(12)

United States Patent

Burns et al.

US006405315B1
(10) Patent No.: US 6,405,315 B1
45) Date of Patent: *Jun. 11, 2002

(54)

(75)

(73)

(21)
(22)

(51)

(52)
(58)

(56)

DECENTRALIZED REMOTELY ENCRYPTED
FILE SYSTEM
Inventors: Randal Chilton Burns; Edward
Gustav Chron, both of Sunnyvale;
Darrell Long, Soquel; Benjamin Clay
Reed, San Jose, all of CA (US)
Assignee: International Business Machines
Corporation, Armonk, NY (US)
Notice: This patent issued on a continued pros-
ecution application filed under 37 CFR
1.53(d), and 1s subject to the twenty year
patent term provisions of 35 U.S.C.
154(a)(2).
Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.
Appl. No.: 08/927,772
Filed: Sep. 11, 1997
Int. CL.” ..o GO6k 11/30; GOo6F 12/14;
HO4L 9/32
US.CL o 713/190; 713/193
Field of Search ................................ 380/21, 49, 3,
380/4; 713/201, 190, 193
References Cited
U.S. PATENT DOCUMENTS
5,175,852 A 12/1992 Johnson et al. ............. 395/600
5,349,643 A 9/1994 Cox et al. ..coevvvvennnnn.n.. 380/25
5,475,819 A 12/1995 Miller et al. ........... 395/200.03
5,490,270 A * 2/1996 Devarakonda et al. ...... 395/600
5,495,533 A 2/1996 Linehan et al. ............... 380/21
5,500,897 A 3/1996 Hartman, Jr. ................ 380/25
5,550,976 A 8/1996 Henderson et al. .... 395/200.06
5,617,568 A 4/1997 Ault et al. .................. 395/612
5,638,448 A 6/1997 Nguyen .........c.coveneein. 380/29
5835601 A * 11/1998 Shimbo et al. ............... 380/49
5,931,947 A * 8/1999 Burns et al. ................ 7137201
5,940,507 A * 8/1999 Cane et al. ...........cenee.ee. 380/4

STREAM STRIPE SET j

-

STREAM STRIPE SET  +
ik N

—— -
- I"'
B T e e et —m \ e ——

o

s 80 [

FOREIGN PATENT DOCUMENTS
TP 08297638 A 11/1996  ............. GO6L/1/00

OTHER PUBLICATTONS

Microsoft Computer Press Daictionary Third Edition,
Microsoft Press, 1997, p. 154.%

G. Gibson et al., “File Server Scaling with Network—At-
tached Secure Disks”, Proceedings of the ACM International
Conference on Measurement and Modeling of Computer
Systems (Sigmetrics 97), Seattle, Washington, Jun. 15-18,
1997,

“Network—Attached Secure Disks (NASD)”, Computer Sci-

ence Department, Carnegic Mellon Umversity, Web page,
http://www.cs.cmu.edu/Groups/NASD.

H. Krawczyk et al., “HMAC: Keyed—Hashing for Message
Authentication”, Network Working Group, RFC 2104,
HMAC, Informational, Feb. 1997.

* cited by examiner

Primary Fxaminer—Gail Hayes
Assistant Examiner—Anthony Dilorenzo

(74) Attorney, Agent, or Firm—Khanh Q. Tran; Marc D.
McSwain

(57) ABSTRACT

A decentralized file system based on a network of remotely
encrypted storage devices 1s disclosed. The file system
includes a network to which a network client, a secure
remotely encrypted storage device, a key manager, and a
lock manager are attached. The system organizes data as
files and directories. Files or directories are composed of one
or more streams, which logically partition the data associ-
ated with the files or directories. The device serves as a
repository of the system’s data. The key manager controls
data access keys while the lock manager handles consistency
of the files. A network user may have read or write access to
a lile. Access 1s controlled using keys and access lists
maintained by the key manager.

16 Claims, 11 Drawing Sheets

POINTER TO
DIRECTORY DATA
QBJECT

POINTER TO
DIRECTORY DATA
OBJECT

PGINTER TO

| BDIRECTORY DATA [T

OBJECT 51

ENCRYPTED
- PARENT [~
a REFERENCE | 53

[ CREATION MODIFICATION | CREATION | EOOKUP | ENCRYPTED - ENCRYPED | ENCRYPTED | ENCRYPTED HASH
IIMESTAMP . TIMESTANP TAG TAG | ENTRY NAME : BIASK | STREAM | OF ENTRY DATA

LOCATIONS |

'\ CREATION | MODIFICATION | CREATION | LOOKUP | ENCRYSTED | ENCRYPTED | ENCRYPIED | ENCRYSTED HASH
- TIMESTAMP | TIMESAMP TAGS TAG | ENTRY NAWE | BITIMASK STREAMN CF ENTRY DATA

LOCATICNS

DIRECTORY DATA OEJECT

s — e

CREATION | MODIFICATION | CREATION | LOOKUP | ENCRYPTED | ENCRYPTED | ENCRYPTED | ENCRYPTED HASH
TIMESTAMP | TIMESTAMP TAG TAG ENTRY NAME | BITMASK STREANM + OF ENTRY DATA

LOCATIONS




U.S. Patent Jun. 11, 2002 Sheet 1 of 11 US 6,405,315 B1

3%’ FILE l |
SERVER > 5

l—

NETWORK

2 COMPUTER

COMPUTE‘[{I COMPUTER 2

<

2

FIG. 1



U.S. Patent Jun. 11, 2002 Sheet 2 of 11 US 6,405,315 B1

STORAGE DEVICE e 12 8
/ CNONCE HISTORY) 14
FIRMWARE: |

DEVICE OWNER KEY L_— 10 ;

l NONCE 1] STORAGE MEDIA:

