US006415385B1
a2 United States Patent (10) Patent No.: US 6,415,385 B1
Cotugno et al. 45) Date of Patent: *Jul. 2, 2002
(54) DIGITAL SIGNATURING METHOD AND (58) Field of Searchcccocoovvvveven... 713/150, 168,
SYSTEM FOR PACKAGING SPECIALIZED 713/176, 179, 194, 187, 167, 180; 710/68,
NATIVE FILES FOR OPEN NETWORK 74
TRANSPORT AND FOR BURNING ONTO |
CD-ROM (56) References Cited

U.S. PATENT DOCUMENTS
(75) Inventors: Lauren Ann Cotugno, Dove Canyon;

Thien Huu Pham, Garden Grove, both 5,675,780 A * 10/1997 Plant-Mason et al. 707/6
of CA (US) 5,745,678 A * 4/1998 Herzberg et al. 7137200
5,870,756 A * 2/1999 Nakata et al. 707/200
(73) Assignee: Unisys Corporation, Blue Bell, PA 6,021,491 A * 2/2000 Renaud 713/179
(US) FOREIGN PATENT DOCUMENTS
(*) Notice: This patent issued on a continued pros- WO WO 99/33093 T /1999
ecution application filed under 37 CFR * cited by examiner

1.53(d), and 1s subject to the twenty year

patent term provisions of 35 U.S.C. Primary Fxaminer—Matthew Smithers

(74) Attorney, Agent, or Firm—Alfred W. Kozak; Mark T.

154(2)(2). Starr; Lise A. Rode

Subject to any disclaimer, the term of this (57) ABSTRACT

patent 1s extended or adjusted under 35 o _ _
U.S.C. 154(b) by 0 days. A specialized data format native to a first platform 1s

wrap-packaged 1nto an industry-standard text file 1n a pro-

_ tocol suitable for Internet transmittal. A Signature Support
(21) - Appl. No.: 09/124,557 Library provides parameters to combine with a User’s

(22) Filed: Jul. 29, 1998 private key to generate a signature particular to the data file

being converted.
(51) Int. CL7 ..o, HO041. 9/32
(52) US.Cl e 713/176 12 Claims, 14 Drawing Sheets

DSAKEYSFILE

SIGNATURED
FILE

SYSTEM DSA PRIVATE KE

’_FILE

US 6,415,385 Bl

Sheet 1 of 14

Jul. 2, 2002

U.S. Patent

I\‘\\I\\\lj
ITSWANVANAD

A
G

3114 3TONIS ONIddVHM GNV DNIHNLYNDIS TVLIDIA 40 M3IAEH3A0 - VI "Oid

AHOML3IN

N3dO

Ov

e X0%

ve

F1NAOW 3LI8M aO

— —

(3LND3IX3)

JOVAOVd d1IHdM QD

MOE

_.

O ASId I HIHO1dX3 MOANIM [~

-

JHVM140S

YNNG HO LINHILNI

e e

™~
AQE

W31SAS 1IN

[

— .i.
0t

aC

vl

S31H4S V ANV XN HLvd"dv3alo
bL -~

| €0t
TVYNIWYH3L
HO1lv43dO
20l
“\\\\l‘.
\ J4/AN |
LS
L0}
I v MSIQ
3IH4/MAIN/ANW - pd
— e w
£e |
1
\L'/ I||<||||
INILNOY H3ddvudM3id 40N
- " MSIA _
NS1SAS

—
w —_— - i (6€) AVHM TLIYM T (8) TIYNIWNIL
” 9 | HO1vHddO
7o 314 IT1DNIS _ 4. _ W "]
- ONIddViM ANV ONIRINLYNOIS (8€) HAddVHEM dONW f=
<& TVLEIDIA 40 M3IA A3 TIVLI3A - gL 'Ol — 0 — * _ 1
- ﬁ (9€) ¥AddVHMI A dOW = — :x_o._:e
GNO FNIMINAA vy)
_\|\|/ 3 THMINAN VNO TN | 1l |
- TN/MINAN i ST D R e\ L
M VAR _ |
= . v - ([
3 /| sld (S1) YIUIWOD T14M
b - _ g 02 ﬂIM o
= | AL s] B (01) _ |
7 FUAMINWAN:
77 i > W3ILSAS ONILYHIHO
(Ot) \ - (NVHOONd
MHOMLIN o — - - - TOY1INOD |
o NIdO c _ _ (A0€) IuvMmLI0S HILSVYN) dOW
—
S | ~ e TVINT/LINYTLNI (05) |
3 \ﬂv_m_n_ ! J- . _Alwmosm_m,m XN et _
M ve ﬂ (X0£) ¥IHO1dX3 SMOANIM - (91) 3OO0
) |
L™ — - _
(0€) W3L1SAS IN (81) AHOW3W “
> FUAMINVANLD —~]
23 - (21)NdD |
M
(Z€) A om%wwww_xmv (1) XN/AWH H1YdHVY31D
NAOW 3LIIM a0 (€0L) |
3] HILEMAD = L 201) -~ —

U.S. Patent

U.S. Patent

(101)

(b)

Jul. 2, 2002

Sheet 3 of 14

ENTER WFL WRAP MY/FILE/= INTO
MY/CONTAINER/FILE (FROM DISK A
TO DISK B)

PARSE COMMAND

& PASS INFORMATION
FROM WFL COMPILER

US 6,415,385 Bl

INFO=INPUT FILE
TITLES & LOCATION;
OUTPUT FILE TITLE

& LOCATION;

WRAP ACTION,
CONTAINER OPTION

TO OPERATING SYSTEM
(MCP_FILEWRAPPER)

l

| c(i) MCP_FILEWRAPPER:

VERIFY FILE NAMES;
OPEN NEW FILE
MY/CONTAINER/FILE
(ON DISK B) FOR QUTPUT:;

---------—-I-----ﬂ--—-l-l--—------—

VERIFY OPTIONS:;
CALL STEP (e) AND

—-----ﬂll--n--l-----—---—-—----‘--ﬁ-

PASS INFORMATION et

ﬁ

INFO=INPUT FILE TITLE

| AND LOCATION; OUTPUT |

PROCEDURE TO WRITE
NEW FILE; OPTIONS

(ONE FILE AT A TIME)

l

(WRAP ACTION)
CONTAINER QUTPUT

(e)

MCP_WRAPPER OPERATION

VERIFY INPUT FILE TITLE AND LOCATION:

OPENS THE FILE;
VERIFIES OPTIONS FOR WRAP:;
CALLING OS (OPERATING SYSTEM):
VERIFYFEATUREKEY

l—

(e

U.S. Patent Jul. 2, 2002 Sheet 4 of 14 US 6,415,385 Bl

(101) l

e(i) COPY INPUT FILES
DFH TO LOCAL ARRAY

IN MEMORY:
(€) e(ii) CALCULATE CHECKSUM
FOR DFH: ADD CHECKSUM TO
END OF ARRAY
(e) e(iii) SAVE CHECKSUM IN A

LOCAL VARIABLE

e(iv) CALL OUTPUT PROCEDURE
(d) TO WRITE DFH ALONG WITH

THE CHECKSUM TO
OUTPUT FILE - MY/CONTAINER/FILE
ON DISK B

OUTPUT PROCEDURE: ACCEPT ARRAY:
WRITE ARRAY TO
OUTPUT FILE--MY/CONTAINER/FILE
(ON DISK B): RETURN ANY I/O

ERRORS TO CALLER (USER)

Fig. 2A-2

U.S. Patent Jul. 2, 2002 Sheet 5 of 14 US 6,415,385 Bl

(101)1

e(v) READ INPUT FILE
USING DISK ROW
ADDRESSES OF DISK A,
ONE ROW AT A TIME;
WHEN ROW ADDRESSES
ARE EXHAUSTED, GO TO e(viii)

(e) e(vi) PASS INFORMATION IN

ARRAY TO OUTPUT
PROCEDURE (d)
TO WRITE TO OUTPUT FILE

(ON TO DISK B)
OUTPUT PROCEDURE:
ACCEPT ARRAY:
d) WRITE ARRAY TO OUTPUT
FILE ON DISK B;

RETURN ANY I/0O ERRORS
TO CALLER (USER)

e

e(vi) CALCULATE
) RUNNING CHECKSUM
FOR EACH ROW & ADD
TO LOCAL CHECKSUM VARIABLE

—

e(viii) CALL OUTPUT
PROCEDURE (d)
(WHEN FINISHED
(e) WITH FILE) AND PASS
CHECKSUM TO WRITE
TO OUTPUT FILE ON
DISK B

U.S. Patent Jul. 2, 2002 Sheet 6 of 14 US 6,415,385 Bl

¥

| OUTPUT PROCEDURE: ACCEPT ARRAY CONTAINING CHECKSUM
WRITE ARRAY TO OUTPUT FILE
(ON DISK B);
(d) RETURN ANY 1/O
ERRORS TO CALLER (USER)

¢

e(ix) CLOSE INPUT FILE
(ON DISK A)

e(x) UPDATE TIME STAMP
INFORMATION

3

e(xi) SET TIME STAMPS
(€) IN DFH FOR INPUT
FILE (ON DISK A)

¢

e(xii) RETURN TO CALLER
AT c(i) |

SAVE ALL BYTES
AND OFFSET INFORMATION:
) OUTPUT FILE
(ci) TITLE INFORMATION
INTO OUTPUT

DIRECTORY ARRAY
| IN MEMORY 18 |

l

il LOOP BACK TO (¢1) TO
o PROCESS NEXT FILE (IF EXISTING)

i

WRITE OUTPUT
(Civ) DIRECTORY ARRAY FROM MEMORY
TO OUTPUT FILE ON DISK B

l Fig. 2A-4

CLOSE AND SAVE
OUTPUT FILE ON
(Cv) DISK B

'

| END OF CYCLE 101]

U.S. Patent Jul. 2, 2002 Sheet 7 of 14 US 6,415,385 Bl

DRAG & DROP CONTAINER FROM
l 102) SHARED DISK B TO LOCAL DISK C
OF PC USING THE PC'S
MICROSOFT EXPLORER PROGRAM

N

EXECUTE (AT PC) CD-WRITER 1
1 (103) (9) PACKAGE TO BURN CONTAINER (FROM (103)
DISK C) ONTO COMPACT DISK

1 (102)

[

Y

| REMOVE COMPACT DISK
(h) AND DELIVER TO CUSTOMER
FOR PC PLATFORM

Fig. 2B

US 6,415,385 Bl

Sheet 8 of 14

Jul. 2, 2002

U.S. Patent

S

-

FHNLVYNDIS Tv.1I9D1d

£ Old

<WNSHUOIHO>

(IA)

(A)

<d11d dH1~

L

NNSHO3HD H3AV3IHT
H3AVIH 314 MSId

SAHAS V dHL

(A1)

(111

<SNOILdO~>

(1)

0100005 ASINML.

(1)

U.S. Patent Jul. 2, 2002 Sheet 9 of 14 US 6,415,385 Bl

¢ STAFIT)

(A1) (A2)
SER INITIATES WRAPPING USER INITIATES WRAPPING
WITH DIGITAL SIGNATURE WITH DIGITAL SIGNATURE
BY USING WFL WRAP BY USING PROGRAM THAT
STATEMENT FOR CALLS MCP_FILEWRAPPER
SINGLE FILES PASSING PASSING WRAP ACTION
A PF!IVATE KEY AND A PRIVATE KEY
(B)
WFL COMPILEH PARSES
COMMAND AND ASKS
OPERATING SYSTEM TO i
INITIATE MCP_FILEWRAPPER
ROUTINE AS A SEPARATE
PROCESS
Y Y
MCP FILEWRAPPER (SEE FIG. 4B) IS EXECUTED
WITH THE FOLLOWING ELEMENTS:
€ | _FILE LIST CONTAINING INPUT AND OUTPUT FILE NAMES
- PRIVATE KEY
- OPTIONAL SSR LEVEL
s 3
|
Y

MCP FILEWRAPPER (SEE FIG. 4B) EXITS TO

(D) OPERATING SYSTEM OR TO USER PROGRAM

s I

|
(_eno

FIGURE 4A: THE OVERALL PROCESS OF SIGNING AND WRAPPING SINGLE FILES

U.S. Patent Jul. 2, 2002 Sheet 10 of 14

(C1)

(C1a)

(C1b)

(C1c)

(C1d)

(Cle)

(C1f)

ENTER
MCP_FILEWRAPPER

Y _

US 6,415,385 Bl

" MCP_ FILEWRAPPER

VERIFY ALL PARAMETERS

GET THE SPECIFIED OR DEFAULT
SSR LEVEL

[CALL GET_DSA PQGKEY PASSING
SSR LEVEL TO

-ENSURE DSA KEYSFILE AVAILABILITY
-GET PRIME NUMBERS, P, Q, G AND
SYSTEM PUBLIC KEY BASED ON

SSR LEVEL

il

VERIFY THE SPECIFIED PRIVATE KEY'S
HEXADECIMAL PRESENTATION

VERIFY WRAP LICENSE KEY

LINK TO SIGNATURE SUPPORT LIBRARY

h

YES

(C1g)

GOT A PAIR OF INPU
OUTPUT FILE NAMES

FROM FILE LIST?

o

(C1h) [

NO

]|! (C1x)

EXIT
MCP_FILEWRAPPER

OPEN OUTPUT FiLE

(C1i)

CALL DSASIGN ROUTINE IN SIGNATURE
SUPPORT LIBRARY THE FIRST TIME TO
SIGNATURE THE ID "UNISYS”

(C1))

(C1k)

I _

(C1L)

CALL MCP_WRAPPER (SEE FIG. 4C) PASSING:

-INPUT FILE NAME
WRITE_WRAP (SEE FIG. 4D) ROUTINE

—

CLOSE AND LOCK OUTPUT FILE—|

- J

FIGURE 48B:
MCP_FILEWRAPPER
LOGIC TO DIGITALLY SIGN
AND WRAP SINGLE FILES

U.S. Patent Jul. 2, 2002 Sheet 11 of 14 US 6,415,385 Bl

| ENTER
10 C MCP_WRAPPER >

’

MCP_WRAPPER

WRAP ACTION

(j2) I GET INPUT FILE FROM DISK 20

GET INPUT FILE'S DISK FILE HEADER

CHECK IF INPUT FILE IS ALLOWED
TO BE WRAPPED

_t

CALL WRITE WRAP (SEE FIG. 4D) PASSING DATA
(i5) BUFFER CONTAINING WRAP VERSION ID
AND WRAP OPTIONS

{

(j6) | CALL WRITE_WRAP (SEE FIG. 4D) PASSING DATA
BUFFER CONTAINING INPUT FILE'S DISK FILE HEADER

| | READ DATA FROM A DISK ROW OF THE
(7)] INPUT FILE INTO DATA BUFFER

| CALL WRITE WRAP (SEE FIG. 4D) PASSING DATA
(18) BUFFER CONTAINING INPUT FILE'S DISK ROW DATA |

(C1jx)

EXIT
MCP_WRAPPER

| YES

MORE DISK ROWS
FOR INPUT FILE?

