US006367029B1
a2 United States Patent (10) Patent No.: US 6,367,029 B1
Mayhead et al. 45) Date of Patent: Apr. 2, 2002
(54) FILE SERVER SYSTEM TOLERANT TO Primary Examiner—Gopal C. Ray
SOFTWARE AND HARDWARE FAILURES (74) Attorney, Agent, or Firm—O’Melveny & Myers LLP
(75) Inventors: Martin Mayhead, Slough; Graham (57) ABSTRACT

Parrington, Consett; James Radley;

Gradimir Starovic, both of Slough, all A file server system tolerant to hardware and software

of (GB) failures 1s located over a plurality of hardware nodes. The

nodes of the system act as hosts for software components of

(73) Assignee: Sun Microsystems, Inc., Palo Alto, CA the system. Several of the software components can be
(US) replicated. The replicable software components include the

system file store, a checker and a logger. The replicated

otice: ubject to any disclaimer, the term oI this .
* Noti Sub; y disclai h f thi
patent is extended or adjusted under 35 components have one primary copy and one or more back-
U.S.C. 154(b) by 0 days up copies. Replica copies of a given replicated component
o | are each located at different nodes. Location and handling of
(21) Appl. No.: 09/185,414 replica copies of a given replicable component is under the

control of a replication manager which is a (non-replicable)
software component of the system. The replication manager

(22) Filed: Nov. 3, 1998

(51) Imt.CL’7 ..o, GO6F 11/36; GO1R 31/28 1s distributed meaning it can have one of its Instances
(52) US.CL ..., 714/2; 714/732; 709/203 running on ¢ach node of the system. These instances inter-
(58) Field of Searchc.oc.......... 714/2, 732, 6, ~ communicate to maintain coherence. The failure detector is

714/726, 735, 738, 38; 713/179, 180; 709/203; also distributed, its instances running on each of the nodes,
707/10, 103 and contributing to an ecarly detection of hardware and

software failures. The file store 1s configured to hold stored

(56) References Cited objects and includes a signature generator for computing an
U.S. PATENT DOCUMENTS object-specific signature from an object. The checker com-
prises a signature store for holding a previously computed

j’égf’ég i - %ﬁg;g ?;El;?fnet al. signature for each of the stored objects and a comparator
5:078:501 A * 1/1992 Hekker et al. operable to compare a signature retrieved from the signature
5475694 A * 12/1995 Ivanov et al. store with a corresponding signature computed by the sig-
5,761,505 A 6/1998 Golson et al. nature generator from an object retrieved from the file store,
6,021,491 A * 2/2000 Renaud thus to enhance system reliability.
6,073,209 A * 6/2000 Bergsten

* cited by examiner 23 Claims, 7 Drawing Sheets

(1)SEND (READREQ,OBJECT 1.D.)

CLIENT — —
(2Q)GET (PDATA)
(3)COMPUTE (PSIG) (49 MCAST (READREQ,OBJECT 1.D.,PSIG,PDATA)
PRIMARY
SEND (READREPLY,
OBJECT |.D.,PDATA)
(B)GET (SDATA)
(6)COMPUTE (SSIG)
(7)CMP (SSIG,PSIG)
BACK-UP —
/*THEY AGREE %/
CHECKER e
(®GET (CSIG) MCAST (OBJECT 1.D.,CCMP)
(9)CMP (CSIG,PSIG) \

/% THEY AGREE %/ AGREE

U.S. Patent Apr. 2, 2002 Sheet 1 of 7 US 6,367,029 B1

50 52 54
N N . VN
CLIENT CLIENT CLIENI
APPARATUS APPARATUS APPARATUS

NETWORK LINK
56

55
60|

PRIMARY

FILE SERVER SYSTEM
FlG. 1
A {BlCjD] E | F
X
OBJECT REGISTER
' FIG. 3

US 6,367,029 B1

Sheet 2 of 7

Apr. 2, 2002

U.S. Patent

JO1VEVdNOD

JIA03HI

m A JIIVNYN 4 IHOIHO

¥4

JIIVNVA
g31S103d 1037d0
ve
SETNINEY
¢¢] 103rgo

4IOVNVA NOILVII1a3d

g

34015
EVNEIN

81

&¢

YIOVNYH (4 B

LINN

IONIJOLINON
311V

Gl

140d

SININ93S | | LNdLNO/LNdNI

JOIA40 JOVH0LS J113

4!

9l

0o¢

JOLVHINID
JUNLYNIIS

AdVAIdd 34015 J114
dN—-A0v8 34015 1114

I£

4315193y
&

9¢
40104130 34N 11v4

J401S
ENNI0N

T EEh S S S e ke

o¢
0!

US 6,367,029 B1

Sheet 3 of 7

Apr. 2, 2002

U.S. Patent

S 3UOV /% IIYOV ATHL*/ .
\ (91Sd'91S2) dNO(E®) P Ol
(dWD2"a’l LO3rg0) 1SYOW (1) (9152) 139()

[JJHOV AJHL %/

(91Sd'91SS) dWO(Q)
(91SS) 31NdW02(9)
(v1vas) 139()

(Vivad gt 123rgo
'A1d3IHAav3Id) AN3S

(VLvad'OISd " a’l 1293rg0'03yavay) 1svow@®) (91sd) 31NdWoDE)
(Vivad) 139@)

(‘Q’1 L23rgo'v3yav3y) anas@)

dINOIHD

dN-X10v4

AdVIdd

ANIO

US 6,367,029 B1

Sheet 4 of 7

Apr. 2, 2002

U.S. Patent

3349V /% 3TUOV AFHL*/
\ (91Sd'91S2) dWNO@®)
(dWOD"a'l 1L23r80) LSYOW (V) (9159) 139

(vivad) 3¥01s (W) /% H3431Q ATHL */

(91Sd'9ISS) dWO()
(91s8) 3LNdW02(Q)

(vivas) 1390

(Vv1vad a’l io3rgo
'‘A1d3HAav3IY) AN3S

(VLVad'oISd ' a’l 1093rg0o'v3yavay) Lsvon ()

G Ol

(91Sd) ILNdWO0I(E)
(vivad) 139@)

(‘@1 123rg0'03yavay) anasQ)