B (" SUBSCRIBER LIST )
/ (OBJECT REPOSITORY)
\

13

REQUEST PROCESSOR

NETWORK

FIG. 2



U.S. Patent Jun. 11, 2002 Sheet 3 of 11 US 6,405,315 B1

NETWORK
CLIENT
31_ | FILE SYSTEM NETWORK

| INTERFACE 2</ isg.g%i s,
- 30
\\ —

L | XQ /
L

LA

KEY MANAGER
337 90T LOCK

| ACCESS MANAGER

| LIST /
— I

4

FIG. 3




US 6,405,315 Bl

Sheet 4 of 11

Jun. 11, 2002

U.S. Patent

SNOILYOO]
VIVAAIINT 4O | AVRIS | XSVALE | JAWWNAINI | OVl VL dAVISTAIL  [dAVISTNIL | o
HSVH Q31dAUONS | Q31dAYONS | G31eAUONS | C3IdAUONI | dMHOOT | NOLVRIO | NOUVYOHIJOW | NOWVRID | 5
e m
| >
SNOILYOOT =
VIVAAINT 4O | WVRIS | MSvALE | INYNAIINI | OVl VL ANVISINIL | dAVISINIL | B
HSVH 031dAUONT | J3LdAUONT | QILdAYONI | Q3LAYONT | dMOOT | NOIYIIO | NOIVOHIGOW | NOIVRID | »
2
SNOILYDOT AN
VIV AUINT 4O | WVRIS | MSvALG | INWNAUINI | Owl VL dAVISTALL  [dAVISTNIL | -4
HSYH Q31dAYONT | G3LdAYON | GILdAUONI | GIdAUONT | dNMOOT | NOIYRIO | NOIYOHIGOW | NOLYRID
X b JONFI4R %&
55 ] INTVd
Q3LdAYON3
‘;r.,... \\L - —y
m.@ —
1S e O T
| VIVOAIOLORUA |
Ol ¥3INIOd
. G Ol
103780 y
VIva AMOLOFIQ .
OL J3INIOd y
) 05~
i,qohwm%wmg_o /\ 13S 3dRILS INYFILS
OLYAINIOd  le---""" | 135 IdRILS WVIRILS




US 6,405,315 Bl

Sheet 5 of 11

VIvQ 4O HSYH ]
QLdANONT | VIV Q3LdAYONS
AN . A
R ,,,_...;.....,, y “ . o
. SN 103rg0o viva
- S -
| INOHO L= =+ | CAINNHD | LINAHD | OL¥IINIOd
o7 INIIvd | SO OL ¥3INIOd
~~— QaldAIONT | VIVA 3T |
—r R . 4 -~ i , ....4.
-
~J @@ .._.u._, _....__,._.
— ’ ,
& ! It
@\ | , 7
y— n.,,, R
y— ) xa
= 9 R
p

99 69 _,_,
D AV
U371 SINNHO | Y3ariss | Uisn 103r0 | Y 3onwal ™ .,

C3715 YNNHO | ©3aRuS | 215110380 | SIONWA | 129 o
L3715 ¥NNHD J@_Em rcm:,ﬁmao L 3oNV

=

13 IdRILS WYIRILS
135 3dRILS WYIRILS

i

U.S. Patent




U.S. Patent Jun. 11, 2002 Sheet 6 of 11 US 6,405,315 B1

LOOKUP

GET OBJECT IDS AND DEVICES | 700
OF ROOT DIRECTORY OBJECT

v

HASH EIRST COMPONENT .
OF THE PATH WITH THE LOOKUP |~ 710
KEYS OF THE DIRECTORY OBJECTS |

v
SEND LOOKUP REQUEST TO
> STORAGE DEVICES OF THE |.._ 720
DIRECTORY OBJECTS

/
WAS LOOKUP™NO_~
g SUCCESSELL > LOOKUP FAILED_)

7
730 \YES

| DECRYPT ENTRY |~ 740

790 [C‘ENERATE HASH| - 750
- HASH THE NEXT
| COMPONENT OF Tr “CENERATED O
PATH WITH TH HASH
|OOKUP KEYS OF < ENCRYPTED ’QNVA“D ENTRQ
THE DIRECTORY _HASH?
| OBJECTS 260
| GET OBJECT IDS e NG ‘
AND DEVICES OF THE | COMPONENTS RETURN DIRECTORY
FIRST STREAM OF THE REMAIN ENTRY
| DRECTORY ENTRY N7
- 770
780

FIG. 7



U.S. Patent Jun. 11, 2002 Sheet 7 of 11 US 6,405,315 B1

REMOVE FILE

LOOKUP 80
FILE
FILE
L OCATED? />—>( REMOVE FAILED |

YES

DECRYPT STREAM 82
LOCATIONS

REMOVE ALL OBJECTS
ASSOCIATED WITH
THE STREAMS

REMOVE DIRECTORY ENTRY l,.... 64

REMOVE SUCCESSFUL ~ |~_8

o

83

FIG. 8



U.S. Patent Jun. 11, 2002 Sheet 8 of 11 US 6,405,315 B1

REMOVE DIRECTORY

LOOKUP 70
DIRECTORY

. NO
Q&E;%%; > REMOVE FAILED
/
96
99

91 -
ﬁ YES
DECRYPT STREAM
LOCATIONS

REMOVE ALL OBJECTS 03
ASSOCIATED WITH

THE STREAMS

REMOVE DIRECTORY ENTRY |...... 74
REMOVE SUCCESSFUL |~ 7°

FIG.



U.S. Patent

Jun. 11, 2002

100

’

Sheet 9 of 11

LOOKUP DIRECTORY ENTRY

RENAME

US 6,405,315 Bl

{ RENAME FAILEDJ,\]/O] 0

NO

102 > GENERATE NEW LOOKUP TAG

v
05| ENCRYPT ng NAME

| GENERATE CHANGE REQUEST

USING PREVIOUSLY OBTAINED
DIRECTORY ENTRY INFO AND

THE NEW LOOKUP TAG AND
ENCRYPTED NEW NAME

104

|

—

SEND CHANGE ENTRY
REQUEST

105

e e -

NO

CHANGE

SUCCESSFUL

106 YES

.
101 1, \Jl RENAME SUCCESSFUL |

YES REQUEST
SUCCESSFUL
?

109 :

107

REQUEST ENTRY INFO 108
AGAIN
¢ |

FAILED BECAUSE

H(olddata) DIDNT
MATCH?

NO

) 4

11012
’ﬁ\x_/

A

FIG. 10

RENAME FAILED




U.S. Patent Jun. 11, 2002 Sheet 10 of 11 US 6,405,315 B1

FILE READ OPERATION
LOOKUP ENTRYIN | 111
s DIRECTORY OBJECT | >

co

L DECRYPT STREAM SETS

!

l LOCATE STREAM SET

;

DETERMINE NETWORK OBJECT(S) 1S
CONTAINING DESIRED DATA

I REQUEST DATA CHUNK FROM |~ 114

NETWORK OBJECT(S)

[ DECRYPT DATA f\_/ 1110

R [EAD‘I;AILEDJ/\J 10

L CALCULATE KEYED HASH 117 T

N

OF THE DAIA =~

CALCULAIE NO
HASH = HASH - —
OF CHUNK?