CALL WRITE WRAP (SEE FIG. 4D) THE LAST TIME
i10) INDICATING NO MORE DATA TO COME, PASSING
' DATA BUFFER CONTAINING THE CALCULATED

| RUNNING CHECKSUM OF THE INPUT FILE'S DATA

FIGURE 4C: MCP_WRAPPER LOGIC TO DIGITALLY SIGN AND WRAP SINGLE FILES

U.S. Patent Jul. 2, 2002 Sheet 12 of 14 US 6,415,385 Bl

ENTER
(C1)5) WRITE_WRAP

WRITE_WRAP

(i5a) CALL DSASIGN WITH PRIME NUMBERS P,Q,G
TO SIGNATURE DATA IN THE PASSED-IN DATA
BUFFER. DSASIGN WILL ALSO GENERATE R & S
SIGNATURES IF THIS IS THE LAST CALL.

MORE DATA
TO COME?

(15b)

| ADDR & S SIGNATURES GENERATED BY
(J5¢C) DSASIGN TO THE END OF DATA IN BUFFER

L

Y

‘ WRITE DATA IN BUFFER TO OUTPUT I-:ILE‘:l
(j5d)

EXIT
(Cx) WRITE_WRAP

FIGURE 4D: WRITE_WRAP LOGIC
TO DIGITALLY SIGN AND WRAP SINGLE FILE

U.S. Patent Jul. 2, 2002 Sheet 13 of 14 US 6,415,385 Bl

DSAINFO/442 DSAKEYSFILE

(KEYID, SSR, P .Q ,G)

(KEYID, SSR, P, Q, G,
PUBLIC KEY)

DSATOOLS
(GETKEYS)

L i il

DSAKEYS/442

(KEYID, SSR, P, Q, G, PUBLIC KEY, PRIVATE KEY)

FIGURE 5: - CREATING A DSA KEYSFILE

U.S. Patent Jul. 2, 2002 Sheet 14 of 14 US 6,415,385 Bl

DSAKEYSFILE

(KEYID, SSR, P, Q, G)

SIGNATURED
FILE

SYSTEM DSA PRIVATE KE F ig, 6

FILE

FIGURE 6: - WRAP AND SIGNATURE A FILE

DSAKEYSFILE

(KEYID, SSR, P, Q, G _ | ORIGINAL
PUBLIC KEY) FILE

Fig. 7

[SIGNATUHED FILE

FIGURE 7: - VERIFY AND UWRAP A SIGNATURED FILE

US 6,415,385 Bl

1

DIGITAL SIGNATURING METHOD AND
SYSTEM FOR PACKAGING SPECIALIZED
NATIVE FILES FOR OPEN NETWORK
TRANSPORT AND FOR BURNING ONTO
CD-ROM

CROSS-REFERENCES TO RELATED
APPLICATTONS

This application 1s related to a application U.S. Ser. No.
08/962,468 entitled “Method and System for Wrapping
Single Files for Burning into Compact Disk” which 1ssued

as U.S. Pat. No. 5,983,295 on Nov. 9, 1999.

FIELD OF THE INVENTION

This system relates to methods for enabling and signa-
turing data files which are organized in a first native format
to be packaged (wrapped) and burned onto a Compact Disk
and to enable the packaged files to be transported via
standard protocols and utilized outside their native environ-
ment 1n networks utilizing different data formats.

BACKGROUND OF THE INVENTION

In the usage of modern computer systems and networks,
the situation arises where systems having one proprietary
protocol and data format are connected to systems having,
different data formats and protocols. Thus 1n order to pro-
vide for systems integration in different networks, i1t 1s
necessary that there be provided a system or method
whereby the data formats of a first system can be transferred
to and utilized by the network of a differently oriented
system.

For example, the Unisys A Series computer systems
involve a Central Processing Unit and memory together with
storage such as disk storage which operates under the
control of a Master Control Program. These A Series sys-
tems use a particular format for the data files compatible
with the A Series software which can be placed on
CD-ROMs. Thus, the CD-ROMSs which contain this A Series
software contain an 1mage of a formatted tape which can be
utilized only by the A Series systems.

However, when 1t 1s desirable to integrate a first system
such as the A Series systems for operation with other
platforms such as an NT system, then problems arise in that
the second system such as the NT system, utilizes formats
which are not compatible with the software formats of the A
Series system, which 1s the first system.

Presently, the software for a first system, such as an A
Series system with software, 1s utilized by providing meth-
ods to burn CD disks from a Library Maintenance formatted
tape. This method has the limitation 1n that 1t limaits the type
of files that are burned mto CD-ROMs to those of the native
A Series files.

Now, 1n order to provide for system integration where an
A Series system 1s to be coupled to a NT system, which
overall system would be designated as a Unisys ClearPath
system, the desirability here would be to make and use a

single CD-ROM disk which would carry both the A series
software and at the same time carry the N'T software.

Thus in this regard, a method 1s needed to couple the A
Series files with their native attributes and also arrange them
in a format capable of being stored on a particular media

such as a CD-ROM which will also hold the readable
software for the NT system.

The same system or method also provides the ability to
package files of a proprietary system in such a way that

10

15

20

25

30

35

40

45

50

55

60

65

2

allows the files to be transported across an open (non-
proprietary) network without losing their original character-
1stics. When such files return to their native environment,
their true data formats can be restored.

For example, the A Series systems have files with spe-
cialized attributes such as FILEKIND, CREATIONDATE,
RELEASEID, etc. When these files are transferred to a PC
running Windows NT, all those attributes will be lost. By
packaging the files and their attributes into standard, simple
text files, the new files then can be transported across any
open system (e.g., UNIX, NT). Upon reaching their desti-
nations (which are other A Series systems), the text files are
converted back to their native forms with all the right
attributes. This 1s 1deal for maintaining A Series data formats
in a heterogeneous networking environment.

A digital signature 1s calculated for every file as 1t 1s being
WRAPPED (packaged). This signature is calculated using

the Disk File Header (DFH) and the data within the file,
along with the Public/Private key pair. This will ensure that
there 1s no intentional corruption of the Disk File Header
(DFH) and the data as the file is shipped across a network.
It will also provide the receiver of the file a certain measure
of confldence as to the origin of the file. Additionally to the
signature, there will be calculated a checksum for entire
contents of the file, including the Disk File Header.

When a file 1s wrapped with a request for digital signature,
1its Disk File Header will have a checksum, its entire file will
also have another checksum, and a digital signature will be
calculated for the entire contents of the newly wrapped file.
The functionality of wrapping files with digital signature 1s
available through the WEFL syntax as well as through a
programmatic interface.

As a result, the Unisys A Series systems will provide a
programmatic interface to its Master Control Program
(MCP) which will provide a mechanism for “wrapping” files

with signature and for “unwrapping” signatured wrapped
files.

Wrapping 1s a term which 1s used to define the process of
packaging an A Series file, along with 1ts Disk File Header
information and a checksum and optionally a digital
signature, as a byte-stream data file, so that it can be
transported across heterogeneous networks and non-A
Series specific media, while still maintaining its native A
Series attributes.

Unwrapping 1s a term used to define the process of taking,
a previously “wrapped file” and coupling 1t with the infor-
mation from its original Disk File Header (DFH) in order to
restore the original native A Series file, as 1t existed prior to
being wrapped.

Thus, the problem of a software and {file format which 1s
oriented to one specialized system can now be transformed
in order to provide a format that 1s utilizable not just for a
first system, but also for a first and second system, whereby
the second system would not ordinarily be compatible with
the first system. Thus, it is desirable to allow files (created
on a Unisys ClearPath HMP/NX system or A-Series system)
to be transformed so they can travel across a completely
different system (such as NT) without loss of the file’s
original native characteristics.

The presently described system and method provides for
taking a first file format with native attributes such as used
in Unisys A-Series systems and developing a second gen-
eralized format for transport to an open network without
losing the native attributes and for burning into a CD-ROM
such that now this second file format 1s compatible for both
NT and other systems in addition to A Series systems.

US 6,415,385 Bl

3

The second file format will provide a signature to be
created for the entire file. This 18 so, since the checksum 1s
not sufficient to ensure that a Disk File Header has not been
intentionally corrupted, since the checksum algorithm 1s not
protected, and could ecasily be reproduced. A signed,
wrapped file can be sent to another user through e-mail,
through the Internet or put into an industry-standard

CD-ROM.

Thus, the packaged (wrapped) file can be transported to an
open network without loss of the native attributes and can be
burned onto an industry-standard CD-ROM without loss of
native attributes. In each case, a digital signature 1s gener-
ated to ensure the integrity of the packaged file.

SUMMARY OF INVENTION

An algorithmic sequence 1s implemented 1n software for
transforming files of a proprietary system into single
wrapped files with digital signature option. The new files are
stored 1n a standard text file format such that they can be
transported to and across an open network while still main-
taining their native characteristics. They can also be burnt
together with files originated from other platforms onto the
same industry-standard Compact Discs (CDROMSs) which
then can be viewed and utilized by a variety of systems.

The present system 1s applicable 1n the Unisys ClearPath
environment which involves a situation where two systems
are connected to and communicating with each other, for
example, such as that a Microsoft N'T platform and a Unisys
A Series platform can both read from the same Compact
Disc 1 a compatible fashion. Thus, this makes 1t possible to
put the NT platform software and the A Series platform

software all on the same CD-ROM.

The present system 1s also applicable in a heterogeneous
networking environment where one Unisys A Series system
needs to transport i1ts native files across computers of dif-
ferent platforms (for example, UNIX, Windows NT) to
another Unisys A Series system. The method enables native
files to be encoded 1n such a way that they can be treated as
simple text files by any computing platform and to be
restored back to their original forms by an A Series machine
without losing their native attributes.

For security and data integrity reasons, the Master Control
Program of the A Series computer generally cannot trust
files, particularly code files that come from external sources.
Thus, the method creates a digital signature for a wrapped
file to ensure that the file 1s not tampered either intentionally
or unintentionally during its transit.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1s a general overview of the present system for
digital signaturing and developing a transportable file;

FIG. 1B 1s a more detailed block diagram of the system
which enables digital signaturing, the packaging of a trans-
portable file and burning-in of a Compact Disk with a file
which 1s compatible to both a first protocol system and a
second protocol system;

FIGS. 2A (-1, -2, -3, -4) and 2B are flow charts indicating
the system of steps involved for burning a CD-ROM with
the data 1n a generalized protocol format suitable for Internet
fransmission and for compatibility with NT or other plat-

forms;

FIG. 3 1s an 1illustration of the format for a WRAPPED-
DATA file as a byte-steam f{ile.

FIG. 4A 1s a flow chart 1llustrating the overall process of
signaturing and wrapping single files;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 4B 1s a flow chart 1illustrating the MCP__
FILEWRAPPER logic to digitally sign and wrap single files;

FIG. 4C 1s a flow chart 1llustrating the MCP_ WRAPPER
logic to digitally sign and wrap single files;

FIG. 4D 1s a flow chart 1llustrating the WRITE__ WRAP
logic to digitally signature and wrap a single file;

FIG. 5 1s a block diagram to show creating a DSAKEY-
SFILE;

FIG. 6 1s a block diagram to show how to wrap and
signature a file;

FIG. 7 1s a block diagram to show how to verily and
unwrap a signatured file.

GLOSSARY ITEMS

1. A SERIES ATTRIBUTES: Native attributes that can be

assigned to a file to allow the system to control how the
file is accessed and used, and by whom (security
privileges). There are somewhere on the order of 450 such
attributes for Unisys A Series files.

2. A SERIES KEYS FILE: A native file, located on a
individual system, that contains license key information
used to control which features an individual system 1is
allowed to use for some features. License keys need to be
purchased by the user before the feature can be utilized on
the individual system.

3. ATTRIBUTE INFORMATION OF A SERIES FILES:
Specific attributes assigned to individual files stored 1n the
file’s Disk File Header (DFH) on Disk.

