(12) United States Patent

Lavallee

US006421821B1
(10) Patent No.: US 6,421,821 Bl
45) Date of Patent: Jul. 16, 2002

(54) FLOW CHART-BASED PROGRAMMING
METHOD AND SYSTEM FOR OBJECT-
ORIENTED LANGUAGES
(76) Inventor: Ronald J. Lavallee, 17201 Lakeview
Cir., Northville, MD (US) 48167

(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 09/265,912

(22) Filed: Mar. 10, 1999

(51) Int. CL7 ..o GO6F 9/45

(52) US.Cl e 717/109

(58) Field of Search 717/1, 109; 345/349

(56) References Cited

U.S. PATENT DOCUMENTS
4,852,047 A * 7/1989 Lavallee et al. 717/4
5,210,837 A * 5/1993 Wiecek ..ocooeviviiiininnn.. 717/5
5386568 A * 1/1995 Wold et al. v...ooovoevvn.. 717/10
5,485,600 A * 1/1996 Joseph et al. 345/473
5,625,823 A * 4/1997 Debenedictis et al. 717/139
5,659,751 A * §/1997 Heninger 709/305
5,774,122 A * 6/1998 Kojima et al. 345/355
5,860,004 A * 1/1999 Fowlow et al. 717/109
5,889,994 A * 3/1999 Brown et al. 717/4
5,966,532 A * 10/1999 McDonald et al. 717/1
6,038,393 A * 3/2000 Iyengar et al. 717/1
6,167,563 A * 12/2000 Fontana et al. 717/1
6,173,438 B1 * 1/2001 Kodosky et al. 717/1
6,189,138 B1 * 2/2001 Fowlow et al. 717/1
6,199,195 B1 * 3/2001 Goodwin et al. 717/1
6,216,149 Bl * 4/2001 Conner et al. 709/100
6,226,787 Bl * 5/2001 Serraetal.c.coeeeneee. 717/4
6,230,309 B1 * 5/2001 Turner et al. 717/1
6,233,733 B1 * 5/2001 Ghosh ..., 71777
6,243,092 Bl * 6/2001 Okita et al. .oovvevren....... 345/349
6,272,672 Bl * 82001 CONWAY ..voveveeereerereenn, 717/1
2001/0018648 Al * §8/2001 Turner et al. 703/22

OTHER PUBLICATTONS

Gil et al., Three Dimensional Software Modeling, 1998,
IEEE, pp. 105-114.*

Roman et al., Program Visualization . . ., 1992, ACM, pp.
412-420.*

* cited by examiner

Primary Examiner—Gregory Morse
Assistant Examiner—John Q. Chavis

(74) Attorney, Agent, or Firm—Robert K. Tendler
(57) ABSTRACT

A visual programming aid for object-oriented programming
provides high level visualization for domain experts of the
entire object-oriented program to permit understanding of
the program on a macro level and to permit the domain
expert to participate in the programming. In one
embodiment, this 1s accomplished by visually arranging
objects 1n flow charts, each object having a block number.
The entire flow chart system represents the tlow of events,
not the flow of time. This permits concurrent execution of
objects 1f the events permit. The objects are characterized as
either action blocks or decision blocks, or both. In one
embodiment action blocks are denoted as three dimensional
rectangles, and decision blocks as three dimensional dia-
monds. Whether an object 1s an action or decision type 1s
determined by object characterization which is the process
of type casting the function of an object at 1ts point of use
on the tflow chart. Note that decision objects are used to
define the flow of groups of objects which do not have tlow
by themselves. In one embodiment, all objects execute
independent of one another until such time as a decision
object requires mformation from another object, with the
result being that object execution 1s not stopped to get the
results of another object. The flow chart visual programming
aid represents flow charts in three dimensions, in one
embodiment, with the third dimension permitting showing
spinning another thread at a flow juncture. Each object block
1s provided 1n one embodiment with a snap shot tab used to
call up information about the object 1n video, audio, pictorial
or text form to provide the domain expert with the ability to
further understand the object and provide input. An algo-
rithm 1s presented for flow chart execution which uses the
flow chart block numbers and 1s the same for all flow charts.

2 Claims, 11 Drawing Sheets

FLOW CHART DECISION CLASS/0BJECT

STEREOTYPE .
HANDLE, 20 /)
RS N
A
] - PERSON

EXECUTION
ENABLER

70 |/ N\
"ATTRIBUTES” < -

"METHODS"

"MESSAGES'

T T T TSTOMACH STATUS

f———_— — 1=

JiML : STOMACH

“COMPONENTS”

QPTIONAL DECISION M
WITH MEMORY, 74
YES

.

DETAIL VIEW

US 6,421,821 Bl

Sheet 1 of 11

Jul. 16, 2002

U.S. Patent

16
18

2
7
MOUSE

COMPUTER

U.S. Patent Jul. 16, 2002 Sheet 2 of 11 US 6,421,821 Bl

15

OBJECT

17
‘ / CHARACTERIZATION _ y

NO

I YES

~ ACTION DECISION

U.S. Patent

Jul. 16, 2002 Sheet 3 of 11

FLOW CHART CLASS/OBJECT

STEREOTYPE HANDLE, 20 l

1 -

JIM : PERSON C

OBJECT
NAME, 22

ATTRIBUTES, 24 L~ 5 ¢ _ 25

*HEIGHT = 5
METHODS. 26 | ' ‘
METHOD TYPE 1CON JUMP () ¢HUNGRY {)
PROCESS / DECISION, 28 | ~=SLEEP {}
RETRACT ~32 L
EXTEND~_ 34
MESSAGES, 30 I~ CLOSE EYES——34
| <> HEAD ~—42
COMPONENTS > FEET-—44