118
YES

| READ SUCCESSFUL k\ e

FIG. 11



U.S. Patent Jun. 11, 2002 Sheet 11 of 11 US 6,405,315 B1

DIRECTORY READ

SSUE READOBJECT REQUEST | 120
TO DIRECTORY OBJECT

REQUEST NO
SUCCESSFUL

P,
L
121 -
ﬁEs
e~ = A o~ r
| DECRYPT EACH 122
| ENTRY

CALCULATE KEYED HASH | 193
OF EACH ENTRY

.,

CALCULATED

U NO
HASH = HASH READ FAILED
oEF EACH -
NTRY?
124 / 1

| READ SUCCESSFUL 125

FIG. 12




US 6,405,315 Bl

1

DECENTRALIZED REMOTELY ENCRYPTED
FILE SYSTEM

CROSS REFERENCE TO RELATED
APPLICATTONS

This application contains materials related to an applica-
fion for “Secure Array of Remotely Encrypted Storage
Devices,” by R. Burns et al., U.S. Pat. No. 5,931,947, filed
concurrently with this application, commonly assigned, and
incorporated by reference herein.

FIELD OF THE INVENTION

The present invention relates generally to distributed data
processing. More particularly, the invention relates to a
decentralized file system i1mplemented on remotely
encrypted data storage devices to provide secure data shar-
ing among clients of the file system.

BACKGROUND OF THE INVENTION

Distributed file systems allow networked computers to
access remote storage devices as 1f the devices were on a
local file system. These file systems allow for sharing of data
among networked clients. Additionally, a user can access
networked data from other networked computers in the same
way she accesses 1t from her own computer. This type of
network file sharing 1s becoming increasingly prevalent as
the computing industry becomes more network centric.

FIG. 1 shows a typical prior art distributed file system 1.
The system includes several computers 2 and a file server 3
attached to a network 4. The computers 2 (referred to as
clients) and server 3 communicate with each other over the
network 4 using a network protocol such as Ethernet. A
storage unit 5 1s attached to the server 3 for storing data
accessible to the computers. Each computer 2 might include
its own storage unit 6. Typically, a computer 2 would send
a request to the server 3 when 1t need some data stored on
the storage unit 5. The server fetches the required data and
sends 1t to the requesting computer. In some cases, data 1s
stored 1n multiple parts each residing on a different storage
unit rather than on a single unit. A distributed file system 1s
then needed to manage the storing, updating, and accessing
operations concerning such scattered data.

Distributed file systems have many security problems that
local file systems do not have. The network itself 1s suscep-
tible to security risks such as snooping (unauthorized break-
ins), spoofing (impersonation), and packet eavesdropping
(unauthorized receipt of data being transmitted over the
network). The identity of a network client can be spoofed
such as where a user 1d can be forged 1n requests to the file
server. In addition, the distributed file systems still have the
vulnerabilities of the local file systems. The disk containing,
file data can be stolen and mounted on another machine,
bypassing the protection atforded by the operating system.
The distributed file server can be broken into giving the
attacker root access to the disk. Backup tapes are not
ogenerally encrypted and data 1s easily accessed if they are
stolen.

There are three security areas that existing distributed {ile
systems either fail to address, or address imadequately:
coniidentiality, integrity and authentication. Confidentiality
refers to the requirement that the file system data can only
be read by the parties that are intended to have access to the
data. Integrity means that 1t 1s possible for the parties
accessing the data to verify that the data read was not altered.
Authentication requires that the exchanges between the data

10

15

20

25

30

35

40

45

50

55

60

65

2

repositories and the file system clients are done such that
both parties of the exchanges are able to verify the messages
involved came from the other.

Network File System (NFS) was an early network file
system that has gained wide spread adoption. (See, for
example, reference 1). When NFS was introduced, it relied
on the operating system to enforce coniidentiality, integrity,
and authentication. It allowed users to access the network
file system as 1f 1t were a local file system. Network
communications were unencrypted and unauthenticated.
The administrators of the local machine could become any
user on the machine and gain access to the users files. Other
machines on the network could disguise as another machine
and fool the NES server. Since packets were not encrypted
across the network, an eavesdropper could view and alter the
contents of the packets. Authentication was later added to
version 3 of the NFES protocol.

Another file system, the Andrew File System (AFS,
reference 2), and its follow-on Decorum File System (DFES,
reference 3) are other network file systems that allow users
access to the file systems as 1f they were local file systems.
AFS relies on the authorization service Kerberos (reference
4) to authenticate exchanges between the network client and
the file system. AFS does not encrypt the file system data.
So, an ecavesdropper can view the data that 1s requested or
sent to an AFS server. Version 1.2 of DFS added the option
of encryption and integrity guarantees (reference §).

Cryptographic File System (CFS, reference 6) is a file
system that acts as a local file system and uses another
shadow file system as a repository of data. Each directory of
the file system has an encryption key associated that 1s used
to encrypt important meta-data (such as filenames and
symbolic links) and file data. CFS uses a modified Data
Encryption Standard (reference 7) to perform the encryp-
tion. Data 1s encrypted and then stored in the shadow file
system. Each file in CFS has a corresponding file in the
shadow file system. Using NFS as the shadow file system
allows CFS to act as a network file system. Since the shadow
file system 1s the repository of data, it must provide authen-
tication for changes to the files. If NFS 1s used as the shadow
file system, for example, CFS can be subject to replays (i.e.,
a copy of the data 1s presented to pretend that it 1s coming,
from the originator).

Accordingly, there 1s still a need for a decentralized file
system based on a network of secure storage devices In
which data can be moved, archived, and backed up 1n a
secure manner, iiles can be securely copied directly from one
device to another, and all data encryption 1s handled by the
clients, rather than the devices, to overcome the above-
described security problems.

References

1. Sandberg, R., et al., “Design and Implementation of the
Sun Network Filesystem,” USENIX Conference

Proceedings, USENIX Association, Berkeley, Calif., Sum-
mer 1985.

2. Howard, J. H. et al., “Scale and Performance in a

Distributed File System, ACM Transactions on Computer
Systems, Vol. 6, No. 1, February 1988.

