US006412019B1
12 United States Patent (10) Patent No.: US 6,412,019 Bl
Gibbons et al. 45) Date of Patent: *Jun. 25, 2002
(54) METHOD AND MECHANISM FOR 5,442,793 A * 81995 Christian et al. 395/700
INVOCATION ON OBJECTS WITH 5,566,302 A * 10/1996 Khalidi et al. 395/200.09
INTERFACE INHERITANCE 5,600,838 A * 2/1997 Guillen et al. 395/683
5,768,588 A * 6/1998 Endicott et al. 395/683
(75) IHV@HtOfS: Jonathal‘l J- Gibb[)lls, MOUHtaiH Vlew, 5?7945038 A : 8/1998 Stutz et Ell. 395/683
Graham Hamilton. Palo Alto: Peter B 5,794,041 A 8/1998 Law et al. 395/701
s ’) 5,884,316 A * 3/1999 Bernstein et al. 707/103
Kessler, Palo Alto; Michael L. Powell, 5907,707 A * 5/1999 Ramalingam et al. 395/701
Palo Alto; Sanjay R. Radia, Fremont, 6,044,380 A * 3/2000 Gerard et al. 707/103
all of CA (US)
OTHER PUBLICATIONS
73) Assl : Sun Mi t Inc., Mountai
(73) >IEHEE Vlil:w éi'(zgfg)ems, Aies, MOTIA R. Connor et al, “An Object Addressing Mechanism for
’ Statically Typed Languages wit Multiple Inheritance”,
(*) Notice: This patent 1ssued on a continued pros- OOPSLA _89= PP- 279T285= 1989.% 3 o
ecution application filed under 37 CFR OMG “Joint Submission on Interoperability and Initializa-
1.53(d), and is subject to the twenty year tion”, chapter 10, Mar. 1994.%
patent term provisions of 35 U.S.C. G. Hamilton, et al, Subcontract: A flexible base for distrib-
154(a)(2). uted programming, ACM, SIGOPS, Nov. 1993, pp. 69-79.%
Subject to any disclaimer, the term of this * cited by examiner
%atselg ?SZXEHS e% Zr adjusted under 35 Primary Fxaminer—>5t. John Courtenay, 111
T (b) by O days. Assistant Examiner—Sue Lao
(74) Attorney, Agent, or Firm—Blakely Sokoloff Taylor &
(21) Appl. No.: 08/783,913 7 afman
(22) Filed: Jan. 15, 1997 (57) ABSTRACT
Related U.S. Application Data Methods and apparatus 1n an object oriented programming
environment for mvocation of objects with interface inher-
(63) Continuation of application No. 08/307,929, filed on Sep. itance. An object reference using mtables contains two parts,
19, 1994, now abandoned. more specifically, a pointer to the data for an object and a
(51) Int. CL7 oo GO6F 9/44 pointer to the methods on the object. The methods on the
(52) US. Clo oo 709/315 object are represented by a collection of mtables. An mtable
(58) Field of Search 709/303, 315 for a given interface consists of pointers to mtables for
709/316: 395/705 701 : 717/5 1 100? 116? inherited 1nterfaces and pointers to functions implementing
’ 707 /iO3 103 R ’105 v iO3 i the operations declared 1n the interface. An mtable pointer 1n
’ ’ ’ an object reference points to an mtable for an apparent
(56) References Cited %nterface of the object refe.ren.ce. Mtables for any inherited
interfaces are reached by indirection from the mtables for
U.S. PATENT DOCUMENTS the apparent interface.
5,327,562 A * 7/1994 Adcockeoeininnin, 395/700
5,339,438 A * 8/1994 Conner et al. 395/700 21 Claims, 7 Drawing Sheets

object reference 10 ,-3 representation 13 code for operation 22
I — 7 R
pointer to representation 11 | > data for object 14 | | implementation 23 |
— . — | o e e e e J
pointer to mtable 12

