US006389587B1
a2 United States Patent (10) Patent No.: US 6,389,587 Bl
Lewis 45) Date of Patent: May 14, 2002
(54) USER INTERFACE FOR DEVELOPING AND 6,138270 A * 10/2000 HSUcovvvvveeeieeienrinnnnnn. 717/3
EXECUTING DATA FLOW PROGRAMS AND 6,189,141 B1 * 2/2001 Benitez et al. 717/4
METHODS, APPARATUS, AND ARTICLES OF 6,219,628 B i 4/200} Kodosky et al. 703/2
MANUFACTURE FOR OPTIMIZING THE 0343558 B = 62001 Mioeuchi vl I iy
EXECUTION OF DATA FLOW PROGRAMS 6.286.017 Bl * 9/2001 Egilson ...orovvrevreerren... 707/503
6,141,725 Al * 10/2001 Tucker et al. 711/100
(75) Inventor: Bradley Lewis, Broomfield, CO (US) S / ne e /
* cited by examiner
(73) Assignee: Sun Microsystems, Inc., Palo Alto, CA
(US) Primary Examiner—Tuan Q. Dam
Assistant Examiner—Chamel1 C. Das
(*) Notice: Subject to any disclaimer, the term of this (74) Attorney, Agent, or Firm—Thelen Reid & Priest LLP;
patent 1s extended or adjusted under 35 David B. Ritchie
U.S.C. 154(b) by O days.
(57) ABSTRACT
(21) Appl. No.: 09/244,136 Methods, systems, and articles of manufacture consistent
(22) Filed: Feb. 4. 1999 with the present mvention provides a development tool that
| S enables computer programmers to design and develop a data
(51) Int. CL7 ..o GO6F 9/44 flow program for execution in a multiprocessor computer
(52) US.CL ..o, 717/1; 717/4; 717/9; 709/101 system. The tool displays an mterface that enables the
(58) Field of Searchcccccococoo....... 717/1, 4,2, 3, programmer to define a region divided into multiple blocks,
717/9; 345/348; 709/101; 707/503; 716/3 wherein each block 1s formed of a set of values associated
with a function, and to define sets of the blocks, each block
(56) References Cited in a set having a state reflected by a designated portion of the
program that when executed transforms the values forming
U.S. PAIENT DOCUMENTS the block based on the function. The interface also records
4,860,204 A * 8/1989 Gendron et al. 7172 any dependencies among the blocks, each dependency indi-
5,005,119 A * 4/1991 Rumbaugh et al. 709/101 cating a relationship between two blocks and requiring the
5.136,705 A * 8/1992 Stubbs et al. 714/27 portion of the program associated with a first block of the
5,251,122 A * 10/1993 Sakamoto et al. 364/147 relationship to be executed before the portion of the program
5,291,587 A * 3/1994 Kodosky et al. 395/500 associated with a second block of the relationship. After
5,301,336 A : 4/1994 Kodosky et al. 345/348 program development, blocks are selected for execution of
g ?42“?741 A 1/1956 MchaSkle etal. 395/800 the corresponding, designated portions of the program based
,650.948 A 771997 Gatter ...ooovveiiiiiiiiniinannn, 716/3 on the recorded dependencies.
5,732,277 A * 3/1998 Kodosky et al. 717/4
5,801,708 A * 9/1998 Alcom et al. 345/430
5,950,182 A * 9/1999 Godbole et al. 706/45 42 Claims, 15 Drawing Sheets
(BEGIN)
610
DEFINE
| MEMORY REGION I
620
h DIVIDE MEMORY
REGION INTO
BLOCKS
MORE BLOCKS >0
?
640 YES
SELECT BLOCK 670~ .
ESTABLIGH
650~ DEPENDENCY LINKS
IDENTIFY OTHER
BLOCK(S) THAT BETWEEN BLOCKS
INFLUENCE THE 680
BLOCK'S FINAL STATE N SUT ALL BLOCKS
IN QUEUE FOR

660~

IDENTIFY THE PORTION
OF THE CONTROL FLOW
PROGRAM USED 10
OPERATE ON THE BLOCK

EXECUTION

END

U.S. Patent May 14, 2002 Sheet 1 of 15 US 6,389,587 Bl

ARC

FIG. 1

U.S. Patent May 14, 2002 Sheet 2 of 15 US 6,389,587 Bl

N (T2 (1.4
N
100
N
@ @
N
\
100b

229 E@23

100a

(2,4))

(3,4) > 100C

(4,4) J

(3,3)

[x
NS

Z 7 7 7

(4,2) (4,3)

FIG. 2

US 6,389,587 Bl

Sheet 3 of 15

May 14, 2002

U.S. Patent

)

(

2

/2

|
d
|
i
||
|
: o |
: ARN"E
H Al A ™
: TN

........... TR
il

L

Ul

HOEE

U.S. Patent May 14, 2002 Sheet 4 of 15 US 6,389,587 Bl

T =

ur-
HL.all
T1 1
T 17
BN
ar<giaeanss
B
1
11
IRE
11
T
Hl ™™=
B _a - T I 1 I

o[
)

anee
=

100

=l I

Al

l“ MEII —
S el Bl

U.S. Patent May 14, 2002 Sheet 5 of 15 US 6,389,587 Bl

BLOCKS SHARING
SAME (THIRD) STATE

BLOCKS SHARING BLOCKS SHARING
SAME (FIRST) STATE SAME (SECOND) STATE

FlG. 4

U.S. Patent May 14, 2002 Sheet 6 of 15 US 6,389,587 Bl

500

N
510
' 524
| PROGRAM 530
SECONDARY STORAGE
DATA FLOW DEVICE
522 PROGRAM

DEVELOPMENT
TOOL 540

CPU
920~N| MEMORY
560

550
VIDEO DISPLAY INPUT DEVICE

o/0

FiG. 9

U.S. Patent May 14, 2002 Sheet 7 of 15 US 6,389,587 Bl

o

6710
DEFINE
MEMORY REGION
620

DIVIDE MEMORY

REGION INTO
BLOCKS

630

ANY

MORE BLOCKS >-NU
2

640 VES
670

ESTABLISH
DEPENDENCY LINKS
690 IDENTIFY OTHER BETWEEN BLOCKS
BLOCK(S) THAT
INFLUENCE THE 550
BLOCK'S FINAL STATE TN
660 IN QUEUE FOR
IDENTIFY THE PORTION EXECUTION
OF THE CONTROL FLOW
PROGRAM USED TO D

OPERATE ON THE BLOCK

FIG. 6

U.S. Patent May 14, 2002 Sheet 8 of 15 US 6,389,587 Bl

] Z 3 4
\ N N N

8 9 10
%(2,2)% -(2,3) %(2,4)%

11 12 13 14 15 16

WUEUE

FIG. 7

U.S. Patent May 14, 2002 Sheet 9 of 15 US 6,389,587 Bl

800

810

MULTIPROCESSOR
COMPUTER SYSTEM

830

SHARED MEMORY

PROCESSOR| |PROCESSOR il PROCESSOR

840a 6400 840n

620
NETWORK INTERFACE

FIG. 8

U.S. Patent May 14, 2002 Sheet 10 of 15 US 6,389,587 Bl

900

BLOCKS IN QUEUE NU

930 YES END

SELECT BLOCK

940

950

SKIP BLOCK

ALL
DEPENDENT BLOCKS,

IF ANY, COMPLETED
EXECUTION

YES

EXECUTE CONTROL
FLOW ON BLOCK

FIG. 9

US 6,389,587 B1

Sheet 11 of 15

May 14, 2002

U.S. Patent

QUEUE

%, kK

I._I_Iln.-l
"
-
il
e
i

-
—
o
.‘.‘.
-
il
——

P s - p— e e f— . 5 2 N T X ¥ BN _ 3 1 % ' 3 K _J N]

3
N
NN
THREAD
PROCESSOR

F
i
mn —
I.‘l
I..I.]

