United States Patent

US006405271B1

(12) (10) Patent No.: US 6,405,271 B1
MacWilliams et al. 45) Date of Patent: *Jun. 11, 2002
(54) DATA FLOW CONTROL MECHANISM FOR 5235684 A * 8/1993 Becker et al. 710/100
A BUS SUPPORTING TWO-AND 5,528,764 A 6/1996 Heil et al.
THREE-AGENT TRANSACTIONS 5,551,005 A 8/1996 Sarangdhar et al.
5555425 A * 9/1996 Zeller et al. 395/293
: ML NI 5,568,620 A 10/1996 Sarangdhar et al.
(75) Inventors: g;gl'l[)(ihh;[fcy ﬂtllml:jl_s"s‘;loﬁzill\;“m V. 5608881 A * 3/1997 Masumura et al. 395/306
sTHal, FOTTAnd, SIEPIE . 5615343 A * 3/1997 Sarangdhar et al. 395/292
Pawlowski, Beaverton; Gurbir Singh, 5696910 A * 12/1997 Pawlowski ..ooovoevn... 305/293
Portland, all of OR (US) 5,699,516 A * 12/1997 Sapir et al. ...ocoeoe....... 395/287
_ 5,758,106 A * 5/1998 Fenwick et al. 3957292
(73) Assignee: Intel Corporation, Santa Clara, CA
(US) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this Popescu, Val, Merle Schultz, John Spracklen, Gary Gibson,
patent 1s extended or adjusted under 35 Bruce Lightner and David Isaman, “The Metaflow Archi-
U.S.C. 154(b) by 0 days. tecture”, IEEE Micro, Jun. 1991, pp. 10-13 and 63-73.
Thi < ub; 1 PCT International Search Report for International Applica-
s patent 1s subject 1o a terminal dis- 57 No. PCT/US96/11419, dated Oct. 30, 1997.
claimer.
* cited by examiner
(21) Appl. No.: 08/709,215
(22) Filed: Sep. 6, 1996 Primary Examiner—Peter S. Wong
! Assistant Examiner—Xuong M. Chung-Trans
Related U.S. Application Data (74) Attorney, Agent, or Firm—Blakely, Sokoloff, Taylor &
Zalman LLP
(63) Continuation-in-part of application No. 08/302,600, filed on
Sep. 8, 1994, now Pat. No. 5,615,343. (57) ABSTRACT
51) Int. CL7 e, GO6F 13/00 A data flow control mechanism for a bus supporting two-
PP g
52) US.Cl oo, 710/109; 710/105; 710/107 and three-agent transactions includes a control logic to place
(52) /109; 710/105; 710/ g gictop
(58) Field of Searchcccoccovvvvveen.. 710/100, 107, anindication of a request onto a computer system bus. The
710/108, 109, 110, 112, 105; 711/143, 146 agent placing the indication on the bus then waits to place
data corresponding to the request onto the bus until 1t has
(56) References Cited received an indication from another agent coupled to the bus

U.S. PATENT DOCUMENTS

that the other agent 1s ready to receive the data.

4181,974 A * 1/1980 TLemay et al. 700/225 15 Claims, 5 Drawing Sheets
201 202
r / 1 - / 1
AGZEE:E 0 AGEDTE ! AGZE&T 2 AG&”—&V . AGENT 4| |AGENT 5| |AGENT 6| |AGENT 7
|
S T B L
; T o T T
MEMORY 1/0 MEMORY 1/0
CONTROLLER ' BRIGE CONTROLLER Y BRIDGE
| — CLUSTER 1 CLUSTER
o § |vmveeR ¢ b |MaNaceR| 3
LOCAL =7 STORAGE LOCAL X
. STORAGE
ME%%RY D%IBCE MEMORY DEVICE
L. . ~ L _l
MEMORY SYSTEM BUS 208
—-— L -
" 1
HIGH y | 209
SPEED 1/0| | MEMORY | -
INTERFACE | |INTERFACE
210 211

i _

TO/FROM OTHER SYSTEM COMPONENTS

US 6,405,271 B1

Sheet 1 of 5

Jun. 11, 2002

U.S. Patent

| Ol3

u%ﬂmmm JOIA3Q TONINOD 32IA3Q 32IA3Q
SOV AdOD QYVH MOSHND | | a¥vogAIM| | AV1dSId
9¢ | GCl yel cCl 4%
1€1 SNg O/1 W3LSAS

30IA3A
R " 3oamE

801 _ 801 01907

801 21901 B3l m:m o

J 104INOD SN8
GCl L0l SN AJOWIW d0OSSI00dd

501 01901 801 01901 801001 || [[801 01907 ;
0NINOD Sng|| [[10¥INOD SNg 04INOD SNE TOEZS Sng
JOIAd0 - " (2)40ss3008d 1)40SSIN0Nd
St (~)40SS3008d A E\ (1)
GOl
AHOWAIN
JHOVD 771 001
Q01

801 21001 _
JO4INOD SNd

(0)¥0SS3D04d

[A0)!

L

507 21907
T04INOD SNg

43 TI0HINOO
AJOWIN

\\]
44

ASOWIN
NIVIA v

—

LC}

US 6,405,271 B1

Sheet 2 of 5

Jun. 11, 2002

U.S. Patent

Eee— -EEsl— ee—— all— [——Y —— ——— [e "] —— e Y L N " p— b

J0IAJQ
JOVHOILS

:

390149
0/1

SINIANOINOD WILISAS ¥3IHIO WOY4/0l

[Tz
JOVId31NI

~<t T XHON3N

|
AYOWIN |
OO0 |
HIOVNYI K
431SN10
43 TIOHLNOD

AJOWIN

I
¢clé

5

R

£ INJIOV| (9 INJOV| |G INJAOV| (v INJOV

ook el

0l¢

JOVIYIUINI
0/1 433dsS

HOIH

¢ 9Ol

“ 392 992

_ I0IA3Q ANOWIN

| JOVHOLS s VOO0

| YIOVNYA

| v M3LSND v

_ _ 797 - goz

_ 390148 MITIONLNOD
| - 0/1 AMOW3N
_

_

_

_ rAke H

_]

| a0? G0¢ +07 (o oYA
|

_

| INJdOV| |0 INJOV

US 6,405,271 Bl

Sheet 3 of 5

Jun. 11, 2002

U.S. Patent

S ARERE

ot | | | |
, ..-.n :
- B

/7 8 9 10 11 12 13

J 4 S5 6

CLK

ARBITRATION
REQUEST
ERROR

o0
rINEEE

b

> ml-_

SNOOP
RESPONSE
DATA TRANSFER

FIG. 3

TRDY#
402

b—
0
L]
)
g
o)
-

FIG., 4

U.S. Patent Jun. 11, 2002 Sheet 4 of 5 US 6,405,271 B1

1 2 3 4 5 6 7 8 9

CLK
ADS# 501

REQaC# 502
HITM# 503

TRDY# 504

DBSY# 505
D(63:0)# 506
DRDY# 507
RS[2:0]# 508

FIG. S

2 3 456 78 9101112131415 16

1
o T
AYEEENEEEEE NN

REQaC# 502 >

g 503 'ﬂ“ -
TRDY# 504 “d' .-
DBSY# 505 [

il Sipe I T ..::;a
oROY 507 [T [S
steolf so8 [T

|
FIG. 6

U.S. Patent

CLK

ADS# 501
REQaC# 502

HITM# 503
TRDY# 504

DBSY# 505

D[63:0]# 506 |

DRDY# 507
RS[2:0]# 508

Jun. 11, 2002 Sheet 5 of 5 US 6,405,271 Bl

12 3 45 6 78 9101112131415 16

4
“'..
. ‘

o

.l. ‘
4L

=

W
S
L
=
i

m

SR SU SR

FIG., 7

US 6,405,271 Bl

1

DATA FLOW CONTROL MECHANISM FOR
A BUS SUPPORTING TWO-AND
THREE-AGENT TRANSACTIONS

The present 1mnvention 1s also a continuation-in-part of
application number 08/302,600 filed Sep. 8, 1994, now U.S.
Pat. No. 5,615,343, entitled “Method and Apparatus for
Performing Deferred Transactions” to Sarangdhar, et al., a
co-inventor of the instant application and commonly
assigned to the assignee of the present application.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention pertains to computer systems and
computer system buses. More particularly, this mvention
relates to controlling data flow on a computer system bus
which supports two- and three-agent transactions.

2. Background

Modern computer systems typically have multiple agents
coupled together via a system bus. Typically, the agents are
integrated circuit chips with multiple pins coupling each
agent to the bus. These agents may include, for example, a
processor(s), a memory device(s), a mass storage device(s),
ctc. In order for the computer system to operate properly,
these agents should be able to effectively communicate with
cach other via the bus.

One aspect of this communication 1s the transfer of data
from one agent to another. The transfer of data on the bus 1s
referred to as the data flow on the bus. In many computer
systems, an agent which can be the target of a data transfer
has a storage space, such as a data buffer, into which the
transferred data 1s placed. However, agents typically have a
limited amount of storage space for data. Therefore, situa-
fions can arise where the targeted agent for a data transfer
does not have sufficient storage space to store the data.
Additionally, 1t 1s often the case that only the targeted agent
knows whether 1t has suilicient storage space to store the
data. Thus, 1t would be beneficial to provide a mechanism
that allows the agent which 1s targeted by a request to control
the tlow of data on the bus for that request.

Additionally, one type of bus which can be used in a
computer system 1s referred to as a latched bus. In a latched
bus system, data 1s latched into a storage space from the bus
in one clock cycle and control signals based on that data can
be placed on the bus 1n any of the subsequent clock cycles.
In contrast, in a non-latched bus system, data 1s received
from the bus 1n one clock cycle and control signals based on
that data can be placed on the bus 1n that same clock cycle.
Due to the nature of the latched bus, some solutions for
controlling data flow on the bus which work on a non-
latched bus are too 1neflicient to work on a latched bus. For
example, on a non-latched bus, data can be placed on the bus
by a source agent which can wait until 1t receives a ready
signal from the targeted agent, at which point the source
agent provides, 1n the same clock cycle as 1t receives the
ready signal, the next data. However, this concept of waiting
for, receiving, and processing the ready signal for each data
transfer takes too much time on a latched bus because the
ready signal would be received 1n one clock cycle, processed
in the next clock cycle, and then the next data would be
placed on the bus. Therefore, it would be beneficial to
provide a mechanism that allows the targeted agent to more
ciiciently control the flow of data on a latched bus.

Furthermore, some computer systems include one or more
cache memories, each of which 1s faster and smaller than the
main system memory. The cache memory typically allows

10

15

20

25

30

35

40

45

50

55

60

65

2

data which has been recently accessed by an agent, or which
1s predicted to be accessed soon by an agent, to be available
in a faster memory, thereby reducing the time required to
obtain the data and increasing overall system performance.
Ditferent agents, such as different processors, on a bus will
often have their own cache memory. These agents are then
able to modily the data stored in their cache memory without
making the same modifications to the main memory until a
later ttime. However, situations can arise where data which 1s
requested by a first agent 1s stored 1n a cache memory of a
second agent, and the requested data 1n the second agent’s
cache memory has been modified. Therefore, the data to be
returned to the first agent should come from the cache
memory of the second agent, not from the main memory
because the data in the cache memory 1s a more recent
version. One solution to this problem 1s to transfer the
requested data from the second agent to the first agent and
have the memory controller for the main memory also take
the data off the bus. A transaction such as this which uses the
first and second agents, as well as the memory controller, 1s
referred to as a three-agent transaction. However, this solu-
fion presumes that the memory controller has sufficient
storage space to take the data off the bus, which 1s not always
the case. Thus, 1t would be beneficial to provide a mecha-
nism which allows the memory controller to maintain data
flow control on the bus for a three-agent transaction.

