combined with the received carry input 1n intermediate carry
determination block 1302. Carry determination block 1302
includes logic for providing the true carry COUT based on
the received carry mput CIN and the resultant carry for the
CLB. This true carry 1s also provided to the sum output stage
(typically an adjacent CLB) for use in determining the sum
output for each bit, thus correcting the assumption that the
received carry 1s zero 1f necessary. The actual logic included
in carry determination block 1302 (and in the adjacent CLB
or additional logic for implementing the sum output stage)
1s considered an implementation detail that becomes appar-
ent to those skilled 1n the art after being taught by the present
specification. Moreover, 1t should be apparent that further
conflguration switches may need to be added to implement
this modified carry propagation scheme. However, the inter-
connections for propagating carry signals CIN and COUT
between CLBs can remain unchanged.

Although the present invention 1s useful 1n conventionally
available programmable logic devices, even further advan-
tages are obtained when the imvenfive carry propagation
techniques are implemented using the programmable logic
array structures disclosed 1 U.S. patent application No.
09/4775,400, filed Dec. 30, 1999, commonly owned by the
assignee of the present invention, the contents of which are
incorporated herein by reference (hereinafter referred to “the
MSA application”™).

In particular, FIG. 14 1llustrates a function cell 1400 such
as that 1llustrated in FIG. 9 of the MSA application that has
been modified 1n accordance with the present invention. As
shown 1n FIG. 14, 1n addition to the structure associated with
function cell 302, cell 1400 includes elements of both ALU
block 1202 and increment adjustment block 1204 associated
with a single bit operation. In particular, logic 1402 (as does
the K block in increment adjustment block 1204) computes
the carry for the bit based on received carry signals and
(perhaps) propagate and generate signals from a less sig-
nificant bit. Likewise, logic 1404 implements the function-
ality associated with PK blocks 1n ALU block 1202 for
providing a ripple combination of the local propagate and
generate signals with (perhaps) propagate and generate
signals from a less significant bit.

For implementing the additional K block that 1s needed to
compute the intermediate carries as in intermediate carry

US 6,426,648 Bl

9

block 1206, FIG. 15 1llustrates a modified arithmetic mode
controller 1500 based on that 1llustrated i FIG. 20 of the
MSA application that 1s included 1n an ALU controller for
cach ALU block, as described 1n that application. In effect,
the functionality of mtermediate carry block 1206 1s split
between the ALU controllers for each ALU block of the
MSA application. Arithmetic mode controller 1500 can be
used 1n conjunction with a plurality of function cells such as
1400 for implementing an ALU such as that illustrated 1n
FIG. 12. The arrangement and interconnection of cells 1400
and controller 1500 will be understood with reference to the
MSA application and the present specification.

As shown 1n FIG. 15, logic 1506 eifectively performs the
function of a K block 1n intermediate carry block 1206. The
signal K 1s the received carry from a less significant stage 1n
the carry chain, which 1s combined with the P and G outputs
received from the most significant function cell 1400. The
KE signal output from multiplexer 1502 based on the
computed carry and configuration bits set in coniiguration
memory 1s passed onto the ALU controller of the next ALU
block associated with the next most significant bits. The PE
and GE signals are then used to correct provisional carries
for computing the sum Y of each function cell 1400 for the
bits associated with this ALU block and ALU controller.

FIG. 15 also illustrates how the number of bits per PK
chain can be dynamically adjusted between four and eight
bits, for example. In particular, multiplexer 1504 and signal
KM can determine whether or not to continue a PK chain.
If the cham 1s not continued, the number of bits 1s four,
otherwise the number of bits i1s eight.

Table 1 summarizes the comparison of the different types
of the carry chain structures for ALU chains having N-bit
inputs. For each structure type, the “I”” column indicates the
number of time units of delay for the worst case traversal of
the K and PK blocks of the structure (the total number of
which are mncluded 1n the structure being represented under
the column labeled “PK™). As can be seen, the basic struc-
ture (herein referred to as “MSA”) based on 4-bit ALU
blocks 1s equivalent 1n cost and performance to a pyramid
Carry Lookahead structure for word sizes up to 24-bits. For
larger values of N, additional programming may be added to
the MSA to improve the performance for very large arith-
metic processors. This 1s shown in the column labeled

TABLE 1

Carry Lookahead Structure Comparison

Ripple Min Tree Pyramid MSA4
(FIG. 4) (FIG. 6) (FIG. 8) (FIG. 12) MSA n
N T PK T PK T PK T PK T PK
4 4 4 3 5 3 7 4 7 4 7
8 8 8 4 13 5 15 5 14 5 14
12 12 12 5 23 7 22 6 21 6 21
16 16 16 5 33 7 30 7 28 7 28
24 24 24 6 61 9 45 9 42 9 42
32 32 32 6 81 9 63 11 56 11 56
48 48 48 7 145 11 92 15 84 13 96
64 64 64 7 193 11 124 19 112 15 128
“MSAn”.