2
N
NN
| THREAD
PROCESSOR

llllllllllllllll

]
N
SN
THREAD
PROCESSOR

PROCESSORS

FIG. 10A

U.S. Patent May 14, 2002 Sheet 12 of 15 US 6,389,587 Bl

/ Z 3 4 5 QUEUE
$ N N N T
NN N N
SN N :

L & X _§ _§ N R L} 3§ N N] ke s s s —— s —,

|
|
|
|
|
|
|
|
[

W oy el "

THREADS

THREAD |THHEAD |THREAD|
PROCESSOR| |PROCESSOR| |PROCESSOR| |PROCESSOR

PROCESSORS

FIG. 10B

U.S. Patent May 14, 2002 Sheet 13 of 15 US 6,389,587 Bl

QUEUE

] 2 3 4 9
B B B B B2

* &

THREADS

THREAD| |THREAD| |(THREAD| |THREAD} ™7

l'- L B K R R &8 N L A X] L . 8 41 X |
— L& B N X 3 ¥ _'R. N =B &]) ey e —

/
3
T

PROCESSOR| |PROCESSOR| |PROCESSOR| |PROCESSOR

PROCESSORS

FIG. 10C

U.S. Patent May 14, 2002 Sheet 14 of 15 US 6,389,587 Bl

1100
/

1110
RECEIVE BLOCK

INFORMATION

1120
RECEIVE BLOCK

DEPENDENCY
INFORMATION

1130

FORM DAG

1140 APPLY SELECTED

FUNCTION TO ORGANIZE
BLOCKS IN QUEUE(S)

FIG. 11

FIG. 12

U.S. Patent May 14, 2002 Sheet 15 of 15 US 6,389,587 Bl

FlG. 13

US 6,389,587 Bl

1

USER INTERFACE FOR DEVELOPING AND
EXECUTING DATA FLOW PROGRAMS AND
METHODS, APPARATUS, AND ARTICLES OF
MANUFACTURE FOR OPTIMIZING THE
EXECUTION OF DATA FLOW PROGRAMS

RELATED APPLICATION

This application 1s related to U.S. application Ser. No.
09/244,138, entfitled “Method, Apparatus and Article of
Manufacture for Developing and Executing Data Flow
Programs,” which 1s incorporated 1n its entirety herein by
reference.

BACKGROUND OF THE INVENTION

A. Field of the Invention

This 1nvention relates to the field of multiprocessor com-
puter systems and, more particularly, to data driven process-
ing of computer programs using a multiprocessor computer
system.

B. Description of the Related Art

Multiprocessor computer systems include two or more
processors that may be employed to execute the various
instructions of a computer program. A particular set of
instructions may be performed by one processor while other
processors perform unrelated sets of instructions.

Fast computer systems, like multiprocessor computer
systems, have stimulated the rapid growth of a new way of
performing scientific research. The broad classical branches
of theoretical science and experimental science have been
jomned by computational science. Computational scientists
simulate on supercomputers phenomena too complex to be
reliably predicted by theory and too dangerous or expensive
to be reproduced 1n a laboratory. Successes in computational
science have caused demand for supercomputing resources
to rise sharply in recent years.

During this time, multiprocessor computer systems, also
referred to as “parallel computers,” have evolved from
experimental contraptions 1 laboratories to become the
everyday tools of computational scientists who need the
ultimate 1n computing resources 1n order to solve their
problems. Several factors have stimulated this evolution. It
1s not only that the speed of light and the effectiveness of
heat dissipation 1mpose physical limits on the speed of a
single processor. It 1s also that the cost of advanced single-
processor computers increases more rapidly than their
power. And price/performance ratios become more favor-
able 1f the required computational power can be found from
existing resources instead of purchased. This factor has
caused many sites to use existing workstation networks,
originally purchased to do modest computational chores, as
“SCAN"s (SuperComputers At Night) by utilizing the work-
station network as a parallel computer. This scheme has
proven so successiul, and the cost effectiveness of individual
workstations has increased so rapidly, that networks of
workstations have been purchased to be dedicated to parallel
jobs that used to run on more expensive supercomputers.
Thus, considerations of both peak performance and price/
performance are pushing large-scale computing in the direc-
fion of parallelism. Despite these advances, parallel com-
puting has not yet achieved wide-spread adoption.

The biggest obstacle to the adoption of parallel computing,
and 1ts benefits 1n economy and power 1s the problem of
inadequate software. The developer of a program imple-
menting a parallel algorithm for an important computational
science problem may find the current software environment

10

15

20

25

30

35

40

45

50

55

60

65

2

to be more of an obstruction than smoothing the path to use
of the very capable, cost-effective hardware available. This
1s because computer programmers generally follow a “con-
trol flow” model when developing programs, including
programs for execution by multiprocessor computers sys-
tems. According to this model, the computer executes a
program’s instructions sequentially (i.e., in a series from the
first instruction to the last instruction) as controlled by a
program counter. Although this approach tends to simplity
the program development process, it 1s inherently slow.

For example, when the program counter reaches a par-
ticular instruction in a program that requires the result of
another 1instruction or set of instructions, the particular
instruction 1s said to be “dependent” on the result and the
processor cannot execute that mstruction until the result 1s
available. Moreover, executing programs developed under
the control flow model on multiprocessing computer sys-
tems results 1n a significant waste of resources because of
these dependencies. For example, a first processor executing
one set of structions 1n the control flow program may have
to wait for some time unfil a second processor completes
execution of another set of instructions, the result of which
1s required by the first processor to perform its set of
instructions. This wait-time translates into an unacceptable
waste of computing resources in that at least one of the
processors 1n this two-processor configuration is idle the
whole time while the program is running.

To better exploit parallelism 1n a program some scientists
have suggested use of a “data flow” model 1n place of the
control flow model. The basic concept of the data flow
model 1s to enable the execution of an instruction whenever
its required operands become available, and thus, no pro-
oram counters are needed 1n data-driven computations.
Instruction initiation depends on data availability, indepen-
dent of the physical location of an instruction in the pro-
oram. In other words, instructions in a program are not
ordered. The execution simply follows the data dependency
constraints.

Programs for data-driven computations can be repre-
sented by data flow graphs. An example data flow graph is
illustrated 1n FIG. 1 for the calculation of the following
€Xpression:

z=(x+y)*2

When, for example, x 1s 5 and y 1s 3, the result z 1s 16. As
shown graphical 1n the figure, z 1s dependent on the result of
the sum and x and y. The data flow graph 1s a directed acyclic
graph (“DAG”) whose nodes correspond to operators and
arcs are pointers for forwarding data. The graph demon-
strates sequencing constraints (1 €., constraints with data
dependencies) among instructions.

For example, in a conventional computer, program analy-
sis 1s often done (1) when a program is compiled to yield
better resource utilization and code optimization, and (i1) at
run time to reveal concurrent arithmetic logic activities for
higher system throughput. For instance, consider the fol-
lowing sequence of instructions:

1. P=X+Y
2. Q=P/Y
3. R=X*P
4. S=R-Q
5. T=R*P

6. U=S/T
The following five computational sequences of these
instructions are permissible to guarantee the integrity of the

US 6,389,587 Bl

3

result when executing the instructions on a serial computing
system (€.g., a uniprocessor system):

1,2,3,4,5,6

1, 3
1, 3
1, 2
1,3,2,4,5,6

For example, the first instruction must be executed first, but
the second or third instruction can be executed second,
because the result of the first instruction 1s required for either
the second or third instruction, but neither the second nor the
third requires the result of the other. The remainder of each
sequence follows this stmple rule-no instruction can be run
until its operands (or inputs) are available.

In a multiprocessor computer system with two processors,
however, it 1s possible to perform the six operations 1n four
steps (instead of six) with the first processor computing step
1, followed by both processors simultancously computing,
steps 2 and 3, followed by both processors simultaneously
steps 4 and 5, and finally either processor computing step 6.
This 1s an obvious 1mprovement over the uniprocessor
approach because execution time 1s reduced.