As will be described 1n more detail below, the present
invention provides a data flow control mechanism for a bus
supporting two- and three-agent transactions to achieve
these and other desired results which will be apparent to
those skilled 1n the art from the description that follows.

SUMMARY OF THE INVENTION

A data tflow control mechanism for a bus supporting two-
and three-agent transactions 1s described herein. An appa-
ratus 1n accordance with the data flow control mechanism of
the present invention includes a control logic to place an
indication of a request onto a computer system bus. The
apparatus then waits to place data corresponding to the
request onto the bus until 1t has received an indication from
an agent coupled to the bus that the agent 1s ready to receive
the data.

In one embodiment of the present invention, the data flow
control mechanism supports both two- and three-agent trans-
actions. In a two-agent transaction 1n accordance with this
embodiment, data 1s transferred from a source agent to a
target agent, with the target agent maintaining control of the
data flow. In a three-agent transaction 1n accordance with
this embodiment, data 1s transferred from a snooping agent
to either the source agent or the target agent, as well as
possibly from the source agent to the target agent. In the
three-agent transaction, the target agent controls the data
flow of transfers to the target agent, regardless of whether
they originated with the source agent or the snooping agent.

BRIEF DESCRIPTION OF THE DRAWINGS

The present mvention 1s illustrated by way of example
and not limitation in the figures of the accompanying
drawings, 1n which like references indicate similar elements
and 1n which:

FIG. 1 illustrates a multiprocessor computer system such
as may be used with one embodiment of the present inven-
tion;

FIG. 2 15 a block diagram illustrating a bus cluster system
such as may be used with one embodiment of the present
mvention;

US 6,405,271 Bl

3

FIG. 3 shows an example of overlapped phases for two
fransactions according to one embodiment of the present
mvention;

FIG. 4 1s a state diagram 1llustrating the different states for
the TRDY# signal 1in accordance with one embodiment of
the present invention;

FIG. 5 1s a timing diagram 1illustrating the timing of
signals 1n performing a write transaction according to one

embodiment of the present invention;

FIG. 6 1s a timing diagram 1illustrating the timing of
signals 1 performing a read transaction with an implicit
writeback according to one embodiment of the present
mvention; and

FIG. 7 1s a timing diagram 1illustrating the timing of
signals in performing a write transaction with an 1mplicit
writeback according to one embodiment of the present
invention.

DETAILED DESCRIPTION

In the following detailed description numerous specific
details are set forth 1n order to provide a thorough under-
standing of the present invention. However, 1t will be
understood by those skilled in the art that the present
invention may be practiced without these specific details. In
other 1nstances, well known methods, procedures,
components, and circuits have not been described 1n detail
so as not to obscure aspects of the present invention.

In the discussions to follow, certain signals are discussed
which include a “#”. This notation 1s used to indicate a signal
which is active when in a low state (that is, a low voltage).
It 1s to be appreciated, however, that the present imnvention
includes 1mplementations where these signals are active
when 1n a high state rather than when 1n a low state.
Similarly, the present invention includes implementations
where signals discussed herein which do not include a “#”
are active when 1n a low state.

The present 1nvention provides a mechanism for control-
ling data flow on a bus which supports two- and three-agent
transactions. The mechanism allows an agent which 1s to
receive data from the bus to control the flow of data on the
bus. The agent which 1s to receive data indicates when it 1s
ready to receive the data, at which time another agent on the
bus, which 1s the source of the data being transferred, places
the data on the bus.

FIG. 1 illustrates a multiprocessor computer system such
as may be used with one embodiment of the present inven-
tion. The computer system 100 generally comprises a
processor-memory bus or other communication means 101
for communicating information between different agents
coupled to the bus 101, such as processors, bus bridges,
memory devices, peripheral devices, etc. The processor-
memory bus 101 includes arbitration, address, data and
control buses (not shown). In one embodiment, the bus 101
1s a latched bus having a data bus width of 64 bits.

In one embodiment of the present invention, each of the
one or more processors 102, 103, 104, and 105 includes a
small, extremely fast internal cache memory (not shown),
commonly referred to as a level one (L1) cache memory for
temporarily storing data and instructions on-chip. In
addition, a biggerlevel two (LL2) cache memory 106 can be
coupled to any one of the processors, such as processor 1035,
for temporarily storing data and instructions for use by the
processor(s). Each processor may have its own L2 cache, or
some may share an L2 cache.

Processors 102, 103, and 104 may cach be a parallel
processor (a symmetric co-processor), such as a processor

5

10

15

20

25

30

35

40

45

50

55

60

65

4

similar to or the same as processor 105. Alternatively,
processor 102, 103, or 104 may be an asymmetric
CO-processor, such as a digital signal processor. In addition,
processors 102 through 105 may include processors of
different types. In one embodiment, the present immvention
includes Intel® Architecture microprocessors as processors
102 through 105, such as 1386™, 1486™ Pentium®, or
Pentium® Pro microprocessors. However, the present
invention may utilize any type of microprocessor architec-
ture. It 1s to be appreciated that the particular architecture(s)
used 1s not especially germane to the present 1nvention.

The processor-memory bus 101 provides system access to
the memory and input/output (I/O) subsystems. A memory
controller 122 1s coupled to the processor-memory bus 101
for controlling access to a random access memory (RAM) or
other dynamic storage device 121 (commonly referred to as
a main memory) for storing information and instructions for
processors 102 through 105. A mass data storage device 125,
such as a magnetic disk and disk drive, for storing infor-
mation and instructions, and a display device 123, such as a
cathode ray tube (CRT), liquid crystal display (LCD), etc.,
for displaying information to the computer user may be
coupled to the processor-memory bus 101.

Each of the agents coupled to the bus, including proces-
sors 102-105 and memory controller 122, include a bus
control logic 108 which acts as an interface between the
agent and the bus 101, both of which may run at different
clock speeds. The bus control logic 108 includes the latches
and necessary circuitry for driving signals onto and receiv-
ing signals from the bus 101.