{AGGREGATIONW &> LEGS~— 46

|

* VISIBILITY
MAY BE TURNED OFF
+ PUBLIC
PROTECTED
v
WATE DETAIL VIEW

Fig. 2

US 6,421,821 Bl

_EXECUTION ENABLER
337 {(DYNAMIC FC'S ONLY]

18

e

|
CARDINALITY

| MAN : LEGS® /
MAN : LEGS

MAN : HEAD
OBJECTS RECEIVING
MESSAGE

U.S. Patent Jul. 16, 2002 Sheet 4 of 11 US 6,421,821 Bl

(LOW CHART CLASS / OBJECT
1 -
]
~ JIM : PERSON ‘ 22
60
18
, |
EXERCISE MAN : LEGS
BEFORE GOING MAN : HEAD
TO BED

-
T

MACRO VIEW

Fig. 3

U.S. Patent Jul. 16, 2002 Sheet 5 of 11 US 6,421,821 Bl

FLOW CHART DECISION CLASS/OBJECT

i N

T io
EXECUTION
ENABLER
STEREOTYPE | 34
HANDLE, 20 | |
JIM
- PERSON
70 |] - 18
“ATTRIBUTES®
NO
"METHODS"
B - "MESSAGES”
STOMACH STATUS ‘
JIM : STOMACH
"COMPONENTS”
OPTIONAL DECISION M
WITH MEMORY, /74
YES
DETAIL VIEW

Fig. 4

U.S. Patent Jul. 16, 2002 Sheet 6 of 11 US 6,421,821 Bl

FLOW CHART DECISION CLASS/OBJECT

34

20

JIM
- PERSON

NO

1S
JIM REALLY REALLY
HUNGRY

72

JIM : STOMACH

YES

MACRO VIEW

Fig. 5

U.S. Patent Jul. 16, 2002 Sheet 7 of 11 US 6,421,821 Bl

80

CREATE
A NEW AUTO

NEW : MARKETING

82
I S
NEW : PRODUCT
l NEW : MANUFACTURING
__ SPECS |
| FOCUS GROUP 96
SALES CHANNELS

5
= f

NEW:GUIrIT'j’_
— Q0
| ulE o I
NEW : MANUFACTUTING |
—— K
: 86
N=isiie '
Q2
e 99 / NEW 6
‘MANAGMENT -

IS DECISION TO
BUILD READY

NO NEW : FINANCIAL

MONEY

i RELEASE

Fig. 6

U.S. Patent Jul. 16, 2002 Sheet 8 of 11 US 6,421,821 Bl

102 T T
A
l"START“ NAME : CLASS

FAULT -
NO

NAME : CLASS NAME : CLASS

YES
< ___D

'NAME : CLASS

Fig. 7

U.S. Patent Jul. 16, 2002 Sheet 9 of 11 US 6,421,821 Bl

102

NO

YES

Fig. 8

U.S. Patent Jul. 16, 2002 Sheet 10 of 11 US 6,421,821 Bl

EXECUTION BETWEEN FLOWCHARTS

e e —————————————

120 122 124
A N
7 7

\ N+1
S

EXECUTION DOWN THE FLOW CHART
\m

(N+1)+1

EXECUTION INTO
EACH THREE-DIMENSIONAL

OBJECT

ORTHOGONAL FLOW CHART EXECUTION

Fig. 9

U.S. Patent Jul. 16, 2002 Sheet 11 of 11 US 6,421,821 Bl

150

>N

OP 30 : MANUFACTURER

NO

START
MACHINE

INPUT 100
- YES

154

PART
XYZ
SELECTED

NO

INPUT-3

, 158
156 — 2 =’ 5
XYZ - ASSEMBLE ' OLTHER : ASSEMBLE

162

OTHER
QUALITY

ALL CHECKS
COMPLETE

XYZ : ASSEMBLE

- TEST STAND

US 6,421,521 B1

1

FLOW CHARIT-BASED PROGRAMMING
METHOD AND SYSTEM FOR OBJECT-
ORIENTED LANGUAGLES

CROSS REFERENCE TO RELATED
APPLICATTONS

Not applicable.

FIELD OF INVENTION

This invention relates to programming methods and pro-
cedures and more particularly to a system which aids in the
creation or writing of an object-oriented program.

BACKGROUND OF THE INVENTION

As 1s common practice, software engineers utilize one of
two approaches for developing computer software. The first
approach 1s called a functional decomposition approach,
sometimes called a procedural approach, and an object-
oriented approach. The end result of the use of either of these
two approaches 1s the same 1n that a piece of hardware or
software 1s created to solve a particular problem, usually
referred to as a domain problem.

The functional decomposition or procedural approach
first breaks down the domain problem into functions. These
functions are further decomposed i1n search of common
software routines so that the solution may be efliciently
implemented in software. The first functional approach to
programming was mnvented by John Von Neumann 1n 1947
when flow charts were used to describe computer program-
ming algorithms. Later in the 1950s and 1960s, flow charts
were used to specily and describe complete computer pro-
orams. As higher level languages, like BASIC, COBOL and
C were developed and as applications became more
complex, such flow charts fell from favor. New software
ogenerating techniques called structured programming were
developed and formalized 1n the 1970s. Structured program-
ming allowed for more modular programs. In the early
1980s a procedural language based on flow charts and
multitasking was developed by Ron Lavallee and Tom
Peacock and 1s described m U.S. Pat. No 4,852,047, 1ssued
Jul. 25, 1989. In this patent, industrial processes are con-
trolled by characterizing the industrial process with a flow
chart and then executing directly from the flow chart,
thereby eliminating the necessity for ladder diagram pro-
cramming tools which were cumbersome at best.