3. Kazer, M., et al., “DEcorum File System Architectural
Overview”, USENIX Summer Conference, June 1990.

4. Stemner, J. G., “Kerberos: An Authentication Service
For Open Network Systems,” Winter USEIX, 1988, Dallas,
Tex

5. Everhart, C., “Security Enhancements for DCE DFS”,
OSF RFC 90.0, February 1996.



US 6,405,315 Bl

3

6. Blaze, M., “A Cryptographic File System for Unix”,
First ACM Conference on Communications and Computing
Security, November 1993,

7. Data Encryption Standard, National Bureau of
Standards, Federal Information Processing Standards Pub-
lication Number 46, National Technical Information

Service, Springfield, Va., Jan. 15, 1977.
SUMMARY OF THE INVENTION

The present invention relates to a decentralized file sys-
tem based on services provided by a network of secure
remotely encrypted storage devices, and methods for
securely storing, accessing, and updating data stored in the
file system. The file system allows secure movement of data
and metadata between the network clients and the network
storage devices. Data 1s accessible only to authorized net-
work clients 1n possession of appropriate encryption and
decryption keys, where all encryption and decryption of data
and metadata are performed by the network clients. The
storage devices themselves do not have any encryption
capabilities. Files can be copied directly from one storage
device to another storage device 1n a secure manner. The
network client’s only 1involvement would be to initiate the
action.

The basic file system 1ncludes a network, a network client
that requests data from the system, a secure network storage
device serving as a repository of the system’s data, a key
manager for controlling data access keys, and a lock man-
ager for handling consistency of the files. The key manager
maintains an access list of subscribers.

The file structure of the system 1s hierarchically composed
of files and directories. Each directory entry references a file
or another directory. Files may be created, read, written,
deleted, and truncated. A network user may have read or
write access to a file. In addition a user may have lookup
access to a directory. Access 1s controlled using keys and
access lists. The access keys and lists are maintained by a
key manager which controls the key distribution. Files or
directories are composed of one or more streams. Each
stream logically partitions the data associated with the
respective file or directory, and 1s physically composed of
data objects on the device.

Each network storage device 1s an independent entity on
which the unit of storage 1s a network object. The devices
authorize network access to the network objects using
message authentication codes. When a network client wants
to update file system data, it reads the network object to be
changed, decrypts the data, performs the change, and
re-encrypts the data. It then sends a request to the network
storage device to replace the old data, and authenticates the
request using a change key corresponding to the object.

Each directory entry 1s a set of stream stripe sets each
referring to a group of directory data objects on the storage
device. Each directory data object has an encrypted parent
reference and multiple entries. These entries contain meta-
data of a file and encrypted stream locations in the form of
a set of stream stripe sets associated with respective byte
ranges on the device. If the directory entry refers to another
directory, then the stream locations are given as another
stream stripe set of the same structure. If the directory entry
refers to a {ile, then each stream stripe set corresponds to a
ogroup of file data objects on the device, and includes several
stripes each representing a given range of bytes of the stream
on the device. Each stripe has a list of the associated file data
objects, a stride 65, and a chunk size. The object list points
to the data objects 1n the stream. The stride 1s the number of

10

15

20

25

30

35

40

45

50

55

60

65

4

bytes that are written to a network object before moving to
the next object. A client would need an encryption key and
file data object access keys to access the file data objects

associated with a file. These keys are managed by the key
manager.

Additional objects and advantages of the present inven-
tion will be set forth 1n the description which follows, and

in part will be obvious from the description and with the

accompanying drawing, or may be learned from the practice
of this invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a prior art computer network
on which the decentralized file system of the invention may
be 1mplemented.

FIG. 2 1s a block diagram of a network storage device for
use with the decentralized file system of the invention.

FIG. 3 1s a block diagram of the basic components of the
decentralized file system of the 1nvention.

FIG. 4 shows the relationship between files and directo-
ries in the decentralized file system of the invention.

FIG. 5 shows a preferred structure of the directory streams
and directory data objects 1n accordance with the invention.

FIG. 6 shows a preferred structure of the file streams and
file data objects 1n accordance with the mmvention.

FIG. 7 1s a flowchart showing a general sequence for the

Lookup operation, for looking up a directory entry in the file
system.

FIG. 8 1s a flowchart showing a general sequence for the
Remove File operation, for removing a file from a device in
the file system.

FIG. 9 1s a flowchart showing a general sequence for the

Remove Directory operation, for removing a directory from
a device 1n the file system.

FIG. 10 1s a flowchart showing a general sequence for the
Rename operation, for renaming an object on a device 1n the
file system.

FIG. 11 1s a flowchart showing a general sequence for the
File Read operation, for reading a file from the decentralized
file system.

FIG. 12 1s a flowchart showing a general sequence for the
Directory Read operation, for reading a directory from the
file system.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The 1mnvention will be described 1n terms of a decentral-
1zed remotely encrypted file system implemented on a
network of storage devices (e.g., disks) to provide secure
access to data 1n the system, and methods for storing,
sharing, updating, and accessing the data. However, persons
skilled 1n the art will recognize that a processor, a storage
device, a storage conftroller, or a distributed computing
system, which mcludes data storage and suitable program-
ming means for operating 1in accordance with the system and
methods to be disclosed, also falls within the spirit and scope
of the invention. In addition, the invention may also be
embodied 1n a computer program product, 1.€., a computer-
readable medium such as a diskette. Such a product may be
intended, manufactured, or sold for use with a suitable data
processing system. Programming means for directing the
data processing system, with which the product is to be used,
to execute the steps of the methods of the invention, is
written on the recording medium 1n a form read by the data
processing system.



US 6,405,315 Bl

S

The file system of the present invention builds on services
provided by a network of storage devices such as those
described 1n the referenced U.S. Pat. No. 5,931,947
However, other secure storage devices that provide services
similar to those described below and 1n the referenced patent
may also be used with the present file system. The network
to which the storage devices are attached may be a local areca
network (LAN) or other network types. The storage devices
may be direct-access disk drives (DASDs), optical storage
disks, tape drives, computers or imstruments that include
appropriate means for storing data, or a combination of

them.

The devices form a computer system for allowing secure
movement of data and metadata between a network client
and a network storage device such as in data backup, archive
and migration operations. Possession of either a network
storage device or a backup of a storage device, file system
or file does not permit access to data or metadata. The file
system of the present invention allows data files to be copied
directly from one storage device to another in a secure
manner. The network client’s only involvement would be to
initiate the copying action. Also, since data i1s transferred
directly between the devices, the overhead to the network
client 1s minimal.