4. BYTE-STREAM FILE: A character oriented file with
FILESTRUCTURE=STREAM, MAXRECSIZE=1, AND
FRAMESIZE=8. This 1s a simple, non-executable, data
file that can exist on any kind of system.

5. DATA CD-ROM: See ISO 9660 Format (Item 12 below).
These CD’s appear like disks on A Series systems. Mul-
tiple user access 1s allowed to these CDs.

6. DIGITAL SIGNATURE: A digital signature 1s a hash
pattern created by applying an industry standard signa-
turing algorithm (similar to a checksum) to a file or data
stream, along with a private key. This hash pattern travels
with the file across a network and 1s used, along with a
public key, 1n order to ensure the file has not been
compromised (intentionally or otherwise) during the
transfer process.

7. CONTAINER: A single byte-stream file consisting of one
or more wrapped files, a simple directory of files stored 1n
the container, and optionally a digital signature.

8. CREATIONDATE: An A Series (Unisys) file attribute,
used to store the data and time a file was created.

9. FILEDATA—LFILE: An A Series (Unisys) program, or
utility, used to interrogate attribute information of native
A Series files.

10. FILEKIND: An A Series (Unisys) file attribute, used to
identify the internal structure of the file being accessed
(e.g. Algol symbol, Algol object code, character data, or
system directory).

11. INTERIM CORRECTION PROCESS (ICP): The pro-
cess used by Unisys computer systems to deliver software
updates to released products held by customers.

12. ISO 9660 FORMAT (A.K.A. ISO STANDARD
FORMAT, HIGH
SIERRA FORMAT): A standard format used for directo-

ries and files on CD-ROM disks. The presentation for the

information contained on these directories 1s at the operating

system’s discretion. On Unisys A Series systems, directories
and files are viewed using the standard Cande “FILES” and
ODT “PD” commands.

US 6,415,385 Bl

S

13. LIBRARY MAINTENANCE FORMAT: A Unisys pro-
prictary format for tapes containing multiple files used
primarily for archives, backup of restore, and transferring
of files among A Series systems.

14. LIBMAINT CD-ROM: A specially formatted CD-ROM,
created on an ISO 9660 Formatted CD-ROM, that con-

tains an 1mage of a Library Maintenance tape. This
appears to an A Series system as if 1t were a Library

Maintenance tape. Only one user 1s permitted access at a
time, and only COPY (and COPY-related) syntax, and

Filedata TDIR are allowed to act on this CD.
15. NATIVE A SERIES FILES: A file created on Unisys A

Series systems or ClearPath HMP/NX systems specifi-
cally for use on that same class of systems.

16. NON A SERIES FILES: Files that were created on
systems other than Unisys A Series or ClearPath HMP/

NX systems.
17. NEW FORMAT FILE: the Byte-Stream data file that

results from executing the WRAP process on an A Series
file.

18. NT SOFTWARE—CD BURN PROCESS: Any standard
“Olff-the-shelf” package capable of burning 1mages on to
a Compact Disk (CD) that runs on a Microsoft NT system.

19. P, O, G, keys: Primary numbers, stored 1n the system’s
digital signature keys file and used in the creation of
public/private keys as well as both signing files and
verifying the signatures of files, using the public and
private keys.

20. PUBLIC & PRIVATE KEYS: Public and private key
pairs are generated at the same time by a special utility.
These key pairs are used to create a signature and then
later check that signature to ensure that a file has not been
compromised. These keys are generated together and
must be used together to ensure the integrity of a file.
Under normal operations, the private key 1s intended to be
known only by the person or utility generating the hashed
signature of the file. This key 1s meant to be restricted. The
public key can be made available to any person or utility
wishing to check the signature to ensure the integrity of
the file once 1t has reached its destination.

21. PUBLIC/PRIVATE ENCRYPTION: A common meth-
odology for encrypting files so they may be transported
across an open network so as to use a public/private
password encryption scheme. Typically, the two pass-
words are programmatically generated at the same time
such that they can be used in conjunction with each other.
One password, the private one, will be used to encrypt the
file. The other password, the public one, 1s used by the
recipient of the file to decode 1it. Typically, a smear
pattern, or some clear text string, 1s added at the beginning
of the file before the file 1s encrypted. When the file has
been decoded using the public password, this smear
pattern should match what was originally placed in the
file. If the string does not match, it can be assumed that the
integrity of the file has been compromised.

22. RELEASE ID: A Unisys A Series {ile attribute, used to
store the specific release level that the software was
created for.

23. SHARE: A Directory or disk that 1s made available to
selected or all users across a network.

24. UNWRAP: The process of taking a previously wrapped

file (or data stream) and coupling it with the information

from 1ts original Disk File Header, to re-create the original
native A Series file as 1t existed prior to being wrapped.

25. WFL SYNTAX: Work flow language syntax, used to
control job flow on a system.

26. WFL UNWRAP syntax: Speciiic work flow language
syntax used to execute the unwrap process on a file, or

files.

10

15

20

25

30

35

40

45

50

55

60

65

6

2’7. WRAP: The process of packaging an A Series file, along
with 1ts Disk File Header information and a digital

signature, as a data stream, or as a byte-stream data file
(FILESTRUCTURE=STREAM, MAXRECSIZE=1,

FRAMESIZE-S), so that it can be transported across
heterogeneous networks and non-A Series specific media,
while still maintaining its native A Series attributes.
28. INPUT FILE: The already existing file that 1s to be
packaged into a byte-stream text file by the wrap process.
29. OUTPUT FILE: The resultant byte-stream text file

created by “wrapping” the mnput file.

30. DSA: Digital Signature Algorithm—used to create a
digital signature for a file or data stream. It should not be
confused with any data encryption algorithm since the

data 1s not encrypted by any means.
31. DSA INFORMATION SET: This term 1s used loosely

here. It 1s essentially the same as DSA Key Set, but
without the system DSA public key.

32. DSA KEY SET: A set of DSA iformation which
consists of {KeyID, SSR level, Prime P, Prime Q,G,

system DSA public key} for a particular software level.
Only one set 1s created for a software release.

33. DSA KEYSFILE: The system file that contains one or
more DSA key sets. If the file 1s titled as *SYSTEM/
DSAKEYSFILE and 1s stored on the halt/load pack, it 1s
considered as the active system DSA keysfile.

34. SIGNATURING: The process of applying the Digital

Signature Algorithm to a file while wrapping it 1nto a
WRAPPEDDATA or CONTAINERDATA file. The result-

ing file 1s said to be digitally “signatured” or “signed”.

35. SYSTEM DSA PRIVATE KEY: A DSA private key
created for the sole purpose of signaturing Unisys-
released software. It 1s kept secret by the Unisys Software
Releases (and/or Support Group). Only one system pri-
vate key exists per release. Its counterpart—the system
public key—is stored 1n the system DSA keysfile.

36. SYSTEM DSA PUBLIC KEY: A DSA public key
created for the sole purpose of verilying wrapped soft-
ware signed by the Unisys Software Releases (and/or
Support Group) using a corresponding system DSA pri-
vate key. Only one system public key exists per release

and 1s stored as part of a DSA key set 1n the system DSA
keysiile.

37. VERIFYING: The process of validating the digital
signature of a WRAPPEDDATA or CONTAINERDATA
file before unwrapping it.

38. WRAPPED FILES: Files created as a result of the
wrapping process—See Wrapping.

39. SL(SYSTEM LIBRARY): SL is a Unisys A-Series MCP
systems operation used to declare that a codefile or
program, 15 to be considered a “System Library” for
execution purposes. It allows for other programs to access
the functions in that library without knowing much of
anything about the library itself. The operating system
will have knowledge about where the library 1s located on
the disk, and control over which programs are allowed to
link to the library for the purpose of accessing its routines.

GENERAL OVERVIEW
As seen 1n FIG. 1A, a user terminal 8 1s connected to a

first operating system 14, such as a Unisys A Series

computer, having outputs to a disk A, 20 and a disk B,22.
A second operating system, such as NT platform system

30, utilizing the Microsoit Explorer program 30x, Internet or

c-mail program 30y, and a CD Writer Package 30w, com-

municates with disk C,24 so that the User terminal 8 can
initiate the CD Writer Package 30w to energize the CD Write

Module 32 in order to burn a file on to the compact disk

(CD) 34.

US 6,415,385 Bl

7

The disk A,20 holds data designated as MY/FILE. The
disk B,22 holds the data designated MY/NEW/FILE,23. The
disk C,24 holds the resultant data designated
C-MY\NEW\FILE,25. The data 25 of disk C,24, 1s con-
trolled by the CD Writer 30w for transmittal to the CD Write
Module 32 for burning into the compact disk (CD) disk 34.
The Internet/e-mail programs 30y enable transmittal of a
packaged file (wrapped) to the open network 40. It may also
be noted that Disk A and Disk B could actually be the same
physical device. It 1s not necessary that they always be two
separate entities.

In summary, the User terminal 8 will use the channel
marker cycle designated 101 to the first system computer 14
with a WFL WRAP [input file]| as a [output file| from the

[input disk media] such as disk A over to a [output disk
media] such as disk B,22.

Then using channel marker cycle designated 102, the
User terminal 8 will communicate with the NT system 30

having Microsoit Explorer 30x, 1n order to start an operation
which drags the file from the A Series” disks A,20, and B,22,

and drops the file on to the N'T systems’ disk C 24.
The User terminal 8 using the designated channel marker

cycle 103 then executes the CD Writer Package 30w by
initiating the CD Write Module 32 in order to burn the file
25, CCMY\NEWVFILE, on to the CD (compact disk) unit 34.

Finally at this time, the resultant file data on the compact
disk 34 1s 1n a protocol compatible for usage by other
platforms.

In FIG. 1A, the second system designated as the NT
system 30 could also be designated alternatively as a UNIX
system, 1n which case, the NX services 50 shown 1 FIG. 1B
would not be required and the Microsoit Explorer program

30x of FIG. 1A would be replaced by the industry-wide
standard File Transfer Protocol (FTP).

FIG. 1B will be subsequently described herein to indicate
the hardware system 1n greater detail.

DESCRIPTION OF PREFERRED EMBODIMENT

Referring to FIG. 1B, there 1s seen a drawing of the major
clements involved 1n the present system.

A first system 1s shown, for example, such as a Unisys A
Series computer operating system 14 which 1volves a
Central Processing Unit 12, a main memory 18, a microcode
memory 16 which is managed by the MCP 10 (Master
Control Program). The CPU 12 is also supported by a

storage media 20, Disk A, which carries an original file 21,
designated MY/FILE which 1s formatted suitably for the first
system such as the A Series computer system 14 and Disk
B,22, which will be enabled to carry a new {ile designated
MY/NEW/FILE, which 1s formatted for transport to a sec-

ond system.

Now, 1n the sense of 1ntegrating to other systems, there 1s
scen a second system called the “NT System 307
(alternatively a UNIX, IBM or other system) which is a
platform developed by the Microsoft Corporation of
Redland, Washington. The NT System 30 i1s seen having a
storage medium 24 such as Disk C, which will eventually be
provided with a resultant file 25 designated
C:MY\NEW\FILE (Item 25).

The A-Series system 14 1s provided with a WFL (Work
Flow Language) compiler 15 which 1s an interpretive lan-
cuage capable of taking User mstructions and translating
them into Operating System (O.S.) procedure calls. The

MCP 10 has a relationship to the NT system 30 through use
of a NX services unit 50.

NX/Services 1s a software unit used to integrate MCP

operations with NT platform operations through the use of
a Microsoft (MS) Standard RPC (Remote Procedure Call)
interface.

10

15

20

25

30

35

40

45

50

55

60

65

3

The WFL compiler 15 1s an interpretive compiler which
provides a new language syntax using the word “Wrap”.

The Operator Terminal 8 of FIG. 1B, 1s the operator
interface 1n which an operator would enter a command such
as WRAP MY/FILE AS MY/NEW/FILE FROM A TO B,
which 1s the file 21 sitting in Disk A and MY/NEW/FILE
which is the file 23 (FIG. 1B) residing in Disk B. This
command is transmitted through the MCP (or Master Con-
trol Program 10) in order to initiate the action of the WFL
compiler program 135.

The MCP 10 then calls the MCP__ FILEWRAPPER rou-
tine 36 passing parameters built by WEL 15 as the mput to
this routine. The MCP__ FILEWRAPPER process 36 will
then take the original MY/FILE 21 from Disk A, 20 and
convert 1t to a new file designated MY/NEW/FILE 23 and
deposit this mto the storage disk B,22.

The MCP__FILEWRAPPER process 36 will call the

NCP__ WRAPPER 38 routine indicating that the data should
be processed, wrapped, and signed.

Thus, the NCP_ WRAPPER routine communicates back
to Disk A and reads the file starting with the file’s Disk File
Header (DFH) information and then its rows of data. For
cach buffer it reads, MCP__ WRAPPER calls the WRITE__
WRAP routine 39 to calculate the running signature for the
data, as well as write the data out to the temporary output file

MY/NEW/FILE on Disk B.

When there are no more rows of data, the MCP__
WRAPPER routine 38 calls WRITE WRAP the last time

passing the checksum on the contents of the whole file. The
WRITE__WRAP routine 39 determines the final digital
signature and then writes both the checksum and the signa-
ture to the output file MY/NEW/FILE on Disk B before
returning to MCP_ WRAPPER.

The MCP__WRAPPER routine returns to MCP__
FILEWRAPPER and tells it to make the file MY/NEW/
FILE on Disk B permanent. As a result, there 1s now a data
file provided onto the storage Disk B,22. This file,
MY/NEW/FILE, 1s now available to the NT system platform
30 from the file 23 residing on Disk B,22.