By the mid-1980s, due to the ever increasing complexity
of software and never ending changes, object-oriented soft-

ware emerged. Languages such as Small Talk, C++ and
ADA were developed.

By the early 1990s, a simplified object-oriented language
called Java was added to the list of object-oriented lan-
cuages. Due to the advent of the internet and Java, future
software development 1s now tending towards the object-
oriented approach. This 1s because object-oriented software
1s easier to maintain and promotes software reuse. Software
1s developed around real world entities and, hence, when a
change to how an entity behaves 1s made, the program 1s
only changed 1n one place. With a functional decomposition
programmed system, a change to behavior usually requires
changing the programming 1n many places.

Importantly, however, in object-oriented programming,
the objects making up the program exist in no apparent order
and are described by literal statements, making the program-
ming difficult to visualize. Thus when objects are displayed,
they are displayed on screen with no visual linkages as to the

10

15

20

25

30

35

40

45

50

55

60

65

2

order of theiwr execution. There 1s therefore a need for a
programming aid which permits both programmers and
those charged with solving a domain problem to be able to
quickly visualize an object-oriented program from a mac-
roscopic level so that direction can be given and changes can
be made to the program.

By way of further background, the characteristics of
object-oriented programs are as follows. Presently, object-
oriented software programs represent objects and class enti-
ties with literal statements. Syntax-based languages such as
Java and C++ represent an object such as Jim=new person
as a literal statement. Here Jim 1s an object of the class
person. Using the approach provided 1n the Universal Mod-
cling Language or UML representation, an object would be
represented as Jim: person where Jim again 1s an object of
the class person. By definition in all object-oriented
languages, objects have attributes, information used by an
object and methods or behaviors carried out by an object.
Further, all object-oriented systems have a means to describe
relationships between objects such as creation or
Instantiation, messaging, association, dependency and more.

Graphical systems sometimes used to show relationships
for clarity, are not needed by the literal systems. Most
oraphical systems are used for analysis for the particular
problem, called the problem domain, and are thercafter
converted via generating a program into a literal language
such as object-oriented language, such as Java, C++, Small
Talk and Effel for execution by a computer.

In the past, graphical systems have primarily used two
types of diagrams to describe the domain problem. The two
types of diagrams are interaction diagrams and state charts.
Interaction diagrams show objects and the messaging
between the objects, whereas state charts are used to show
object behavior or methods and object life cycle state
changes. However, none of these graphical systems consti-
tute the program, which must be generated separately in
literal terms.

For mnstance, as far as interaction diagrams are concerned,
these diagrams can take the form of a collaboration type
diagram 1n which individual blocks indicating objects have
lines between them and arrows indicating messaging
between the blocks. In terms of a sequence for interaction
diagrams, a ladder diagram type arrangement 1s sometimes
used 1n which timing of a sequence runs down the chart, with
horizontal arrows 1ndicating messages between the objects.

As to state charts, these charts indicate object behavior.
For instance, if an object in the form of a human being is to
jump, the state indicates a jump sequence 1n which an object
1s to extend the legs, fly the body and land.

The above charting techniques describe some attributes of
objects, but not the underlying object-oriented program.
These charting techniques can therefore hinder the program-
mer 1n explaining the program to the expert who has hired
him/her, or even to collect the programmer’s thoughts in a
manner which will enable quick object-oriented program-
ming.

Thus, 1n the end object-oriented programming has been
performed by making a literal, written statement as to what
the object and class 1s and what the object 1s supposed to do.
Lists of statements are exceedingly hard to interpret to those
who are not object-oriented programmers and especially
hard for those who are requesting a problem to be solved to
understand.

As to Domain Experts, it will be appreciated that object-
oriented systems and structured systems focus on how the
software 1s to be constructed, an important point. Thus, the

US 6,421,521 B1

3

person most able to assist at this point 1s the domain expert.
With software playing an ever increasing role, software
engineers must interface with domain experts more and
more. Domain experts are, for instance, a banker specifying
a banking system, a process engineer defining a manufac-
turing function or a mechanical designer designing an active
suspension for a car.

It will be noted that the software engineer’s first task 1s to
capture the domain expert’s knowledge. The only way that
this 1s possible 1s through communication. Text based com-
munication can be ambiguous and often makes 1t difficult to
see what the system 1s actually doing.

Moreover, the application which the software 1s to run 1s
typically broken down 1nto use cases. A use case shows the
interaction between the user and the system objects that
perform a particular function. This 1s presented to the user in
the form of text and ancillary interaction diagrams.
However, this 1s not a natural or intuitive way for the domain
expert to visualize the application or the object-oriented
programming. The above-mentioned state charts are some-
times used to further define a use case object method, but
again, the domain expert must be familiar with state charts
to fully understand what knowledge the software engineer
thinks he/she 1s capturing.

Another problem with the current object-oriented pro-
oram techniques 1s that they do not readily show exceptions.
Exceptions occur when the program or an object does not
perform 1ts expected function. It 1s 1mperative that excep-
tions be handled and the domain expert 1s the one typically
required to decide what to do when an exception 1s encoun-
tered.