An input/output (I/O) bridge 124 may be coupled to the
processor-memory bus 101 and a system I/O bus 131 to
provide a communication path or gateway for devices on
either processor-memory bus 101 or I/O bus 131 to access
or transfer data between devices on the other bus.
Essentially, the bridge 124 i1s an interface between the
system I/O bus 131 and the, processor-memory bus 101.

The I/O bus 131 communicates information between
peripheral devices 1n the computer system. Devices that may
be coupled to the system bus 131 include, for example, a
display device 132, such as a cathode ray tube, liquid crystal
display, etc., an alphanumeric input device 133 including
alphanumeric and other keys, etc., for communicating infor-
mation and command selections to other devices in the
computer system (e.g., the processor 102) and a cursor
control device 134 for controlling cursor movement.
Moreover, a hard copy device 135, such as a plotter or
printer, for providing a visual representation of the computer
images and a mass storage device 136, such as a magnetic
disk and disk drive, for storing information and instructions
may also be coupled to the system bus 131.

In certain implementations of the present invention, addi-
tional processors or other components may be included.
Additionally, 1n certain 1implementations components may
be re-arranged. For example, the L2 cache memory 106 may
lie between the processor 105 and the processor-memory
bus 101. Furthermore, certain implementations of the
present 1nvention may not require nor include all of the
above components. For example, the processors 102 through
104, the display device 123, or the mass storage device 125
may not be coupled to the processor-memory bus 101.
Additionally, the peripheral devices shown coupled to the
system I/O bus 131 may be coupled to the processor-
memory bus 101; 1in addition, 1n some 1implementations only
a single bus may exist with the processors 102 through 1035,
the memory controller 122, and the peripheral devices 132
through 136 coupled to the single bus.

US 6,405,271 Bl

S

FIG. 2 1s a block-diagram 1llustrating a bus cluster system
such as may be used with one embodiment of the present
invention. FIG. 2 shows two clusters 201 and 202 of agents.
Each of these clusters 1s comprised of a number of agents.
For example, the cluster 201 1s comprised of four agents
203-206 and a cluster manager 207, which may include
another cache memory (not shown), coupled to the bus 212.
The agents 203-206 can 1nclude microprocessors,
co-processors, digital signal processors, etc.; for example,
the agents 203 through 206 may be the same as the processor
105 shown 1n FIG. 1. The cluster manager 207 and its cache
are shared between these four agents 203—206. Each cluster
1s coupled to a memory-system bus 208. These clusters 201
and 202 are coupled to various other components of the
computer system through a system interface 209. The
system-1nterface 209 includes a high speed I/0O interface 210
for 1nterfacing the computer system to peripheral devices
(not shown) and a memory interface 211 which provides
access to a global main memory (not shown), such as a
DRAM memory array. In one embodiment, the high speed
I/O interface 210 1s the bridge 124 of FIG. 1, and the

memory interface 211 1s the memory controller 122 of FIG.

1.

In one embodiment of the present 1nvention, each cluster
also 1mncludes a local memory controller and/or a local 1/0
bridge. For example, the cluster 201 may include a local
memory controller 265 coupled to the processor bus 212.
The local memory controller 265 manages accesses to a
RAM or other local memory 266 contained within the
cluster 201. The cluster 201 may also i1nclude a local I/0O
bridge 267 coupled to the processor bus 212. Local 1/O
bridge 267 manages accesses to I/O devices within the

cluster, such as a mass storage device 268, or to an I/O bus,
such as system I/O bus 131 of FIG. 1.

In another embodiment of the present invention, the local
memory of each cluster 1s part of the global memory and I/0
space for the entire system. Therefore, 1n this embodiment
the system interface 209 need not be present because the
individual local memory and I/O bridges make up the global
memory system.

In one embodiment of the present invention, the buses 212
and 213 and the memory-system bus 208 operate analogous
to the processor-memory bus 101 of FIG. 1.

Certain implementations of the present invention may not
require nor include all of the above components. For
example, the cluster 201 or 202 may comprise fewer than
four agents. Alternatively, the cluster 201 or 202 may not
include the memory controller, local memory, I/O bridge,
and storage device. Additionally, certain implementations of
the present ivention may include additional processors or
other components.

In one embodiment of the present invention, bus trans-
actions occur on the processor-memory buses described
above 1 FIGS. 1 and 2 1n a pipelined manner. That 1s,
multiple bus transactions may be pending at the same time,
wherein each 1s not fully completed. Theretfore, when a
requesting agent (also referred to as a source agent) begins
a bus transaction by driving an address onto the address bus,
the bus transaction may be only one of a number of bus
fransactions currently pending. Although bus transactions
are pipelined, the bus transactions do not have to be fully
completed 1n order; completion replies to requests can be
out-of-order.

In the bus used with one embodiment of the present
invention, bus activity 1s hierarchically organized into
operations, transactions, and phases. An operation 1s a bus

10

15

20

25

30

35

40

45

50

55

60

65

6

procedure that appears atomic to software such as reading a
naturally aligned memory location. Executing an operation
usually requires one transaction but may require multiple
fransactions, such as in the case of deferred replies in which
requests and replies are different transactions, or 1n
unaligned memory operations which software expects to be
atomic. In this embodiment, a transaction 1s the set of bus
activities related to a single request, from request bus
arbitration through the completion of the transaction (e.g., a
normal or implicit writeback response) during the Response

Phase.

In one embodiment, a transaction contains up to sIX
distinct phases. However, certain phases are optional based
on the transaction and response type. Alternatively, addi-
tional phases could also be added. A phase uses a particular
signal group to communicate a particular type of informa-

tion. In one 1mplementation, these phases are:
Arbitration Phase

Request Phase
Error Phase
Snoop Phase

Response Phase

Data Transfer Phase

In one mode, the data transfer phase 1s optional and 1s
used 1f a transaction-is transferring data. The data phase 1s
request-initiated 1if the data 1s available at the time of
initiating the request (for example, for a write transaction).
The data phase 1s response-initiated 1f the data 1s available
at the time of generating the transaction response (for
example, for a read transaction). A transaction may contain
both a request-initiated data transfer and a response-initiated
data transfer.