In the general case, the worst case carry propagation time
for an MSA style structure 1s given by the equation:

T=(M-D)T+N/M)T, (Eq. 11)

Where T, 1s the propagation delay for the P and G signal in
each bit slice (function cell), T, 1s the propagation delay of
the intermediate carry signal from the ALU controller (one

10

15

20

25

30

35

40

45

50

55

60

65

10

quad cell time), N 1s the total number of bits and M is the
number of bits in an ALU block.

The optimal value of M to minimize the total time 1s given
by the equation:

NI —
Iy

For this value, the worst case delay time 1s given by the
equation:

M™ =

T*=2VN'TFTq-T; (Eq. 13)

Although the present nvention has been described in
detail with reference to the preferred embodiments thereof,
those skilled 1n the art will appreciate that various substitu-
tions and modifications can be made to the examples
described herein while remaining within the spirit and scope
of the mvention as defined 1n the appended claims.

What 1s claimed 1s:

1. A programmable logic device, comprising;:

a plurality N of function cells, each function cell being
adapted to provide a respective bit result of an N-bit
operation, the N function cells being arranged 1n blocks
of respective sub-pluralities of function cells per block;
and

an mtermediate carry calculator associated with at least
one block, the mntermediate carry calculator calculating
an 1ntermediate carry result for the at least one block
based on a carry input received from another block
associated with less significant bits in the N-bit
operation, and signals corresponding to the bit result of
the function cell associated with the most significant bit
of the at least one block, wherein the intermediate carry
calculator implements an equation of the form

CoumOnt(Pa Gy 1+ Py 1[Gy o+ (P o™ ..

il

(P1*C)D] - .)DD;

. G+ (P G+

wherein the + symbol represents a logical OR operator;

and

the * symbol represents a logical AND operator; and

C_ . 1s the intermediate carry result of the N-bit opera-
tion; and

C. 1s the carry input for the N-bit operation; and

P;1s a propagate output for the j-th function cell of the
N-bit operation; and

G, 1s a generate output for the j-th tunction cell of the
N-bit operation; and

j 1s an integer whose value is from one (1) to N.

2. A programmable logic device according to claim 1,
wherein the signals are a combination of a propagate (P) and
a generate ((G) output from each function cell in the at least
one block.

3. A programmable logic device according to claim 2,
wherein the intermediate carry calculator implements an
equation of the form

C,.~=G(OR)(C, (AND)P),

il

wherein C_ 1s the intermediate carry result, and C, 1s the
received carry input.

4. A programmable logic device according to claim 1,
further comprising a multiplexer that dynamically controls
the number of function cells per block.

5. A programmable logic device according to claim 1,
wherein the intermediate carry calculator 1s operative such

US 6,426,648 Bl

11

that a delay between a change 1n the received carry input and
a change 1n the intermediate carry result 1s substantially a
propagation time of the mtermediate carry calculator.

6. A programmable device according to claim 1, further

comprising an increment adjustment block that adjusts a
provisional carry associated with the bit result of the func-
fion cells 1n accordance with an actual carry input for the
respective blocks in which the function cells are arranged.

7. A programmable device according to claim 2, wherein
cach function cell implements a bit slice of a 74181 type
ALU for generating the P and G outputs based on two single
bit variable mputs and a received function code.

8. A programmable device according to claim 7, wherein
the P and G outputs are combined in ripple fashion to
provide the signals.