Moreover, most object-oriented programming requires an
iterative approach. The reason that all object-oriented sys-
fems encourage an 1terative approach to software develop-
ment 1s 1n fact so that the exceptions can be discovered.
However, these exceptions can not clearly be seen during the
analysis phase of a project because heretofore a system for
object-oriented programming has not presented the domain
expert or the software developer with a simple way of
capturing or visualizing the program to be solved by the
domain expert or how the software engineer is intending to
solve the problem.

In addition, object-oriented programs are hard to follow.
There 1s thus a necessity for a better methodology to show
how a data flows through an object-oriented program. Since
object-oriented technology 1s complex, the promise of
increased software productivity has not been realized
through object-oriented programming. As a result, object-
oriented programming must be made simpler so more pro-
grammers can use 1t effectively.

SUMMARY OF THE INVENTION

Rather than utilizing interaction diagrams or state charts
to assist 1n understanding the program being written, 1n the
subject 1invention a flow chart 1s utilized to characterize the
object-oriented program 1tself by providing a visual repre-
sentation of the software objects such as graphical shapes,
icons, pictures, video or audio and also the execution rules
for the objects at the same time. The subject system repre-
sents object-oriented programming objects such as
instantiation, methods, components and messages of soft-
ware objects. As an 1mportant part of the subject program-
ming aid, Decision Objects set the flow, with each object
executing independently of the other. In one embodiment an
object can be one of two types, Action and Decision. The
object type 1s determined by Object Characterization.

10

15

20

25

30

35

40

45

50

55

60

65

4

‘Object Characterization’ 1s the process of Type Casting
an object’s function at the point of use on a flowchart. This
characterization can either be 1n the form of an Action
(rectangle) or Decision (diamond) three-dimensional ele-
ment. Objects can be characterized as either or both Types
simultaneously.

During an Objects life 1t may perform a task where 1t will
simply “do” something or perform a task where 1t will
provide an answer to a question asked of it. For example, an
automobile control object would perform one task when
commanded to “lock all doors and start the engine”, and a
different task 1f commanded “are all operating parameters
within prescribed limits?” Characterization allows easier
understanding of an object’s methods. Characterization
allows an object to be used with the proper context on a
flowchart thereby controlling the direction of flow on the
flowchart.

The concurrent execution implied in object-oriented pro-
cramming permits a simplified representation of the totality
of the object-oriented program. Note, it 1s not the shape of
the flow chart element which 1s important, but rather what
the element represents, namely an object, along with the
execution rules.

The subject flow charting process has a number of flow
charting elements to completely specity the object-oriented
program. In one embodiment, the flow charting elements
describe flow chart instantiation criteria, a flow chart class or
object, a flow chart decision object and object stereotypes or
snap shots. Flow chart object representations indicate three-
dimensional flow chart flow to be able to capture concurrent
operations and threads. The flow charting system also speci-
fies dynamic execution rules, with a flow chart block 1ndi-
cating mixing procedural and object entities. Finally, the
flow chart representation aids 1n the compiling of the object-
oriented flow charts, with the same execution algorithm
being applied across the flow chart or multiple flowcharts.

By so doing, it 1s possible to have one only mildly
knowledgeable 1 object-oriented programming, such as a
domain expert, to visually inspect the work of an object-
oriented programmer, see pit falls of the programming
without having a detailed knowledge of how the program
was constructed and to provide constructive suggestions,
such that the program will run properly without many
iterations of the programming effort. Moreover, by repre-
senting the object-oriented program 1n terms of flow charts,
the whole entire solution to the domain problem can be at the
programmer’s fingertips 1n a visually presented way, such
that the programmer can use his or her creativity to visualize
the problem, visualize problem areas, and provide creative
solutions for what has been presented to the programmer.
Also, the flowchart provides a convenient way for the
programmer and Domain Expert to navigate through meth-
ods and components that are encapsulated 1n objects.

What 1s therefore provided 1s a system utilizing visual
representation of flow chart objects and execution rules that
permits simplified object-oriented programming. In one
embodiment, the executions can either be 1n an order down
the flow chart diagram or across, with object execution being
into the page to provide for threads. Thus, one can see at an
instant the object involved 1n the program and how they
interrelate. All flow chart objects are executed simulta-
neously or 1n parallel and are synchronized when a decision,
noted by a Decision Block, 1s necessary to obtain informa-
tion from another object.

The flow chart programming aid also permits a Domain
Expert to 1dentily exceptions when a program or object does

US 6,421,521 B1

S

not perform 1ts expected function, permitting the domain
expert to decide what to do when an exception 1s
encountered, thereby limiting the number of iterations nec-
essary 1n perfecting an object-oriented program. In one
embodiment, the flow chart representations of an object
have a 3D look and feel. Moreover, all objects consist of
flow chart methods executing the same rule.