Another example of a problem that arises 1s the situation
where there are two separate and different A Series
computers, whereby the first computer has data and infor-
mation (files) which it is desired to give or present for use
by the second computer system. Normally, 1f the first system
file 1s 1n object code, 1t 1s then necessary to put it on a tape
and mail 1t to the second computer User or alternatively, to
have the first system and second system connected to each
other through a proprietary network connection. However,
this 1s sometimes a long and cumbersome process, when 1t
would be most desirable to be able to transmit it electroni-

cally to the second user through an open network such as
e-mail or FTP (File Transfer Protocol).

Thus 1n the present system, the first computer system user
would take his file and do his wrapping operation using
either the Work Flow Language (WFL) statement WRAP or

a user program that interfaces with the MCP routine MCP__
FILEWRAPPER (or MCP__ WRAPPER if no digital signa-

ture 1s required).

Thus, what has been accomplished 1s to take an original
A Series file and repackage it, allowing the resultant file to
be transported across an open network or to be burnt onto a
PC-readable CD-ROM without losing the file’s native
attributes. When the file 1s loaded back to its native
environment, 1t will be restored to its original state.

It should be noted that once the new file 23 has been
placed on storage Disk B, 22, then by the use of the NX

US 6,415,385 Bl

9

services 50, this new file 23 can be transmitted to the NT
system 30. Thus, the NT system with 1ts hard Disk C,24, can

now receive and utilize the new file (as C:MY\NEW\FILE)
which came from the storage Disk B,22.

Another problem aspect mvolved 1s when an operator
wishes to take a file from a first system, such as an A Series
system program and copy it mnto a UNIX box or an NT
box—that i1nformation cannot normally be transported
because of the format and protocol differences.

Thus, the specialized structure and format of the A Series
native files which normally could not be moved across a
network, would have to be reconstituted and stored as part
of the data in the data file and then made into a regular
character data file of a common format such that any
operating system can read it. This would be a byte-stream
data file which could be read by any platform, whether 1t be

a UNIX box, an IBM box, or a NT box. Thus, resultantly
there 1s now a {ile that any platform can read.

In what 1s called the “Unwrapping” operation, all the
time-stamped dates are reapplied, all the disk, row, address
information 1s supplied, the file 1s rewritten row for row,
secgment for segment, exactly as it looked on the original
system. Thus, 1f there were “spaces” at the end of the
scgment on the original file, there will also be the same
spaces at the end of this segment on the resultant file. This
1s s0 because all this information 1s 1n the file’s Disk File

Header.

Thus, what has been accomplished 1s to take a first
original native file and repackage it, by burning the file into
a CD-ROM, so it can be transported anywhere to a second
location, and then be loaded to act like the original file.

One method of getting system software out from the
originator to a customer 1s on a Compact Disk, that 1s a
CD-ROM, which has specially formatted arrangements 1n
order to transmit A Series software. However, these files
often are not always an industry standard format.

Customers often ask saying that they have a Compact
Disk writer on their PC and they want to know—"“how do I
format a file so that I can distribute software to my other
terminals” or to other customers that they have in their area?

Thus, the present system allows these recipients to down-
load these files to their personal computer and then burn
them 1nto a Compact Disk and send them to their local
co-workers or to their other customers. The burned-in files
on the Compact Disk are burned using Industry Standard
format for compatibility to other systems platforms, such as
NT system platforms, UNIX system platforms, IBM system
platforms, DEC System platforms and Unisys A Series
system platforms.

Thus, the present system operates such that operators
using the A Series systems can unwrap their files directly
from an industry compatible Compact Disk, so that the file
1s usable just by putting the Compact Disk into the A Series
system and giving it the command to “Unwrap Files”. The
files and software can then be received for utilization.

The present system requires the packaging of native files
of a first computer system such as a Unisys A Series system,
in such a way as to allow them to co-exist on the same
CD-ROM media, as non-native files. This packaging of files
also allows for the transport of the native (A Series) files
across heterogencous networks, while still maintaining
information on their native (A Series) attributes.

Previously CD-ROM’s contained native A Series soft-
ware on CD disks which were burned from a library main-
tenance formatted tape. However, this limited these types of

10

15

20

25

30

35

40

45

50

55

60

65

10

files to only be useful for native A Series systems which are
formatted for native A Series files. The present system
provides an expanded ability for burning the native A Series
files of software for a first computer system. onto CD-ROM
disks which will be compatible with suitable files for a
second computer system, such as a Microsoft NT system and
other platforms.

The native formatting of A Series files had attributes such
as FILEKIND, CREATIONDATE, and RELEASEID,
which now need to be placed 1n a format capable of being
stored on a disk media which 1s using an industry-standard
file format.

As mentioned earlier, “Wrapping™” 1s a term used to define
the process of packaging a native A Series file (first com-
puter system) along with its Disk File Header information,
(plus either a checksum, or optionally a digital signature), as
a byte-stream data file (FILESTRUCTURE=STREAM,
MAXRECSIZE=1, FRAMESIZE=8) so that it can be trans-
ported across heterogenecous networks and non-A Series
specific media, while still maintaining its native A Series
attributes.

The “digital signature” i1s created using an industry-
standard public key/private key signaturing algorithm which
provides a measure of security in that 1t allows a user
confidence as to where the file originated from. The present
system encompasses the Master Control Program (MCP),
the Work Flow Language (WFL) program, and the FILE-
DATA work necessary to wrap liles by packaging them into
new, byte-stream files (wrapping) and later restoring them to
their original native A Series format when needed for A
Series systems (Unwrapping).

New WEL Syntax

This mnvolves a new work flow language syntax, so that
arrangements are made 1n the WFL compiler 15 to support
the new syntax which will have some similarity to a previous
Library Maintenance MOVE command. The new syntax
allows a User to wrap either a single {ile, a list of files, or a
directory of files, in addition to subsequently enabling the
unwrapping of these files, by specitying both the input file
and the output file, or the directory fitle and location.
Added Programmatic Interfaces

A programmatic interface 1s provided that will allow the
User-Caller to pass a native A Series file’s title and location
as “1mnput” along with an “output” file, title and location. The
“output” file will be a “byte-stream” file with a beginning
data block containing (1) an identification string; (ii) the
original files Disk File Header information; (iii) the file itself
as byte-stream data; and (iv) an ending block containing a
checksum, and optionally a digital signature.

Thus, the added programmatic iterface allows the caller
to pass byte-stream file’s title and location as input, along
with an output file title and location 1f needed, for use of the
“unwrapping process. The “resultant file” will be a native
A Series file created with the output file and location, but
also containing the data and all of the native A Series
attributes of the original file.

Single Procedure Call

This first programmatic interface will allow put and
output directory names to be passed 1n order to wrap or
unwrap a directory of files with a single procedural call. This
also allows for a single output “container file” to be created
from multiple input files.

Second Programmatic Interface

This interface 1s created to allow a caller to pass the A
Series file’s title and location as “input”, together with an
“output” procedure. The data returned to the caller’s output
procedure will be a stream of data with (i) a beginning data

US 6,415,385 Bl

11

block containing an identification string; (i1) the original
file’s Disk File Header information; (ii1) the file itself as
byte-stream data; and (iv) an ending block containing a
checksum or a digital signature.

Functionally, the second programmatic interface will also
allow the caller to pass an 1nput procedure, along with the
fitle and location of an output file. The data passed to the
input procedure here would consist of a stream of data, with

a beginning data block containing the identification string,
the original file’s Disk File Header (DFH) information, the

file 1tself as “byte-stream data”, and also an ending block
containing the checksum and optionally the digital
signature, which 1s basically the same information that was
passed to the output procedure when the file was originally
wrapped. Here, the “resultant file” will be a native A Series
file created with the output file ftitle and location, but
containing the data and all of the native A Series attributes
of the original {ile.

New FILEDATA Syntax
New syntax has been added to the FILEDATA LFILEs

command 1n order to specily that the file being mterrogated
is a WRAPPEDDATA file. If this is a WRAPPEDDATA file,

then FILEDATA will report the “attributes” of the native A
Series file contained within the wrapped data file, rather than
the attributes of the “wrapped” data file itself.
WFL Wrap Command

This 1s the Work Flow Language wrap command usable in
a first system computer such as the Unisys A Series com-
puter system which can be executed to initiate the action of
taking specialized formatted native A Series files and turning
them into byte-stream files which can later be burned onto
CD-ROM disks. Thus, the software files of a first computer
platform, such as the Unisys A Series system, can now be
made able to co-exist on the same data CD-ROM’s as other

types of software which 1s not A Series software.
KEYSFILES

The system will provide the use of A Series KEY SFILE
which will also be wrapped using the new WFL syntax. This
resulting file will also be burned onto the CD-ROM.
Normally, the Unisys A Series KEYSFILES are shipped on
separate tapes from the rest of the software releases, so that
in the present situation, the newly wrapped KEYSFILE will
be shipped on a separate data CD-ROM separate from the
rest of the A Series release software files.

The A Series KEYSFILE 1s a file on each A Series system
used to store License Key information for the individual
system 1n order to determine which of the Unisys licensed
features the user has purchased for use on that system.

The new WFL UNWRAP syntax can be used to unwrap
the KEYSFILE off of the CD, while copying it mnto the A
Series system. Once the file (as KEYSFILE) has been copied
onto the A Series system, then a IK MERGE can be
performed. IK MERGE 1s the system command used to

merge the data from the new KEYSFILE (unwrapped from
the CD ROM on to Disk) on the A Series system into the

system’s current KEYSFILE.
Digital Signature Algorithm

The acronym DSA refers to the digital signal algorithm
(DSA). The DSA public and private key are a function of a
large prime numbers designated P,Q,G, which are generated
by the digital signature algorithm. When “signing” a given
file, the DSA requires the values of P,Q,G, and their private
key to produce a digital signature which consists of two
large 1ntegers designated R and S. When this message 1s to
be veriflied, the verification process asks for a set of data
designated [P,Q,G, PUBLICKEY, R, S].

A user 1s only concerned with the public and the private
key pair. However, since prime numbers P,Q,G,R,S, are

10

15

20

25

30

35

40

45

50

55

60

65

12

inherent and required 1n the creation and verification of a
“digital signature”, there must be provided a way to manage
them and make their presence essentially transparent to the
user. R and S are easy to handle because they are created
during the “signing” process of a WRAP operation, so that
their values are readily available to be embedded in the
WRAPPED file. The handling of elements P,QQ,G, on the
other hand, 1s more complex because their values must be
supplied from an “external source”, (that is to say, the user),
to the WRAPPING function.

Thus questions and decisions arise regarding (i) how
should P,Q,G, be generated? (i1) Since the generation pro-
cess consumes so much resources, how often should P,Q,G,
be generated, that 1s to say, should 1t be on a per-run basis,
on a per-user basis, or otherwise? (ii1) Since each binary
value occupies an array of 11 words, how would a user
handle such large values, since the manual typing of these
values would be unnecessarily time-consuming? (iv) Then,
what kind of user interface should be provided to accom-
modate the P,Q,G, public key and private keys? How would
they be handled by the Work Flow Language statements of
WRAP and UNWRAP? (v) Should the items P,Q,G, be
embedded within the WRAPPED FILES? And 1f so, would
that compromise the security of the file, if the file 1s
intercepted when 1t 1s transferred across an open network?

The solution to these types of problems and questions will
be delineated 1n the following paragraphs.

Overall Process

For each software Release made, a special Release group
will run a special utility that generates the values for P,Q,G,
public and private keys. This particular set [ID, software
level, public key, P,Q,G] will be stored by the utility as a
record of the new KEYSFILE called *SYSTEM/
DSAKEYSFILE.

The Release group will use the “private key” during the
WRAP process to “sign” all the required system soft-
ware files for that particular level.

The DSA (Digital Signature Algorithm) KEYSFILE will
be distributed to customers in the same manner as the
existing SYSTEM/KEYSFILE. Upon receiving the
DSAKEYSFILE and the system software, the customer
installs the KEYSFILE into the system and starts
UNWRAPPING WRAPPED software without the need for
specifymng a public key.

When a user wants to WRAP his files with the “digital
signature option”, he must obtain a DSA keypair. Keypairs
can be generated by writing a program that calls the MCP,

MCP__ GENERATEDSAKEYS procedure.

The private key would then be supplied to the WRAP-
PING routine (for example, through the
TASKSTRING) attribute of the WFL__WRAP
statement). The public key would be given to the

receiver of the files. When these files are to be
UNWRAPPED, a correct public key must be provided

(for example, via the TASKSTRING attribute of the
WFL UNWRAP statement) for the operation to suc-
ceed.
Handling DSA Value During Wrap and Unwrap
The WRAPPING routine, upon recognizing that a digital
signature 1s required, obtains the P,Q,G, values from the
active DSAKEYSFILE for the System Software Release
(SSR) level that the system is currently running on. It then
provides these values, along with the user-furnished private
key, to the DSA “signing routine”. This routine, after sig-
naturing the file, returns two large integers, R and S. These
two 1ntegers, along with the current SSR level, can be stored

within the file by the WRAPPING process.