H=AM0O3HO

dN-X0Vv4d

AdVAIEd

LN3IO

US 6,367,029 B1

Sheet 5 of 7

Apr. 2, 2002

U.S. Patent

434410
\ /% Y34310 ATHL %/
(WD a1 103rgo) (91Sd'D1SD) dWD (6)

(91Sd) 3YOLS e 1SVOIN 9 (91S9) 139 o

4340V

/'
(dWDS'"a’l LO3rg0)LSYONED

[J3HOV AJHL %/

(91Sd'91SS) dWO ()
(918S) 3LNdNO0D(Q)
(vLvas) 1390©)

(v1vad al 123rgo
‘A1d3IHAVIY) AN3S

(V1vad'oISd' 'a’l 123rg0'n3xyavay) 1Svon @)

9 Old

(91Sd) 3LNdNWOI(E)
(Vivad) 139@)

(‘a1 L23rgo'v3uavay) an3s@)

d3IMO3HD

dN-X0v8

AdVINIHd

1LNJIO

mmn_//n__o N o_m

(dWDD"Q’l LO3rg0) LSYON O

US 6,367,029 B1

/% 434410 AGHL*/
(91Sd'9IS2) dWD (B)

(9189) 139 (8)
434410 |
\ (VLv3S'OISS
= dNDS a1 103rg0) an3s Gy
-
<z /Y3410 AFHL %/
2 (91Sd'9ISS) dWO Q)
7 (91SS) 3LNdNWO02(Q)
(v1vas) 139(©)

(vlvad' a 103rgo
= 'A1d34av3y) an3s
@\
a..,, (v1vas) 340Ls @) EEEONWMJ\M__ ! vkmmm_ﬁw_\o,_@ ©15d) 3LNANOOE
,m (V1vad) 139@)

(‘a1 193rgo'v3y¥avay) anasQ®

U.S. Patent

SEMIEIL.

dN-1OVv4

AdVINIHdD

IN3IO

8 Ol

US 6,367,029 B1

(1INS3Y"'a’l 193rgo) 1svow () (918) 390LSE)

T~

i

-

T~

2 (L1NST (V1iva) 3401s()

= @'l L23r9O)

s LSVOW @

~n LINS3IHTA’1 103rdo

S A1dIY3LIYM) AN3S

@\

R (w1va) 3¥01s (8) (918'v1va“a1103ara0 _ (9ois) 31ndWooQ®)
E 'DIYILIYM) LSYONE)

(VL1va @'l 1L23rg0'03y3LEm) anas@®)

U.S. Patent

d3M03HO

dN-A0VvYd

AUVINIYG

AN3ITO

US 6,367,029 Bl

1

FILE SERVER SYSTEM TOLERANT TO
SOFTWARE AND HARDWARE FAILURES

BACKGROUND OF THE INVENTION

The 1nvention relates to a file server system of the kind
tolerant to software and hardware failures.

Reliability of a file server system 1s a measure of the
continuity of failure-free service for a particular system and
in a particular time interval. Related to this 1s mean-time-
between-failures which defines how long the system 1s
expected to perform correctly.

Availability measures the system’s readiness to serve.
One definition of availability 1s the percentage of time 1n
which the system performs correctly 1n a given time 1nterval.
Unlike reliability, availability depends on system recovery
fime after a failure. If a system 1s required to provide high
availability for a given failure model, 1.e. for a defined set of
possible failures, it has to provide fast recovery from the
defined set of failures.

A number of existing file servers provide an enhanced
level of availability for some speciiic failure models. Such
file servers are sometimes referred to in the art as highly-
available file servers. The mechanisms which are often used
for this are based on some or all of the following:

(1) primary/back-up style of replicated file service;

(2) the use of logging for faster recovery, the log being
kept on disk or 1n non-volatile memory;

(3) checksumming to protect data integrity while the data
1s stored on disk or while 1t 1s being transferred between
the server’s nodes; and

(4) reliable group communication protocols for intra-
server communication.

It 1s an aim of the present invention to provide a file server

system which 1s tolerant to software and hardware failures.

SUMMARY OF THE INVENTION

Particular and preferred aspects of the mmvention are set
out 1in the accompanying independent and dependent claims.
Features of the dependent claims may be combined with
those of the independent claims as appropriate and 1n
combinations other than those explicitly set out in the
claims.

According to a first aspect of the invention there i1s
provided a file server system for storing data objects with
respective object 1dentifiers and for servicing requests from
remote client systems specitying the object identifier of the
requested object. The system comprises a file store for
holding stored objects with associated object 1dentifiers. The
system further comprises a signature generator for comput-
ing an object-speciiic signature from an object, a signature
checker comprising a signature store for holding a previ-
ously computed signature for each of the stored objects, and
a comparator operable to compare, on the basis of a specified
object identifier, a signature retrieved from the signature
store with a corresponding signature computed by the sig-
nature generator from an object retrieved from the file store.

The location of the signature generator may be associated
with the file store and the location of the comparator may be
assoclated with the checker. If the file store is replicated, a
signature generator may be provided at each file store replica
location. Similarly, if the checker 1s replicated, a comparator
may be provided at each checker replica location.

Signatures computed at the time of object storage are thus
archived 1n the checker for later reference to provide an

10

15

20

25

30

35

40

45

50

55

60

65

2

independent record of the mtegrity of the data stored 1n the
file store. When an object 1s retrieved from file store, a
signature for it can be computed by the signature generator
and compared with the archived signature for that object.
Any difference in the respective signatures will thus be an
indicator of data corruption which can then be acted upon
according to defined single point failure procedures, for
example.

In the first aspect of the 1nvention, the system preferably
has an operational mode 1n which a decision 1s made as to
whether to perform a comparison check in respect of an
object on the basis of profile information for that object.
Profile information may be supplied with the request being
serviced and may be stored for each object or for groups of
objects 1n the file store with profile information supplied
with the request taking precedence.

According to a second aspect of the invention there 1is
provided a file server system for storing data objects with
respective object 1dentifiers and for servicing requests from
remote client systems specitying the object 1dentifier of the
requested object. The system 1s constituted by a plurality of
replicable components which may or may not be replicated
In a given implementation or at a particular point in time.
The replication 1s preferably manageable dynamically so
that the degree of replication of each of the replicable
components may vary during operation. Alternatively the
replication levels may be pre-set at the level of the system
administrator.