In summary, a visual programming aid for object-oriented
programming provides high level visualization for domain
experts of the entire object-oriented program to permit
understanding of the program on a macro level and to permit
the domain expert to participate 1 the programming. In one
embodiment, this 1s accomplished by visually arranging
objects 1n flow chart blocks, each having a block number.
The entire flow chart system represents the tlow of events,
not the flow of time. This permits concurrent execution of
objects 1f the events permit. The objects are characterized as
either action blocks or decision blocks, or both. In one
embodiment action blocks are denoted as rectangles, and
decision blocks as diamonds. Whether an object 1s an action
or decision type 1s determined by object characterization
which 1s the process of type casting the function of an object
at 1ts point of use on the flow chart. Note that decision
objects are used to define the flow of groups of objects which
do not have flow by themselves. In one embodiment, all
objects execute mndependent of one another until such time
as a decision object requires information from another
object, with the result being that object execution 1s not
stopped to get the results of another object. The flow chart
visual programming aid represents flow charts 1n three
dimensions, 1n one embodiment, with the third dimension
permitting showing spinning another thread at a flow junc-
ture. Each object block 1s provided in one embodiment with
a snap shot tab used to call up information about the object
in video, audio, pictorial or text form to provide the domain
expert with the ability to further understand the object and
provide 1mput. An algorithm 1s presented for flow chart
execution which uses the flow chart block numbers and 1s
the same for all tlow charts.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of the Subject Invention will be
understood taken 1n connection with the Detailed Descrip-
fion 1n conjunction with the Drawings in which:

FIG. 1A 1s a diagrammatic representation of the subject
flow charting system showing instantiation criteria for a
ogrven object as an ellipse at the top of a flow chart, such that
within the ellipse 1s a description of the condition or an
object’s instantiation or an object’s method that will begin
creating of the objects and/or processes located underneath
1t;

FIG. 1B 1s a diagrammatic illustration of characterizing,
an object as an Action Block or Decision Block;

FIG. 2 1s a diagrammatic representation of a flow chart
class/object Action element indicating in detail a flow chart
clement having a stereotype handle or snap shot tab, object
name, attributes, methods, messages and components, all of
which are utilized to together to form the object and to

specily what 1s to be done with it;

FIG. 3 1s a macro view of the flow chart class/object of
FIG. 2 1n which the object specified and what the object 1s
to do 1s also specified;

FIG. 4 1s a detailed view of the flow chart class/object
Decision element which in essence specifies a decision that
1s to be made with respect to the particular object and its
methods and/or messages and/or components as well as its
attributes;

5

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 5 1s a macro view of the flow chart class/object of
FIG. 4 1llustrating the 1identity of the object and what 1s to be
done with respect to the object;

FIG. 6 1s a completed flow chart representation of an
object-oriented programming task for the creation of a new
automobile indicating the providing of market analysis,
product analysis, manufacturing analysis, sales analysis and
quality analysis followed by a decision element as to
whether the newly created automobile 1s viable, followed by
a financial analysis as to whether or not to release money for
the development of the automobile;

FIG. 7 1s a flow chart 1llustrating the control over an object
or procedure and how 1t 1s accomplished through the utili-
zation of start events and test events at a Decision block to
determine if an object 1s still processing or has a fault;

FIG. 8 1s a flow chart illustrating how the results of the
flow chart of FIG. 7 can be tied to object methods such that
objects can be synchronized;

FIG. 9 1s a flow chart arrangement indicating orthogonal
flow chart execution 1n which there 1s both execution
between flow charts and execution down the flow charts,
also 1ndicating execution into each three-dimensional
object; and,

FIG. 10 1s a flow chart indicating the mixing of two-
dimensional entities with three-dimensional entities 1n
which the execution rules still apply.

DETAILED DESCRIPTION

Referring now to FIG. 1A a flow chart 1s illustrated 1n
which 1nstantiation criteria 10 1s ufilized by downstream
flowchart boxes 12, 14, 16 and 18, each specilying an object
in the object-oriented programming. With each of the subject
flow charts, instantiation criteria 1s shown as an ellipse at the
top of the flow chart. Within the ellipse 1s a description of the
condition or an object’s 1stantiation or an object’s methods
that will begin the creation of the objects and/or processes
located underneath 1t. For instance, the instantiation ellipse
located at the top of the flow chart could be a condition, such
as, for mstance, “deposit check”. The ellipse could indicate
object instantiation such as Jim: person. Finally, the 1nstan-
fiation criteria could indicate the object method such as Jim:

personsfeep()

It will be noted in FIG. 1B that as described above each
object can be characterized as a three dimensional Action
Block or Decision Block, sometimes called a Test Block.
Here an object 15 1s shown characterizeable as an Action
Block 17 which 1s rectangular or as Decision Block 19
which 1s diamond shaped.

After instantiation and referring now to FIGS. 2 and 3,
flow chart action elements describing classes/objects are
illustrated. In terms of a detailed view of a flow chart
clement describing a class/object, as can be seen, a stereo-
type handle or snap shot 20 1s located at the top of the tlow
chart element which 1s used to give a snapshot of what 1s
ogolng on 1n the corresponding object block. Here, the object
name 1s shown at 22, whereas the attributes of the object are
shown at 24. Methods, such as what the object 1s to do or
describe, 1s 1llustrated at 26 in which method type icons 28
may be utilized to illustrate such things as jump, sleep or
hungry in terms of the object, 1n this case, a person and more
particularly, a person named Jim. Process/decision consid-
erations are carried in this method’s block.

Messages, here 1llustrated at 30, may include such com-
mands as retracting one’s legs as 1llustrated at 32, extending
one’s legs as illustrated at 34, closing one’s eyes as 1llus-

US 6,421,521 B1

7

trated at 36. Messages, which are mitiated from methods, are
shown to allow navigation to objects performing methods
that are not part of this object. Components here 1llustrated
at 40 may be such things as head 42, feet 44 and legs 46.
Visibility of certain attributes may be turned off or protected
or made public as illustrated at 48, whereas a number 1s
typically given to the block 50 for an execution order.