US 6,415,385 Bl

13

When this file 1s UNWRAPPED, the UNWRAPPING
routine gets P,QQ,G, values from the active DSAKEYSFILE
based on the SSR level 1t extracts from the file. The file’s R
and S values, along with P,Q,G, and the user-supplied public
key, are then passed to the DSA signature verification
routine. If there is no user-supplied public key (as is often

the case of System Software WRAPPED by the Release
group), then the public key from the active DSAKEYSFILE

1S used.
Checksum

A checksum is calculated for the Disk File Header (DFH)
for every file as it 1s wrapped. This ensures that there 1s no
unintentional corruption of the Disk File Header as the file
1s shipped across a network. It also provides the receiver of
the file some measure of confidence as to the origin of the

file.
In addition to the checksum for the Disk File Header, a
checksum 1s also calculated for the entire context of the file

including the Disk File Header (DFH).
Signature and Checksum (Prevention of Corruption)

The checksum will not normally be sufficient to ensure
that a Disk File Header has not been intentionally corrupted,
since the checksum algorithm 1s not protected and 1s fairly
casy to reproduce. There 1s significant overhead to validate
the Disk File Header if there were no protection of the
structure, other than the simple checksum. Thus, without any
real protection for the Disk File Header, 1t would be neces-
sary to create an entirely new Disk File Header for the
original file, and then separately validate every attribute of
the header before 1t could be considered trustworthy for
application.

The Master Control Program (MCP) 10, FIG. 1B, will
assume that a Disk File Header 1s a valid piece of data.
However, 1t 1s necessary to validate the Disk File Header
before the rest of the file has even been retrieved, since even
the 1nformation regarding the “size” of the file 1s stored in
the Disk File Header. In order to insure that there was no
intentional corruption while the file was 1n transit and also
provide the “receiver” of the file with some insurance that
the sender of the file was indeed that who the receiver
expected it to be, a digital signature may be requested when
the file 1s wrapped by specifying a private key with which to
identify the signature file while wrapping. The receiver
“must” specily the file’s public key 1n order to verify the file
when unwrapping it.

Public/Private KEYS for Signaturing

A KEYS generation utility 1s provided as a separate utility
to generate public/private key pairs to be used when signing
files. Public/Private key pairs are generated using the new
utility 1n order to be used by the wrapping interfaces for
signaturing files. Users who wish to create their own utility

can write a program to interface with the MCP procedure
MCP__ GENERATEDSAKEYS.

WRAPPEDDATA FILE Format

With reference to FIG. 3, there will be seen the format of
the WRAPPEDDATA FILE which will be a simple byte-
stream file. This file, as seen 1n FIG. 3, will contain several
sections. The first section (1) is the word UNISYS “000010”
which will be “EBCDIC” data used to indicate that this 1s
likely to be a Wrapped file. The number associated with this
identifier may be changed if the format of this file 1s
changed.

The second block (i1) labeled “options” contains the
options used when wrapping the file, such as the identifier to
be used to locate the “public key” information in order to
verily a file containing a digital signature.

The third block of FIG. 3 is (ii1) designated as the Disk

File Header, which involves a copy of the actual A Series

10

15

20

25

30

35

40

45

50

55

60

65

14

Disk File Header for the file. This will become the actual
Disk File Header for the file when 1t 1s restored to its native

format after a “unwrap” operation. Additionally 1n block
(i11), there is seen the Header checksum, which is a separate

checksum for the Disk File Header itself.
The fourth block (iv) of FIG. 3 indicates “the file” which

involves the contents of the file itself, written as byte-stream
data.

The fifth block (v) of FIG. 3, is designated as “checksum”,
which will be a single word of 48 bits calculated for the file
and the disk file header combined, using a private key from
a public/private key pair.

The sixth section (vi) shows the digital signature as being
composed of Section R and Section S. The Section R
includes 11 words or a total of 528 bits. Likewise, the
Section S imncludes 11 words of a total of 528 bits. This
constitutes the digital signature portion of the transmitted
file which has been wrapped.

DSAKEYSFILE File Format

The new system 1nvolves a keys file called “SYSTEM/
DSAKEYSFILE”. This file 1s stored and managed similarly
to the manner of existence on earlier A Series systems which
used the “SYSTEM/KEYSFILE”. This {ile 1s used to store
records of ID, software level, public key, PQG. These
involve the following;:

(1) ID: This 1s a unique and meaningful EBCDIC string
with a length of up to 17 characters which 1s used for
external display and for identifying the set.

(11) Software Level: This is a real number that identifies
the software level involved.

(111) Public Key: This 1s a system DSA key generated
along with a system private key based on certain prime
numbers designated P, Q, G. This key 1s subsequently
used 1n the “Unwrap” process of the A Series software.

(iv) P,O,G: These are prime numbers generated by a
special utility. For a given set of (P,Q,G), there are a
variety of public and private key pairs which can be
generated.

The DSAKEYSFILE 1s an unblocked file which consists
of records whose maximum record size 1s 60 words 1n
length. The general information record contains miscella-
neous data about the file, for example, version, number of
scarch table records, number of key entries, etc. This record
1s then followed by one or more search table records which
in turn, contain a number of four word search entries.
Following the search table records are the data records with
cach containing a different set of [ID, software, public key,
P,Q,G].

The main purpose of the DSAKEYSFILE 1s to store the
P,Q,G primes used when creating public and private key
pairs. It 1s also used to store system public keys which are
normally about 60 characters long, so the caller of Unwrap
does not need to enter this character string every time when
he unwraps Unisys’ signed software.

This procedure involves a further procedure entitled
“GET_DSA_PQGKEY” which obtains the corresponding

set of [P,Q,G, system public key| from the active DSAKEY-
SFILE based on the SSR level and return the set to the caller.
Interface Operations

This system involves new work flow language (WFL
commands) designated as WRAP and UNWRAP which are
provided to allow Users a simple method of mmvoking the
new 1nterfaces of this system.

There are two new FILEKIND values created to identify
the files of the new format. These will help to prevent users
from accidentally using the WRAP syntax to act on a file that
has already previously been wrapped.

US 6,415,385 Bl

15

There 1s basically now provided two new programmatic
interfaces designated as (i) MCP__ FILEWRAPPER and also

(i1) NCP_ WRAPPER. These programmatic interfaces are
exported out of the Master Control Program (MCP) 10.
FILEKIND

This 1involves a set of values which will aid 1n 1dentifying,
files that have been wrapped as long as the files have never
left the environment of the first computer system, that 1s to
say, the A Series computer. Once the file has then been
copied 1nto a non-A Series system, and then back on to the

A Series system, this information 1s lost. The main purpose
of new FILEKIND value 1s to ensure that a user does not

accidentally attempt to WRAP an already WRAPPED file,
as would be the case if a WFL WRAP command was

executed on a directory of files and then the system did a
Halt/Load before all of the files of a directory were wrapped.
If the job were to restart after the Halt/Load, the WRAP
command would begin to act on the directory over from the
very beginning. If a file 1s encountered with a FILEKIND or

with a WRAPPEDDATA value, that file will be skipped, and
an error message will be 1ssued for the file indicating that the
file had already been previously wrapped.

Work Flow Language (WFL)

The Work Flow Language syntax 1s provided to allow a
user easy access to the new programmatic mterfaces. The
new WFL commands permit the user to access the new
interfaces to mstitute a wrap or an unwrap action without
having to know the layout of the imterfaces or having to
create a program to call up these interfaces.
TASKSTRING

This 1s a data structure that contains private or public key
information for either signaturing or for verilying the sig-
nature of the file. Thus, for a “Unwrap” operation, the
TASKSTRING will be used to specily the public key that
should be used to verily the signature that was calculated
when the file was wrapped. Then conversely, for the WRAP
operation, the TASKSTRING 1s used to specity the “private
key” that should be used to calculate the signature of the file.
MCP FILEWRAPPER Interface

The newly developed MCP__ FILEWRAPPER program 1s
used for Work Flow Language support and User programs.
A User can call this program specitying either a “Wrap” or
an “Unwrap” action along with the title and the location of
both the 1nput files and the output files. Of course, the input
file specified for a “Wrap” operation must not have a
FILEKIND of WRAPPEDDATA. Further, the caller must
have the proper privilege for both the mput and the output
files or directories.

The MCP__ FILEWRAPPER program involves proce-
dures which return errors. These errors are returned as
display messages 1f the procedure 1s called from the Work
Flow Language (WFL).

MCP Wrapper Interface

When this interface program 1s called to “Wrap™ a file, 1t
takes a standard form name for an existing A Series file,
along with an output, or Write, procedure. The A Series files
Disk File Header (DFH) will be checksum passed the output
procedure as data along with the checksum. Then the file
itself will be read and passed on to the output procedure as
data. Finally, there will be provided (optionally) a calculated
digital signature or a checksum for the entire file which will
be passed to the output procedure as data.

When the MCP__ WRAPPER program copies a {ile from
disk (1.e. “Wraps” the file), it updates the files COPY
SOURCE time-stamp in the Disk File Header (DFH) of the
A Series file that has been wrapped.

One of the parameters for the MCP_ WRAPPER 1s the
procedure designated IOWRAP. IOWRARP 1s the procedure

10

15

20

25

30

35

40

45

50

55

60

65

16

being passed, either as an output or a WRITE procedure for
Wrap or an 1nput or READ procedure for the Unwrap. The
parameters for IOWRAP involve (i) LGTH which indicates
the length array data in bytes; (i1)) DATA is the array
containing the data to be written when for wrapping or
READ for unwrapping.

[t 1s significant to note that a Disk File Header (DFH) can
involve data up to about 20,000 words long. Thus, the
IOWRAP parameter procedure must be able to handle at
least 20,000 words in the data array in one call.
Algorithmic Sequence for Burning a Compatible Compact
Disk 1nto a Standard Industry Format

FIGS. 2A (2Al, 2A2, 2A3, 2A4) and 2B illustrate the
various sequential steps mnvolved in programming a file
which 1s taken from a first format system, such as an A Series
file, and converting 1t to a standard industry format file
which 1s compatible for other platforms, such as the NT
platform.

Referring to FIG. 2A-1, the source User will initiate the
operation at marker cycle 101 for developing the Compact
Disk by entering at step (a) the command WFL WRAP
MY/FILE AS MY/NEW/FILE from Disk A to Disk B.

At ¢(1) step (b), this command is parsed and passed from
the WFL compiler 15 over to the operating system 10 and
into the routine 36 designated MCP_ FILEWRAPPER.

At step (c), the MCP__ FILEWRAPPER program will then
verily the names of the files, then open up a new file
MY/NEW/FILE to be outputted, 1t will verity the options
and then call step (¢) as seen in FIG. 2A-1.

At step (ci1), the MCP__FILEWRAPPER routine will
close and save the output file when the MCP_ WRAPPER
program returns to the MCP__ FILEWRAPPER.

At step (d) an output procedure is executed which pro-
vides for an array of data file information and whereby this
array is written to an output file (MY/NEW/FILE).
Additionally, any I/O errors are returned to the User or
caller.

At step (e) of FIG. 2A-1 there is involved the MCP__
WRAPPER operation. At step (e), the software operation
involves verifying the mput file fitle, and opening the file;
verifying the options for wrapping the file; verifying the file
license applicability by calling the operating system and
verifying the feature key.

Then subsequently, (as seen in FIGS. 2A-2 through 2A-4)
the step (¢) involves a series of sub-steps going from (e)(1)
over to (e)(xi1). These involve the following;:

At step (e)(1), the MCP-WRAPPER operation will copy
the 1input files and send a Disk File Header to an intermediate
local storage array in memory. This array provides tempo-
rary data storage so that there 1s no chance of accidentally
acting on the “real” DFH or data for the {ile.

Then at step (e)(11), the MCP_ WRAPPER operation will
add a checksum to the end of the array.

At step (e)(ii1), the program will save the checksum in a
local variable, and then at step (e)(1v), it will call the output
procedure (d) in order to Write the Disk File Header (DFH)
to the output data file.

Continuing from step (¢) of FIG. 2A-1 which has called
in the MCP_ WRAPPER operation step (e), it will be seen
that the output procedure (d) is invoked by this step (e) at e
(iv), FIG. 2A-2, MCP__ WRAPPER operation to pass the
mput file data over to be written to the new byte-stream data
file at step (d), FIG. 2A-2.

At step (e)(v), FIG. 2A-3, the software will cause a Read
of the mput file using disk row addresses of the Disk A, one
at a time, until there are no more disk row addresses for the
file. When the disk row addresses are exhausted, the soft-

US 6,415,385 Bl

17

ware will proceed to step (e)(viil). Then at step (e)(vi), the
program will pass information in the array onto the output
procedure (d) in order to Write the array information to the

output file. For descriptive purposes, the “input” file 1s the
file being “Read”, (MY/FILE) while the “output” file 1s the

new file being created or written (MY/NEW/FILE).

At step (e) (vii), the program calculates the running
checksum for each row and adds this on to the checksum
variable. Using the local checksum variable, a checksum 1s
calculated for the enfire file as 1t 1s being repackaged. This
checksum will reside 1n the file and be later used by the
unwrap operation to verily that the file was not unintention-
ally corrupted while transferring across a second system
platform.

Then at step (e)(viii), the program will call the output
procedure (d) FIG. 2A-4 and pass the checksum to write the
checksum value over to the output data file, (Disk B).

At step (e)(ix), the program will close the input file, and
at step (e)(x), will update the time-stamp information for the
original file (A Series DFH Attribute Information).

At step (e)(xi), the program will set time-stamps in the
disk file header (DFH) for the input file (Disk A) and then
return [step e(xii1)] to the MCP__ FILEWRAPPER procedure
from where 1t was called.

MCP_ FILEWRAPPER continues at c(i1), FIG. 2A-4, and
will then close and save the output file (NY/NEW/FILE) on
Disk B.