Different phases from different transactions can overlap,
thereby pipelining bus usage and improving bus perfor-
mance. FIG. 3 shows an example of overlapped phases for
two transactions. Referring to FIG. 3, transactions begin
with an arbifration phase, 1n which a requesting agent
becomes the bus owner. The arbitration phase needs to occur
only 1f the agent that 1s driving the next transaction does not
already own the bus. In one implementation, bus ownership
1s granted to the requesting agent in the arbitration phase two
or more clocks after ownership 1s requested.

The second phase 1s the request phase, 1n which the bus
owner drives a request and address information on the bus.
In one implementation, the request phase 1s one or more
clocks after bus ownership is granted (provided there is an
arbitration phase), and is two clocks long. In the first clock,
an address signal 1s driven along with the transaction type
and sufficient information to begin snooping a memory
access. In the second clock, byte enables used to identify
which bytes of data should be transferred if the data transfer
1s less than the data bus width, a transaction identifier used
to uniquely identity the transaction in the event a deferred
response 1s given to the request, and the requested data
transfer length are driven, along with other transaction
information.

The third phase of a transaction 1s an error phase. The
error phase 1ndicates any immediate errors, such as parity
errors, triggered by the request. If an error 1s discovered, an
error signal 1s asserted during the error phase by the agent
which detected the error 1n the transaction. When an error 1s
indicated, the transaction is immediately dropped (that is,
the transaction progresses no further in the pipeline) and
may be re-driven by the agent which 1ssued the transaction.
Whether the agent re-1ssues the transaction depends on the
agent 1tself. In one implementation, the error phase is three
clocks after the request phase.

US 6,405,271 Bl

7

In one embodiment, every transaction that 1s not canceled
because of an error 1n the error phase has a snoop phase. The
snoop phase indicates 1f the cache line accessed 1n a trans-
action is not valid, valid or modified (dirty) in any agent’s
cache. In one implementation, the snoop phase 1s four or
more clocks from the request phase.

The snoop phase of the bus defines a snoop window
during which snoop events can occur on the bus. A snoop
event refers to agents transmitting and/or receiving snoop
results via the bus. An agent which has snoop results which
need to be driven during the snoop phase drives these snoop
results as a snoop event during the snoop window. All
snooping agents coupled to the bus, including the agent
driving the results, receive these snoop results as a snoop
event during the snoop window. In one implementation, the
snoop window 1s a single bus clock.

The response phase indicates whether the transaction
failed or succeeded, whether the response 1s immediate or
deferred, whether the transaction will be retried, or whether
the transaction includes data phases. If a transaction contains
a response-initiated data phase, then 1t enters the data
transfer phase along with the response phase.

If the transaction does not have a data phase, then that
fransaction 1s complete after the response phase. If the
requesting agent has write data to transfer or has requested
read data, the transaction has a data phase which may extend
beyond the response phase in the former case and will be
coincident with or extend beyond the Response Phase 1n the
latter case. The data phase occurs only if a transaction
requires a data transfer. The data phase can be response
initiated (for example, by the memory controller or another
processor) or request initiated.

The bus accommodates deferred transactions by splitting
a bus transaction mnto two independent transactions. The first
fransaction mvolves a request by a requesting agent and a
response by the responding agent. In one embodiment the
request comprises the sending of an address on the address
bus and a first token (also referred to as a transaction
identifier). The response includes the sending of the
requested data (or completion signals) if the responding
agent 1s ready to respond. In this case, the bus transaction
ends.

However, 1f the responding agent 1s not ready to complete
the bus transaction, then the responding agent may send a
deferred response over the bus during the response phase.
Sending of a deferred response allows other transactions to
be 1ssued and not be held up by the completion of this
fransaction. The requesting agent receives this deferred
response. When the responding agent 1s ready to complete
the deferred bus transaction, the responding agent arbitrates
for ownership of the bus. Once bus ownership i1s obtained,
the responding agent sends a deferred reply transaction
including a second token on the bus. The requesting agent
monitors the bus and receives the second token as part of the
deferred reply transaction. The requesting agent latches the
second token and determines whether the second token sent
from the responding agent matches the first token. If the
requesting agent determines that the second token from the
responding agent does not match the first token (which the
requesting agent generated), then the data on the bus (or the
completion signal) 1s ignored and the requesting agent
continues monitoring the bus. If the requesting agent deter-
mines that the second token from the responding agent does
match the first token, then the data on the bus (or the
completion signals) is the data originally requested by the
requesting agent and the requesting agent latches the data on
the data bus.

10

15

20

25

30

35

40

45

50

55

60

65

3

It 1s to be appreciated that, due to the pipelined nature of
the bus, multiple transactions can be at different stages of the
bus at different times. For example, one transaction can be
in the snoop phase, while a second transaction is 1n the error
phase, and yet a third transaction can be 1n the request phase.
Thus, error signals and request signals can both be 1ssued
concurrently on the bus even though they correspond to
different transactions.

In one embodiment of the present invention, up to eight
transactions can be outstanding on the bus at any particular
fime and up to sixteen transactions can be waiting for a
deferred response at any particular time.

The present 1nvention supports both read and write trans-
actions. In a read transaction data 1s transferred from the
targeted agent, typically a memory controller, to the request-
ing agent, typically a processor. In a write transaction, data
1s transferred from the requesting agent, typically a
processor, to the targeted agent, typically a memory con-
troller.