Replication 1s handled by a replication manager. The
replication manager 1s configured to allow for nodes leaving
and joining the system by respectively reducing and increas-
ing the number of replicas of each of the replicable com-
ponents alfected by the node transit. A failure detector 1s also
provided. The failure detector 1s not replicable, but 1s
preferably distributed over the system nodes by having an
instance running on e¢ach node. The failure detector has an
object register for storing a list of ones of the system objects
and 1s configured to monitor for failure of any of the system
objects listed 1n the object register and, on failure, to report
such failure to the replication manager. For each system
object on the failure detector list, there may be stored a
secondary list of other ones of the system objects that have
an 1nterest 1n the health of that system object. The failure
detector 1s then configured to report failure of that object not
only to the replication manager but also to each of the
objects on the secondary list. The replication manager
preferably records for each of the replicated components a
primary of the component concerned and 1s configured to
select a new primary when a node hosting a primary leaves
the system.

For enhanced reliability and availability, the file store 1s
preferably replicated with a replication level of at least two,
1.e. with a primary copy and at least one back-up copy.
Another system component which may be replicable 1s a
checker. The checker has a signature store for holding
object-specific signatures computed for each of the objects
stored 1n the file store.

Alogger may also be provided to allow faster recovery in
respect of nodes rejoining the system, for example after
failure. The logger may also be replicated. The logger serves
to maintain a log of recent system activity 1n non-volatile
storage which can be accessed when a node 1s rejoining the
system.

In the preferred embodiment, the file server system 1s
located over a plurality of nodes, typically computers or
other hardware elements. For operation, the file server

US 6,367,029 Bl

3

system 1s connected to a network to which 1s also connected
a plurality of client apparatuses that may wish to access the
data stored 1n the file server system. The nodes of the file
server system act as hosts for software components of the
file server system. Several of the software components can
be replicated. The replicable software components 1nclude:
the system file store, a checker and a logger. The functions
of these components are described further below. A repli-
cated component has one primary copy and one or more
back-up copies. Among the replicas of a given component,
the primary may change through a process referred to as
primary re-election, but there 1s only ever one primary at any
one time for a given component. Generally 1t 1s desirable for
reliability that replica copies of a given replicated compo-
nent are each located at different nodes, or at least that the
primary and one of the back-ups are located on different
nodes. Thus, a given node may be host to the primaries of
several different software components and to several back-
ups. Location and handling of replica copies of a given
replicable component 1s under the control of a replication
manager which is a (non-replicable) software component of
the file server system. The replication manager 1s
distributed, meaning it can have one of its instances running
on each node of the file server system. These instances
inter-communicate to maintain coherence. Several or all of
the nodes may be provided with direct network connections
to the clients to provide redundancy. The network connec-
fions may be private or public.

The nodes are preferably loosely coupled. Each node 1s
preferably provided with local storage, such as disk storage,
and redundant network connections, for example a dual
connection with the other nodes and a dual external con-
nection to the network for client communication. The file
server system can be implemented without any shared
storage which has the advantage of making i1t possible to
provide higher tolerance to failures.

In one embodiment of the invention, a file server system
1s provided which 1s tolerant to single point hardware and
software failures, except partitioning failures. Protection can
be provided against hardware component failure of a whole
node, a cable, a disk, a network interface or a disk controller,
and software component failure of the operating system or
the file server enabling software. Software failure types for
which protection can be provided includes crash, timing and
omission failures, and data corruption failures internal to the
file server system. All these hardware and software failures
are assumed to be transient. By basing the design of the file
server system on a single point failure model, as in this
embodiment, the file server system performance can be
improved, but there 1s the proviso such a system cannot
handle simultaneous failure of more than one component.

In operation, a file server system of an embodiment of the
invention services a write request received from a remote
client and containing an object and an assoclated object
identifier as follows: An object-speciiic signature 1S com-
puted from the object. The object 1s stored in a file store
together with the object 1dentifier and the computed object-
specific signature 1s stored 1n a further file store together
with the object identifier. It will be appreciated that there 1s
flexibility 1n the order 1n which these steps may be carried
out. For example, the object may be stored before or after
signature computation, or concurrently therewith. The file
stores for the object and signatures are preferably located on
different system nodes to enhance reliability. The stored
signatures can be used 1n later checking processes whenever
an object associated with a stored signature 1s accessed. The
checking process involves performing a comparison

10

15

20

25

30

35

40

45

50

55

60

65

4

between the stored signature retrieved from archive and a
newly computed signature generated from the object
retrieved from archive. For example, the file server system
of this embodiment of the invention services a read request
received from a remote client and containing an object and
an assoclated object identifier as follows: In response to
receipt of a read request relating to an object and specilying
an object 1dentifier for the requested object, the requested
object 1s retrieved from {ile store on the basis of the object
identifier and an object-specific signature 1s computed from
the retrieved object. Concurrently, beforehand or
subsequently, the archived signature for the object is
retrieved from the signature file store, also on the basis of the
object identifier. The newly computed signature 1s then
compared with the old signature retrieved from archive and
the subsequent request servicing then proceeds on the basis
of the comparison result according to a pre-speciiied algo-
rithm which may follow from a single point failure model or
a mult1 point failure model, for example. As will be appre-
ciated and as 1s described further below, the read and write
request servicing algorithms can be extended according to
the degree of replication of the file stores.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the invention and to show
how the same may be carried into effect reference 1s now
made by way of example to the accompanying drawings in

which:

FIG. 1 1s a block schematic diagram of a client-server
network;

FIG. 2 1s a block schematic diagram of a file server system
according to an embodiment of the mvention,

FIG. 3 shows a data structure used in the replication
manager of the embodiment of FIG. 2,

FIG. 4 1s a state diagram showing how a client read
request 1s serviced when the primary, back-up and checker
all agree;

FIG. 5 1s a state diagram showing how a client read
request 1s serviced when the checker and primary agree, but
the primary and back-up disagree;

FIG. 6 1s a state diagram showing how a client read
request 1s serviced when the checker and primary disagree,
but the primary and back-up agree;

FIG. 7 1s a state diagram showing how a client read
request 1s serviced when the primary and checker disagree
and the primary and back-up disagree; and

FIG. 8 1s a state diagram showing how a client write
request 1s serviced.