MCP__ FILEWRAPPER will then continue on to process
the next file in its list (if there is one) by returning to c(i),
FIG. 2A-1. Otherwise, 1f there are no new files to process,
then MCP__ FILEWRAPPER will Exit, thus returning (with
any error information) to its Caller. This completes the
operation for marker cycle 101.

Now referring to FIG. 2B, the source user will initiate at
(f) the operation (marker cycle 102 of FIG. 1A) to drag the

file (MY/NEW/FILE), using the Microsoft Explorer
program, from the shared Disk B,22 over to the local Disk
C,24 where 1t becomes C:MY\WEW\FILE. Then Source
User 8, using marker channel cycle 103 will initiate the CD
Writer package.

The shared disk would be a LAN connected Disk B
owned by the first system, that the PC has access to.

At step (g), on marker cycle 103 (of FIG. 1A and FIG.
2B), the User 8 will execute (within the client terminal 30),
a CD-WRITER package 1 order to burn the file onto a
Compact Disk, 34.

At step (h), FIG. 2B, the Compact Disk 34, once it has
been burned with the files, can be removed and delivered to
a customer-client terminal for that party’s PC (Personal
Computer) platform.

After a preliminary discussion of the Digital Signal
Algorithm, then subsequently the description of FIGS. 4A,
4B, 4C and 4D, will provide a sequence for WRAPPING a
native file into a text stream data file and generating the

signatures which can be used to guarantee reliability of the
data.
The DSA Utility

The Digital Signal Algorithm (DSA) utility has a symbol
file designated SYMBOL/DSATOOLS. When compiling
this symbol file with the compiler option set at
“INTERNAL”, a non-restricted version of the utility 1is
produced, otherwise, a restricted version of the ufility 1s
produced. This latter version only provides the capability to
ogenerate DSA public/private key pairs from a DSAKEY-
SFILE and 1s intended for general use.

The symbol file for the DSA utility provides certain
functionalities which include:

10

15

20

25

30

35

40

45

50

55

60

65

138

(1) the ability to generate key pairs from a sequential file
containing sets of DSA information.

(i1) the ability to create or to add DSA key sets to a
DSAKEYSFILE.

(111) the ability to delete DSA key sets from a DSAKEY-
SFILE.

(1v) the ability to dump contents of a DSAKEYSFILE into
a “sequential file” (regular text file).

(v) the ability to merge a DSAKEYSFILE into the active
*SYSTEM/DSAKEYSFILE.

(vi) the ability to copy certain DSA key sets from one
DSAKEYSFILE and store them into another KEY-
SFILE.

Both of the above versions of the code file must be

executed under a “privileged” User code.

The restricted version of the DSA utility 1s designated
“OBJECT/DSATOOLS™.

A non-restricted version of the DSA utility 1s designated
“OBJECT/DSATOOLS/FULL”.

A sequential file containing sets of DSA information
(designated, DSAINFO/SOURCE). Currently, this file con-
tains 21 sets of DSA 1nformation used to generate system
public and private key pairs. Only one set 1s used per each
software release, so that these can last for a considerable
period of time.

Overall Process

For each Software Release (SSR=System Software
Release), the software origination group will do the follow-
Ing steps:

1. Create a DSAKEYSFILE containing a DSA key set for
that release, including a system DSA public/private key
pair. The DSA public key 1s part of the DSA key set.
The DSA private key 1s kept on a secret basis.

2. Using the generated DSA private key, the software
origination group will sign Unisys system software.
This, however, can be omitted 1f software 1s burned 1nto
Compact Disks (CD’s), since the software on a Com-
pact Disk cannot be tampered with.

3. Distribute the signatured software and the related
DSAKEYSFILE to users and customers.

Generating a System DSA Key Pair and Creating A
DSAKEYSILE
Using a privileged User code, execute the following steps:

1. Create a sequential file (for example, DSAINFO442)
with at least one of the DSA mformation sets 1n the file
DSAINFO/SOURCE. Each DSA information set 1s
intended to be used 1n any one particular Software
Release, and the same set should not be used more than
once.

For example, in a Command and Edit (CANDE) session,
insert the following commands:
MARE DSAINFO/442SEQ
U ED
JINSERT DSAINFO/SOURCE from line- to line
<cditKEYID name 1f necessary, for example,
SSR442DSAKEYID>
<edit SSR number, 1f necessary, for example, 442.>
|JEND
SAVE
FIG. § 1s a diagram 1llustrating how the digital signature

algorithm information, together with the key ID 1s inserted
into the DSATOOLS, which feeds one Output to the

DSAKEYSFILE, and another output to the DSAKEYS/442.
This results 1n the creation of the DSAKEYSFILE, having
a public key and a DSAKEYS/442 unit which combines the

public key and the private key.

US 6,415,385 Bl

19

Signaturing System Software Using DSA Private Key

1. Assuming that the system 1s running on a System
Software Release designated 44.2, the method 1s now ready
to signature the files. If the system 1s not ready to signature
the files, it 1s necessary to go back to step 1, 1n the previous

section and create a DSA key set in the *SYSTEM/
DSAKEYSFILE for the particular level the system 1s run-
ning on.

2. It 1s necessary to ensure that SIGNATURESUPPORT 1s
SL-ed. If this 1s not the case, then SL 1t with
*SYSTEM/DIGITAL/SIGNATURE/SUPPORT. SL is
defined 1n 27 1tem 39 of the Glossary.

For example, at the Operating Display Terminal (ODT),

enter the following;:

SL. SIGNATURESUPPORT=*SYSTEM/DIGITAL/
SIGNATURE/SUPPORT
3. Ensure that DIGESTSUPPORT 1s SL-ed. If this 1s not
the case, then SL 1t with:

*SYSTEM/MESSAGE/DIGEST/SUPPORT
For example, at the Operator Display Terminal, enter the
following;:

SL DIGESTSUPPORT=*SYSTEM/MESSAGE/
DIGEST/SUPPORT
4. Now operate to signature the software by using the
system DSA private key. Files can be wrapped as separately
Wrapped files, or as Containers. The latter, (Containers),
allows a number of Wrapped files to be grouped into one
single enfity. For the software that 1s to be burned into a
Compact Disk (CD), there is no need to signature them since
they cannot be altered after they are put into a Compact

Disk.

EXAMPLE

Using the WFL WRAP syntax, to pass the system DSA
private key 1n the task attribute TASKSTRING, a Work
Flow Language (WFL) job can then be created to automate
the wrapping process.

In a Command and Edit (CANDE) session, do the fol-
lowing;:
WFL WRAP AFILE AS WRAPPED/
AFILE;TASKSTRING=<system DSA private key>

WEFL WRAP ADIR/=INTO CONTAINERA;
TASKSTRING=<system DSA private key>

It should be noted that the files can also be wrapped and

signatured using a programmatic interface to the MCP-

exported entry point MCP__ FILEWRAPPER.
Wrap And Signature File

FIG. 6 1s an 1llustration of wrapping and signaturing a file.
Here, it 1s seen that the wrapping sequence receives mfor-
mation from the DSAKEYSFILE. It also receives an input
from the system DSA private key, in addition to receiving
the file information, after which the wrapping sequence will
produce the signatured file.

5. To make sure that wrapped files are signatured
correctly, 1t 1s desirable to verify these files before shipping
them out to customers over the Internet, or via the CD-ROM.
Examples Utilizing the Unwrapped Sequence for System
Software that Was Signed with a System DSA Private Key

Use the WFL UNWRAP syntax, but do not pass any string,
in the TASKSTRING attribute. The system will pick-
up the corresponding system DSA public key 1n the file
*SYSTEM/DSAKEYSFILE for verification. This step

can also be incorporated into the same Work Flow
Language (WFL) job that also WRAPS files.

WEFL UNWRAP WRAPPED/AFILE AS UNWRAPPED/
AFILE

10

15

20

25

30

35

40

45

50

55

60

65

20

WEFL UNWRAP*=AS UNWRAPPED/=0UTOF CON-
TAINERA

As seen 1n FIG. 7, the unwrap sequence 1s fed information
from the DSAKEYSFILE, and also fed by the signa-

tured FILE 1 order to then produce the original native
file which 1s compatible for the original computer
system which uses the Master Control Program.
Distribution
The distribution of the signatured files and the DSAKEY-
SFILE 1s done using the ordinary procedures for shipment
which can be done via Internet transter or by CD-ROM.

Using Digital Signatures with Wrapped Files and Wrapped
Containers

With the advent of the WRAP/UNWRAP feature, the
present system also gives users the ability to optionally sign
wrapped files and wrapped containers with digital signa-
tures. Like a normal signature on a real piece of paper, a
digital signature allows the recipient of a signed wrapped file
to be certain of 1ts origin. Unlike a normal signature, the
digital signature 1s electronically represented as binary data
rather than handwritten characters. This allows the signature
to be embedded within the file, and 1t enables the system to
do some special calculations 1n order to authenticate the
signature and verify that the file has not been tampered or
altered during 1ts transmission.

Digital signature “creation” 1s based on the data within a
file and a private key. Similarly, digital signature “authen-
tication” 1s based on the same data of the file and a
corresponding public key. The private key and public key
are generated as a pair by the system, so even though they
are not the same, they still share some underlying common
mathematical properties. By differentiating the public key
and the private key of a key pair, one cannot use either key
for both signing and verification. Thus, a person possessing
only a “public key”, though 1s capable of “authenticating” a
wrapped file’s digital signature “created” by a corresponding
“private key”, but cannot use it to produce the same signa-
ture. On the other hand, a person with only the private key
will not be able to verily the signed wrapped file.

The digital signature algorithm (DSA) also ensures that a
public key belonging to one key pair cannot be used to
validate the digital signature derived from a private key of
another key pair.

Since the DSA 1s not an encryption algorithm, signing a
wrapped file or wrapped container does not scramble its
data. Instead the DSA makes a pass through the data stream
and applies the specified private key to come up with a
checksum-like binary hash pattern which 1s then inserted
into the resulting file.

When creating a wrapped file or wrapped container with
digital signature, the originator should perform the follow-
Ing steps:

Obtain a DSA key pair that consists of a public key and

a private key

Specily the private key 1n the wrapping process to create
a digitally signed wrapped file (or container)

Send the signed wrapped file to 1ts mntended recipient

Send the public key to the same recipient

The last two steps should get executed separately to make
the file more secure. If both the signed wrapped file and the
public key are transmitted in the same message, it may be
possible for some unauthorized party to intercept the
message, unwrap and modify the file, then sign 1t with their
own private key, and forward, to the unsuspecting recipient,
the altered signed wrapped file and a different public key.

Upon receiving a signed wrapped file or container, the
recipient of the file should perform the following steps:

US 6,415,385 Bl

21

obtain the corresponding public key

Specity the public key 1n the unwrapping process. If the
system does not attempt to authenticate the file’s digital
signature or fails to do so, the signed wrapped file 1s
either corrupted or was modified and should not be
trusted.

The following sections describe 1n detail what customer
should do to unwrap the signed wrapped files and containers
(such as ICs), and how one can wrap and unwrap one’s own
files with digital signatures.

Getting Started: New System Libraries

There are two new System Library files that need to be
installed and SL’ed (Glossary, item 39) on the system before
one can ufilize the digital signature feature. These are
SYSTEM/DIGITAL/SIGNATURE/SUPPORT and
SYSTEM/MESSAGE/DIGEST/SUPPORT. These files are

shipped with software releases beginning with HMP NX3.0/
SSR44 2. If these files are not currently available on the
system, they may be obtained by ordering the SECURITY
Interim Correction (IC) for releases beginning with SSR

42 .3. From the ODT, install these files as follows:

SL SIGNATURESUPPORT=*SYSTEM/DIGITAL/
SIGNATURE/SUPPORT

SL DIGESTSUPPORT=*SYSTEM/MESSAGE/
DIGEST/SUPPORT
New DSA KEYSFILE
A customer also needs to obtain a copy of the SYSTEM/

DSAKEYSFILE. This keysiile contains one or more DSA
information “sets” where each corresponds to a particular

SSR (System Software Release). One can only wrap and
unwrap liles with digital signatures for the levels indicated
in the DSA keysfile. If the *SYSTEM/DSAKEYSFILE
already exists on the Halt/LLoad family, the available levels
can be shown by entering the ODT (Operator Display
Terminal) command: IK DSASHOW

Begimnning with HMP NX4.0/SSR45.1, the DSA keystile
1s shipped with standard software releases. For earlier
releases, a customer needs to call the support organization to
obtain a copy of this file. This file will be delivered through
the same process as *SYSTEM/KEYSFILE because wrap-
ping the DSA keysfile could compromise Unisys’ digital
signature security mechanism.

The DSA keysfile 1s cumulative, that is—a DSA keysfile
of a later SSR release will contain the DSA information set
of that release plus all DSA information sets of earlier
releases [Note: All supported software levels earlier than
SSR 44.2 will use the 44.2 DSA information set.] Thus,
installing a DSA keysfile 1s as simple as copying the most

current DSA keysiile to one’s Halt/Load family. However,
only the DSA keysfile with the name *SYSTEM/

DSAKEYSFILE will be recognized by the system as the
active system DSA keysfiile. To install a DSA keysfile as the
active DSA keyslile, the following command 1s used:

COPY<DSA keysfile filename>AS *SYSTEM/
DSAKEYSFILE TO <Halt/l.oad Pack>(PACK)

Signing And Verifying One’s Own File
Obtaimning One’s Own Public/Private Key Pairs

In order to add a digital signature to one’s own files during,
the wrapping process, one must first obtain a public/private
key pair. Generating key pairs mvolves writing a program
that interfaces with the new MCP procedure MCP__
GENERATEDSAKEYS. One may want to use the sample
program listed at the end of this document (sample program
to generate DSAKEYPAIRS, to help one get the key pairs,
or one may want to modily it to suit one’s own needs.