mtable for apparent interface 16 mtable for inherited interface 24

identifier of the interface 17

imumber of pointers to functions

identifier of the interface 25

umber of pointers to functions 26

number of pointers to mtables 19

| __ pointer to function 20

number of pointers to mtables 27

| pointer to function 28

—

m

pointer to mtable 21

pointer to mtable 29 |

U.S. Patent Jun. 25, 2002 Sheet 1 of 7 US 6,412,019 B1

30

MW part 34
vptr '
BW part

ve)
:
1

31 35
32

W part 36
33

MEMORY, - 4

MTABLES

CPU

US 6,412,019 Bl

Sheet 2 of 7

Jun. 25, 2002

U.S. Patent

62 9]qeju 03 Jajutod

§7 uorjounj 0} Jajutod

12 sa[qejw 03 saajuiod jo Jequnu

97 suorjouny o0} saajuiod jo Jaquinu

GZ 998J1ajUl 3Y3 JO JOYIJUP!

¥Z 938J13jUl pajuIdyul JoJ a[geju

7.¢ uorjeaado 10j apod

1Z 9[qejw 0} Jajuiod

07 uonounj 03 Jajulod

6T so[qejw 03 saajutod jo Jsquinu

g1 suorjounj 03} saajuiod jo Jsquinu

LT 20BLIajUl 9y} JO JAYIjuapI

01 9osjaajul Juaaedds 10} ojqejux

4\

uoijBjuasatdal 0) aajurod

a[qejur 0} Jajutod

01 9ouaJaajal 3dal{qo

U.S. Patent Jun. 25, 2002 Sheet 3 of 7 US 6,412,019 B1

40 42

*more base
A

more derived

|
|
|
|
|
|
|
|
|
|
|
|
|
\

U.S. Patent Jun. 25, 2002 Sheet 4 of 7 US 6,412,019 B1

struct A_ 40 mtbl

{
typedef void (*_pf_a_operation_100) (any_obj *obj;
type_id *_type_id;
short int _methods;
short int _bases;
_pf_a_operation_100 a_operation_100;
s
struct B_42_mtbl

{ typedef void (*_pf_b_operation_102) (any_obj *obj);

type_id *_type_id;

short int _methods;

short int _bases;

_pf b_operation_102 b_operation_102;
b
?truct C_44 mtbl

typedef void (*_pf_c_operation_104) (any_obj *obj;

type_id *_type_id;

short int _methods;

short int _bases;

_pi_c_operation_104 c_operation_104;

A_40 _mtbl *_as_A_40;

B_42 mtbl *_as_B_42: 120
b
?truct D _46_mtbl

typedef void (*_pf_d_operation_106) (any_obj *ob;;

type_id *_type_id;

short int _methods:

short int _bases;

_pf_d_operation_106 d_operation_106;

B_42 mtbl *_as B_42;
H
?tmct E 48 mtbl

typedef void (*_pf_a_operation_108) (any_obj *obj);

type_id *_type_id;

short int _methods;

short int _bases;

_pf_a_operation_108 a_operation_108;

A_40_mtbl *_as_A_ 40:;

C_44_mtbl *_as_C_44;

B_42 mtbl * as B _42;

D_46_mtbl *_as_D_46;

Figure 5

U.S. Patent Jun. 25, 2002 Sheet 5 of 7 US 6,412,019 B1

A_40 mtbl A_40_std _mtbl =

{
&A_40_tid,
1, 0,
&A_40_methods: :a_operation_100

b
B 42 mtbl B_42 std_mtbl =
{
&B_42_tid,
1, 0,
} &B_42 methods: :b_operation_102
C 44 mtbl C_44 std mtbl =
{
&C_44_tad,
1, 2,
&C_44 _methods: :c_operation_104,
&A 40 _std_mtbl,