To support the decentralized remotely encrypted file sys-
tem of the present invention, the storage devices are used as
repositories of the file system’s encrypted data and meta-
data. Data is remotely encrypted by the network clients (the
components of the file system that request data from the
devices), travels over the network in encrypted form, and is
stored encrypted on the devices. The advantage of this
approach 1s that data 1s encrypted or decrypted by the clients
as opposed to having the encryption being done at both the
devices and the clients. Each network storage device 1s an
independent entity on which the unit of storage 1s a network
object. The devices authorize network access to the network
objects using MACs (Message Authentication Code). See,
for example, “HMAC: Keyed-hashing for Message
Authentication,” Krawczyk et al., Request For Comments
2104, February 1997. When a network client wants to update
file system data, 1t reads the network object to be changed,
decrypts the data, performs the change, and re-encrypts the
data. It then sends a request to the network storage device to
replace the old data, and authenticates the request with a
MAC done using the change key corresponding to the
object.

In the file system of the invention, a network storage
device is trusted to store the encrypted file system data (not
to send back old or garbage data), but it is not trusted to keep
the data secret. Only clients 1n possession of appropriate
encryption and decryption keys can read the data and
meta-data of the file system. The network storage devices
need not have any encryption capabilities, and backups can
be done 1n such a way as to not compromise the security of
the data.

FIG. 2 1s a block diagram of a typical network storage
device 8 for use with the file system of the present invention.
The device 8 1s one of many similar devices attached to a
network 9, along with the network clients (not shown). Each
device 8 has a device owner for controlling access to the
device’s data. The owner sets up subscribers with authority
to create objects on the device and preferably includes an
owner key 10, a device nonce 11, preferably implemented in
firmware 13, and a nonce history 12 preferably implemented
in RAM 14. The owner key 10 1s used for deriving authen-
tication keys. The device nonce 11 1s used for guaranteeing
freshness of the requests of the clients. The nonce history 12

10

15

20

25

30

35

40

45

50

55

60

65

6

has a list of recent nonces and hashed message authentica-
tion codes (HMACs) used with the nonces. The owner key
10 and the device nonce 11 are typically provided to a user
when the device 1s acquired.

The device 8 also includes a storage media 15 and a
request processor 16. The storage media 15 contains a
subscriber list 17 and an object repository 18. The subscriber
list 17 1ncludes the i1ds of the subscribers, while the object
repository 18 contains the network objects. Each object will
have a unique 1d that will never be used again on this device
even 1f the object 1s deleted. Details on the layout of the
network objects are described 1n detail 1n the referenced
patent. The request processor 16 receives requests from the
network, services them, and returns responses. The request
specifies an object 1d and a byte range, which the device 8
maps 1nto data sectors on the device. To read or write
directory entries, a request 1s also sent to the device 8,
specilying an object 1d, an entry tag, and a lookup key. In the
case of read, the request specifies a range of directory
entries.

Network objects are used to store data on the storage
devices. There are two types of network objects: directory
data objects and file data objects. File data objects contain all
or part of the file data of a file. Directory data objects contain
all or part of the directory entries of a directory. Each
network object on a device 1s 1dentified by a unique object
id. An object 1d 1s not reused even 1if the corresponding
object 1s deleted. Each object has an object administrator
key, which 1s used to create the lookup, read, extend, delete,
and update keys for the object. Both types of network
objects use a common object header which includes an
identification of the subscriber that created the object

FIG. 3 1s a block diagram of a basic decentralized {ile
system of the present invention. The system includes a
network 30 to which a network client 31, a secure network
storage device 32 (similar to the one shown in FIG. 2), a key
manager 33, and a lock manager 34 are attached. The client
31 has a file system 1nterface 35 for communicating with the
device 32, key manager 33 and lock manager 34 over the
network 30, using a network protocol such as Ethernet. The
client 31, key manager 33 and lock manager 34 are usually
implemented 1n different computers. The key manager 33
manages the distribution of the keys used to access data on
the device 32, as described 1n more detail below. It maintains
an access list 36 of subscribers that may create data objects.
The lock manager 34 handles the consistency of the files, as
described below.

FILE STRUCTURE

In accordance with the invention, the hierarchy of the
decentralized remotely encrypted file system consists of files
and directories. Each directory entry refers to a file or
another directory. FIG. 4 1illustrates such a file organization
in which entry 41 of a directory 40 points to another
directory 43 while entry 42 points to a file 44. The files may
be created, read, written, deleted, and truncated. A user may
have read or write access to a file. In addition, a user may
have lookup access to a directory. Access 1s controlled using
the access keys and access lists maintained by the key
manager 33.

Files and directories are made up of one or more streams.
Each stream logically partitions the data associated with the
respective file or directory, and is physically composed of
data objects on the device. For example, an image {ile can be
defined to have three streams. The first stream contains the
data for the image. A second stream contains a thumbnail of




US 6,405,315 Bl

7

the 1mage. A third stream contains extended meta data
containing a textual description of the image. Each stream
corresponds to one or more network objects, where each
network object contains data and resides on a network
storage device 32. The set of network objects which com-
pose a stream can span multiple network devices 32 1n the
file system. If the directory entry is for the file, its stream
locations will contain references to file data objects. If the
directory entry 1s for another directory, then the first stream

will contain references to directory data objects.

FIG. 5 shows a preferred embodiment of a directory entry.
The directory entry 1s a set of stream stripe sets 50 where
cach stream stripe set 50 has pointers 51 that refer to
directory data objects 52 on the storage device. Each direc-
tory data object 52 includes an encrypted parent reference 53
and multiple entries 54. Each entry 54 contains metadata of
a file, which includes, for example, creation and modifica-
flon timestamps, a creation tag, a lookup tag, an encrypted
entry name, an encrypted bitmask, and encrypted stream
locations 35. If this directory entry refers to another
directory, then the first stream referred to by the stream
locations 85§ will contain references to other directory
objects 52. The stream locations 35 are given as a set of
stream stripe sets associated with respective byte ranges on
the device. If the directory entry refers to another directory,
then the stream stripe set representing the stream locations
55 1s the same as the currently described set. If the directory
entry refers to a file, then the stream stripe set representing
the stream locations 55 1s as described below 1 reference to

FIG. 6.

The lookup tag 1s generated by hashing the name of the
entry with a lookup key of the directory, for looking up a
directory entry (the operation represented by FIG. 7). The
entry name 1s encrypted with a read key of the directory. The
lookup and read keys are obtained by the client from the key
manager 33. In addition, the client also need directory data
object access keys to access the directory data objects 52.
The bitmask and stream locations 55 are encrypted using a
key generated by hashing the lookup key of the directory, the
entry name, and a known salt. A salt 1s a random data 1tem
used to affect the generation of an object access key. The
bitmask preferably has two bits: the first bit 1s set 1f the entry
1s for a directory while the second bit 1s set if the entry 1s for
an executable. Each directory data object 52 stores the
encrypted parent reference 53 in its directory information

field.