Note that key pairs are generated based on an SSR level.
This means one cannot use a private key of one SSR level
to digitally sign wrapped files for another SSR level.

10

15

20

25

30

35

40

45

50

55

60

65

22
Creating Digitally Signed wrapped Files

Once a key pair 1s generated, one can use the WFL WRAP
syntax to create a digitally signed wrapped file. By passing
the private key through the task attribute TASKSTRING of
the WRAP statement, one indicates the desire to add a digital
signature to the file.

By default, the system will produce the signed container
for the current software level. At times, one may want to
create a digitally signed wrapped file for an SSR level
different than that of the running system (for example, the
recipient of the file may not be on the same SSR level as the
operator). For such situations, one will need to specify the
targeted SSR level for the WRAP statement through the task
attribute TARGET. The level value should be represented as

a whole number without the decimal point.

Distributing and Verifying Digitally Signed Wrapped Files

One can now send the signed wrapped files to intended
users. In order for these files to be verified and unwrapped,
one also needs to send the corresponding public key to them.
To ensure the wrapped {iles are not compromised 1n transit,
one should avoid sending both signed files and public key at
the same time. For instance, if using e-mail as the delivery
mechanism, send the public keys 1n a separate mail message
from the wrapped files they are protecting. If files are to be

transferred over the Internet, one can allow the wrapped files
themselves to be down loaded, but stmply display the public
key for the recipient to “cut and paste” into the WFL WRAP
statement, or offer to send the public key to the recipient via
a provided e-mail address.

Recipients of the signed files should use the SFL

UNWRAP syntax to verily and unwrap files, passing the
public key one was provided through TASKSTRING.

Dealing with Digital Signatures

One should not release one’s private key because 1t may
compromise the signed wrapped file’s security.

Because both public and private keys are long hex strings,
when one needs to execute many WRAP and
UNWRAP statements dealing with digital signatures, it
may be better for one to create a WFL job and associate
the key values with string variables. For instance,
STRING PUBLICKEY,PRIVATEKEY;
PUBLICKEY:="“<hex string for DSA public key>";
PRIVATEKEY:=“<hex string for DSA private key>";
WRAP MYDIRA\=INTO
MY CONTAINER; TASKSTRING=PRIVATEKEY;

UNWRAP=OUTOF
YOURCONTAINER;TASKSTRING-=
PUBLICKEY;

Since wrapping files with digital signatures 1s processor-
intensive, one should generally avoid creating many
separate signed wrapped {files. One may want to put
them i1nto one single signed container instead.

One should not trust files that are supposedly wrapped
with digital signatures under conditions when the sys-
tem does not either attempt to verily the signature or
fails to do so.

Sample Program to Generate DSA Key Pairs
Begin
This sample program demonstrates the basic technique on

how to generate DSA key pairs based on a specified SSR

level. The resulting public and private key pairs then can be
used 1n the WFL WRAP/UNWRAP statements to sign and
verily signatured wrapped files.

23

FILE DSAKEYS

US 6,415,385 Bl

(KIND=DISK, MAXRECSIZE=14, MINRECSIZE=14,

BLOCKSIZE=420, BLOCKSTRUCTURE=FIXED,

FILEKIND=DATA,

FRAMESIZE=48, NEWFILE=TRUE);

LIBRARY MCP (LIBACCESS=BYFUNCTION,

FUNCTIONNAME=“MCPSUPPORT.”);

REAL PROCEDURE MCP__ GENERATEDSAKEYS

NUMOFPAIRS, ARY,

VALUE SOFTLEVEL, NUMOFPAIRS, OPT;
REAL SOFTLEVEL, NUMOFPAIRS, OPT;

ARRAY ARY [0}

(SOFTLEVEL,

PROC, OPT);

REAL PROCEDURE PROC (INX, PUBKEY, PRIKEY);

VALUE INX;
REAL INX;

ARRAY PUBKEY, PRIKEY [0]; FORMAL;

LIBRARY MCP;

REAL PROCEDURE WRITEKEYPAIR (PAIRNUM, PUBKEY, PRIKEY);

VALUE PAIRNUM;
REAL PAIRNUM;:
ARRAY PUBKEY, PRIKEY[0];
BEGIN
ARRAY BUFF [0:13];
DEFINE WRITEIT
BEGIN
WRITE(DSAKEYS, 14, BUFF);

REPLACE POINTER(BUFF) BY “ ” FOR 14

WORDS;

END #,

WRITEHEXSTR (PREFIX, ARY, INX, LEN) =

BEGIN

REPLACE POINTER(BUFF) BY PREFIX,
POINTER(ARY|INX],4) FOR LEN WITH

HEXTOEBCDIC;

WRITEIT;
END #
% Notity user about the progress. Usetul 1if

USEUSERPROCEF 1s set.
DISPLAY (“Key pair #° | | STRING(PAIRNUM,*) ! !~
generated.”);

% Keep key pair information secret. Write 1t out to

file.
REPLACE POINTER(BUFF) BY “KEY PAIR #’, PAIRNUM FOR
* DIGITS, “:;
WRITEIT:
WRITEHEXSTR (“PublicKey = ”, PUBKEY, 0, 48);
WRITEHEXSTR (¢ ”, PUBKEY, 4, 48);
WRITEHEXSTR (“ ”, PUBKEY, 8, 36);
WRITEHEXSTR (“PrivateKey= ”, PRIKEY, 0, 48);
WRITEHEXSTR (¢ ”, PRIKEY, 4, 48);
WRITEHEXSTR (¢ ”, PRIKEY, 8, 36);
END:;
DEFINE % Returned value
CODEF =[15:08] #,
SCODEF = [31:16] #,
% OPT word
USEUSERARYF =[01:01] #,
USEUSERPROCF = [00:01] #,
% QOthers

NUMRETKEYS = KEYARY[0][15:16] %,

FIRSTKEY
NUMREQKEYS =4 #

requested keypairs

- KEYARY[0][31:16] #,
% Number of

KEYWORDS =11 #, % Words for
each key
SSRILEVEL = 442 #; % SSR Level
44.2
REAL R, I;
ARRAY KEYARY [0:(KEYWORDS*2*NUMREQKEYS)],

PUBKEY [0:(KEYWORDS-1)],
PRIKEY [0:(KEYWORDS-1)];

MAIN PROGRAM
Generate 10 DSA public/private key pairs for SSR level

44.2.

Because both USEUSERARYF and USEUSERPROCF return the same
information, we normally set either flag but not both.

This 1s just an example to illustrate how both cases

work.
R := MCP_GENERATEDSAKEYS (SSRLEVEL, NUMREQKEYS,

24

US 6,415,385 Bl

25

-continued

KEYARY, WRITEKEYPAIR,

0 & 1 USEUSERARYF & 1

USEUSERPROCF);

[F BOOLEAN (R) THEN

DISPLAY (“DSA key generation Error #7 ! !
STRING(R.CODEEFE,*) ! !
“ - SubCode #’ ! ! STRING(R.SCODEEFE,*));

[f USEUSERARYTF 1s set, process the returned info.

[F (NUMRETKEYS GTR 0) THEN % Got some good key
pairs

BEGIN
FOR L:=1 STEP 1 UNTIL NUMRETKEYS DO
BEGIN
R := ((I-1) * 2 * KEYWORDS) + FIRSTKEY;
REPLACE POINTER(PUBKEY) BY
POINTER(KEYARY [R])

FOR KEYWORDS
WORDS;

REPLACE POINTER(PRIKEY) BY
POINTER (KEYARY [R+KEYWORDS])

FOR KEYWORDS

WORDS;

WRITEKEYPAIR (I, PUBKEY, PRIKEY);

END:
END:;
LOCK (DSAKEYS);

END.

FIG. 4B 1s an exposition of steps C and D of FIG. 4A,
wherein by referring to FIG. 4B, it 1s seen that at step C1,
there is an entering of MCP__ FILEWRAPPER routine (36).

At step Cla, the program will verily all the parameters.

At step C1b, the routine will get the specified or default
SSR level.

Step Clc, the routine will call the program GET__DSA__
PQGKEY while passing the SSR level 1n order to:—ensure
the DSAKEYSFILE availability;—get the prime numbers
P,Q,G and the system public key based on the SSR level.

At step C1d, there will be a verification of the specified
private keys using a hexadecimal presentation.

At step Cle, the routine will verity the wrap license key.

At step C11, a link will be made to the Signature Support
Library (FIG. 1B).

The Signature Support Library exports the procedure
DSASIGN for MCP__ FILEWRAPPER to use.

At step Clg, a decision tree 1s 1itiated to see if there 1s
a pair of Input and Output file names from the file list. If the
answer 1s “NO”, then an exit 1s made at step C1x, to exit the
routine of MCP__ FILEWRAPPER 36.

If the answer 1s “YES”, then step Clh will open the
Output file, and step Cl1 will call the DSASIGN routine 1n
the Signature Support Library for the first time 1n order to
signature the ID “UNISYS”.

At step C1;, the routine will call the program designated
MCP_ WRAPPER (38) according to the steps of FIG. 4C,
and thus passing:—Input file name;—WRITE WRAP
according to the routine shown 1n FIG. 4D.

Then at step CI1L, the routine will close and lock the
Output file.

Appendix I 1s attached to indicate how to run the DSA
utility program routine.

Described herein has been a method and system whereby
native specialized files 1n a first computer system, can use
the operating system of the first computer system together
with first and second programmatic interfaces therein in
order to transform a file (native to the first system) into a
standard byte-stream {ile which 1s utilizable by many other
types of computer platforms (second system), and which
byte-stream files can be burned into a CD-ROM (or trans-

30

35

40

45

50

55

60

65

26

ported via an open network) which is then available for
utilization by multiple numbers of other system platforms.
The integrity for transforming the native files of the first
system 1nto a standard byte stream file utilizable by other
computer platforms, and which can be transferred over the
Internet, 1s rendered reliable by the use of the digital
signaturing systems described above.

While other variations and embodiments of the described
method may be implemented for various purposes, the
invention 1s defined by the following claims appended
herein.

APPENDIX I
HOW TO RUN THE DSA UTILITY

General description

This utility 1s used to:

(1) Add DSA key sets to a DSA keysfile

(2) Delete DSA key sets from a DSA keysfile

(3) Merge a DSA keysfile to the active
*SYSTEM/DSAKEYSFILE

(4) Extract DSA key sets from one DSA keysfile to

(5)

another

Generate DSA public and private key pairs
A restricted version of this utility only supports
function (5). All other functions are intended for
internal use, specifically - the Unisys software release
group. A non-restricted version of this utility 1s
only available when compiled with the compiler option
INTERNAL set. Because security restriction is required by
the MCP entry-point DSAKEYSFILEHANDLER, this utility can
only be run succcesstully by a privileged user, or the
codefile must be PU-ed.

Usage

To run this utility, enter:
R <this utility codefile> (“<request>"")
<request> can be one of the following:
ADDKEYS
DELETEKEYS
GETKEYS
DUMPKEYS

US 6,415,385 Bl

27

-continued

APPENDIX 1
HOW TO RUN THE DSA UTILITY

MERGEKEYS
EXTRACTKEYS
Syntax for adding DSA key sets:

---ADDKEY S----FIN--------- <filename> ----------- >

FIN: Sequential file containing DSA information. The
format of this file 1s described below.

DSA keysfile where DSA key sets are to be
added. If omitted, active DSA keyslile 1s used.
[f it does not exist, a new DSA keysfile will

be created.

Syntax for generating DSA key pairs:

KFOUT:

c-- GETKEYS -----mmmmmmmmmmm oo |

| |
P —— |
|| | |
‘ ----- /I\-- SSR --------- <number> ------- ‘

| |]-=-]

| /1\-- NUM - |

|

‘ -/T\-- FIN--------- <filename>-

| |-=-]

| -/1\-- FOUT--

|

| -/1\-- KFIN--

|

| -/1\-- KFOUT-

|

| -/1\-- VALIDATE ------- T ---

o=l]
SSR: the level from which key pairs are to be

generated (e.g. 442). Its default value is the
current SSR. SR 1s intended for use with KFIN,
but not with FIN since SSR should already be
specified in FIN. If FIN 1s specified, SSR 1s

ignored.

NUM : the number of key pairs to be generated. Its
default value 1s 1.

FIN : Sequential file containing prime numbers for

creating key pairs if KFIN 1s not specified.

Use of FIN excludes the KFIN and SSR

specifications. The format for this sequential

file 1s described below.
KFIN: the DSA keysfile whose DSA information will be
used to generate key pairs. The default is the
*SYSTEM/DSAKEYSFILE on the halt/load family. It
1s mutually exclusive of the FIN specification.
the destination sequential file where key pairs
are stored. If FIN 1s specified, this file also
contains FIN’s prime numbers which make 1t
suitable for the ADDKEYS request. Its default
title 1s DSAKEYS.
allows the last generated key pair from each
set {SSR, KEYID, P, Q, G} in the file FIN to be
added to a DSA keysfile directly without the
need to run this utility again with the ADDKEYS
request. NOTE: This option i1s only available
when compiling with INTERNAL set.
VALIDATE indicates whether the utility will do tests on

generated key pairs. Its default value 1s

(Drue.
Syntax for deleting DSA key pairs:

FOUT:

KFOUT:

10

15

20

25

30

35

40

45

50

55

60

65

23

-continued

APPENDIX |
HOW TO RUN THE DSA UTILITY

<
---- DELETEKEYS -- KEYID ---------- <string> -----------3 >
e |
- KFIN -------- <filename> -‘

KEYID: ID of the DSA key sets to be deleted.