&B 42 std mtbl
y oS 130

D 46 _mtbl D_46_std_mtbl =

{ &D_46_tid,
1, 1,
&D_46_methods: :d_operation_106,
&B 42 std mtbl

b
E 48 mtbl E 48 std_mtbl =

{ &E 48 tad,

1, 4,

&E_48_methods: :a_operation_108,
&A_40_std_mtbl,

&C 44 std_mtbl,

&B 42 std_mtbl,

&D 46 _std_mtbl

US 6,412,019 Bl

Sheet 6 of 7

Jun. 25, 2002

U.S. Patent

1¢ uorjejuasardau

} ddngrg

nl
09 19 g 96 QW -

8¢ W Y

>
~
a
=2
G [y —

0¢ 44

US 6,412,019 Bl

Sheet 7 of 7

Jun. 25, 2002

U.S. Patent

1G uoijejuasaidadl

8 AUNS1J

~
09 [9pw g 9¢g 41 ~(—

8¢ [qiwr Y

GIqiu o

0Ldy D88 q

US 6,412,019 B1

1

METHOD AND MECHANISM FOR
INVOCATION ON OBJECTS WITH
INTERFACE INHERITANCE

This 1s a Continuation Application of Application Ser.
No. 08/307,929, filed Sep. 19, 1994 and now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The 1nvention relates to the field of object-oriented pro-
cramming. More particularly, the invention relates to invo-
cation on objects with interface inheritance.

2. Description of Related Art

Object-oriented programming 1s a method of software
design implementation 1n which programs are organized as
cooperative collections of objects. An object 1s a region of
storage 1n a program and has a state, a behavior and an
identity. Each object represents an instance of some class. A
class 1s a set of objects that share a common structure and a
common behavior. In an object-oriented programming lan-
cuage such as C++, a class 1s a user-defined type. A class
declaration speciiies the set of operations that can be applied
to objects of the class.

An 1nheritance relationship unites a hierarchy of classes
of a given program. A class can be dertved from another
class, and a class from which another class 1s derived i1s
called a base class of the dertved class. Further, a class may
be derived from more than one class and inherits the
operations and representation of each base class from which
it 1s derived.

Given an object of some class, determining and choosing
how to perform a dispatch (look-up) to the methods of the
inherited classes 1s a problem. “Method” 1s a term which
comes from Smalltalk, an object-oriented programming
language, and 1s equivalent to “member functions™ in C++.
“Method” represents an operation declared as a member of
a class.

In an interface inheritance, interfaces only inherit the
definition of operations from other interfaces. In an 1mple-
mentation 1nheritance, interfaces inherit both the definition
of the operation as well as the implementation of the
operation from a base class definition. C++ uses 1implemen-
tation 1inheritance. Most C++ commercial products
(compilers) use the concept of a vtable. A vtable is defined
when an object 1s created, and has an entry for each method
for each object requiring a dispatch to a possibly inherited
implementation. A vtable typically consists of a list of
pointers to methods. A Vtable typically also contains point-
ers to vtables for each of its base classes.

FIG. 1 illustrates one vtable implementation. The vtable
implementation consists of BMW part 32 and 1its vtables 34,

35 and 36. BMW part 32 1s derived from Vptr MW part 30,
Vptr BW part 31 and Vptr W part 33. Vptr MW part 30 and
BW part 31 are derived from Vptr W part 33. (See The
Annotated C++ Reference Manual by Margaret A. Ellis and
Bjarne Stroupstrup, Addison-Wesley Publishing Co.,

Massachusetts, p. 235 §10.10c.)

Disadvantages of using vtables are varied. Vtables for the
base methods must be filled 1n to perform 1mplementation
imnheritance. In addition, vtables for the base classes are
specific for the derived class that the vtables are actually in
and the base class that vtables are referring to. For each new
derived class, a separate base vtable for each base class must
be created. Thus, vtable implementation requires many
vtables.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

Further, the pointers to the vtables are typically mixed 1n
with the data for the 1nstance value variables of the classes
themselves. In a typical vtable implementation, pointers
point to the methods as well as the base object instances
themselves which creates difficulty 1n moving the data
structure from one address space to a different address space.
Hence, the limitations of vtables include the lack of the
ability to map object instances between address spaces and
the number and complexity of the vtable entries.

SUMMARY OF THE INVENTION

The invention provides a method and apparatus for invo-
cation of objects with interface inheritance. More
specifically, the invention provides mtables as dispatch

mechanism for object references that support only interface
inheritance. An object reference using mtables contains two

parts, more specifically, a pointer to the data for an object
and a pointer to the methods on the object. The methods on
the object are represented by a collection of mtables.