FIG. 6 shows a set 60 of stream stripe sets 61 representing,
the encrypted stream locations 35 (from FIG. 5), where the
respective directory entry refers to a file rather than another
directory. Each stream stripe set 61 corresponds to several
file data objects 68 on the network storage device, and
includes several stripes 62 cach representing a given range
63 of bytes of the stream on the device. Striping allows a file
and directory stream to span a set of network objects. Each
stripe 62 also has a list 64 of the associated file data objects
68 and a stride 65. The object list 64 has pointers that
reference the data objects 1n the stream. The stride 635 1s the
number of bytes that are written to a network object before
moving to the next object.

For example, 1f the stride 1s 64K and there are three
network objects 1n the stripe, the first network object will
contain bytes 0-64K, the second will contain bytes
64K—-128K, the third will contain 128 K—192K. After 192K,
the next 64K will be on the first network object again. There
1s also a chunk size 66 associated with each stripe 62. If a
stream location 1s presented as a string and an integer instead
of a set of stripe sets, the string will be interpreted as a path

10

15

20

25

30

35

40

45

50

55

60

65

3

to a directory entry and the integer as an index into the
stream array of the entry. The directory entry and index point
to the stripe sets or symbolic link which will be used as the
stream location.

Each directory data object 68 includes an encrypted
parent reference 69 and multiple chunks 70. Each chunk 70
1s made up of file data 71 together with a hash 72 of the data
that 1s then encrypted with an encryption key associated with
the stream stripe set 61. The encrypted hash 72 of the data
allows detection of corruption or unauthorized changes of
the chunks. The chunk size 66 1s used by the client to figure
out the chunk boundaries to find the encrypted hash 72 for
integrity checking of the chunk. The chunks 70 are stored on
one or more file data objects. An 1ndividual chunk will not
span objects. The chunks 70 1n the same stream stripe set 61
are all of the same size. The parent reference 69 of the file
data object 68 1s encrypted with the encryption key of the file
that the file data object belongs to. The parent reference 69
contains the network object 1d, the creation tag, and a stream
index of the directory entry that references the file data

object 68.

The client will need the encryption key and file data object
access keys to access the file data objects 68 associated with
the file stream (the file stream stripe set 61) on the network
storage devices. The file encryption key 1s used to encrypt
and decrypt the data stored in these file data objects 68. The
encryption and access keys are managed by the key manager

33.

KEY MANAGEMENT

The key manager 33 controls the different keys used by
the clients 1n the file system to access the system data. There
1s a variety of ways to handle key distribution. For example,
the necessary keys for a file or directory may be encrypted
with a public key of a user and stored 1n the second stream
of the file or directory. Alternatively, the users may maintain
a wallet of keys used to accesses objects, or a trusted key
management server may be used. Because of the decentral-
1zed nature of the file system of the mvention, it 1s hard to
revoke access to a file or directory. To revoke access, new
keys must be generated and distributed, and the file or
directory must be re-encrypted. As an 1illustration, key
management using a trusted key management server 1s now

described.

The management server maintains two tables: a table of
network object 1ds, the keys associated with them, and a
table of network objects 1ds, users, and access rights. Com-
munication between network clients and the key manage-
ment server 1s encrypted and authenticated using the Trans-
port Layer Security (TLS) or Kerberos protocols. The TLS
protocol 1s described 1n “The TLS Protocol,” Version 1.0 by
T. Dierks et al., May 21, 1997, and Kerberos 1s described 1n
reference 4. When a user needs access to a network object,
a request for the keys to the object 1s 1mitiated. The server
would check the access list for the user’s access and returns
the appropriate keys.

BACKUP

The data 1n the decentralized file system 1s backed up by
backing up the storage devices that make up the file system.
The network storage devices preferably includes a backup
key. Possession of the backup key allows the objects of the
device to be enumerated and then read. An entire disk can
then be dumped to tape. To restore a file, the objects that
make up that file are located by their network object 1d.

LOCK MANAGER

Locking and cache consistency will be handled by a
distributed lock manager 34. The lock manager 34 handles



US 6,405,315 Bl

9

the consistency of files on the level of network objects.
Before a network client can change a network object, 1t must
request a write lock from the lock manager. (Note: the
network object itself doesn’t handle any locking). Each lock
requested has a lease associated with it. The lock becomes
invalid when the lease expires, the client explicitly releases
it, or the lock manager contacts the client to revoke the lock.

When a client 1s contacted to revoke a lock, 1t must flush any
pending changes for the locked region and then release the
lock. When a client requests a read lock, the lock manager
revokes any write locks held on the region before granting
the read lock. When a client requests a write lock, the lock
manager revokes any read and write locks held on the region
before granting the lock. Note, for a file that 1s being read
and written by multiple clients this method of locking will
yield poor performance; however, studies have show that
this access pattern occurs rarely in distributed file systems.

FILE SYSTEM PROTOCOL

The following section outlines a preferred embodiment of
the operations that can be used to implement a Virtual File
System (VFS) based on the above-described file system.
VES 1s used by UNIX to add file systems to a base operating
system. The outlined operations are lookup, create, truncate,
read, write, get attribute, set attribute, lock, make directory,
remove directory, remove file, rename, and create symbolic

link.

File System Operations
1. Alter Object Size (Grow or Shrink Object)

This operation adjusts the size of the designated directory
or file object. The size specified may be used to 1ncrease or
decrease the amount of space occupied by the object.

Parameters:

Network Object attributes returned from lookup,
Whether to grow or shrink the object,

Amount to grow of shrink object,

Place to store object attributes (null if not required)

Credentials used to validate access permission.
2. Create Directory Object

This operations creates a new directory object 1n the
designated Parent directory.

Parameters:

Network Object attributes returned from lookup for the
Parent directory,

Name of the new directory,
Mode of the new directory,
Place to store the object 1d for the new object,

Credentials used to validate access permission.
3. Create File Object

Creates a new file object with the specified name 1 the
designated Parent directory.

Parameters:

Network Object attributes returned from lookup for the
Parent directory,

Name of the object being created,

Mode of the object being created,
Place to store the object 1d for the new object,

Credentials used to validate access permission.
4. Create Symbolic Link Object

This operation creates a new lile object that 1s a symbolic
link 1n the designated Parent directory.