As 1llustrated in FIG. 3, the entire flow chart element 18
can be deployed as a macro view and can be used to merely
identify the object as illustrated at 22. This provides another
indication of the entire process such as illustrated at 60. In
this case as 1s 1n the case with FIG. 2, the entire flow chart
clement 1s used to specily a person named Jim and the
exercise he 1s going to do before going to bed. This type of
flow chart element which 1llustrates the macro view of the
object 1s useful mm having a domain expert be able to
ascertain what 1s going on in the object-oriented program

and 1n particular the object.

Referring now to FIG. 4, what 1s represented are flow
chart elements depicting Decision Blocks which correspond
to decision classes/objects. In FIG. 4, a decision object 1s
illustrated at 70 which 1s 1n the pictorial form of a 3D
diamond. Decision objects have all the same qualities as
action objects except they cause the flow of the flow chart to
take one of two paths 1n response to a question. In this case
the “No” path can connect to any other block on the
flowchart and not necessarily itself.

Here, object 70 of FIG. 4 1s embedded 1n the diamond.
The decision element either specifies that the flow of the
program continues as 1ndicated by YES, or not continue as
indicated by NO. Clicking on the decision object of FIG. 4
results 1n the macro view of FIG. 5 1n which the decision
object specifies the 1dentity of the object and the decision to
be made, namely, 1n this case, “1s Jim really, really hungry”.
As before, clicking the decision object can be made to
alternate between macro and detail views. Note, 1n the detail
view of FIG. 4, editing, prioritizing and monitoring acts are
described within the appropriate action objects.

One difference between the two object types 1s the
memory or the M feature added to the decision element,
namely, the optional decision with memory features, here
illustrated at 74. As dynamic flow charts, FC, having block
numbers do not represent time and as flow charts and objects
are executing 1n parallel or concurrently, an optional
memory feature may be needed to accommodate decision
objects, needed so that decision objects may hold the results
of the test until control flow reaches that object. In one
embodiment, the memory 1s cleared after the decision 1is
made.

More particularly, an object 1s pictured as a three-
dimensional action or decision entity or one of its stereo-
types. These entities can represent a class or an object. Each
enfity 1s provided with a name and may have attributes,
methods, messages and components.

Note, 1n the subject mnvention there are two types of flow
charts as opposed to flow chart blocks. One 1s a static flow
chart and the other 1s a dynamic flow chart. Static flow charts
are not running and do not execute. Therefore they represent
static qualities of an object, 1.€., everything about an object.
This permits a programmer to look at an object and select
what he wants to use. Thus static quantities include all of the
attributes of the object and the visibility, public, private,
protected nature of each attribute. Thus a programmer can
review an object and select only those parts of the object
useful to him. For instance, he may select a method or
procedure that the object does. He can also select a snap
shot.

10

15

20

25

30

35

40

45

50

55

60

65

3

All of the methods available are shown 1n the object along
with the visibility. Means mcluding a computer mouse 21
connected to computer 23 as shown 1n FIG. 1 are provided
to edit any of the object fields and 1s accomplished, in one
embodiment, by clicking on the corresponding field.

Each object has a three-dimensional quality to its repre-
sentation which signifies orthogonal operation of the object.
By orthogonal 1s meant spinning another thread and by
three-dimensional 1s meant a 3-D geometric graphic shape.

In the case of dynamic flow charts, while 1n prior pro-
cramming systems the data flow starts and stops at each flow
chart block such that the program proceeds serially, in the
subject system dynamic flowcharts are executed 1n a
dynamic continuous fashion not having to wait for a pre-
ceding block to finish. The dynamic execution 1s explained
heremnafter 1n terms of dynamic execution rules.

In terms of setting up an Action or Decision object Block,
first one names the object. This can be done 1 UML
notation. For instance, the object name 1s the mstance name
followed by a colon followed by a class name. An underline
1s used to signify that this 1s an 1nstance of a class. On a static

flow chart, the instance view can be left blank as 1llustrated
by; person. The underline may be omitted signifying that
this 1s a class.

Next one specifies how the object 1s derived. Referring to
FIG. 2, 1t will be noted that the “P” and the “C” 1n the object
name field allows the programmer to find out how the object
was derived. This 1s done through navigation to parents or
children by clicking on whether or not a parent i1s inherited
or a child 1s derived. Note that multiple 1nheritances are
allowed.

Also note that by clicking on the object name the macro
view of the object, as illustrated 1n FIG. 3, will be presented.
This allows for further abstraction of the object entities and
therefore a more understandable flow chart. Clicking on the
object name 1n one embodiment, alternates between the
detailed view and the macro view of the object, function at
that point on the flowchart.

The next step 1s to specity the attributes of an object. Note
that the attribute field, namely attribute 24, allows editing
variable name, type, visibility and visibility in the case of
static flow charts and monitoring variables 1n realtime on
dynamic tflow charts.

The next step 1s to specily the method for the object.
Clicking the method field allows editing and navigating of
the methods.

It 1s important to note that methods are also flow charts.
Method 1cons help the user to visualize the method
characterization, an action or decision. Clicking on the
message lield allows modifying message names inside the
object and message destination, object names outside the
object. A cardinality value, €.g. how many messages, may be
shown as 1llustrated at 53 when the object interacts with
more than one copy of the receiving object. The UML
notation 1s used for cardinality value. The user has the option
of prioritizing the view of methods and messages which can
enhance the readability of the flow chart at any point because
In many cases objects are used more than once, and char-
acterize as actions or decisions.

As an additional feature of the subject invention at run
time various methods and messages that are active can be
highlighted. Also, when an object 1s made up of other
objects, double-clicking on the component field allows for
navigation to and through other objects that make-up this
object.