An mtable for a given imterface consists of pointers to
mtables for inherited interfaces and pointers to functions
implementing the operations declared in the interface. An
mtable pointer 1n an object reference points to an mtable for
an apparent interface of the object reference. Mtables for any
inherited interfaces are reached by indirection from the

mtable for the apparent interface in the preferred embodi-
ment.

Unlike vtables, the structure for an mtable 1s simple and
may be implemented in essentially any programming lan-

cuage. Object references have a well known structure and
hence may be passed from one language to another without
modification. In addition, the data for an object 1s separated
from the pointers to the methods on the object in an mtable.
This separation allows potential mapping of data for an
instance from one address space to another.

To mvoke an operation on an mtable object reference
requires one indirection from the object reference to the
mtable for the interface, and one indirect call through a
function pointer in the mtable. An additional indirection 1is
used 1n the embodiment of the present invention to 1nvoke
methods from inherited interfaces. The additional indirec-
tion 1s from the mtable of the apparent type to the mtable for
the type which declared the operation.

Widening 1s the process of creating a less derived object
reference from a more derived object reference and 1is
implemented by constructing a new object reference that
consists of the original representation pointer and a pointer
to the mtable for the wider interface. Narrowing, which 1s
the process of creating a more derived object reference from
a less derived object reference 1s implemented by construct-
ing a new object reference that consists of the original
representation pointer and a pointer to the mtable for the
narrower 1nterface.

Advantages of using mtables over prior art object refer-
ence 1mplementations are that mtables support alternate
implementations, mtables may be used from multiple
languages, and mtables are small and fast. In addition, the
method of the present invention allows mapping of data.
Further, data does not have to be altered for widening or
narrowing, and there 1s no possibility of copying only a
widened view of the data when copying a widened object
reference as an instance of the wider interface.

US 6,412,019 B1

3
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1llustrates an exemplary implementation of vtables.

FIG. 2 1s a system block diagram illustrating the present
invention.

FIG. 3 i1llustrates an exemplary implementation of
mtables of the present invention.

FIG. 4 1s an 1nheritance diagram illustrating the relation-
ship of a set of object types for an implementation of mtables
of the present invention.

FIG. 5 illustrates exemplary C++ type declarations for the

mtables for the exemplary interface hierarchy illustrated in
FIG. 4.

FIG. 6 illustrates exemplary constructors for the mtables
illustrated 1in FIG. 5.

FIG. 7 1illustrates an exemplary implementation of
mtables of the present invention.

FIG. 8 illustrates the effect of widening the implementa-
tion of FIG. 5.

DETAILED DESCRIPTION OF THE
INVENTION

Apparatus and methods for mtables as a dispatch mecha-
nism for object references that support only interface inher-
itance are disclosed. An mtable (method table) is a table of
function pointers as well as pointers to additional mtables,
one mtable per base class with each mtable containing
pointers to the appropriate subset of methods visible to that
base class.

FIG. 2 1s a system block diagram illustrating the present
invention. Computer 1 has a CPU 2 coupled to memory 3.
Mtables 4 of the present invention reside in memory 3.

FIG. 3 1s an exemplary implementation of mtables of the
present invention. Object reference 10 is represented by a
pair of pointers, with one pointer 11 pointing to represen-
tation 13 of the object represented by the object reference,
and the other pointer 12 pointing to mtable 16, a table of
function pointers and base mtables.

Mtable 16 has pointers 20 pointing to code 22 for the
methods of the apparent interface and pointers 21 to mtables
24 for mnherited 1nterfaces. Mtable 16 also has fields, namely
identifier 17 and count 18 of the number of pointers 20 to
functions and count 19 of the number of pointers 21 to
mtables. Mtable 24 1n turn, has pointers 28 pointing to
functions for that interface and pointers 29 pointing to base
mtables. Mtable 24 also contains fields 25-27. Hence, the
method of the present imvention provides for an object
representation that separates the data for an object from the
pointers to methods for that object. In addition, the object
may be referred to as a position independent object, if by
separating out the address-space-specific pointers to the
method tables and functions, the data members themselves
do not contain any pointers or other address-space-speciiic
information.