Parameters:

Network Object attributes returned from lookup for the
Parent directory,

10

15

20

25

30

35

40

45

50

55

60

65

10

Name of the symbolic link being created,

The relative path to the object being linked,
Mode of the symbolic link,

Place to store the object 1d for the new object,

Credentials used to validate access permission.
5. Lock (and Unlock)

This operation obtains or returns either a shared or
exclusive lock on specified file for a specified byte range.
Parameters:

Network Object attributes returned from lookup,
Whether the request 1s a lock or unlock request,
Off

Specify the type of lock being requested: Share (Read) or
Exclusive (Update),

Indication of whether to wait for the lock or return
immediately 1f lock 1sn’t available,

set and range to be locked or unlocked,

Credentials used to validate access permission.
6. Lookup (and Return Directory Entry)

This operation locates the specified object 1n the specified
Parent directory and returns the object’s attributes and the
object’s directory entry if found. The operation 1s repre-
sented by the flowchart of FIG. 7. In step 700, the lookup
operation gets object IDs and devices of the root directory
object. In step 710, the first component of the path 1s hashed
with the lookup keys of the directory objects. In step 720, the
lookup operation sends a lookup request to storage devices
of the directory objects. Next, in step 730, 1f the lookup was
successtul, the lookup operation proceeds to step 740 and
decrypts the entry; otherwise lookup failed and the lookup
operation ends. In step 750, the lookup operation generates
hash. In step 760, if generated hash 1s equivalent to
encrypted has, the lookup operation proceeds to step 770;
otherwise the entry 1s invalid and the lookup operation ends.
In step 770, if components remain, the lookup operation
proceeds to step 780 to get object IDs and devices of the first
stream of the directory entry; otherwise the lookup operation
returns the directory entry. In step 790, the lookup operation
hashes the next component of the path with the lookup keys
of the directory objects and then proceeds to step 720.

Parameters:

Network Object attributes returned from lookup for the
parent directory,

Name of the object being sought,
Place to store object attributes,

Place to store directory entry for object,

Credentials used to validate access permission.
7. Read

This operation reads data starting from one or more
specified locations from the designated network object, for
the specified lengths and places the results 1n the designated
locations. It returns the number of bytes actually read from
cach location. The request can optionally return the updated
attributes for the object’s directory entry and or any of the
targeted network objects. The operational sequences for
reading a file and a directory are represented by the flow-
chart of FIGS. 11 and 12, respectively.

Referring now to FIG. 11, mn step 111 the file read
operation calls the ‘lookup’ operation for the entry in the
directory object. In step 112, if the entry 1s found, then the
file read operation proceeds to step 113 to decrypt stream
sets; otherwise the {file read operation failed and ends 1n step
110. In step 114, the file read operation locates the stream
set. Next, mn step 115, the file read operation determines
network object(s) containing desired data. Then, in step 116,



US 6,405,315 Bl

11

the file read operation requests a data chunk from network
object(s). In step 1110, the file read operation decrypts data.
Next, in step 117, the file read operation calculates keyed
hash of the data. In step 119, 1f the calculated has equals the
hash of the chunk, the file read operation was successful and
ends 1n step 119; otherwise, the file read operation failed and
ends 1n step 110.

Referring now to FIG. 12, 1n step 120, the directory read
operation 1ssues a read object request to the directory object.
In step 121, 1if the read object request was successtul, the
directory read operation proceeds to step 122 to decrypt each
entry; otherwise, the directory read operation failed and ends
in step 126. In step 123, the directory read operation
calculates the keyed hash of each entry. In step 124, if the
calculated hash equals the hash of each entry, the directory
read operation succeeded and proceeds to end 1n step 125;
otherwise, the directory read operation failed and ends in

step 126.

Parameters:

Network Object attributes returned from lookup,

Place to store entry’s attributes (null if not required),
Number of entries 1n the following array,

Array of one or more entries which specity:
Byte offset 1nto the file to start reading from,
Number of bytes to read,
Location to store the bytes that are read,

Place to store the count of how many bytes were
actually read,
Place to store object attributes (null if not required)
Credentials used to validate access permission.
8. Remove Directory or File Object

These operations remove a designated file or directory
object. The flowchart in FIG. 8 represents a sequence for
removing a file object, while the flowchart 1n FIG. 9 repre-
sents a sequence for removing a directory object.

Referring now to FIG. 8, in step 80, the remove file
operation calls the ‘lookup’ operation to locate the file. In
step 81, if the file was located, the remove file operation
proceeds to step 82 to decrypt stream locations; otherwise
the remove file operation failed and ends 1n step 86. In step
83, the remove file operation removes all objects associated
with the streams. Next, 1n step 84, the remove file operation
removes the directory entry. Finally, in step 85, the remove
file operation was successtul, and ends.

Referring now to FIG. 9, 1n step 90, the remove directory
operation calls the ‘lookup’ operation to lookup the direc-
tory. In step 91, if the directory was located, the remove
directory operation proceeds to step 92 to decrypt stream
locations; otherwise the remove directory operation failed
and ends 1n step 96. In step 93, the remove directory
operation removes all objects associated with the streams.
Next, 1n step 94, the remove directory operation removes the
directory entry. Finally, in step 95, the remove directory
operation ends successiully.

Parameters:

Network Object attributes returned from lookup,

Credentials used to validate access permission.
9. Rename Object

This operation renames the designated directory or f{ile
object to the specified name and 1s represented by the
flowchart of FIG. 10.

In step 100, the rename operation calls the ‘lookup’
operation to locate the directory entry. In step 101, 1f the
entry was found, the rename operation proceeds to step 102
to generate the new lookup tag; otherwise the rename
operation failed, and ends in step 1010. In step 103, the

10

15

20

25

30

35

40

45

50

55

60

65

12

rename operation encrypts the new name. Next, in step 104,
the rename operation generates a change request using
previously obtained directory entry info and the new lookup
tag and encrypted new name. In step 105, the rename
operation sends a change entry request. In step 106, if the
change was successiul, the rename operation was successtul,
and ends in step 1011; otherwise, the rename operation
proceeds to step 107. In step 107, 1f the change failed
because H(olddata) didn’t match, the rename operation
proceeds to step 108 to request entry information again;
otherwise the rename operation failed and ends in step 1012.
In step 109, 1f the entry information request was successtul,
the rename operation proceeds to step 102 to generate a new
lookup tag; otherwise the rename operation failed, and ends

in step 1010.
Parameters:

Network Object attributes returned from lookup,
New name of the object,

Credentials used to validate access permission.

10. Set Object Attributes
This operation sets the attributes for the designated direc-

tory or file object.
Parameters:

Network Object attributes returned from lookup,
Values of Attributes to replace existing values,

Credentials used to validate access permission.
11. Write

This operation write data starting from one or more
specified locations to the designated network object(s), at
the specified ofisets for the specified lengths. The 1nforma-
tion to write 1s supplied 1n designated locations. Return the
number of bytes actually written at each location. The
request can optionally return the updated attributes for the
object’s directory entry and or any of the targeted network
objects.