DETAILED DESCRIPTION

FIG. 1 1s a block schematic diagram of a networked
computer system showing a plurality of client apparatuses,
or simply clients, 50, 52, 54 connected through a network
link 56 to a file server system 60, referred to 1n the following
as a highly-reliable (hr) file-server system, having a repli-
cated system file store with a primary 1 and a back-up 2. A
system administrator interface 55 1s also connected to the
network. The system administrator has the role of config-
uring the set-up of the hr file-server system 60. The data
managed by the hr file-server system 60 are referred to as
hr-objects (highly-reliable-objects) in the following. The
hr-objects can be clients’ real data, for example files, or
some metadata, for example file attributes such as owner,
modification date or the like. The hr-objects may also be a
combination of data and metadata.

US 6,367,029 Bl

S

FIG. 2 1s a block schematic diagram showing the hr
file-server system 60 1n more detail. The hr file-server
system shown has a file store primary 1, a file store back-up
2, a checker 4, a failure detector 6, a replication manager 8
and a logger 10, all of which are interconnected by an
intra-server communication link 12 for a multi-level internal
transport mechanism. The multi-level internal transport
mechanism comprises a request manager at a high level, a
reliable group transport (RGT) at an intermediate level, and
an underlying transport mechanism, such as TCP or UDP, at
a low level. TCP and UDP are standard internet protocols.

The file store primary 1, referred to simply as the primary
in the following description of this embodiment, 1s located
at one node of the hr file-server system and operates accord-
ing to a standard remote access file protocol for client-server
communication, in this case NFS (network file system).
Alternatively, another remote access file protocol could be
used. The node of the primary 1 has an input/output port 14
for communication to and from client systems over the
network link 56. Dual client-server connections may be
provided for redundancy to enhance reliability. External
communication takes place using the standard communica-
tions protocols RPC (remote procedure call), TCP/IP and
UDP over IP multicast. Alternatively, other protocols could
be used.

The primary 1 has a file storage device 16 in which the
primary 1 stores hr-objects with associated object identifiers
(object 1.d.’s). The object 1.d. may, for example, be 64-bits
long. The primary 1 also has a signature generator 20 for
computing hr-object signatures from hr-objects, typically on
storage 1n or retrieval from the file storage device 16. The
file storage device 16 includes segments 15 for storing
proiile information, the significance of which i1s discussed
further below.

The node of the primary may also host a number of other
services 1n addition to the local file system service consti-
tuted by the file store primary 1. These additional services,
referred to as application services, may typically include: a
standard file mounting utility for mounting file groups; a
standard network lock manager (NLM) for maintaining
locks on selected files for controlling concurrent accesses
according to standard lock protocols; and a node status
manager (NSM) for identifying restarts of client system, e.g.
after failure, so that locks can be released.

The file store back-up 2 i1s a replica of the primary 1
located at a different node of the hr file-server system. The
file store back-up 2 1s referred to simply as the back-up in the
following description of this embodiment. The configuration
of the hr file-server system 1s flexible 1n that further file store
back-ups may join the hr file-server system and others leave
the system 1n a dynamic fashion. This possibility for further
replication 1s indicated in the Figure with dashed lines.
Moreover, as will be described 1n more detail further below,
any of the file stores may assume the mantel of the primary
and which file store 1s the primary may change dynamically.
Since the primary and back-ups are generally located on
different nodes, change of the primary (termed re-election)
will generally cause a movement of the primary location
from one node of the system to another.

The checker 4 comprises a manager 21, store 18 and
comparator 22. The checker 4 has the function of comparing
signatures 1t receives with corresponding signatures previ-
ously stored in the checker. The checker store 18 holds, for
cach of the hr-objects known to it, a signature of that
hr-object together with an object i1dentifier, which may or
may not be the same as the global object 1dentifier used by

10

15

20

25

30

35

40

45

50

55

60

65

6

the clients. In the following, if only for the sake of linguistic
simplicity, the checker store identifier and the file store
identifier are taken to be the same and are both referred to
as the object 1dentifier. In other embodiments in which the
identifiers are not the same, the checker will keep a corre-
spondence table, map, algorithm or the like, for converting
between file store object identifiers and checker store 1den-
fifiers.

For reasons of system reliability, the checker 4 1s prefer-
ably located on a node different from the node of the primary
1 and back-up 2, and possibly also the nodes on which other
key software components are located. In this way, the
checker 4, specifically its store 18, 1s at least independent of
the storage devices of the primary 1 and back-up 2.

The hr-object-specific signatures may be 128 bits 1n
length, for example, and may be computed by the primary 1
and back-up 2 by their respective signature generators.

Signatures are computed at the time when an hr-object 1s
first to be stored in the hr file-server system, or when an
hr-object already stored 1s the subject of a client request. In
response to such a client request, the primary 1 will retrieve
the requested hr-object from 1its file storage device and
compute 1ts signature. The primary will then 1ssue a check
request to the checker 4.

Check requests are transmitted to the intra-server com-
munication link 12 with multicast commands. A multicast 1s
a single send operation performed at a sender to send a
message to a number of receivers. (A broadcast 1s a special
case of a multicast when a message is sent to all receivers).
The check request specifies the object 1.d. and the newly
calculated object signature. The check request 1s serviced by
the checker manager 21 where 1t 1s passed to the checker
comparator 22. The comparator 22 retrieves the object
signature stored 1n the checker store 18 for the object 1.d.
specified 1n the multicast command and then compares the
retrieved signature with the newly calculated one. Depend-
ing on whether the two signatures match or not, a result
EQUAL or DIFFER 1s transmitted by the checker manager
21 onto the infra-server communication link 12 using
another multicast command. In the event that the signatures
differ, the multicast command also includes a copy of the
retrieved signature.

The checker manager 21 1s configured to monitor all
requests which modity hr-objects, 1.e. data or metadata of
hr-objects. Moreover, 1nfra-server communication 1S per-
formed so as to ensure that the checker observes such
requests 1n the same order as they are observed by the
primary, back-up and any further back-ups.