An mtable can also contain fields which allow them to be
navigated by generic traversal methods. These fields 1den-
tified in FIG. 3 as 17-19 and 25-27, consist of an 1dentifier
for the type of the mtable, a count of the number of method
pointers, and a count of the number of base mtable pointers
in the mtable. Using these fields, for example, one can
determine at runtime the inheritance hierarchy represented
in a graph of mtables without having to see the interface
declarations 1n an interface definition language. These fields
could also be used to provide range checks 1n the code that
access the method pointers and base mtable pointers of the

10

15

20

25

30

35

40

45

50

55

60

65

4

mtable. In addition, the identifier may either be 1n the same
mtable 1tself, or pointed to by the field in the mtable.

To mvoke an operation on an mtable object reference
requires one indirection from the object reference to the
mtable for the interface, and one indirection through a
function pointer in the mtable. An additional indirection is
used 1n the embodiment of the present invention to 1nvoke
methods from inherited interfaces. The additional indirec-
tion 1s from the mtable of the apparent type to the mtable for
the type that declared the operation.

FIG. 4 1s a diagram 1illustrating an exemplary mheritance
structure of an object representation using mtables of the
present invention. Object types A 40 and B 42 do not inherit
from any other object types. Object type C 44 inherits from
A 40 and B 42, and object type D 46 inherits from object
type B 42. In addition, object type E 48 1nherits from object
types A40, C 44 and D 46. The structure of FIG. 4 illustrates
multiple inheritance where a base class 1s multiply inherited.
Only one method table 1s required for each base class of an
object and the method table can be pointed at by all classes
which mbherit the method table. Object types A 40 and B 42
are base classes for the remaining object types. Object type
E 48 1s the most dertved object type within the inheritance
structure 1llustrated 1n FIG. 4.

The following three scenarios exist during execution of a
client application, given that an operation XX 1s invoked on
object E 48: the operation XX 1s defined 1 interface E, or
it 1s defined 1n a base interface of E, or it 1s not defined 1n
the interface hierarchy. An interface compiler generates code
such that 1f the XX operation 1s defined directly in the E
interface, the 1nvocation passes through the XX slot in the
mtable pointed to by the object reference. If the XX opera-
tion 1s defined 1 a base interface, the interface compiler
ogenerates code which indirects through the appropriate base
mtable pointer in the mtable pointed to by the object
reference and calls the method pointed to by the XX slot in
that second mtable. If the operation 1s not defined m the
hierarchy, the interface compiler does not generate any code,
and client applications which attempt to call the operation do
not compile.

In the current embodiment, it 1s possible to reach any base
mtable from an apparent mtable in one indirection. In
alternate embodiments, where the inheritance hierarchy may
be represented differently, one or more indirections may be
required to reach the mtable defining the operation. The
client code looks the same regardless of whether the opera-
tion 1s defined on the apparent interface of the object
reference or on a base interface, 1.e. the client has an object
reference and mvokes the XX method on the object refer-
ence. The interface compiler’s task 1s to know where to find
the pointer to the XX method 1n the mtable hierarchy.

FIG. 5 1s a C++ type declaration 120 for the mtables of the
exemplary iterface hierarchy illustrated in FIG. 4. An
mtable for a derived interface contains pointers to the mtable
for the base interfaces. When the interface compiler 1is
constructing the mtable for a derived interface, the 1nterface
compiler builds into the mtable a pointer to any base
mtables; the interface compiler does not have to build the
base mtables themselves. The interface compiler for the
derived 1nterface depends on the base mtables already
having been constructed, at least to the point where the
interface compiler 1s able to obtain the address of the base
mtables.

In C or C++, the declaration of mtables 1s performed by
referencing the base mtables as external symbols, and allow-
ing the linker to fill 1n the slot 1n the derived mtable. The

US 6,412,019 B1

S

mtable 1s all “compile-time” constants, since the mtable
consists of counts and addresses of methods and addresses
of base mtables, and addresses of type identifiers.

FIG. 6 illustrates exemplary constructors 130 for the
mtables 1llustrated 1 FIG. 5. FIG. 6 1illustrates mtable
instances for one implementation. In an alternate 1mplemen-
tation such as for a local implementation, parallel instances
of each mtable having pointers to local implementations and
local mtables for base interfaces are used.