Using data flow as a method of parallelization will thus
extract the maximum amount of parallelism from a system.
Most source code, however, 1s 1n a control form, which 1s
difficult and clumsy to parallelize efficiently for all types of
problems.

It 1s therefore desirable to provide a facility for developers
to more easily develop data flow programs and to convert
existing control tlow programs 1nto data flow programs for
execution on multiprocessor computer systems. There 1is
also a need for technique that optimizes performance of the
data flow programs 1n a multiprocessor computer system.

PV IS
NN A
TN
N O O

SUMMARY OF THE INVENTION

Methods, systems, and articles of manufacture consistent
with the present invention overcome the shortcomings of
existing systems by enabling developers to easily convert
control tflow programs into a data flow approach and to
develop new programs according to the data flow model.
According to one aspect of the present invention, such
methods, systems, and articles of manufacture, as embodied
and broadly described herein, this program development
process mncludes defining a memory region and dividing 1t
into multiple blocks, each block defining a set of values
assoclated with a function. Sets of the blocks are defined,
cach block 1n a set having a state retlected by a designated
portion of the program that when executed transforms the
values forming the block based on the function.
Additionally, any dependencies among the blocks are speci-
fied by the user. Each dependency indicates a relationship
between two blocks and requires the portion of the program
assoclated with one of the two blocks to be executed before
the portion of the program associated with the other block.

In accordance with another aspect of the present
invention, methods, systems, and articles of manufacture, as
embodied and broadly described herein, execute a data tlow
program 1n a multiprocessor computer system. Execution of
the program involves selecting information 1n a queue
identifying a block formed of a set of values associated with
a function of the program and determining whether execu-
tion of a portion of the program associated with the selected
block 1s dependent on a result of the execution of a portion
of the program associated with another block. The portion of
the program assoclated with the selected block 1s then
executed when 1t 1s determined that execution of the portion

10

15

20

25

30

35

40

45

50

55

60

65

4

of the program associated with the selected block 1s not
dependent on a result of the execution of a portion of the
program associated with the other block. This selection and
determination 1s repeated when 1t 1s determined that execu-
fion of the portion of the program associated with the
selected block 1s dependent on a result of the execution of a
portion of the program associated with the other block.

In accordance with yet another aspect of the present
invention, methods, systems, and articles of manufacture are
provided that optimize execution of data flow programs 1n a
multiprocessor computer system. A data flow program con-
sists of memory region information, including block infor-
mation and dependency information. The block information
reflects multiple blocks that define a memory region. Each
block 1s formed of a set of values associated with a function
and has a state reflected by a designated portion of the
program that when executed transforms the values forming
the block based on the function. The dependency informa-
tion reflects any dependencies among the blocks, each
dependency 1ndicating a relationship between two blocks
and requiring the portion of the program associated with a
first block of the relationship to be executed before the
portion of the program associated with a second block of the
relationship. A queue 1s formed organizing the memory
region information 1n such a way as to optimize execution of
data flow program.

In accordance with one aspect of the invention, as broadly
described herein, the queue 1s formed by generating a
directed acyclic graph based on the memory region infor-
mation with each block having a corresponding node 1n the
oraph, traversing the directed acyclic graph according to a
predetermined function, and placing information identifying,
cach block 1n the queue based on the traversal of the directed
acyclic graph. In accordance with another aspect of the
invention, as broadly described herein, the queue may be
divided into part, or multiple queues may be employed. In
this case, each part of the queue or individual queue has a
priority, and (1) the blocks are assigned to the parts or queues
based on a priority associated with each block and (ii)
selected from the parts or queues for execution 1n accor-
dance with the queue assignment.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated 1n
and constitute a part of this specification, illustrate an
implementation of the invention and, together with the
description, serve to explain the advantages and principles
of the mvention. In the drawings,

FIG. 1 depicts an example data flow graph for the
calculation of a particular expression;

FIG. 2 depicts a block diagram 1llustrating an example of
a memory region defined 1in a manner consistent with the
present 1nvention;

FIGS. 3A and 3B depict block diagrams illustrating an
example of dependency relationships among the blocks of
the memory region illustrated in FIG. 2;

FIG. 4 depicts an example of a directed acyclic graph
illustrating the dependency relationships corresponding to
FIGS. 3A and 3B;

FIG. § depicts a block diagram of an exemplary data
processing system with which the mmvention may be 1imple-
mented;

FIG. 6 depicts a flow chart of the operations performed by
a data flow program development tool consistent with the
present 1nvention;

US 6,389,587 Bl

S

FIG. 7 depicts an example of a queue reflecting an order
for execution of a data flow program 1n accordance with the
present mvention;

FIG. 8 depicts a block diagram of an exemplary multi-
processor computer system suitable for use with methods
and systems consistent with the present;

FIG. 9 depicts a flow chart of the operations performed
during execution of a data flow program in accordance with

the present invention;

FIGS. 10A, 10B, and 10C depict block diagrams used to
explain an execution cycle of a data flow program in
accordance with the present invention;

FIG. 11 depicts a flow chart of the operations performed
to organize blocks 1n a queue to optimize performance of a
data flow program in accordance with the present invention;

FIG. 12 depicts an example of a direct acyclic graph used
to explain one of the methods for optimizing program
performance 1 accordance with the present invention;

FIG. 13 depicts an example of a direct acyclic graph used
to explain one of the methods for optimizing program
performance in accordance with the present invention; and

FIG. 14 depicts an example of a direct acyclic graph used
to explain one of the methods for optimizing program
performance 1n accordance with the present invention.

DETAILED DESCRIPTION

Reference will now be made 1n detail to an 1implementa-
tion consistent with the present invention as illustrated 1n the
accompanying drawings. Wherever possible, the same ref-
erence numbers will be used throughout the drawings and
the following description to refer to the same or like parts.
Introduction

Methods, systems, and articles of manufacture consistent
with the present invention enable developers to convert
control flow programs ito data flow programs and to
develop new programs according to the data flow model.
Such methods, systems, and articles of manufacture may
utilize a development tool, including a computer-human
interface, to design and develop the data flow programs.

Data flow programs developed in accordance with the
principles of the present invention are executed on a mul-
fiprocessor computer system using a data flow model. The
interface may be operated on a different data processing
system from that used for program execution. Alternatively,
the interface may be operated on the same system used for
program execution.

One characteristic of the data flow model 1n accordance
with the present invention 1s that operations can be per-
formed 1n parallel on blocks of a memory region. A block
consists of a set of data, such as an array or matrix of values
or other information. Together, multiple blocks form a
MmMemory region.

The data flow program development tool provides an
interface that enables a developer to define a memory region
containing data associated with a system. In this context, the
term “system” refers to a physical, mathematical, or com-
putational problem, such as the structural analysis of a
building, the flow of fluid through a pipe, etc. Typically, such
complex systems require a great deal of processing to solve
many equations and the result of one set of equations 1is
dependent on the result of another set of equations. For
example, fluid flowing though a pipe 1s slowed by friction
from the 1nterior of the pipe. The friction directly affects the
speed of the fluid touching the interior of the pipe (defined
by a first set of equations) and indirectly affects other fluid
in the pipe not touching the interior (defined perhaps by the

10

15

20

25

30

35

40

45

50

55

60

65

6

same equations but dependent on the result of the first set of
equations). Thus, the effects of friction caused by the interior
of the pipe are different for fluid flowing 1n the pipe
depending on where 1n the fluid 1s 1n the pipe at any given
instance.

After defining the region, the developer then divides the
region 1nto blocks, and for each block, the developer speci-
fies the program code to be executed on the values within the
block as well as any dependency between the block and
other blocks i1n the region. Blocks with the same program
code are said to share the same “state.” They can generally
be executed 1n parallel because they do not depend on one
another for results. In the fluid flow example, blocks asso-
clated with fluid flowing next to the interior of the pipe
would share the same state (and therefore have the same
program code for execution) but this state (and code) would
be different from the state (and code) of fluid that is not
touching the interior but 1s next to the fluid that 1s. Moving
inwardly into the pipe and the state (and code) of each block
associated with fluid 1in the pipe changes to reflect the
dependencies 1n a similar manner.