A key feature of object-oriented technology 1s abstraction.
An object may represent a collection of many objects all

US 6,421,521 B1

9

operating 1n parallel. Clicking on the stereotype handle, 1n
this case, handle 20, will evoke the stereotype of the object.
That stereotype may be an icon, picture, video clip, audio
clip or even a help file. Complete flow charts may be built
and executed with stereotypes only. The execution enabler,
1.e. block number can be any sequential mechanism con-
sisting of numbers or letters. This mechanism determines the
order of objects and allows concurrent orthogonal execution
as will the described. Objects with an execution enabler are
dynamic and objects without an enabler are static 1n one
embodiment. Block numbers are used for execution rules
only and have nothing to do with the static qualities of an
object.

Referring now to the object stereotypes mentioned
hereinabove, the utilization of object stereotypes 1s one of
the most powerful means in which different domain experts
can be participate 1n the creation of software. If each expert
can view the system from their point of view, chances are,
they will be able to contribute more effectively. The stereo-
type handle 20 provides a means to evoke various stereo-
types. How this may be utilized 1s shown in FIG. 6, in which
the creation of a new automobile 1s shown. Here, during
instantiation as illustrated at 80, the object 1s to create a new
automobile. What 1s therefore necessary 1s to find out the
need for such an automobile as illustrated at 82 in the flow
chart element 1dentified as marketing.

Therecafter as 1llustrated by eclement 84, the product
required 1s conceptualized, whereas as 1llustrated 1n element
86, the manufacturing for the speciiied object 1s delineated.
As 1llustrated 1n 88, the sales for such an object are devel-
oped and as 1llustrated at 90, the quality of such a new
automobile 1s ascertained. Thereafter, as 1llustrated at 92 a
management decision 1s made as to whether to go forward
or not. If the answer 1s YES, then as 1llustrated at 94, release
of the money under a certain criteria 1s determined.

Thus, for mstance, 1if a product development specialist
wishes to give 1nput, he/she may wish to highlight the focus
ogroup block, here 1illustrated at 96. By so doing, the spe-
cilalist would be navigated to the focus group object and its
stereotype would be shown. The stereotype, for instance,
could be a video clip of the focus group being asked question
and the individual could gage enthusiasm for the various
product features. The product specialist could then feedback
changes required 1nto a new focus group object and to a new
product design object. The point with the use of object
stereotypes 1s that views of an object may be customized
through the utilization of the stereotyping function.

It will be further noted that in the subject invention,
three-dimensional flow charts and dynamic execution rules
are utilized as described later. In the case of FIG. 6, objects
82, 84, 86, 88, 90 and 92 are executed concurrently, with
cach having 1ts own thread running.

It will be appreciated that it 1s essential that objects have
a three-dimensional look and feel to them. This 1s especially
true when objects are an aggregation of a large number of
objects all communicating. The problem 1s further compli-
cated when objects are spread over a network. For this
reason, time 1s not represented by the structure of the flow
charts 1n three dimensions. Rather events are represented.
Flow does not stop when a three-dimensional block 1is
reached. Rather the flow continues with all processes execut-
ing including the process or thread at the new block. Note,
that the processes associated with a block starts when
entering the block from a previous event or block.

Referring now to FIG. 7, the control over any object or
procedure on a flow chart 1s accomplished very simply. An

10

15

20

25

30

35

40

45

50

55

60

65

10

object 1s perceived as being started as illustrated at 100 when
flow enters the object as 1llustrated at 102. Note, the start 1s
an “event” requiring zero time. If an object 1s already started
when tlow returns to that object, as illustrated at 104, the
start will have no effect since the event 1s already processing.

It, therefore, becomes a simple matter to add a test to
determine if the object 1s still processing or has a fault. This

1s denoted by a Decision Block. Thus, a decision block 106

determines whether or not an object 1s finished or if not,
whether there 1s a fault, as i1llustrated at 108. This 1s event

synchronization as opposed to time synchronization.

As 1llustrated 1n FIG. 8, for mstance, if a “sleep” routine
1s being executed by virtue of an object as illustrated at 110,
then the “sleep” routine either has been executed or a fault
has occurred as illustrated at 112.

These “done” or “fault” tests can be tied to object meth-
ods. Generation of the object “done” and “fault” 1s accom-
plished by the flow chart system and may or may not be
used. The Decision Block thus provides an elegant way 1n
which objects can be synchronized. In the case of FIG. 7
block (object) “D” will not be executed until object (block)
“A” 1s finished performing 1t’s function.

Referring now to orthogonal flow chart execution in FIG.
9, as will be seen with zero time in mind, the dynamic
execution rules become quite simple. All that 1s needed 1s a
mathematical verifiable sequence. In any multi-tasking com-
puter system some means must be used to allocate processor
resources to each object. Most “time slice” systems simply
allocate a prescribed amount of time to each object. 1.e. 1
millisecond, to execute each task and then repeat the pro-
cess. In the present invention each flowchart 1s composed of
onc or more objects and each object may have multiple
tasks, because each method 1s a task. Therefore, there 1s
significant potential that the processor will need to execute
thousands of tasks concurrently causing the system to react
very slowly. Another problem with the “time slice” algo-
rithm 1s that 1t 1s hard to predict the point at which one task
will end and the next task will begin. A task may be
mterrupted before 1t has completed a critical event or it may
waste time not performing any useful function.