The mmvolvement of the checker 4 can be enabled/disabled
at the level of a single request type so that checking can be
performed selectively. For this purpose the system maintains
a profile for each hr-object, and optionally also for a whole
file system, 1.e. a group of hr-objects. The object profiles are
stored 1n respective portions 15 of the file store storage
devices 16. The profiles contain control mformation. One
part of the control information specifies whether the checker
1s to be used when operations are performed on the hr-object
concerned. In addition, individual client requests on an
object, such as read requests or write requests, can specily
proiile data specific to the request, such as control informa-
fion. For example, a client request may contain control
information specifying that no checking be performed in
servicing the request. The request’s profiling data will then
override the profiling information stored for the hr-object
being operated on. Initially, the object profiles are mitialized
by the clients using the administrator interface 3535.

US 6,367,029 Bl

7

Subsequently, the profiles are initialized by the clients 1n
cach request which 1s submitted to the hr file-server system.

The replication manager 8 controls the number and loca-
tion of replicas for the replicated services, 1n this embodi-
ment the file store replicas 1 and 2. In general, a non-
replicated service 1s defined as code running as a single
process on a single node of the server system which provides
a client service such as a file access (by NFS in the present
embodiment) or a lock service (by NLM in the present
embodiment). In the case of replicated services, each replica
1s a member of the replicated service. All members of the
same replicated service support the same interface. The
replication manager 1s non-replicable, but each node has
running on 1t an instance of the replication manager. The
replication manager 1s thus distributed over the nodes of the
hr file-server system, with the instances continually inter-
communicating to maintain coherence, €.g. to keep track of
which components are replicated, how many replicas cur-
rently exist and, for each replicated component, which
replica 1s currently the primary.

The replication manager 8 has an object register 23 in
which any of the hr-objects of the hr file-server system may
be registered. Management of the object register 23 1s under
the control of an object register manager 24 of the replica-
fion manager 8. Under the control of the object register
manager 24, hr-objects may be registered and deregistered,
typically on request from that hr-object. The object register
23 also stores, for each register entry, information on any
ogroup afhiliation of that hr-object. Object groups are used for
replica copies of hr-objects. The group affiliation may be
deleted or amended on request of the hr-object. Moreover,
within a group, one of the replicas will be a primary and this
will be registered with the replication manager. Change of
the primary replica of the group (re-election) is also allowed
for.

FIG. 3 shows an example of the data structure of an object
register entry. Each entry record includes an object identifier
field A, an object location address field B, and a number of
fields C through F related to group affiliation of the
hr-object. Field C 1s for a group 1dentifier. Field D 1s for
recording the number of replicas in the group (possibly
zero). Field E is for recording whether the hr-object is the
ogroup primary or not. Field F 1s for addresses or pointers to
the locations of other group members (if any).

The flexible structure of the object register 23 managed by
the object register manager 24 allows for the creation of new
replicas so that the degree of replication of any one of the
services can be increased and decreased dynamically
according to current requirements, and independently of the
replication of other services. For example, services and
nodes can leave the system (i.e. be taken down) by failures
or for maintenance, and will rejoin the system (i.e. come up
again) after repair, upgrading or whatever. Nodes leave and
join the system as groups of hr-objects.

In general, any service, apart from the replica manager
itself, 1s amenable to replication, i which case there will be
a single primary and one or more back-ups. Generally, there
1s no ranking among back-ups.

If a service 1s replicated, a special asynchronous mode can
be selected at the level of a single request type, for example
for read file data requests. In the asynchronous mode the
working of the primary 1s not synchronized with the working,
of the back-up, or back-ups, in so far as servicing the request
concerned. More specifically, this means that on receipt of a
request the primary forwards the request to the back-ups and
then immediately continues by performing the operation and

10

15

20

25

30

35

40

45

50

55

60

65

3

replying to the client. By contrast, in the normal synchro-
nous mode, after forwarding a client request to the back-ups,
the primary will wait for replies from the back-ups before
replying to the client.

The asynchronous mode thus allows a gossip style of
replication in which the primary does not wait for the replies
from the back-ups and the back-ups do not reply to the
primary. The request information thus spreads from the
primary to the back-ups in the background while the primary

1s performing actions to service the request. Because the
primary does not wait to check whether the back-ups have
received the request information, a greater degree of paral-
lelism 1s provided, at the expense of possible external
inconsistency. A requester may receive some replies and
then access some pre-request data it there was a failover or
switchover of the primary in the meantime. A primary
fallover or switchover 1s a change of primary effected with
a primary re-clection and will occur after a primary fails, for
example.

The algorithm applied by the replication manager 8 to
ensure replica coordination will proceed as follows 1if there
are no failures.

The primary receives a new client request for a specific
service. The request may come directly from the client over
the network link 56 or via one of the back-ups. (Back-ups
may be connected directly to the network and may then
receive client request. New requests will be recognized as
such by the back-ups and forwarded to the primary). The
primary prepares for execution of the request by performing
consistency and accessibility checks, and by computing
signatures for the hr-objects specified 1n the request. The
replication manager informs the logger and checker of the
request. (The logger and checker referred to here will be the
primary logger and primary checker in the case that the
logger and checker are replicated). The logger then creates
a log entry and the checker checks the request’s signatures.
After this has been successtully completed, the primary of
the service to be replicated forwards the replication request
to any back-ups it may have. The back-ups then perform the
request and inform the primary of the outcome. If all
outcomes are successiul, the primary performs the request
locally, for example by retrieving or updating the stored file
data, and then replies to the original requester, 1.€. the client,
returning the result of the requested operation.

The failure detector (FD) 6 comprises a manager 27, a
register 26 and a failure monitoring unit 28. A failure
detector 1s provided at each node. The failure detector
register 26 1s a register of hr-objects which have previously
registered with the failure detector. There are two types of
registration. A first type 1s registration by an object that its
future health be monitored actively or passively by the
failure detector 6. A second type 1s registration by a hr-object
of 1ts interest 1n being notified of any future failure in
another hr-object. The other hr-object specified 1n any type-
two registration must itself be registered with the failure
detector with a type-one registration. The FD manager 27
has facilities for registering and deregistering entries, similar
to those provided for the replication manager register. The
FD manager 27 1s configured to monitor activity of
hr-objects which are registered with the replication manager
8 through the failure monitoring unit 28. Some or all of the
monitoring may be carried out passively, for example by
monitoring tratfic on the intra-server communication link 12
between other server elements or by waiting for receipt of
periodic notifications from registered objects regarding their
health status. Active monitoring may also be used, either on
its own or 1n combination with passive monitoring. Active

US 6,367,029 Bl

9

monitoring can take the form of the failure detector peri-
odically polling the registered hr-objects to request health
status information. A failure can be determined 1f there 1s no
response to a poll or if there are no periodic health status
messages within a given timeout period. Monitoring may
also 1nclude acting on messages from the checker 4 indi-
cating that failure of an object 1s suspected on the basis of
recent checking activity carried out by the checker 4.
Specifically, the failure detector 6 1s configured to monitor
signature disagreements which 1t does by watching for
multicast commands 1ssued from the checker and noting any
such commands with a DIFFER result.