Dependencies are reflected 1n links between each of the
dependent blocks and the blocks from which they depend. A
block 1s dependent on another block when the first block
requires the result of the second block for the first block to
perform properly within the system. These relationships
may be viewed graphically through a directed acyclic graph
(“DAG”). Associated with each node in the graph are
program code and data determined by the block.

The blocks are then queued for processing 1n a multipro-
cessor computer system. Actually, the blocks themselves are
not put 1n the queue. Rather, information identifying each
block such as a pointer 1s placed 1n the queue. The blocks are
queued or organized 1n the queue 1n a particular manner and
the thread(s) executing the data flow program can select the
appropriate block for execution of its corresponding pro-
oram code at any given point 1n time during the data flow
program execution. In one implementation, the blocks are
queued according to the dependency information associated
with each block.

This block queuing process for performance optimization
of the program follows the organization of the DAG. In other
words, the DAG may be logically traversed using a number
of different methods to select the best organization for the
queue prior to program execution. Moreover, the organiza-
tion of the queue may be modified during program execution
to address factors affecting performance of the program not
readily determinable before program execution.

One approach to organizing the blocks involves traversing
the DAG associated with a memory region of blocks while
applying a particular function, such as a weighting function
that assigns weights to each node or a sort algorithm
applicable to DAGs. To optimize performance of the data
flow program, however, multiple queues may be employed
with each queue having a priority defining the order in which
blocks are dequeued. In other words, blocks 1n a higher
priority queue are selected for execution before blocks in
another queue based on the priorities associated with the
queues.

The developer may designate the number of threads
available to process the blocks. Each thread maintains a
program counter and temporary memory, as needed, to
perform the program code associated with the blocks. For
example, the developer may designate one thread per pro-
cessor. Alternative configurations are also possible 1n accor-
dance with the principles of the present 1nvention.

Each thread, in turn, selects a block from the queue and
executes the program code designated by the developer for

US 6,389,587 Bl

7

that block. As long as there are blocks 1n the queue, the
threads, when available, select them and execute their pro-
oram code. Additionally, queued blocks are selected for
execution 1in a manner that reflects each block’s dependency
information. When an available thread selects a queued
block for execution, the thread first examines the block’s
dependency information (i.e., any links to other blocks) and
if the blocks from which the selected block depends have
completed execution, then the thread can proceed to execute
the program code for the selected block. Otherwise, the
thread may enter a wait state until 1t can begin executing the
program code for the selected block. Alternatwely, the
thread may select the next available block in the queue,
based on any priority 1f appropriate, and examine that block
to determine 1ts status with respect to any blocks upon which
it depends (i e., have all blocks from which it depends
completed execution so that the program code of the
selected block can be executed safely). This process con-
finues until the threads have completed executing the pro-
oram code associated with all blocks 1n the queue.

The following description includes details on the design
and development of data flow programs followed by aspects
of the execution phase.

Defining a Data Flow Program Using Regions and Blocks

At the beginning of the design and development process,
a developer specifies a memory region and divides the
region 1nto blocks. This may be done graphically using an
interface provided with the development tool. FIG. 2 shows
an example of a memory region 100 that contains sixteen
blocks arranged 1n a four-by-four matrix, with each block
identified by a row number and column number. For
example, the block 1n the upper left comer of memory region
100 1s labeled (1,1) indicating that it is located in the first
row and the first column, and the block 1n the lower right
hand comer of region 100 is labeled (4,4) indicating that it
1s located 1n the lower right comer. All of the remaining
fourteen blocks follow the same labeling convention. As
explained, each block contains a data set, such as a matrix
or array of values or information, to be processed 1n accor-
dance with certain program code.

After defining the memory region and dividing it into
blocks, the developer specifies a state of each block. As
explained, the state of a block corresponds to the program
code that the developer assigns to that block, meaning that
the developer intends to have the multiprocessor computer
system operate on the data in the block using the specified
program code. The interface provides the developer with a
window or other facility to provide the program code for a
block. The development tool associates the code with 1its
block.

In the example region 100, the group of blocks 100a
labeled (1,1), (2,1), (3,1), and (4,1) share the same state, the
group of blocks 1005 labeled (1,2), (1,3), and (1,4) share the
same state, and the group of blocks 100c¢ labeled (2,2), (2,3),
(2,4), (3,2), (3,3), (3,4), (4,2), (4,3), and (4,4) share the same
state. The three different states are shown i1n FIG. 2 by
different shading (or fill) for the blocks in each group.

Although the region 100 and its blocks are shown as being
uniform 1in size, 1n practice a memory region and blocks may
have different shapes and sizes. For example, memory
region 100 consists of sixteen blocks 1n a four-by-four
matrix and, although not specified in the figure, each block
may have an eight-by-eight matrix. Alternatively, and
depending on the application, the memory region may
consist of a four-by-three matrix of blocks and each block
may consist of a three-by-two matrix of data.

Next, the developer specifies any dependency relation-

ships among the blocks. Again, a dependency relationship 1s

10

15

20

25

30

35

40

45

50

55

60

65

3

defined as a relationship 1 which one block 1s dependent
upon the result or final state of another block during program
execution. In other words, one block has to be processed
before the second, dependent block can be processed. FIGS.
3A and 3B illustrate a number of examples of dependency

relationships using region 100 of FIG. 2. As shown 1n FIG.
3A, each of the blocks labeled (1,2), (1,3), and (1,4) are

dependent on the blocks labeled (1,1), (2,1), (3,1), and (4,1).
This means that all of the blocks labeled (1,1), (2,1), (3,1),
and (4,1) must be processed before any of the blocks (1,2),
(1,3), and (1,4).

Similarly, FIG. 3B illustrates dependencies among each of
the blocks labeled (1,2), (1,3), and (1,4) and the blocks
labeled (2,2), (2,3), (2,4), (3,2), (3,3), (3.4), (4,2), (4,3), and
(4,4). As shown, the block labeled (1,2) must be processed
before the blocks in the same column labeled (2,2), (2,3),
(2,4); the block labeled (1,3) must be processed before the
blocks in the same column labeled (3,2), (3,3), (3,4); and the
block labeled (1,4) must be processed before the blocks in
the same column labeled (4,2), (4,3), and (4,4). The figures

simply 1llustrate one example of a dependency configuration
for memory region 100; other configurations may be
selected by the developer.

To complete the view of dependency relationships, 1t 1s
uselul to see them graphically which can also be done using
the user interface. FIG. 4 1s a DAG 1llustrating the depen-
dency relationships shown 1 FIGS. 3a and 3b. The DAG of
FIG. 4 illustrates graphically that the output of all of the
blocks sharing the first state are required for processing by
cach of the blocks sharing the second state. In turn, each of
the blocks sharing the second state must be processed before
cach of the three groups of three blocks that share the third
state are processed. Such a graph may be used to order the
blocks for processing 1 accordance with the principles of
the present invention (discussed below).

Data Flow Program Development Tool
Computer Architecture

FIG. § depicts an exemplary data processing system 500
suitable for practicing methods and implementing systems
consistent with the present invention. Data processing sys-
tem 500 includes a computer system 510 connected to a
network 570, such as a Local Area Network, Wide Area
Network, or the Internet.

Computer system 510 contains a main memory 520, a
secondary storage device 530, a central processing unit
(CPU) 540, an input device 550, and a video display 560.
Main memory 520 contains a data flow program develop-
ment tool 522 and program 524. Data flow program devel-
opment tool 522 provides the interface for designing and
developing data flow programs, including programs that
utilize control flow program code. Using display 560 the tool
enables developers to design memory regions, such as
region 100 of FIG. 2, and divide the regions into blocks with
corresponding states. The tool further enables developers to
write program code to operate on each of the blocks using
a multiprocessor computer system (see FIG. 7).