Additionally, one embodiment the present invention also
supports an 1mplicit writeback, which 1s part of a read or
write transaction. An implicit write back occurs when a
requesting agent places a request on the bus for a cache line
which 1s stored 1n a modified state in a cache coupled to the
bus. For example, an agent may perform a write transaction
over the bus of eight bytes of data, however the cache line
which includes those eight bytes 1s stored 1n modified state
in another agent’s cache. In this situation, the cache which
contains the cache line in modified state (or the agent which
is coupled to the cache) issues a hit modified signal on the
bus during the snoop phase for the transaction. The request-
ing agent places the eight bytes of write data onto the bus,
which are retrieved by the targeted agent. Then, 1n the data
transfer phase of the transaction, the cache which contains
the cache line 1n modified state writes the cache line, which
1s 32 bytes 1n one implementation, to the bus. Any of the data
in the cache line which was not written to by the requesting
agent 1s then merged with the write data from the original
data transfer.

In one embodiment of the present invention, an additional
control signal on the bus 1s used to control the flow of data

on the bus. In one implementation, this signal 1s the Target
Ready (TRDY#) signal. The agent which is to be the
recipient of the data for a transaction asserts the TRDY#
signal to 1ndicate that it 1s ready to receive the data for the
transaction from a particular agent. In one embodiment, an
agent 1ssuing a read request does not assert the TRDY#
signal. In this embodiment, the agents on the bus presume
that the requesting agent, 1n 1ssuing a read request, 1s ready

to receive the requested data.

In one embodiment of the present invention, the memory
controller on the bus, such as memory controller 122 of FIG.
1, or local memory controller 264 or interface 211 of FIG.
2, has responsibility for asserting and deasserting the
TRDY# signal. Thus, 1n this embodiment of the present
invention, the memory controller has the ability to control
the flow of data on the bus.

The memory controller on the bus includes a bus control
logic, as illustrated in FIG. 1. The bus control logic includes
one or more data buffers (not shown) into which the memory
controller can temporarily store write data received from the
bus prior to storing the data 1in the main memory. When a
request 1s 1ssued on the bus, the memory controller decodes
the address and determines the size of the data transfer
assoclated with the request, and whether the request targets
the memory controller. The memory controller can then
delay assertion of the TRDY# signal until 1t has an available
data buffer into which the data to be transferred can be
placed.

US 6,405,271 Bl

9

According to one embodiment of the present invention,
the memory controller which 1s responsible for assertion and
deassertion of the TRDY# signal includes a state machine to
indicate when the TRDY# signal 1s to be asserted and
deasserted. FIG. 4 1s a state diagram 1llustrating the different
states for the TRDY# signal in accordance with one embodi-
ment of the present invention. As illustrated, the memory
controller can either assert the TRDY# signal, state 401, or
deassert the TRDY# signal, state 402. The memory control-
ler 1nitializes at system reset to state 402 with the TRDY#
signal being deasserted. Whether the memory controller will
transition to the assert TRDY# state 401 depends on whether
the reason for asserting the TRDY# signal 1s data provided
by the requesting agent as part of a write transaction or data
provided by a snooping agent as part of an implicit write-
back. However, 1t 1s to be appreciated that, regardless of the
source of the data, the memory controller does not assert the
TRDY# signal until 1t 1s ready to receive the data.

According to one embodiment of the present invention,
the memory controller transitions to the assert TRDY# state
401 1n response to a write transaction initiated by an agent

on the bus when the following two conditions have been
satisfied: (1) it is at least three clocks after the address strobe
(ADS#) signal for the request has been asserted; and (2) it
1s at least one clock after the response for the previous
fransaction on the pipelined bus has been driven.

According to one embodiment of the present invention,
the memory controller transitions to the assert TRDY# state
401 1n response to an 1implicit writeback, which could be the
result of either a read or write transaction from the request-
ing agent, such that the following two conditions are satis-
fied: (1) if the transaction also has a request initiated data
transfer (that is, the requesting agent initiated a write
transaction), then TRDY# is deasserted for at least one clock
between the TRDY# for the write and the TRDY# for the
implicit writeback; and (2) for both request and response
mitiated data transfers, 1t 1s at least one clock after the
response for the previous transaction on the pipelined bus
has been driven.

Regardless of how the memory controller transitioned to
the assert TRDY# state 401, the memory controller transi-
tions back to the deassert TRDY# state 402 as soon as 1t can
be ensured that the TRDY# deassertion meets the following,
five conditions: (1) the previous TRDY# deassertion
occurred three or more clocks from the current TRDY#
deassertion point; (2) TRDY# may be deasserted when the
inactive data bus busy (DBSY#) signal, defined below, and
the active TRDY# signal are observed for at least one clock;
(3) TRDY# can be deasserted within one clock if DBSY#
was observed inactive on the clock TRDY# is asserted; (4)
TRDY# does not need to be deasserted until the response 1s
active; and (5) TRDY# for a request initiated transfer must
be deasserted before the response to allow the TRDY# for an
implicit writeback 1f one 1s required.

FIGS. 5-7 provide examples of timing diagrams 1llustrat-
ing the TRDY# signal according to various embodiments of

the present invention. A summary of the signals used in
FIGS. 5-7 1s shown below 1n Table I.

Signal Description
CLK The bus clock.
ADS# Address Strobe. Asserted by the requesting agent to indicate

the beginning of the Request Phase for a transaction.

10

15

20

25

30

35

40

45

50

55

60

65

10

-continued

Signal Description

REQa0# One of the request signals. Asserted by the requesting agent to
indicate it has data to transfer (e.g., for a write transaction).

HITM# Modified Hit. Asserted by a snooping agent to indicate that
the request hits a modified cache line of the agent’s cache.

TRDY# = Target Ready. Asserted by the targeted agent to indicate it 1s
ready to receive data.

DBSY# Data Bus Busy. Asserted by the agent transferring data to
indicate it 1s using the data bus.

D|63:01# Data. The bus lines used to transfer the data.

DRDY# Data Ready. Asserted by the agent transferring data to indicate
valid data 1s on the bus.

RS[2:0]# Response Status. Asserted by the targeted agent to indicate the
status of the response (e.g., Retry Response, Deferred

Response, Failure, Implicit Writeback Response, or Normal
Data Response).