The failure detector 6 1s also responsible for reporting
failures to other hr-objects which have registered at the
failure detector their interest 1n such events. Specifically,
replica failures will be reported to the replication manager 8
so that the object register can be updated, for example to
reduce the number of replicas in the relevant group by one.
If the failed replica 1s a primary, the replication manager 8
will then initiate a reconfiguration of the corresponding
ogroup of replicas, 1.e. the members of that replica group.
During the reconfiguration phase the service will not accept
any new requests. At the end of the reconfiguration phase a
new primary will be elected.

As well as notification of the replication manager 8, the
failure detector will also notify an hr-object failure to any
other hr-objects which have previously registered at the
failure detector their interest 1n the health of the now failed
hr-object.

The request manager 1s a high level component of the
multi-level transport mechanism utilizing the intra-server
communication link 12. The request manager serves to
handle requests from client systems at a high level and 1s
responsible for calling the target server hr-object (primary
and back-ups), logger, checker and replication manager, as
required to service the request concerned. Each client
request has a unique request 1dentifier for distinguishing it
from all other client requests (sometimes called
invocations). The request identifiers may be allocated by the
request manager or at a lower level by the protocol used for
the client-server communications, ¢.g. RPC over TCP or
over UDP. The request identifier includes the originator
object 1dentifier and 1s augmented with additional data such
as a time stamp and/or a node identifier specific to the
location of the requesting client system. A request manager
1s provided at each node.

The reliable group transport 1s a component of the multi-
level transport mechanism having a level intermediate
between the request manager and the low level communi-
cation protocols used. The reliable group transport i1s a
communication protocol used to control communication on
the intra-server communication link 12. There are many
suitable reliable group transport protocols in existing use,
any of which can be used. The reliable group transport
provides a reliable ordered transport mechanism having at
least FIFO (first-in-first-out) order between a single sender
and multiple receivers. The reliable group transport together
with the failure detector 6 and replication manager 8 may be
considered collectively to form a replication framework
used for controlling the replicated services.

The logger 10 maintains a redo, write-ahead memory log
of the client system requests 1n a logger store 30 under the
control of a log manager 31. The logger 10 preferably runs
on a node different from the {file store nodes. Each log entry
or record stores information about one client request, spe-
cifically an identifier, arcuments and results when finished.

10

15

20

25

30

35

40

45

50

55

60

65

10

Each log record is a log object. The operation of the logger
1s conducted on the log objects. An identifier for the log
object 1s created the first time the log object 1s recorded.

A log object can be, for example, a representation of a
hr-object, a part of the object state which a hr-object wishes
to have saved 1n the log, or a client request as received by
the request manager 1f the request manager decides to have
the client request logged. The log manager 31 has a mecha-
nism for translating request 1dentifiers 1nto log object 1den-
tifiers and for translating a hr-object identifier mto a log
object 1dentidier.

The involvement of the logger 10 can be enabled/disabled
at the level of a single request type so that logging can be
performed selectively. The log can be implemented as a
journal with new entries appended to the end of the journal.
Operations are provided for setting the current position in
the journal, for updating a log entry, for deleting a log entry
and for retrieving a log entry. A mechanism can also be
provided for periodically compacting the log.

The log 1s used when a node rejoins the system. When a
node 1s rejoining the system, for example after a failure, 1t
first obtains the log from one of the active nodes. It then
applies those entries which it has not seen and joins the

system, obtaining the latest state from the active node.

The logger 10 may be replicated and as such may come
under the control of the replication manager 8.

One convenient implementation of the embodiment 1s
based on an existing Java or C++ object-oriented environ-
ment with compiler and runtime libraries, extended to pro-
vide support for the checking, logeing, failure detection,
replication management and other functions described
above.

In operation, the file server system of the embodiment of
FIG. 2 services client read and write requests for a hr-object
in the manner now described with reference to FIGS. 410 8
which are state diagrams showing the activity of the client,
primary, back-up and checker during the servicing of read
and write requests. FIGS. 4 through 7 relate to read requests
and show the activity for four different situations defined by
the results of signature comparisons performed by the back-
up and checker 1 the course of servicing the client read
request. FIG. 8 shows the activity during the servicing of a
write request. In each of FIGS. 4 through 8, the steps
performed 1n the course of the request servicing are labeled
numerically. In the following description, paragraphs are
marked with the same numbering.

FIG. 4 shows how the client read request 1s serviced when
the checker, primary and back-up all agree.

1. The client transmits a request to read data to the hr
file-server system, specifying the object 1.d. of the hr-object
being requested and the command identifier. The client
request command, send(readreq, object 1.d.), is routed by the
client server system only to the primary. (In an alternative
conflguration, the client request could be sent to the primary
and back-up).

2. In response to receipt of the read request, the primary
retrieves the hr-object data, pdata, from 1its file storage
device by issuing a command get(pdata).

3. On the basis of the retrieved data, the primary computes
a signature, psig. The signature 1s then logged by the logger,
although this 1s not shown i1n the Figure for the sake of
clarity.

4. With a multicast command, mcast(readreq, object 1.d.,
psig, pdata), the primary transmits the signature computed
from the data retrieved from 1ts storage device, together with
the object 1.d., command identifier and pdata, to the back-up
and checker.

US 6,367,029 Bl

11

5. In response to receipt of the multicast command, the
back-up retrieves the hr-object data, sdata, from its file
storage device by issuing a command get(sdata).