Program 524 represents a data flow program designed 1n
accordance with the present invention, for example, using,
tool 522. Program 524 consists of the information specifying
a memory region, the blocks of the region, the program code
assoclated with each block, and any dependency relation-
ships between the blocks.

Although aspects of one implementation are depicted as
being stored 1n memory 520, one skilled in the art waill
appreciate that all or part of systems and methods consistent
with the present invention may be stored on or read from
other computer-readable media, such as secondary storage

US 6,389,587 Bl

9

devices, like hard disks, floppy disks, and CD-ROM; a
carrier wave received from a network such as the Internet;
or other forms of ROM or RAM. Finally, although speciiic
components of data processing system S00 have been
described, one skilled 1n the art will appreciate that a data
processing system suitable for use with methods and sys-
tems consistent with the present invention may contain
additional or different components.
Process

FIG. 6 1s a flow chart of the process 600 performed by

developers to write programs using the data flow model.
This process may be performed by tool 522 1n a manner
consistent with the principles of the present invention. As
explained, tool 522 provides an environment, including a
user mnterface and related functionality, for software devel-
opers to write programs using the data flow model.

After a developer 1nmitiates execution of tool 522, it
displays the various views necessary for the developer to
write a data flow program. First, the tool displays a view
with which the developer defines a memory region (step
610). Using tool 522, the developer then divides the region
into blocks (step 620).

As long as there are blocks 1n a region to be processed
(step 630), the developer selects a block (step 640), 1denti-
fies any other block(s) that influence the selected block’s
final state (in other words, block(s) upon which the selected
block is dependent) (step 650), and specifies the program
code for each block, for example, a portion of an existing
control flow program (step 660). Although this description
involves converting an existing control flow program for
operation 1in a multiprocessor computer system using a data
flow organization, those skilled 1n the art will recognize that
the tool 522 may also be used to develop new data flow
programs for execution on a multiprocessor computer Sys-
tem.

After all of the blocks have been processed (steps 640 to
660), the developer establishes the dependency relationships
among the blocks by graphically linking them together (step
670). The tool 522 uses the graphical information to gener-
ate and store data reflecting the links. The blocks are then
logically queued for processing in a multiprocessor com-
puter system (step 680). The tool 522 uses the dependency/
link mmformation to queue the blocks 1n manner that reflects
an appropriate order for processing. For example, any block
(s) upon which a particular block is dependent may be
placed 1n the queue before that particular block. For the
example of FIGS. 2—4, the blocks may be queued 1n the
manner shown 1n FIG. 7 with the blocks sharing the first
state, 1.e., (1,1), (2,1), (3,1), and (4,1), queued before the
blocks with the second state, 1.e., (1,2), (1,3), and (1,4), and
followed by the blocks sharing the third state, i. €., (2,2),
(2,3), 2.4), (3,2), (3,3), (3.4), (4,2), (4,3), and (4,4).
Multiprocessor Program Execution

As explained, 1n accordance with the present invention a
data flow program 1s executed 1n a multiprocessor computer
system. There are many configurations for such a multipro-
cessor computer system, one of which 1s 1llustrated 1n FIG.
8. For example, 1n a tightly coupled configuration, the
multiple processors of a system may all be located 1n the
same physical box. In an alternative, loosely coupled
arrangement the system may be formed by multiple com-
puters 1 a network, each computer having a separate
ProCessor.

Multiprocessor Computer System

As shown 1n FIG. 8, a multiprocessor computer system
810 1s connected to a network interface 820, which enables

10

15

20

25

30

35

40

45

50

55

60

65

10

a developer to transfer the data tflow program from the
development tool environment (e.g., FIG. §) for execution in
multiprocessor computer system 810. Alternatively, the data
flow program development process 1n accordance with the
principles of the present invention may be performed on
system 810, which 1s also used for program execution. This
alternative approach eliminates the need to transfer the
program from a system used for development to a separate
system used for program execution.

Multiprocessor computer system 810 comprises a

single, shared memory 830 and multiple processors 8404,
840b, . . . 840n. The number and type of processors 1s not
critical to execution of the data flow program developed 1n
accordance with the present invention. For example, an HPC
Server with a multiple processor configuration may be used.
The HPC Server 1s a product of Sun Microsystems, Inc.
Processes execute independently on each of the processors

and share memory 830. A process 1n this context may be a
thread controlling execution of program code associated
with a block of a data flow program developed using tool

S522.

Process

The operation of a data flow program 1n accordance with
the present invention will now be described with reference
to process 900 of FIG. 9. Multiple threads are used to

process the various components of a data flow program.
Those skilled 1n the art will recognize that the number of
threads 1s not important; the developer may specily any
number, for example, one thread per processor, or the system
may determine the number of threads based on the number
of available processors and an analysis of the data flow
program.

If a thread 1s available to process a block in accordance
with its specified program code (step 910), the thread
determines whether there are any blocks in the queue (step
920). If so, the available thread selects a block from the
queue for processing (step 930). Typically, the blocks are
selected from the queue based on the order in which they
were placed 1n the queue. If, however, a thread determines
that a selected block 1s dependent upon the execution of
program code with respect to other block(s) that has/have
not been executed (step 940), the thread skips the selected
block (step 950). Otherwise, any block dependencies have
been satisfied (step 940) and the thread uses an assigned
processor to execute the program code associated with the
block (step 960). Once the thread(s) processing a data flow
program have dequeued all of the blocks 1n a queue awaiting
processing (step 920), the process ends.

For purposes of illustrating the data flow program execu-

tion 1 accordance with process 900, FIGS. 10a—c 1llustrate
a portion of the queue of FIG. 7, including the first five
blocks of region 100 queued for processing. As shown 1n
FIG. 104, each thread processes a selected block using one
of the processors. In this example, there are four threads and
four processors. When a thread completes processing, as
shown for example mm FIG. 10b with one of the threads
completing program execution of the block labeled (1,1), the
thread attempts to execute the next available thread in the
queue, in this case, the block labeled (1,2). However, the
block labeled (1,2) 1s dependent upon the final state of other
blocks still being executed, namely, blocks (2,1), (3,1), and
(4,1). Once execution of the program code for all of these
blocks has completed, as shown 1n FIG. 10c, a thread can
continue processing with block (1,2). Those skilled in the art
will recognize that, as opposed to remaining 1dle and, thus,

US 6,389,587 Bl

11

not using computing resources elficiently, a thread may skip

processing blocks 1n the queue and continue to process other
queued blocks depending upon the dependency relationships

associated with each block 1n the queue. Also, although FIG.
10 shows four threads and four processors, more or fewer
threads or processors may be used depending upon the
particular system configuration.

Optimizing Execution of Data Flow Programs

Once a DAG has been produced that represents the data
dependencies for a given data flow program, the program
may be executed in a multiprocessor computer system by
traversing the DAG to order the nodes (i.e., blocks and
corresponding program code) in the queue(s) for execution.
For a given DAG there are multiple traversals that allow all

the data dependencies for each node to be satisfied before
that node 1s processed. Different traversals will result in
different performance especially when the DAG 1s traversed
in parallel with multiple threads of execution.

The principle factor in performance 1s the amount of time
that a thread spends waiting. This occurs when there 1s no
node 1n the graph that has i1ts dependencies satisfied. A
thread must therefore wait until processing of dependent
blocks 1s complete before 1t can start processing. There are
two strategies to improve performance: (1) Using a traversal
that minimizes the wait time. (2) While a thread waits gather
the resources needed to process a node.

Minimizing Wait Time

There are two main techniques used to produce a tra-
versal. The first 1s to act directly upon the graph and reorder
the nodes 1 a queue 1n the linear order that they will be

processed. The second involves placing the nodes 1n priority
queues.