FIG. 5 1s a timing diagram 1illustrating the timing of
signals 1n performing a two-agent write transaction accord-
ing to one embodiment of the present invention. In the
illustrated embodiment, a square 1s used to 1ndicate the clock
in which a signal 1s asserted, and a circle 1s used to indicate
the clock 1n which a signal 1s sampled. As illustrated 1n FIG.
5, the requesting agents asserts an address strobe (ADS#)
signal 501 and a request control signal (REQa0#) 502 in
clock (CLK) 1, which are sampled in CLK 2 by the other
agents on the bus. The ADS# signal 501 being asserted
indicates that the request 1s beginning, and the REQa(#
signal 502 being asserted indicates that the requesting agent
has write data to transfer. The modified hit (HITM#) signal
503 remains 1nactive, indicating that the request has not hit

a modified cache line.
The target agent asserts the TRDY# signal 504 in CLK 4,

which the requesting agent observes active in CLK 5. The
requesting agent observes the DBSY# signal 505 inactive in
CLK 5, which allows 1t to begin the data transfer 1in the next
clock cycle, CLK 6. The requesting agent asserts the data
ready (DRDY#) signal 507 in CLK 6 to indicate that valid
data 1s on the bus. The requesting agent drives the data on
the data (D[63:0}#) lines 506 in CLK 6. The targeted agent
then asserts response (RS|2:0]#) signals 508 in CLK 7,
providing the completion information to the requesting
agent (e.g., normal data response, retry-response, deferred

response, etc.).
As 1llustrated 1 FIG. 5, the TRDY# signal 504 can be

deasserted 1n CLK 6 because the TRDY# signal 504 is
observed active and the DBSY# signal 505 1s observed

mnactive 1n CLK 5. Alternatively, the TRDY# signal 504
could remain asserted in CLK 6 and not be deasserted until
CLK 7.

FIG. 6 1s a timing diagram 1illustrating the timing of
signals 1 performing a read transaction with an implicit
writeback, a three-agent transaction, according to one
embodiment of the present invention. In the illustrated
embodiment, a square 1s used to 1ndicate the clock 1n which
a signal 1s asserted, and a circle 1s used to 1ndicate the clock
in which a signal 1s sampled. As 1illustrated 1n FIG. 6, the
requesting agent asserts the ADS# signal 501 in CLK 1,
which 1s sampled in CLK 2 by the other agents on the bus.
The ADS# signal 501 being asserted indicates that the
request 1s beginning, and the REQal# signal 502 being
observed deasserted in CLK 2 indicates that the requesting
agent does not have write data to transfer.

The snooping agent asserts a HITM# signal 503 in CLK
5, which 1s observed by the other agents on the bus 1n CLK
6, indicating that the request has hit a modified cache line 1n
the snooping agent’s cache. The targeted agent then asserts

US 6,405,271 Bl

11

the TRDY# signal 504 in CLK 7, which 1s observed active
by the snooping agent in CLK 8. The snooping agent
observes the DBSY# signal 5035 inactive and the TRDY#
signal 504 active 1n CLK 8, resulting 1n the snooping agent
beginning the data transfer in CLK 9. In CLK 9, the targeted
agent deasserts the TRDY# signal 504 and the snooping
agent asserts the DBSY# signal 505. Also in CLK 9, the
snooping agent drives the modified cache line onto the bus
on data (D[63:0}#) lines 506 and asserts the DRDY# signal
507 to indicate that valid data 1s on the bus. The targeted
agent then asserts the response signals (RS[2:0]#) 508 in
CLK 9, providing the completion information to the request-
ing agent (e.g., an implicit writeback response). In the
1llustrated embodiment, both the target agent and the
requesting-agent latches the data from the bus 508.

It should be noted that 1n the 1llustrated embodiment, the
snooping agent transfers four sets of eight bytes of data each
(four data transfers on the D[63:0]# lines) as the implicit
writeback data. This 1s due to the cache line size in the
illustrated embodiment being 32 bytes, and the implicit
writeback being a transfer of the entire cache line from the
snooping agent to the target agent.

FIG. 7 1s a timing diagram 1illustrating the timing of
signals 1n performing a write transaction with an implicit
writeback, a three-agent transaction, according to one
embodiment of the present invention. In the illustrated
embodiment, a square 1s used to 1ndicate the clock 1n which
a signal 1s asserted, and a circle 1s used to 1ndicate the clock
in which a signal 1s sampled. As 1illustrated 1in FIG. 7, the
requesting agent asserts the ADS# signal 501 and a request

control signal (REQa0#) 502 in CLK 1 and the other agents
on the bus sample these signals 501 and 502 1n CLK 2. The
ADS# signal 501 being asserted indicates that the request 1s
beginning, and the REQal# signal 502 being asserted indi-
cates that the requesting agent has write data to transfer.

The target agent asserts the TRDY# signal 504 in CLK 4
to indicate that 1t 1s ready to accept data. In CLK 35, the
requesting agent observes the TRDY# signal 504 active and
the DBSY# signal 505 1nactive, so that the data transfer
begins 1n CLK 6 with the requesting agent asserting the
DBSY# signal 505 and the DRDY# signal 507, and driving
data on the D|63:0]# lines 506. The DBSY# signal 505
remains active for one clock, indicating that the data transfer
will complete 1n two clocks. The target agent then asserts the
response (RS[2:0}#) signals 508 in CLK 9, which is
observed by the requesting agent 1n CLK 10.

The snooping agent asserts the HITM# signal 503 in CLK
5, which 1s observed by the other agents on the bus 1n CLK
6, indicating that the request has hit a modified cache line 1n
the snooping agent’s cache. In CLK 7, the targeted agent
asserts the TRDY# signal 504 for the implicit writeback
data. In CLK 8, the snooping agent observes the TRDY#
signal 504 active and the DBSY# signal 5035 mactive, so the
snooping agent begins the data transfer in CLK 9 with the
assertion of the DBSY# signal 505. In the illustrated
embodiment, the snooping agent i1s not ready to drive the
implicit writeback data until CLLK 11, so 1t does not assert the
DRDY# signal 507 until CLK 11. The snooping agent then
places the implicit writeback data on the bus 1n CLK 11.