6. On the basis of the retrieved data, the back-up computes
a signature, ssig.

/. The back-up compares the signatures of the primary
and back-up with a command cmp(ssig, psig). The compari-

son has a boolean result scmp=AGREE/DIFFER. In the
present example, scmp=AGREE since the primary and
backup signatures are the same.

8. In response to receipt of the multicast command from
the primary, the checker retrieves the signature, csig, corre-
sponding to the specified object 1.d. from its store by 1ssuing
a command get(csig).

9. The checker compares the signatures of the primary and
checker with a command cmp(csig, psig). The comparison
has a boolean result ccmp=AGREE/DIFFER. In the present
example, ccmp=AGREE since the primary and checker
signatures are the same.

10. The checker 1ssues a multicast command, mcast
(object 1.d., ccmp) with ccmp=AGREE, to transmit the
check result to the primary and back-up.

Finally, in response to receipt of the check result, the
primary transmits the data retrieved from the primary to the
client with a command, send(readreply, object 1.d., pdata), to
service the original client read request.

FIG. 5 shows how the client read request 1s serviced when
the checker and primary agree, but the primary and back-up
disagree.

1-10. Steps 1 to 10 proceed as described above with
reference to FIG. 4, the only difference being the result of
the comparison performed by the back-up 1n Step 7 which 1s
that the signatures of the primary and back-up disagree,
scmp=DIFFER. In this example the multicast conveys the
result, ccmp=AGREE, from which the back-up infers that
the primary’s data (pdata) for the requested hr-object is
valid, but its own data (sdata) is corrupt. The back-up then
proceeds to write over 1ts data with the data from the primary
in Step 11 now described:

11. The back-up stores the data from the primary 1n the
back-up with the command store(pdata). The back-up marks
the file as correct (not shown).

Finally, the hr-object data 1s transmitted to the client by
the primary as in the case of FIG. 4.

FIG. 6 shows how the client read request 1s serviced when
the checker and primary disagree, but the primary and
back-up agree.

1-10. Steps 1 to 10 proceed as described above with
reference to FIG. 4, the only difference being the result of
the comparison performed by the checker 1n Step 9 which 1s
that the signatures of the primary and checker disagree,
ccmp=DIFFER. In this example, the multicast of Step 10

thus conveys the result, ccmp=DIFFER, which 1s handled as
follows:

13. The back-up takes receipt of the result ccmp=DIFFER
in combination with its own comparison result scmp=
AGREE as a prompt to 1ssue a multicast of the result of its
comparison scmp=AGREE.

14. Receipt of the back-up result indicating that the
primary and back-up signatures agree, 1s taken by the
checker to infer that the signature held 1n its store for the
requested hr-object 1s corrupt. The checker thus overwrites
its stored signature with the signature calculated by the
primary with a command store(psig).

Finally, receipt of the back-up result indicating that the
primary and back-up signatures agree, 1s taken by the

10

15

20

25

30

35

40

45

50

55

60

65

12

primary to infer that its data (pdata) and the back-up’s data
(sdata) of the requested hr-object are both valid. The primary
then proceeds to transmit the data retrieved from the primary
to the client with a command, send(readreply, object i.d.,
pdata) thereby servicing the original client request.

FIG. 7 shows how the client read request 1s serviced when
the primary and checker disagree and the primary and
back-up disagree. In these circumstances, the back-up and
checker are deemed to agree, since the system 1s designed to
be tolerant of a single failure only.

1-10. Steps 1 to 10 proceed as described above with
reference to FIG. 4, the only differences being the results of
the comparisons performed by the back-up in Step 7 and the
checker 1n Step 9. Namely, 1n Step 7, the signatures of the
primary and back-up are found to disagree, scmp=DIFFER.
Moreover, 1n Step 9, the signatures of the primary and
checker are also found to disagree, ccmp=DIFFER.

15. The back-up takes receipt of the result ccmp=DIFFER
in combination with its own comparison result scmp=
DIFFER as a prompt to send its data, signature and com-
parison result to the primary with a command send(object

1.d., DIFFER, ssig, sdata).

16. On receipt of this command from the back-up and the
comparison result of the checker (see Step 10), the primary
infers that its data 1s corrupt and overwrites it with the
back-up’s data with a command store(sdata).

To service the client read request, the primary sends the

back-up data to the client with a command send(readreply,
object 1.d., sdata).

From the above description of FIGS. 4 to 7, 1t will be
appreciated that, the multicasting from the checker and
back-up of their comparison results to each other and to the
primary, allows each of the primary, back-up and checker to
decide which one (if any) should be deemed to be faulty and
to take consequent remedial action. As will be appreciated,
these procedures are based on the assumption that there is
only a single failure at any one time.

FIG. 8 shows how a client write request 1s serviced.

1. The client transmits a request to write data to the hr
file-server system, specifying the command identifier, the
object 1.d. of the hr-object and the object data. The client
request command, send(writereq, object 1.d., data'), 1s routed
by the client server system only to the primary. (In an
alternative configuration, the client request could be sent to
the primary and back-up).

2. The primary computes a signature from the data to be
written (data’) with a command compute(sig').

3. With a multicast command, mcast(writereq, object 1.d.,
data',sig'), the primary transmits the new data and signature,
together with the object 1.d., to the back-up and checker.

4. The back-up stores the new data, overwriting the old 1f

the object has previously been stored, with a command
store(data').

5. The checker stores the new signature, overwriting the
old 1f the object has previously been stored, with a command
store(sig').

6. A multicast command mcast(object i.d., result) is

transmitted from the back-up indicating the result that the
new data has been stored.

7. A multicast command mcast(object 1.d., result) is
transmitted from the checker indicating the result that the
new signature has been stored.

8. The primary stores the new data with a command
store(data').

US 6,367,029 Bl

13

Finally, a write reply 1s sent to the client indicating the
outcome of the write with a command send(writereply,
object i.d., result).