FIG. 11 1s a flow chart of a process 1100 performed to
organize blocks in queue(s) to optimize performance of a
data flow program 1n accordance with the present invention.
Process 1100 may be used for step 680 of process 600 to
optimize performance of a data flow program developed
using tool 522. Also, the performance of any data flow
program with the requisite information may be optimized
using process 1100. Process 1100 begins with steps for
receiving the block information and any related dependency
information for a data flow program (steps 1110 and 1120).
A DAG 1s then generated reflecting the block and depen-
dency information (step 1130). A selected function is then
applied when traversing the DAG to optimize program

execution by organizing the blocks in queue(s) according to
the function (step 1140).

One function 1involves computing a weight for each node
and sorting the nodes based upon the weights. The weights
must be assigned such that no node has a data dependency
on a node that has a lesser weight. A violation of this rule
could lead to a deadlock during processing.

One weighting function involves assigning weights to
nodes based on the maximum number of nodes that can be

traversed from a given node to any other node in the DAG.
For the example DAG shown m FIG. 12, a breadth-first
traversal produces the following order:

ABCDEFGH

This 1s the order in which the nodes would be queued for
processing. Assuming that each node takes exactly one
time-step to process, two threads can traverse the DAG 1n
six time steps as shown 1n the following table:

10

15

20

25

30

35

40

45

50

55

60

65

12

Threads Nodes Processed at Time
1 A B D F G H
2 C E

Using the weighting function where the maximum number
of nodes that can be traversed from a given node to any other
node m the DAG 1s assigned as the weight for each node, the
following weights would be assigned to each node:

A-4
B-0
C-2
D-3
E-1
E-2
G-1
H-0

Consequently, sorting the nodes by weight would produce

the following traversal, 1.e., order 1n which corresponding
blocks would be queued of FIG. 12:

ADCFEGBH

Two threads can execute code for the blocks queued accord-
ing to this weighting function 1n five time steps as follows:

Threads Node Processed at Time
1 A C E G H
2 D F B

Another weighting function involves assigning a time to
cach node that 1s an estimate of the time 1t takes to process
the node. The function could be the maximum sum com-
puted by adding up the times 1n each node along a traversal
to another node 1n the DAG. Another modification 1s to
assign a priority to each process (i.e., operation performed
by the program code associated with each node). In the case
where the weilghting function produces a tie, the priority of
the process associated with the node determines which node
1s processed first.

A sorting function may also be used to optimize program
performance. Given a number, n, the sort can try to produce
a DAG with a width of n. First, all the nodes with no
unsatisiied dependencies are 1dentified. Then the nodes with
the largest weight are placed on the list. All data dependen-
cies for the nodes on the list are considered satisfied and the
algorithm 1s repeated until the entire DAG has been ftra-
versed. For example, using the DAG shown in FIG. 13, a
simple sort would produce the following traversal:

ACFGBDEH

This traversal would take six time steps with two threads to
complete:

US 6,389,587 Bl

13

Threads Nodes Processed at Time
1 A B D F G H
2 C E

However, a width-based sort with an n of 2 would produce
the following traversal:

ACBFDGEH

This traversal can produce an order in which two threads can
complete execution 1n five time steps as follows:

Threads Node Processed at Time
1 A B D E H
2 C I G

Accordingly, any ordering function that assigns a weight to
a first node to be executed that 1s greater than a dependent
node should produce a useful traversal and, thus, queue
order for execution that optimizes the program’s overall
performance.

Another optimization function uses multiple queues, each
with a different priority such that the threads select blocks
out of the queues according to the queue priorities.
Alternatively, a single queue may be used for this purpose
and divided 1nto different parts, each part having a different
priority. To use this optimization approach, a priority must
be assigned to each node 1n the graph. One method involves
assigning high priorities to nodes that are associated with
“bottlenecks”, 1.e., slow overall execution of a node’s pro-
oram code because, for example, 1t requires a significant
amount of mput and/or output operations.

For example, the DAG 1illustrated 1n FIG. 14 has nodes
assoclated with three processes A, B, and C. In this example,
the process A nodes should be given a higher priority.
Assuming that process A 1s given a priority of level of “2”
and B and C are given a priority level of “1” then the nodes
would be placed 1n two queues as follows:

queue 1: A1 A2 A3
queue 2: B1 C1 B2 C2 B3 (C3

At the time of execution, each thread checks the first node
in queue 2. If the node’s dependencies have been satisfied,
it 1s removed from the queue and processed. If not, the
thread checks for a node 1n queue 1. If no nodes can be found
it repeats the process until a node becomes available.

Assuming that each process takes one time step, two
threads would execute the nodes as follows:

Threads Node Processed at Time
1 Al A2 A3 B2 B3
2 B1 C1 C2 C3

Using three threads, performance would be improved by one
time step as follows:

10

15

20

25

30

35

40

45

50

55

60

65

14

Threads Node Processed at Time
1 Al A2 A3 B3
2 Bl B2 C3
3 C1 C2

Thus, the same DAG can produce different traversals
cependmg on a number of factors, including the number of

threads available for program execution. Two threads pro-
duces the following traversal: A1 A2 B1 A3 C1 B2 C2 B3

C3. Three threads produces the following traversal: A1 A2
B1 C1 A3 B2 C2 B3 C3.

Allocating Resources While Waiting

Although not all of the wait time associated with program
execution can be eliminated, the spent waiting can be put to
use by pre-fetching data that a thread will need during
execution. First 1t identifies a node whose dependencies will
likely be satisfied shortly and while 1t 1s waiting for the node
to become available (i.e., its dependencies become fully
satisfied) it pre-fetches the data it will need to process that
node. When the dependencies are satisfied then processing
can porceed at a higher rate, since some of the data 1s 1n
cache.
Conclusion

Methods, systems, and articles of manufacture consistent
with the present invention thus enable developer to easily
develop data flow programs and to convert existing control
flow programs according to the data flow model. By per-
mitting developers to define memory regions and divide
them into blocks with corresponding states (each related to

particular control flow program instructions), the interface
facilitates the development of a data flow program {for
execution 1 a multiprocessor environment. Although com-
ponents of the program utilize the control flow programming
method, the program as a whole 1s designed using a data
flow approach. Additionally, each block contains a set of
data, meaning that the program code associated with each
block does not necessarily operate on scalars or single data
items. This makes the present approach more useful for
data-mtensive programming systems that require significant
data processing 1 which components can be easily pro-
cessed 1n parallel on a multiprocessor computer system.

Also, methods consistent with the present invention are
applicable to all programs for execution in a multiprocessor
system regardless of the computer programming language.
For example, Fortran 77 1s a programming language com-
monly used to develop programs for execution by multipro-
CESSOr computer systems.

The foregoing description of an 1implementation of the
invention has been presented for purposes of 1llustration and
description. It 1s not exhaustive and does not limit the
invention to the precise form disclosed. Modifications and
variations are possible 1n light of the above teachings or may
be acquired from practicing of the invention. For example,
the described implementation includes software but the
present mnvention may be implemented as a combination of
hardware and software or 1n hardware alone. The mnvention
may be implemented with both object-oriented and non-
object-oriented programming systems. The scope of the
invention 1s defined by the claims and their equivalents.

What 1s claimed 1s:

1. A computer-implemented method for at least one of
reconflguring the processing flow of an existing software
program according to a data flow model, and developing a
new software program according to said data flow model,
said method comprising:

US 6,389,587 Bl

15

displaying a screen display; and
permitting a user to:
specily a memory region and divide said memory
region 1nto a plurality of blocks, each block of said
plurality of blocks defining a set of values associated
with a function;
define sets of the blocks, each block in a set having a
predetermined state reflected by a designated portion
of said program according to said data flow model
that when executed transforms the values defined by
said block based on the function; and
assign any dependencies among the blocks wherein
cach dependency indicates a relationship between a
plurality of said blocks based on said predetermined
state of each.