Parameters:

Network Object attributes returned from lookup,
Place to store entry’s attributes (null if not required),
Number of entries in the following array,

Array of one or more entries which specity:

Byte offset into the file to start writing to,

Number of bytes to write,

Location to store the bytes that are to be written,

Place to store the count of how many bytes were actually
written,

Place to store object attributes (null if not required)
Credentials used to validate access permission.

Details on Selected File Operation Parameters
1. File Attributes:

Owner’s user 1d,
Owner’s group 1d,

Device where object 1s located,
Object 1d for object,

Object type (regular, directory, symbolic link),

Number of links to object, (will always be one since hard
links aren’t supported),

Size of object 1n bytes,

Number of blocks that the occupied by the object (needed
for sparse objects),

Last access timestamp,
Last data modification timestamp,



US 6,405,315 Bl

13

Last status change timestamp,

Mode: read, write, execute (lookup) permissions for
owner, group, other users etc.,

Access control list.
2. Mode:

Set User ID on execution, Set Group ID on execution,
Owner’s: read, write, execute (lookup) permissions,

Group’s: read, write, execute (lookup) permissions
(stored but ignored),

Other User’s: read, write, execute (lookup) permissions
(stored but ignored).
3. Object Statistics:

Identification of the type of file system,
Whether file system 1s local or remote,
Object type (regular, directory, symbolic link)
Owner’s user 1d,
Owner’s group 1d,
Device where object 1s located,

Object 1d for object,

Number of links to object, (will always be one since hard
links aren’t supported),

Size of object 1 bytes,

Number of blocks that the file occupies (needed for sparse
objects),

Last access timestamp,

Last data modification timestamp,

Last status change timestamp,

Mode: read, write, execute (lookup) permissions for
owner, group, other users etc.,

Access control list.

Thus, for the system to revoke access to an object (file or
directory) on a device, the object must be re-encrypted by a
client.

While several preferred embodiments of the invention
have been described, it should be apparent that modifica-
fions and adaptations to those embodiments may occur to
persons skilled in the art without departing from the scope
and the spirit of the present invention as set forth in the
following claims.

What 1s claimed 1s:

1. A distributed file system for use with a network of
storage devices, each device having means for storing data
as remotely encrypted data objects including encrypted
metadata describing a directory structure in said distributed
file system, means for authenticating data requests and
responses, and means for determining freshness of the
requests, the system comprising;:

at least one client that each performs file management
tasks and can remotely encrypt and decrypt the data
objects using a plurality of keys;

a key manager for controlling the keys used by the client
to access the data objects; and

a lock manager for maintaining data consistency when the
client accesses the data objects, wherein files and
metadata may be copied directly from one storage
device to another storage device in a secure manner,
and only said clients possessing appropriate encryption
and decryption keys have access to data stored 1n said
storage devices.

2. The distributed file system of claim 1, wherein said
storage devices replace old stored data with new data upon
request of said client.

3. The distributed file system of claim 1, wherein said file
management tasks include maintaining a logical mapping of

10

15

20

25

30

35

40

45

50

55

60

65

14

locations of files and directory entries stored on said network
of storage devices.

4. The distributed file system of claim 3, wherein said files
and directory entries comprise one or more streams logically
partitioning data into said data objects.

5. The distributed file system of claim 4, wherein each
said directory entry 1s stored as a set of stream stripe sets
cach referring to a group of directory data objects on said
storage devices, with each directory data object containing
an encrypted parent reference, file metadata, and encrypted
stream locations 1n terms of byte ranges on said storage
devices.

6. The distributed file system of claim 5, wherein if said
directory entry refers to another directory then the stream
locations are given as another stream stripe set of the same
structure, and if said directory entry refers to a file then each
stream stripe set corresponds to a group of file data objects
on said storage devices and includes several stripes each
representing a given range of bytes of the stream on one or
more of said storage devices.

7. The distributed file system of claim 6, wherein each of
said stripes includes a list of associated file data objects, a
stride describing the number of bytes written to a particular
network object before moving to a next network object, and
a chunk size describing the number of bytes subject to
encryption at a time.

8. The distributed file system of claim 7, wherein each
chunk includes a combination of file data together with a
hash of the data, with the combination then encrypted with
an encryption key associated with the stream stripe set.

9. A method for storing data as remotely encrypted data
objects on a network of storage devices 1n a distributed file
system, comprising the steps of:

requesting data from said storage devices using at least

one client;

authenticating data requests and responses using a plu-
rality of keys, controlling said keys using a key man-
ager;

accessing data using at least one client to perform file
management tasks; and

maintaining data consistency using a lock manager,
wherein files and metadata may be copied directly from one
storage device to another storage device 1n a secure manner,
and only said clients possessing appropriate encryption and
decryption keys have access to data stored 1n said storage
devices, and said remotely encrypted data objects include
encrypted metadata describing a directory structure in said
distributed file system.

10. The method of claim 9, wherein said storage devices
replace old stored data with new data upon request of said
client.

11. The method of claim 9, wherein said file management
tasks include maintaining a logical mapping of locations of
files and directory entries stored on said network of storage
devices.

12. The method of claim 11, wheremn said files and
directory entries comprise one or more streams logically
partitioning data into said data objects.

13. The method of claim 12, wherein each said directory
entry 1s stored as a set of stream stripe sets each referring to
a group of directory data objects on said storage devices,
with each directory data object containing an encrypted
parent reference, file metadata, and encrypted stream loca-
fions 1n terms of byte ranges on said storage devices.

14. The method of claim 13, wheremn 1if said directory
entry refers to another directory then the stream locations are
ogrven as another stream stripe set of the same structure, and



US 6,405,315 Bl
15 16

if said directory entry refers to a file then each stream stripe a chunk size describing the number of bytes subject to
set corresponds to a group of file data objects on said storage encryption at a time.
devices and includes several stripes each representing a

_ _ 16. The method of claim 15, wherein each chunk includes
ogrven range of bytes of the stream on one or more of said

storage devices ;2 combination of file data together with a hash of the data,
15. The method of claim 14, wherein each of said stripes with the combination then encrypted with an encryption key
includes a list of associated file data objects, a stride associated with the stream stripe set.

describing the number of bytes written to a particular
network object before moving to a next network object, and * ok Kk k%



	Front Page
	Drawings
	Specification
	Claims