FIG. 7 1s an exemplary implementation of an object
reference with multiple inheritance using mtables of the
present 1nvention. The implementation of FIG. 7 corre-
sponds to the inheritance structure of FIG. 4. E_{p 50
represents an object reference for an object of type E.
E_mtbl 52 1s a method table for E objects, C__mtbl 54 is a
method table for C objects, D__mtbl 56 1s a method table for
D objects, A__mtbl 58 1s a method table for A objects, and
B__mtbl 60 i1s a method table for B objects. Representation
51 1s a representation of an object. Neither A__mtbl 58 nor
B_ mtbl 60 refer to any base mtables. A__mtbl 538 contains
function pointers to the methods for object type A. B__mtbl
60 contains function pointers to the methods for object type

B

Object type C 1nherits from object types A and B. C__mtbl
54 contains function pointers for the methods for object type
C and pointers to the method tables for object types A and
B. D__mtbl 56 inherits from object type B and contains
function pointers for methods defined 1n object type D and
a pomter to B__mtbl 60. E_ mtbl 52 inherits from object
types A, B, C and D, and contains function pointers for the
methods defined 1n object type E as well as pointers to the
method tables for object types A, B, C and D. Methods
declared on an interface are accessible through the method
table for that mterface and methods declared on an inherited
interface are accessible by indirection through their respec-
five method table pointers. The blank upper portion of each
method table represents the portion of the method table
which contains function pointers.

When an mheritance 1s an interface inheritance, only the
method signatures of the base class are inherited by any class
derived from that base class. Thus, implementation of the
base class 1s not inherited. This 1s in contrast to the prior art
C++ vtables 1n which implementations of members of the
base class are inherited by any class derived from that class.

FIG. 8 represents the effect of widening the object refer-
ence 1llustrated 1 FIG. 7. Widening may be elfectuated by
combining a pointer which points to the same representation
with a pointer which points to a different mtable, one for the
appropriate base class. Thus, a new object reference that
consists of the original representation pointer and a pointer
to the mtable for the wider interface 1s constructed. The
mtable for the wider interface can be found by 1indexing into
the mtable for the derived interface and fetching the mtable
for the base interface. The resultant object reference 1is

illustrated by E__as C__fp 70.

E_as C_ ip 70 1s a widened object reference which points
to the same representation as the object reference of FIG. 7
but also points to C__mtbl 54. Internally, E_ as C_ip 70
points to the representation and the appropriate subset of the
methods for an object type C. Narrowing, like widening, 1s
implemented by constructing a new object reference that
consists of the original pointer to the representation and a
pointer to the mtables for the narrower interface.

An advantage of mtables 1s that mtables are language
independent. Mtable object references can be passed
between languages without requiring conversions on the

10

15

20

25

30

35

40

45

50

55

60

65

6

object references. For example, invocation of an operation
defined 1n an imterface of an apparent type of an object
reference may be described in C programming language by
(* (objref.mtable->operation))(objref.representation).
Further, any actual parameters for the call can be passed
after the representation pointer.

An 1nvocation of an operation defined 1n an inherited
interface may be described in the C programming language
by (*(objref.mtable->inherited->operation)) (objref.
representation). The operations in the inheritance lattice are
known at compile time. Thus, the offsets of the operation
and 1nherited mtables within an mtable are compiletime
constants.

The space requirements of mtables are small 1n contrast
to, for example, C++ vtables which require a different vtable
instance for each class that virtually inherits each base class.
For each client-visible implementation of an interface, there
1s only one mtable that points to the operations and inherited
mtables for that interface. This 1s regardless of the apparent
interface of the object reference from which the mtable is
found. In addition, mtable operations are fast. Mtable opera-
tion pointers point to static methods, and the mtable pointers
point to other statically defined mtables. Thus, mtables need
no 1nitialization at object 1nstantiation.