In FIGS. 5-7 above, specific timing of the TRDY# signal
504 1s discussed. As discussed above, the TRDY# signal 504
1s asserted to indicate that the targeted agent 1s ready to
receive data. Thus, the timing in the illustrated examples of
FIGS. 5—7 would be changed 1f the targeted agent were not
ready at the illustrated times. For example, in FIG. 6, the
TRDY# signal 504 could be asserted in CLK 9 rather than

CLK 7 1if the targeted agent were not ready to begin

10

15

20

25

30

35

40

45

50

55

60

65

12

receiving data until CLK 9. It 1s to be appreciated that,
delaying assertion of the TRDY# signal 504 for two clocks
would result in a corresponding two-clock delay of the
assertion of the DBSY# signal 505, the DRDY# signal 507,
the RS[2:0# signals 508, and the data being driven on the
D[63:0 }# lines 506.

In some of the discussions above, the memory controller
1s described as being responsible for assertion and deasser-
tion of the TRDY# signal to control data flow on the bus. It
1s to be appreciated, however, that other agents on the bus
may also control data flow for certain transactions. For
example, 1f a request targets the mass storage device 125 of
FIG. 1, or one of the agents on the system I/O bus 131 (via
the bridge 124), then the storage device 125 or bridge 124,
respectively, would have control of the data flow on the bus.

Thus, the present mvention provides a mechanism for
controlling data flow on a bus which supports two- and
three-agent transactions. The mechanism advantageously
allows the agent which 1s to receive the data to control the
flow of the data on the bus, thereby avoiding the possible
situation of data being placed on the bus and the agent not
having sufficient storage space for the data. Furthermore, the
data flow control 1s provided to the agent which 1s to receive
the data, regardless of whether the agent is the targeted agent
of the transaction.

Whereas many alterations and modifications of the
present invention will be comprehended by a person skilled
in the art after having read the foregoing description, it 1s to
be understood that the particular embodiments shown and
described by way of 1llustration are 1n no way intended to be
considered limiting. Therefore, references to details of par-
ticular embodiments are not intended to limit the scope of
the claims.

Thus, a data flow control mechanism for a bus supporting
two- and three-agent transactions has been described.

What 1s claimed 1s:

1. A method for controlling data flow for transactions
issued on a pipelined computer system bus, the method
comprising:

(a) a first agent 1ssuing a request on the bus;

(b) a second agent providing a first indication to the first

agent that the second agent i1s ready to accept data
corresponding to the request;

(c) the first agent placing the data corresponding to the
request on the bus 1n response to receiving the first
indication;

(d) the second agent providing a second indication to a
third agent that the second agent 1s ready for writeback
data corresponding to the request from the third agent;
and

(¢) the third agent placing the writeback data correspond-
ing to the request on the bus 1n response to receiving the
second 1ndication.

2. The method of claim 1, wheremn providing a {first
indication comprises asserting a control line of the computer
system bus.

3. The method of claim 1, wherein providing a second
indication comprises asserting the control line of the com-
puter system bus.

4. A computer system comprising;:

a pipelined bus;

a first agent coupled to the bus;

a second agent coupled to the bus;

a third agent coupled to the bus;

wherein the first agent includes a first bus control logic to
place a write request on the bus, and also to delay

US 6,405,271 Bl

13

placing data on the bus corresponding to the write
request until a first indication that the second agent 1s
ready to accept data has been received from the second
agent; wherein the second agent includes a second bus
control logic to provide the first indication to the first
agent that the second agent 1s ready to receive data
corresponding to the write request from the first agent;
and

wherein the third agent includes a third bus control logic
to recerve a second indication, from the second agent,
that the second agent 1s ready to receive data corre-
sponding to the write request from the third agent.

5. The computer system of claim 4, wherein the first bus
control logic 1s also to place the data on the bus 1n response
to the first indication.

6. The computer system of claim 4, wherein the first agent
1S a MICTOProcessor.

7. The computer system of claim 6, wherein the second
agent 1s a memory controller.

8. The computer system of claim 4, wherein the first
indication and the second indication comprise the same
control line of the bus.

9. The computer system of claim 4, wherein the bus 1s a
latched bus.

10. An apparatus for providing flow control for transac-
fions 1ssued on a pipelined computer system bus, the appa-
ratus comprising;

means for 1ssuing, by a first agent, a request on the bus;

means for providing, by a second agent, a first indication
to the first agent that the second agent 1s ready to accept
data corresponding to the request; and

means for placing, by the first agent, data corresponding,
to the request on the bus m response to receiving the
first indication;

means for providing, by the second agent, a second
indication to a third agent that the second agent 1s ready
for writeback data from the third agent; and

10

15

20

25

30

35

14

means for placing, by the third agent, the writeback data
on the bus 1n response to receiving the second i1ndica-
tion.

11. The apparatus of claim 10, wherein the means for
providing a first indication comprises a control line of the
computer system bus.

12. The apparatus of claim 11, wherein the means for
providing a second indication comprises the control line of
the computer system bus.

13. A method for controlling data flow for transactions
issued on a pipelined computer system bus, the method
comprising the steps of:

(a) a step for a first agent issuing a request on the bus;

(b) a step for a second agent providing a first indication to
the first agent that the second agent 1s ready to accept
data corresponding to the request;

(c) a step for the first agent placing the data corresponding
to the request on the bus 1n response to receiving the
first indication;

(d) a step for the second agent providing a second
indication to a third agent that the second agent 1s ready
for writeback data corresponding to the request from
the third agent; and

(¢) a step for the third agent placing the writeback data
corresponding to the request on the bus 1n response to
receiving the second indication.

14. The method of claim 13, wherein the step for provid-

ing a {irst indication comprises asserting a control line of the

computer system bus.

15. The method of claim 13, wherein the step for provid-
ing a second mndication comprises assessing the control line
of the computer system bus.

	Front Page
	Drawings
	Specification
	Claims