2. A data processing system containing a development
tool that displays a user mterface for at least one of recon-
figuring the processing flow of an existing software program
according to a data flow model, and developing a new
software program according to said data flow model, said
user interface comprising;:

a first view configured to receive structions defining a
memory region and dividing said memory region into
a plurality of blocks, each block of said plurality of
blocks defining a set of values associated with a func-
tion;

a second view coniigured to receive instructions defining
sets of the blocks, each block 1n a set having a prede-
termined state reflected by a designated portion of said
program according to said data flow model that when

executed transforms the values defined by said blocks
based on the function; and

a third view configured to receive mformation reflecting
any dependencies among the blocks, wherein each
dependency indicates a relationship between a plurality
of said blocks based on said predetermined state of
cach block.

3. The graphical user interface of claim 2, wherein a
dependency relationship between two blocks requires the
portion of the program associated with one of the two blocks
to be executed before the portion of the program associated
with the other block.

4. A data processing system, comprising;

a memory containing;
a first program;
a development tool for developing a second software
program according to a data flow model, including
(1) a memory region divided into region into a
plurality of blocks, wherein each block 1n said plu-
rality of blocks defines a set of values associated
with a function and has a predetermined state
reflected by a designated portion of the first program
that when executed transforms the values defined by
said block based on the functions, and (i1) any
dependencies among the blocks, each wherein
dependency 1ndicates a relationship between two
blocks and requiring the portion of the first program
assoclated with a first block of the relationship to be
executed before the portion of the first program
associated with a second block of the relationship;
and
at least one processor for running the development tool.
5. The data processing system of claim 4, further com-
prising:
a plurality of parallel processors for executing the second
program 1n accordance with the stored dependencies.

10

15

20

25

30

35

40

45

50

55

60

65

16

6. A data processing system for at least one of reconfig-
uring the processing flow of an existing software program
according to a data flow model, and developing a new
software program according to said data flow model, said
system comprising:

a memory having instructions; and

a processor responsive to the instructions and configured

to permit a user to (1) specify a memory region and
divide said memory region into a plurality of blocks,
cach block in said plurality of blocks defining a set of
values associated with a function, (i1) define sets of the
blocks, each block 1n a set having a predetermined state
reflected by a designated portion of said program that
when executed transforms the values defined by said
block based on the function, and (ii1) assign any depen-
dencies among the blocks wherein each dependency
indicates a relationship between a plurality of said

blocks based on said predetermined state of each block.

7. A computer-readable medium containing instructions

for controlling a data processing system to perform a method

for at least one of reconfiguring a processing flow of an

existing software program according to a data flow model,

and developing a new software program according to said
data flow model, said method comprising:

permitting a user to specily a memory region and divide
saidd memory region 1nto a plurality of blocks, each
block of said plurality of blocks defining a set of values
assoclated with a function;

permitting a user to define sets of the blocks, each block
in a set having a predetermined state reflected by a
designated portion of said program according to said
data flow model that when executed transforms the
values defined by said block based on the function; and

permitting a user to assign any dependencies among the
blocks wherein each dependency indicates a relation-
ship between a plurality of said blocks based on said
predetermined state of each block.

8. A computer-readable medium containing instructions
for controlling a data processing system to perform a method
for at least one of reconfiguring a processing flow of an
existing software program according to a data flow model,
and developing a new software program according to said
data flow model, said method comprising;:

displaying a first view configured to receive instructions
defining a memory region and dividing said memory
region 1nto a plurality of blocks, each block of said
plurality of blocks defining a set of values associated
with a function;

displaying a second view configured to receive instruc-
tions defining sets of the blocks, each block 1 a set
having a predetermined state reflected by a designated
portion of said program according to said data flow

model that when executed transforms the wvalues
defined by said blocks based on the function; and

displaying a third view configured to receive information
reflecting any dependencies among the blocks, wherein
cach dependency indicates a relationship between a
plurality of said blocks based on said predetermined
state of each block.

9. The computer-readable medium of claim 8, wherein a
dependency relationship between two blocks requires the
portion of the program associated with one of the two blocks
to be executed before the portion of the program associated
with the other block.

10. A method for optimizing execution of a software
program according to a data flow model 1n a multiprocessor
computer system, the method comprising:

US 6,389,587 Bl

17

receiving memory region information, including block
information reflecting a plurality of blocks that define
a memory region, wherein each block defines a set of
values associated with a function and has a predeter-
mined state reflected by a designated portion of said
program according to said data flow model that when
executed transforms the values defined by said block
based on the function, and dependency information
reflecting any dependencies among the blocks, wherein
cach dependency indicates a relationship between two
blocks and requiring the portion of the program asso-
ciated with a first block of the relationship to be
executed before the portion of the program associated
with a second block of the relationship; and

forming a queue organizing the memory region informa-
tion.

11. The method of claim 10, further comprising:

executing the designated portion of the program associ-
ated with each block 1n accordance with the organiza-
tion of the memory region mformation in the queue.
12. The method of claim 11, wherein the queue has at least
two parts, each part having a priority, and wherein executing
the designated portion of the program associated with each
block 1n accordance with the organization of the memory
region information in the queue, 1ncludes:

using a priority assigned to each block to place the blocks

in the two parts of the queue.

13. The method of claim 12, wherein executing the
designated portion of the program associated with each
block 1n accordance with the organization of the memory
region 1nformation 1n the queue, further includes:

selecting blocks from the two parts of the queues based on
the priority of each part of the queue with the blocks 1n
a part of the queue having a high priority given pref-
erence over blocks 1n a part of the queue having a low
priority.

14. The method of claim 13, wherein selecting blocks
from the two parts of the queues based on the priority of each
part of the queue with the blocks 1in a part of the queue
having a high priority given preference over blocks 1n a part
of the queue having a low priority, includes:

selecting a block from the high priority part of the queue;
and

determining whether all dependency relationships, 1f any,
associated with the selected block from the high pri-
ority part of the queue have been satisfied, and 1nifiat-
ing execution of the program code associated with that
block when 1t 1s determined that all dependency
relationships, if any, associated with that block have
been satisfied.

15. The method of claim 14, wherein selecting blocks
from the two parts of the queues based on the priority of each
part of the queue with the blocks 1in a part of the queue
having a high priority given preference over blocks 1n a part
of the queue having a low priority, includes:

selecting a block from the low priority part of the queue
when 1t 1s determined that all dependency relationships,
if any, associated with the block selected from the high
priority part of the queue have not been satisfied, and
Initiating execution of the program code associated
with the selected block from the low priority part of the
queue when 1t 1s determined that all dependency
relationships, if any, associated with the selected block
from the low priority part of the queue have been
satisiied.
16. The method of claim 11, wherein executing the
designated portion of the program associated with each

10

15

20

25

30

35

40

45

50

55

60

65

138

block 1 accordance with the organization of the memory
region information in the queue, ncludes:

using a priority assigned to each block to place the blocks
in at least two queues, each queue having a different
priority.

17. The method of claam 16, wherein executing the
designated portion of the program associated with each
block 1n accordance with the organization of the queue,
further includes:

selecting blocks from the queues based on the priority of
cach queue with the blocks 1n the queue having a high
priority given preference over blocks i1n the queue
having a low priority.

18. The method of claim 11, wherein executing the
designated portion of the program associated with each
block 1 accordance with the organization of the memory
region information in the queue, ncludes:

pre-fetching available data require for execution of a
block when resources to execute the block are available
and all of the block’s dependency relationships have
not been satisiied.

19. The method of claim 10, wheremn forming a queue

organizing the memory region information includes:

generating a directed acyclic graph based on the memory
region 1nformation with each block having a corre-
sponding node 1n the graph;

traversing the directed acyclic graph according to a pre-
determined function; and

placing information identifying each block in the queue
based on the traversal of the directed acyclic graph.
20. The method of claam 19, wherein traversing the
directed acyclic graph according to a predetermined function
includes:

applying weights associated with each block such that no
block has a data dependency on a block that has a lesser
welght.