Yet another advantage of mtables are that mtables support
programming languages 1n which there is inheritance on the
interfaces. An example of such type of programming lan-
guage 1S an Interface definition language (IDL) from the
Object Management Group, Inc. of Framingham, Mass. A
difference between IDL and other languages 1s for example,
that IDL defines only interface inheritance. The use of
mtables allows IDL 1nvocations between implementation
languages without the need for any object reference argu-
ment conversions.

One of the advantages of the present mvention 1s that
mtables support alternate implementations of the operations
on an interface. Alternate mtables for an interface may be
provided for use in object references as desired. Different
mtables may be provided including mtables that call, for
example, client-side stub methods, or mtables that point to
local implementations. Mtables implement interface inher-
itance and dispatch. The operations on the interfaces are
implemented by the functions called from the mtable. The
representation 1s used to hold whatever state 1s necessary. All
mtables are shared when implementations of methods are for
remote procedure call stubs in a distributed object-oriented
system using an interface definition language supporting
interface 1nheritance.

What has been described 1s a method and mechanism for
invocation on objects with interface inheritance. An object
reference using mtables of the present invention provides for
a pointer to the data for an object and a pointer to the
methods on the object. The methods on the object are
represented by a collection of mtables. The methods defined
in the apparent interface of the object reference are repre-
sented by pointers to the implementations of those methods,
and the methods defined 1n base interfaces of the object
reference are represented by pointers to mtables for the base
interfaces that contain pointers to the implementation of
those methods. Object references using mtables of the
present invention support programming languages in which
there 1s 1nheritance of interfaces. Further, mtables support
alternate 1mplementations and can be used from multiple
languages. In addition, mtables are small and are fast in
contrast to prior art methods and apparatus for implementing
an object reference such as C++ vtables.

US 6,412,019 B1

7

While certain exemplary embodiments have been
described 1in detail and shown 1n the accompanying
drawings, 1t 1s to be understood that such embodiments are
merely 1llustrative of and not restrictive on the broad
mvention, and that this invention not be limited to the
specific arrangements and constructions shown and
described, since various other modifications may occur to
those ordinarily skilled in the art.

What 1s claimed 1s:

1. A computer implemented method for mmvocation of
operations on objects with interface inheritance in an object
oriented programming environment on a data processor
containing memory, 1n which a plurality of objects are
categorized 1mto classes according to related operations, said
method comprising:

creating an mtable for an apparent interface for an object,
the mtable including a plurality of pointers to functions
for said interface and a plurality of pointers to addi-
tional mtables, said additional mtables being for a
plurality of inherited interfaces of said object and
having the same table structure as said mtable for said
apparent 1nterface;

providing an identifier field including 1dentifier informa-
tion for said mtable contained within said mtable;

providing a first count field 1dentifying a numerical count
of said plurality of pointers to functions contained
within said mtable;

providing a second count field identifying a numerical
count of said plurality of pointers to additional mtables
contained within said table;

pointing to data for said object using a pointer, said
pointer being part of an object reference, said data for
said object being separate from said object reference;

pointing to said mtable for said object using a pointer, said
pointer being part of said object reference, said point-
ing to data and said pointing to said mtable being
facilitated by said object reference using separate point-
ers; and

invoking a plurality of operations on said data and said

mtable pointed to by said object reference.

2. The method of claim 1, further comprising representing
mtables into operations per interface, said mtables having
pointers to said operations, and pointers to base mtables,
said pointers representing interface inheritance.

3. The method of claim 1, further comprising representing
said operations on said object by a collection of mtables.

4. The method of claim 1 wherein said plurality of
pointers to functions, point to functions i1mplementing
operations declared 1n said interfaces.

5. The method of claim 1, further comprising representing
separate graphs of mtables for different implementations of
operations.

6. The method of claim 1, further comprising sharing
mtables among classes for a common implementation of
operations.

7. The method of claim 1, further comprising sharing all
mtables when 1mplementations are remote procedure call
stubs 1n a distributed object-oriented system using an inter-
face definition language which supports mterface inherit-
ance.