The subject tlowcharts have the inherent advantage 1n that
they are event driven. It 1s therefore possible to develop task
switching algorithms based on events and not a fixed amount
of time. This has been done in two dimensions 1n the FloPro
system, but not for objects. Rather the flow charting system
was used for sitmple procedures. One such algorithm 1s the
so called “bread crumb” approach algorithm uses the tech-
nique of executing flowchart events (blocks) until the same
event 1s executed again 1n which one keeps track of the
blocks which have been executed, and if the flow comes
back to execute one of these again, one stops executing that
task and starts another one. This has the disadvantage of
slower execution, because a table must be built and each
event compared to that table. It can have unpredictable
results depending on the paths taken by the tlowchart.

A “sequence” algorithm has the advantage of speed and
more 1importantly, predictability. Here, each event (block) is
orven a sequence 1dentifier, number or letter. Each task
(flowchart) 1s then executed until the event (block) sequence
identifier 1s equal to or less than the present block sequence
identifier. This algorithm 1s predictable and independent of
paths taken by the flowchart.

When applied 1n three dimensions, the subject system has,

therefore, 100% verifiable parallel execution as 1llustrated in
FIG. 9. Here, individual flow charts 120, 122 and 124 are
simultaneously executing. Note that the algorithm for execu-

US 6,421,521 B1

11

fion m any dimension 1s executed as long as there 1s an
Increasing series, otherwise it will stop and pick up the next
cycle.

A mathematical formula describing the operation of the
orthogonal flow chart execution follows:

1 (X,Y,Z)~ (B EN)

Where: T=the task switch 1n the X, Y or Z dimensions;
B=the currently executing block number; and N=the next
block to execute.

It will be appreciated that all objects consist of flow chart
methods executing to the same rule. The above algorithm
has the advantage that 1t works for a single processor or
multiple processors. As more and more processors are
applied, 1.e. a processor for each flow chart, for each object
and each method of an object, the algorithm does not change
because there 1s no dependency on time, only events, each
processor can operate independently at 1t’s own speed.

Referring now to FIG. 10, 1t will be seen that there can be
a mixing of procedural and object entries within the flow
chart and therefore within the program. As illustrated, the
instantiation at 150 may be to provide for operation of an
assembly machine, for instance. Here, a procedural block
152 includes starting the machine and a procedural block
154 1ndicates selection of a part. Thereafter, an object 156 1s
called which 1s the assembly object, to assemble a particular
device. Otherwise, the assembly of another device may be
sclected at 154 such as object 158. Assuming that the
assembly has been completed by object 156, a decision
block 160 1s utilized to decide whether or not the particular
device has been assembled. Note, as 1llustrated at 162 the
block may be a decision block where quality or other checks
may be provided as object task. What will be seen 1s that
procedural blocks may be combined with objects to provide
for the complete specification of the programming.

As to the compiling of the object-oriented flow charts, all
object-oriented language must have properties of
encapsulation, inheritance and polymorphism. Compiling
means taking the flowchart graphical representation and
generating Java or C++ code for each flowchart element.

The object-oriented flow chart technology which forms a
subject of this invention has these properties incorporated
therein. Encapsulation, the hiding of details, by allowing the
hiding of flow chart object methods and allowing more than
one flow chart object to represent many objects or an entire
flow chart or flow charts 1s encompassed by the subject flow
charting system. Inheritance, using other class methods and
variables 1s also part of the development environment.
Polymorphism, relates to more than one object responding
to the same message. This 1s accomplished in the subject
flow charting system by separating message initiation inside
the object from the receiving object outside the object.

5

10

15

20

25

30

35

40

45

50

12

Replacing the receiving object with another has no effect on
the sending object.

For the above reasons, object-oriented flow charts of the
subject variety can be compiled to any object-oriented
language such as Java and C++. With the addition of a
persistent database, compilation directly to machine execut-
able code 1s achieved. Java and C++ both have mechanisms
to create and destroy objects. Assembly language and
machine code do not. For Java and C++ a compiler need
only generate code that will create an object at run time. In
the latter case the object must exist (persistent) before it can
be compiled to code that will execute at run time.

Having now described a few embodiments of the
imvention, and some modifications and variations thereto, it
should be apparent to those skilled in the art that the
foregoing 1s merely 1llustrative and not limiting, having been
presented by the way of example only. Numerous modifi-
cations and other embodiments are within the scope of one
of ordinary skill in the art and are contemplated as falling
within the scope of the invention as limited only by the
appended claims and equivalents thereto.

What 1s claimed 1s:

1. A visual programming method for assisting in object
oriented programming in which the program consists of a
number of objects to give a high level visualization of the
program at a macro level, comprising the steps of:

assigning a flow chart block to an object, each block
having a different assigned number and describing the
function of the corresponding object;

arranging the flow chart block so as to visually represent
the flow of events 1n the program; and,

executing the program by block number in accordance
with the arrangement of the flow chart blocks, the flow
chart blocks being three dimensional to specity actions
to be completed during the execution of the corre-
sponding block, whereby the third dimension permits
showing spinning another thread at a flow juncture.
2. A visual programming method for assisting 1n object
oriented programming 1n which the program consists of a
number of objects to give a high level visualization of the
program at a macro level, comprising the steps of:

assigning a tlow chart block to an object, each block
having a different assigned number and describing the
function of the corresponding object;

arranging the flow chart blocks so as to visually represent
the flow of events in the program;

executing the program by block number in accordance
with the arrangement of the flow chart blocks; and,

selecting flow chart blocks with snapshot tabs selectable
to call up the display information about the correspond-
Ing object.

	Front Page
	Drawings
	Specification
	Claims