9. A method of implementing carry propagation 1n a
programmable logic device, comprising:

identifying N function cells for respectively providing a
bit result of an N-bit operation;

dividing the N function cells into blocks of respective
sub-pluralities of function cells per block;

calculating an intermediate carry result 1n at least one
block based on a carry mput received from another
block associated with less significant bits 1n the N-bit

operation, and signals corresponding to the bit result of

the function cell associated with the most significant bit
of the at least one block, wherein the calculating step
implements an equation of the form

CoumOat(Pa Gy 1+ Py 1[Gy ot (Pyo™ ..

el

(P*C)D] -) DD

. G+ (P G+

wherein the + symbol represents a logical OR operator;

and

the * symbol represents a logical AND operator; and

C_ . 1s the intermediate carry result of the N-bit opera-
tion; and

C. 1s the carry mput for the N-bit operation; and

P; 1s a propagate output for the j-th function cell of the
N-bit operation; and

G, 1s a generate output for the j-th function cell of the
N-bit operation; and

] 1s an integer whose value is from one (1) to N.

10. A method according to claim 9, further comprising

combining a propagate (P) and a generate (G) output from
cach function cell to generate the signals 1n the at least
one block.

11. A method according to claim 10, wherein the calcu-

lating step 1implements an equation of the form

Cou=G(OR)(C,,(AND)P),

wherem C_ = 1s the intermediate carry result, and C, 1s the
received carry input.
12. A method according to claim 9, further comprising:

providing a multiplexer that dynamically controls the
number of function cells per block.
13. A method according to claim 9, wherein the iterme-

diate carry calculation step i1s operative such that a delay
between a change 1n the received carry mput and a change
in the intermediate carry result 1s substantially a propagation
fime assoclated with the intermediate carry calculation step.

14. A method according to claim 9, further comprising;:

adjusting a provisional carry associated with the bit result
of the function cells in accordance with an actual carry

10

15

20

25

30

35

40

45

50

55

60

65

12

input for the respective blocks 1n which the function
cells are arranged.
15. A method according to claim 10, further comprising:

implementing in each function cell a bit slice of a 74181
type ALU for generating the P and G outputs based on
two single bit variable inputs and a received function
code.

16. A method according to claim 15, further comprising:

combining the P and G outputs in ripple fashion to
provide the signals.
17. A programmable logic device, comprising:

a plurality N of function cells, each function cell being
adapted to provide a respective bit result of an N-bit
operation, the N function cells being arranged 1n blocks
of respective sub-pluralities of function cells per block;
and

an 1termediate carry calculator associated with at least
one block, the intermediate carry calculator calculating
an 1ntermediate carry result for the at least one block
based on a carry iput received from another block
associated with less significant bits in the N-bit
operation, and signals corresponding to the bit result of
the function cell associated with the moss significant bit
of the at least one block,

wherein the signals are a combination of a propagate (P)
and a generate (G) output from each function cell in the
at least one block, and

wherein the intermediate carry calculator includes a plu-
rality of K blocks and PK blocks, the K blocks calcu-
lating a single bit carry output based on a received pair
of P and G signals and a carry input, the PK blocks
calculating a combined pair of signals representing P, G
and carry outputs based on received P, G and carry
inputs.

18. A programmable logic device, comprising:

a plurality N of function cells, each function cell being
adapted to provide a respective bit result of an N-bit
operation, the N function cells being arranged 1n blocks

of respective sub-pluralities of function cells per block;
and

an mtermediate carry calculator associated with at least
one block, the mntermediate carry calculator calculating
an 1ntermediate carry result for the at least one block
based on a carry input received from another block
associated with less significant bits in the N-bit
operation, and signals corresponding to the bit result of
the function cell associated with the most significant bit
of the at least one block,

wherein the signals are a combination of a propagate (P)
and a generate (G) output from each function cell in the
at least one block, and

wheremn each function cell implements a bit slice of a
774181 type ALU for generating the P and G outputs
based on two single bit variable mnputs and a received
function code, and

wherein the intermediate carry calculator includes a plu-
rality of K blocks and PK blocks, the K blocks calcu-
lating a single bit carry output based on a received pair
of P and G signals and a carry input, the PK blocks
calculating a combined pair of signals representing P, G
and carry outputs based on received P, G and carry
inputs.

19. A programmable logic device according to claim 18,

wherein the function cells, and certain of the K blocks and
PK blocks are arranged in N/M sub-blocks of cells each for

US 6,426,645 Bl
13 14

providing a M-bit output, M-bit P signal, and an M-bit G arranged together in a CLU to form a final carry output

signal based on a received M-bit input, carry input and the based on a received carry input and the M-bit P and G
received function code. signals.

20. A programmable logic device according to claim 19,
wherein certain other of the K blocks and PK blocks are I

	Front Page
	Drawings
	Specification
	Claims