KFIN: DSA keysfile where key sets are to be deleted
from. If not specified, *SYSTEM/DSAKEYSFILE 1s
used.

Syntax for dumping a DSA keysfile

---- DUMPKEYS -- FOUT -------- <filename> ------------- 2
|- =-|
} __
|- KFIN -------- <filename> -|
|- =-|

FOUT: Sequential file where contents of KF are dumped
to.

KFIN: Source DSA keysfile whose key sets are to be
dumped. If not specified, *SYSTEM/DSAKEYSFILE
1s used.

Syntax for merging a DSA keysfile to the active one

---- MERGEKEYS -- KFIN ------- <filename> -------------- |

KFIN: the DSA keysfile to be merged with

*SYSTEM/DSAKEYSFILE on halt/load family.
Syntax for extracting DSA key sets from one DSA
keysfile to another

- EXTRAKEYS ---— KEYID ---—-- <strings =----=---=- >

|-- KFIN ------- <filename> --| |- =]

|- =]
all DSA key sets with IDs containing the
specified will be copied to KFOUT.
SSR: DSA key set for the level specified by SSR 1s
copied to KFOUT.
KFIN: [nput DSA keysfile where the key sets are to
be copied. If not specified, the
*SYSTEM/DSAKEYSFILE on the halt/load family 1s
used.
Output DSA keysfile where copied key sets are
stored.
=== Format of FIN, FOUT ==========================

User-specified file FIN and the output file FOUT created
by the utility are sequential files sharing the same
format. These file contain a number of DSA key sets and
comment lines.

Comment lines should be preceded by the character

o>

Fach DSA key set should be separated by a

semicolon. The last DSA key set in the file should

also end with a semicolon.

KEYID:

KFOUT:

Valid entries 1in a key set are as follows:

Keyword Value Explanation

SSR integer Specifies which SSR level.
The must be between 442 and
999. (e.g. SSR=442)

KEYID string A unique ID to the key set.

[ts string can consist up
to 17 alphanumeric

PUBLICKEY

PRIVAIEKEY

P

Q
G

US 6,415,385 Bl

29

-continued

APPENDIX 1
HOW TO RUN THE DSA UTILITY

characters (hyphen and
underscore can also be
used) (e.g.
KEYID=SSR442_DSAID)
DSA public key generated
from the same P, Q, G
values 1n its set. Its hex
string must be enclosed by
quotes. Longer string
continues on the next line.
(e.g.
PUBLICKEY=

hex string

“0123456789ABC”

“DEF0123456789™)

hex string DSA private key generated
from the same P, Q, G
values 1n its set. Usage
similar to PUBLICKEY.
Prime number P.

Prime number Q.

G value.

hex string
hex string
hex string

Fach keyword should be followed by ‘=", and each entry
should be separated by a comma.

Although the utility allows PRIVATEKEY 1n the file FIN

to the ADDKEYS request, PRIVATEKEY 1s not actually used.
Thus, you can store PRIVATEKEY there for reference.
However, 1t 1s recommended that you should keep
PRIVATEKEY separately and make sure that no unauthorized
users can get access to it.

For ADDKEYS, the request requires FIN to contain at

least one DSA key set. Entries required for all DSA key

sets in this request are {SSR, KEYID, PUBLICKEY, P, Q,
G}. Note that PRIVATEKEY is not a part of the added key
set and will be 1gnored.

For GETKEYS, 1if FIN is specified, entries required for

a DSA key set consist of {SSR, KEYID, P, Q, G}. The
utility will generate public/private key pairs and write

{SSR, KEYID, PUBLICKEY, PRIVATEKEY, P, Q, G} out to the
file DSAKEYS or to the file indicated by FOUT. The
resulting file then can be used as FIN to the ADDKEYS
request.

[f FIN 1s not specified for GETKEYS, KF will be used
instead. However, only (SSR, KEYID, PUBLICKEY,
PRIVATEKEY } is wriiten out to the file FOUT by the

utility. Prime numbers P, Q, G extracted from KF are not
included.

1.

Procedural Steps and Usage ==========================
[T you start from scratch, create a sequential file

that contains at least one DSA key set with {SSR,

KEYID, P, Q, G} in it. For example, the contents of

file MY/PRIMES may include something like these:
% Primes for key set # 1

SSR = 999,

KEYID = SSR999-KEYID,

P = “D411A4A0E393F6 AABOF0SB14D1845866”
“SB3E4DBDCE2544543FE365CF71C86224”
“12DB6E7DD02BBE13DSSCSSD7263E9023”
«6 AF17ACSASFESF249CCS81F427FCS43F 7,

Q = “B20DBOB101DFOC6624FC1392BASSF77D”
«“577481E5”,

G = “B3085510021F999049A0E7CD3872CE99”

“58186B5007E7ADAF25248B58A3DC4F71”
“I81D21F2DF89B71747BD54B323BBECC4”
“43ECID3E020DADABBFE7822578255C1047;
Run the utility to get a DSA public/private key pair
for the key set in MY/PRIMES. A sequential output
file with the name MY/KEYSET will be created.
RUN <DSA utility> (“GETKEYS FIN=MY/PRIMES
FOUT=MY/KEYSET”)
Use information in MY/KEYSET to create a new DSA
keysfile called *SYSTEM/DSAKEYSFILE on the halt/load
pack HLLPACK:
RUN <DSA utility> (“ADDKEYS FIN=MY/KEYSET
KF=*SYSTEM/DSAKEYSFILE ON HLPACK”)

10

15

20

25

30

35

40

45

50

55

60

65

30

What 1s claimed 1s:

1. Amethod, mitiated by a source-User, for creating a data
file and 1its verifying signature into a format compatible to
two or more different platforms, comprising the steps of:

(a) utilizing a specialized predefined keysfile

(DSAKEYSFILE) to store sets of digital signature

information, wherein each set corresponds to a particu-

lar software level and each set includes the following

data items:

(1) ID string for the set;

(i1) the value of the Software Release Level (SSR);

111) three prime numbers designated as P,Q,G used for
calculating a signature;

(iv) a proprietary system public key derived from the
prime numbers in item (iii) above for the particular
SSR indicated in item (i1);

(b) initiating a wrap-packaging action utilizing a Private

key of a Public/Private key-pair which 1s generated by
an operating system utility program (MCP

GENERATEDSAKEYS), for transforming a first data
file, having a first format m a first platform into an

industry-standard text stream data format as a data file
compatible to a second platform;

(c) executing the said wrap-packaging action by utilizing

the data of the file, by utilizing the information stored
in the said DSAKEYSFILE, and utilizing the User-
supplied private key to develop an industry standard
text file contaming both the data and an embedded
digital signature 1n a format acceptable for burning onto
an 1ndustry-standard Compact Disk said text file being,
immune from unwarranted manipulation.

2. The method of claim 1 wherein step (¢) includes the
step of:

(cl) executing said wrap-packaging action by utilizing the

data of the file, by utilizing the information stored in the
saidd DSAKEYSFILE, and utilizing the User-supplied
private key to develop a simple text file containing both
the data and a signature 1n a format acceptable for a
protocol transmittable over the Internet.

3. The method of claim 1 wherein step (¢) includes the
steps of:

(cl) transforming a data file (21) on a first disk (20) in a

first platform (14) having a first format into an industry-
standard text stream data format as a data file (23) on

a second disk (22);

(c2) transferring said industry-standard text stream data

file (23) onto a third disk (24) of a second platform (30)
as a resultant file (24);

(c3) mitiating said second platform (30) to transfer said

industry-standard text stream data file (25) onto a
CD-Write Module (30w);

(c4) enabling said CD-Write Module to burn the industry-

standard text stream data file (25) onto a Compact Disk
(CD,34).

4. The method of claim 3 wherein step (c¢) includes the
step of:

(1) utilizing Internet or E-mail software to transport said

data file (25) on said third disk (24) over to an open
network (40).

5. A system, available to a client-user, for converting a
specialized protocol data file 1n a first platform into a
standard protocol format usable for the Internet and other

dif

‘erent platforms and providing a digital signature for

verification of the integrity of the converted data file, said
system comprising:
(a) a first platform (14) containing a Master Control

Program (MCP) means having an internal MCP struc-

US 6,415,385 Bl

31

ture (DSAKEYSFILE) used to generate Public/Private
key pairs associated with each System Software

Release Level, said MCP using a specialized protocol
for a data file (MY/FILE,21) stored on a first storage
means (Disk A,20) of said first platform (14);

(b) program means (36) to utilize a private key of said

Public/Private Key Pair and to transform such special-
ized protocol data file (MY/FILE,21) into an industry

standard text stream data file (MY/NEW/FILE,23) con-
taining an embedded signature in said converted data

file (C\MY\NEW\FILE,25);

(¢) second shared storage means (22) for holding said text
stream data file (MY/NEW/FILE,23) containing said

embedded signature transferred by said first platform
(14) from said storage means (Disk A,20);

(d) a second platform (30) connected to said first platform
and said second shared storage means (Disk B,22) for

storage of said industry standard text stream data file
(C:\MY\NEW\FILE,25) on a third storage means (Disk

C,24);

(e) software means (30y) for transferring said industry
standard text stream data file (25) onto to an open
network 40).

6. The system of claim 5 which includes:

(g) A CD Writer package unit (30w) for activating a
Compact Disk Write module (32);

(h) said CD Write module (32) for burning said text
stream data file (25) containing both data and digital
signature onto a compact disk (34).

7. The system of claim 6 which mcludes:

(1) client-user terminal means for initiating said Compact
Disk Write package unit (30w) to burn said data file
(25) onto said compact disk as a standard text stream
data file with a digital signature.

8. A system for converting specialized first format data
files into second format protocol data files compatible for
Internet transmission and each of which data files 1s pro-
vided with a digital signature for verification of the file’s
integrity, said system comprising:

(a) means for creating a specialized keysfile

(DSAKEYSFILE) which holds a series of digital sig-
nature information sets;

(b) means to institute a wrapping procedure for trans-
forming said specialized first format data file into a text
stream data file suitable for the Internet said wrapping
procedure 1ncorporating a set of digital signature
parameters from said DSAKEYSFILE, along with a
digital signature private key in order to create a digi-
tally signatured file which includes the converted data
plus a digital signature which later can be used to verily
the 1ntegrity of said converted data file.

9. A system whereby a User 1n transporting data from a
Sending platform to a Recipient platform can convert (wrap)
a first data file from a {first proprietary format into a second
data file having an industry standard text stream data format
while concurrently creating an embedded digital signature in
said second data file comprising:

(a) means for utilizing a specialized Digital Signal Algo-
rithm keysfile (DSAKEYSFILE) to store bits of digital
signal information having specialized parameters, and
including:

(al) means to generate sets of Public/Private key-pairs;

5

10

15

20

25

30

35

40

45

50

55

60

32

(b) means for converting said first data file into said
second data file having an industry standard text stream

data format which mcludes an embedded digital sig-
nature derived from said DSAKEYSFILE;

(c) means to develop an industry standard embedded
signatured text file of said second data file by utilizing,
the data of said second data file, with said specialized
parameters of said DSAKEYSFILE and a User-

supplied Private Key.

(d) means to transfer said digitally signatured second file
with 1ts embedded signatured to said Recipient plat-
form;

(¢) means to separately convey the corresponding Public
Key to said Recipient platform.

10. The system of claim 9 where said specialized param-
eters of saild DSAKEYSFILE include:

(1) an ID string for each set of digital signature informa-
tion;

(i1) the value of the Software Release Level (SSR)
mvolved;

(111) three prime numbers P,Q,G in said Sending platform

used for calculating a specific signature via a signature
program (MCP__ GENERATEDSAKEYS);

(iv) a special Public Key derived from the prime numbers
P,QQ,G for the specific SSR level mvolved.

11. In a Sending platform with a Master Control Program
(MCP) means holding a DSAKEYSFILE, a signature pro-
gram (MCP__ GENERATEDSAKEYS), and conversion pro-
oram means for converting a first native file into an industry
standard text file having an embedded digital signature as a
second file which can be received by a recipient platform
with verification as to the integrity of the received second
file, a method for digitally signaturing said converted second
file which will enable said recipient platform to automati-
cally verily the integrity of said received second file, com-
prising the steps of:

(a) utilizing a Digital Signal Algorithm Keysfile
(DSAKEYSFILE) to generate sets of Public/Private
Key-Pairs;

(b) using said Private Key of a selected Key-Pair together
with specialized parameters 1n saxd MCP means to
embed a digital signature into said converted second

file;

(¢) transmitting said signatured second file to said recipi-
ent platform,;

(d) separately transmitting, by any suitable means, said
Public Key of said selected Key-Pair to said recipient
platform for automatically enabling said recipient plat-
form to verily the integrity of said signatured second
file, without need for operator intervention.

12. The method of claim 11 wherein step (b) includes the

steps of:

(b1) using said specialized parameters with the values of:

(1) ID string for the set;

(i1) the value of the Software Release Level (SSR);

(i11) three prime numbers designated as P,Q,G used for
calculating a signature;

(iv) a proprietary system Public Key derived from the
prime numbers in item (ii1) above for the particular
SSR indicated in item (ii).

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