21. A system for optimizing a software program based on
a data flow model for execution 1n a multiprocessor com-
puter system, said system comprising:

a memory having a program characterized by memory
region 1nformation, including block information
reflecting a plurality of blocks that define a memory
region, wherein each block defines a set of values
assoclated with a function and has a predetermined
state reflected by a designated portion of said program
according to said data flow model that when executed
transforms the values defined by said block based on
the function, and dependency information reflecting
any dependencies among the blocks, wherein each
dependency indicates a relationship between two
blocks and requiring the portion of the program asso-
ciated with a first block of the relationship to be
executed before the portion of the program associated
with a second block of the relationship; and

at least one processor configured to form a queue orga-

nizing the memory region information.

22. The system of claim 21, wherein the multiprocessor
computer system executes the designated portion of the
program assoclated with each block 1n accordance with the
organization of the memory region information in the queue.

23. The system of claim 22, wherein the queue has at least
two parts, each part having a priority, and wherein when the
processor executes the designated portion of the program
assoclated with each block in accordance with the organi-
zation of the memory region information in the queue, the
processor uses a priority assigned to each block to place the
blocks 1n the two parts of the queue.

US 6,389,587 Bl

19

24. The system of claim 23, wherein when the processor
executes the designated portion of the program associated
with each block 1n accordance with the organization of the
memory region information in the queue, the processor
selects blocks from the two parts of the queues based on the
priority of each part of the queue with the blocks 1n a part
of the queue having a high priority given preference over
blocks 1n a part of the queue having a low priority.

25. The system of claim 24, wherein when the processor
selects blocks from the two parts of the queues based on the
priority of each part of the queue with the blocks 1n a part
of the queue having a high priority given preference over
blocks 1in a part of the queue having a low priority, the
processor selects a block from the high priority part of the
queue, and determines whether all dependency
relationships, 1f any, associated with the selected block from
the high priority part of the queue have been satisfied, and
initiating execution of the program code associated with that
block when 1t 1s determined that all dependency
relationships, 1f any, associated with that block have been
satisfied.

26. The system of claim 25, wherein when the processor
selects blocks from the two parts of the queues based on the
priority of each part of the queue with the blocks 1n a part
of the queue having a high priority given preference over
blocks 1n a part of the queue having a low priority, the
processor selects a block from the low priority part of the
queue when 1t 1s determined that all dependency
relationships, 1f any, associated with the block selected from
the high priority part of the queue have not been satisfied,
and 1nitiating execution of the program code associated with
the selected block from the low priority part of the queue
when 1t 1s determined that all dependency relationships, if
any, associated with the selected block from the low priority
part of the queue have been satisfied.

27. The system of claim 22, wherein when the processor
executes the designated portion of the program associated
with each block 1n accordance with the organization of the
memory region information in the queue, the processor uses
a priority assigned to each block to place the blocks 1n at
least two queues, each queue having a different priority.

28. The system of claim 27, wherein when the processor
executes the designated portion of the program associated
with each block 1n accordance with the organization of the
memory region information in the queue, the processor
selects blocks from the queues based on the priority of each
queue with the blocks in the queue having a high priority
orven preference over blocks i the queue having a low
priority.

29. The system of claim 22, wherein when the processor
executes the designated portion of the program associated
with each block 1n accordance with the organization of the
memory region information in the queue, the processor
pre-fetches available data require for execution of a block
when resources to execute the block are available and all of
the block’s dependency relationships have not been satis-
fied.

30. The system of claim 21, wherein when the processor
forms a queue organizing the memory region information,
the processor (1) generates a directed acyclic graph based on
the memory region information with each block having a
corresponding node in the graph, (ii) traverses the directed
acyclic graph according to a predetermined function, and
(i11) places information identifying each block in the queue
based on the traversal of the directed acyclic graph.

31. The system of claim 30, wherein when the processor
traverses the directed acyclic graph according to a prede-

10

15

20

25

30

35

40

45

50

55

60

65

20

termined function, the processor applies weights associated
with each block such that no block has a data dependency on
a block that has a lesser weight.

32. A computer-readable medium containing instructions
for performing a method for optimizing execution of a
software program according to a data flow model 1n a
multiprocessor computer system, the method comprising;:

receiving memory region information, mcluding block
information reflecting a plurality of blocks that define
a memory region, wherein each block defines a set of
values associated with a function and has a predeter-
mined state reflected by a designated portion of said
program according to said data flow model that when
executed transforms the values defined by said block
based on the function, and dependency information
reflecting any dependencies among the blocks, wherein
cach dependency indicates a relationship between two
blocks and requiring the portion of the program asso-
ciated with a first block of the relationship to be
executed before the portion of the program associated
with a second block of the relationship; and

forming a queue organizing the memory region 1informa-
tion.
33. The computer-readable medium of claim 32, wherein
the method further comprises:

executing the designated portion of the program associ-
ated with each block 1n accordance with the organiza-
tion of the memory region information i1n the queue.
34. The computer-readable medium of claim 33, wherein
traversing the directed acyclic graph according to a prede-
termined function includes:

applying weights associated with each block such that no
block has a data dependency on a block that has a lesser
welight.

35. The computer-readable medium of claim 34, wherein
executing the designated portion of the program associated
with each block in accordance with the organization of the
memory region information in the queue, further includes:

selecting blocks from the two parts of the queues based on
the priority of each part of the queue with the blocks 1n
a part of the queue having a high priority given pref-
erence over blocks 1n a part of the queue having a low
priority.

36. The computer-readable medium of claim 35, wherein
selecting blocks from the two parts of the queues based on
the priority of each part of the queue with the blocks 1n a part
of the queue having a high priority given preference over
blocks 1n a part of the queue having a low priority, includes:

selecting a block from the high priority part of the queue;
and

determining whether all dependency relationships, if any,
assoclated with the selected block from the high pri-
ority part of the queue have been satisfied, and 1nitiat-
ing execution of the program code associated with that
block when 1t 1s determined that all dependency
relationships, if any, associated with that block have
been satistied.

37. The computer-readable medium of claim 33, wherein
the queue has at least two parts, each part having a priority,
and wherein executing the designated portion of the program
associated with each block 1n accordance with the organi-
zation of the queue, includes:

using a priority assigned to each block to place the blocks
in the two parts of the queue.

38. The computer-readable medium of claim 35, wherein

selecting blocks from the two parts of the queues based on

US 6,389,587 Bl
21 22

the priority of each part of the queue with the blocks 1n a part using a priority assigned to each block to place the blocks

of the queue having a high priority given preference over in at least two queues, each queue having a different
blocks 1n a part of the queue having a low priority, includes: priority.

selecting a block from the low priority part of the queue 41. The computer-readable medium of claim 33, wherein

when it is determined that all dependency relationships, ° executing the designated portion of the program associated

it any, associated with the block selected from the high with each block in accordance with the organization of the

priority part of the queue have not been satisfied, and
initiating execution of the program code associated
with the selected block from the low priority part of the

memory region information in the queue, includes:

pre-fetching available data require for execution of a

queue when it is determined that all dependency 10 block when resources to execute the block are available

relationships, if any, associated with the selected block and all of the block’s dependency relationships have

from the low priority part of the queue have been not been satisiied.

satisfied. 42. The computer-readable medium of claim 32, wherein
39. The computer-readable medium ot claim 38, wherein forming a queue organizing the memory region information

executing the designated portion of the program associated 15 jhcludes:
with each block 1n accordance with the organization of the

C. L, . enerating a directed acyclic graph based on the memor
memory region information in the queue, further includes: 5 S y stap y

region 1nformation with each block having a corre-
sponding node 1n the graph;

selecting blocks from the queues based on the priority of
cach queue with the blocks 1n the queue having a high
priority given preference over blocks in the queue
having a low priority.

40. The computer-readable medium of claim 33, wherein placing information identifying each block in the queue
executing the designated portion of the program associated based on the traversal of the directed acyclic graph.
with each block 1n accordance with the organization of the
memory region information i1n the queue, 1includes: S I T

20 traversing the directed acyclic graph according to a pre-
determined function; and

	Front Page
	Drawings
	Specification
	Claims