8. An apparatus for mvocation of operations on objects
with interface inheritance in an object oriented programming,
environment on a data processor containing memory, in
which a plurality of objects are categorized into classes
according to related operations, said apparatus comprising:

a plurality of mtables, one being for an apparent interface
for an object, the mtable including a plurality of point-

10

15

20

25

30

35

40

45

50

55

60

65

3

ers to functions for said interface, and a plurality of
pointers to additional mtables, said additional mtables
being for a plurality of inherited interfaces of said
object and having the same table structure as said
mtable for said apparent interface, said separate pointer
and said table structure allowing for more eflicient
handling of the mvocation of operation on said object
with said plurality of inherited interfaces;

an 1dentifier field including 1dentifier information for said
mtable contained within said mtable;

a first count field identifying a numerical count of said
plurality of pointers to functions contained within said
mtable;

a second count field identifying a numerical count of said
plurality of pointers to additional mtables contained
within said table;

a pointer to data for said object, said pointer being part of
an object reference, said data for said object being
separate from said object reference;

a pointer to said mtable for said object, said pointer being
part of said object reference, said pointer to said data
and said pointer to said mtable facilitated by said object
reference using separate pointers; and

circuitry mvoking a plurality of operations on said data
and said plurality of mtables pointed to by said object
reference.

9. The apparatus of claim 8 further comprising a repre-
sentation of the collection of mtables for said operations on
said object.

10. The apparatus of claim 8 wherein said functions
implementing an operation declared 1n said interfaces.

11. The apparatus of claim 8, further comprising a rep-
resentation of mtables, one mtable per class of object, said
mtables having pointers to operations, and pointers to
mtables, said pointers representing interface inheritance.

12. The apparatus of claim 11, further comprising a
representation of separate graphs of mtables for different
implementations of operations.

13. The apparatus of claim 12, further comprising shared
mtables, said shared mtables shared among classes for a
common 1mplementation of operations.

14. The apparatus of claim 13, wheremn said shared
mtables are shared when said implementations are remote
procedure call stubs in a distributed object-oriented system
using an interface definition language which supports inter-
face 1nheritance.

15. A computer system for mvocation of operations on
objects with 1nterface inheritance in an object oriented
programming environment on a data processor containing
memory, in which a plurality of objects are categorized into
classes according to related operations, said system com-
prising:

a plurality of mtables, one being for an apparent interface
for an object, the mtables having a table structure
including an identifier of said interface, a plurality of
pointers to functions for said interface, and a plurality
of pointers to additional mtables, said additional
mtables being for a plurality of mherited interfaces of
said object and having the same table structure as said
mtable for said apparent interface, said separate pointer
and said table structure allowing for more eflicient
handling of the invocation of operation on said object
with said plurality of inherited interfaces;

an 1dentifier field including 1dentifier information for said
mtable contained within said mtable;

US 6,412,019 B1

9

a first count field i1dentifying a numerical count of said
plurality of pointers to functions contained within said

mtable;

a second count field identifying a numerical count of said
plurality of pointers to additional mtables contained

within said table;

a pointer to data for said object, said pointer being part of
an object reference, said data for said object being
separate from said object reference;

a pointer to said mtable for said object, said pointer being
part of said object reference, said pointer to said data
and said pointer to said mtable facilitated by said object

reference using separate pointers;

circultry mnvoking a plurality of operations on said data
and said plurality of mtables pointed to by said object

reference; and

a compiler for generating said plurality of mtables.
16. The computer system of claim 15, further comprising

10

15

a representation of the collection of mtables for said opera- 20

fions on said object.

10

17. The computer system of claim 15 wherein said
functions 1implement operations declared 1n said interfaces.

18. The computer system of claim 15, further comprising
a representation of mtables, one mtable per class of object,
said mtables having pointers to said operations, and pointers
to mtables, said pointers representing interface inheritance.

19. The computer system of claim 18, further comprising
a representation of the separate graphs of mtables for dif-
ferent implementations of operations.

20. The computer system of claim 18, further comprising
shared mtables, said shared mtables shared among classes
for a common 1implementation of operations.

21. The computer system of claim 20, wherein said shared
mtables are shared when said implementations are remote
procedure call stubs 1n a distributed object-oriented system

using an interface definition language which supports inter-
face inheritance.

	Front Page
	Drawings
	Specification
	Claims