In the above description of FIGS. 4 through 8, the get and
store commands have merely specified data. However, under
the NFS system, for example, the object will be made up of
two components, namely attributes and data, which will be
stored separately. In general, read and write request servic-
ing can involve operating only on attributes or only on data,
or operating on both attributes and data. The signature for
cach object may also be subdivided into a part for the
attributes and a part for the data, and comparisons may be
performed between those part signatures. Furthermore,
under NFES, if operation 1s proceeding in the asynchronous
mode, following store commands the attributes or data may
not be written to disk until later, after completion of the
request servicing. In the case of write requests relating to
objects already stored, the servicing may be further opti-
mized by retrieving existing object data and attributes for the
object concerned and performing comparisons as for read
requests. Still further, 1f the request servicing 1s modified by
allowing client requests to be received by the back-up as
well as the primary, the servicing may be further optimized.
For example, 1n the case of read requests, the requested
object may be retrieved from store and its signature com-
puted (Steps 5 and 6) prior to the back-up’s receipt of the
multicast command from the primary (Step 4).

In the above embodiment, the checker store identifier and
the file store 1dentifier were taken to be the same and were
both referred to as the object 1dentifier. However, 1n another
embodiment, the checker operates with a distinct checker
store 1dentifier which 1s an object of the checker, or checker
object. The first time a signature computed as a result of a
client request, or the signature of an object, 1s to be stored
in the checker, the checker creates a checker store 1dentifier
for that hr-object. Subsequently, the checker will accept
requests that specify the checker store identifier (i.e. the
checker object) and signature to be checked. In response to
such a request, the checker will compare the signature
provided with the locally stored signature and reply to the
caller with a status (EQUAL/DIFFER) and if different then

also the locally stored signature.

As previously mentioned, one or more back-ups may be
connected directly to the network and may then receive

client requests directly.

In further embodiments, the file store back-up 2 could be
omitted to provide a lower specification system, as could any
one or more of the checker 4, replication manager 8, logger
10 and failure detector 6. Equally, more than one back-up,
1.e. multiple back-ups, could be provided. It 1s also possible
to provide multiple replicated checkers or loggers. These
clements may be replicated to any desired degree, either
statically or dynamically under the control of the replication
manager. The elements amenable to replication are shown 1n
FIG. 2 with a replica copy 1 dashed lines.

It will be appreciated that although particular embodi-
ments of the invention have been described, many
modifications/additions and/or substitutions may be made
within the spirit and scope of the present invention as
defined 1n the appended claims.

What we claim 1s:

1. A file server system for storing data objects with
respective object 1dentifiers and for servicing requests from
remote client systems specitying the object 1dentifier of the
requested object, the file server system comprising:

a file store configured to hold stored objects with associ-
ated object 1dentifiers, wherein said file store includes
at least a primary copy and a back-up copy;

5

10

15

20

25

30

35

40

45

50

55

60

65

14

a signature generator for computing an object-specific

signature from an object; and

a signature checker comprising a signature store for

holding a previously computer signature for each of the
stored objects and a comparator operable to compare,
on the basis of a specified object 1dentifier, a signature
retrieved from the signature store with a corresponding
signature computed by the signature generator from an
object retrieved from the file store, wherein the primary
copy of the file store, the back-up copy of the file store,
and the signature checker are located at ditferent nodes
of the system.

2. A system according to claim 1, wherein the signature of
cach of the stored objects 1s held 1n the checker together with
a checker store 1dentifier for the signature concerned.

3. A system according to claim 2, wherein the checker
store 1dentifiers are derived from the respective object
identifiers.

4. A system according to claim 2, wherein the object
identifiers are used as the checker store identifiers.

5. A system according to claim 1, the file store and the
checker being mterconnected to transmit and receive signals
from each other through an ordered transport link.

6. A system according to claim 5, wherein the ordered
transport link has at least FIFO order between a transmitting
one of the file store and the signature checker, and at least
one receiving one of the file store and the signature checker.

7. A system according to claim 1 configured to be respon-
sive to proiile information associated with data objects of the
system.

8. A system according to claim 7 operable to determine
whether to perform a signature comparison check 1n respect
of a data object on the basis of the profile 1nformation
assoclated with that object.

9. A system according to claim 7 and having an opera-
tional mode 1n which requests from remote client systems
are analyzed for profile mnformation contained within the
request and the profile information 1s used to decide whether
to perform a signature comparison check with the checker in
respect of the object specified 1n the request.

10. A system according to claim 7, wherein the file store
1s configured to hold profile mformation for the stored
objects and the system 1s operable to analyze requests from
remote client systems 1n respect of profile information and
to use that profile information to decide whether to perform
a comparison check with the checker 1n respect of the object
specified 1 the request, wherein, if 1t 1s decided not to
perform a comparison check on the basis of the profile
information contained within the request, the file store is
scarched for profile information for the object specified in
the request, the profile information held 1n file store for that
object then being used to decide whether to perform a
comparison check with the checker 1n respect of the object
specifled 1n the request.

11. A system according to claim 7 operable to determine
whether to replicate a request from a remote client on the
basis of the profile information associated with the request
concerned.

12. A system according to claim 11 having an asynchro-
nous mode and a synchronous mode of request replication,
the replication mode being selected on the basis of the
proiile information.

13. Asystem according to claim 7, comprising a logger for
maintaining a log of recent system activity in non-volatile
storage, the system having an operational mode in which
requests from remote client systems are analyzed for profile
information and the profile information i1s used to decide

US 6,367,029 Bl

15

whether to effect a log entry 1n the system log 1n respect of
the request concerned.

14. A file according to claim 1, further comprising a
replication manager and a failure detector, and wherein the
file store, signature checker and signature generator are
replicable components, replicable under control of the rep-
lication manager, wheremn replicas of a given replicated
component are distributed over a plurality of system nodes,
the replication manager being configured to allow for nodes
leaving and joining the system by respectively reducing and
increasing the number of replicas of each of the replicable
components affected, and the failure detector being distrib-
uted over the system nodes by having an instance located at
cach system node, the failure detector having an object
register for storing a list of system objects and being
coniigured to monitor for failure of any of the system objects
listed 1n the object register and, on failure, to report such
failure to the replication manager.

15. A file server system for storing data objects with
respective object 1dentifiers and for servicing requests from
remote client systems specitying the object of the requested
object, the file server system comprising:

an 1ntra-server communication link;

a replication manager connected to said communication
link;

a failure detector connected to said communication link;
and

a plurality of replicable components, wherein for the
purpose ol 1improving system reliability and availabil-
ity:

the replicable components are distributed over a plurality
of system nodes;

the replication manager 1s configured to allow for nodes
leaving and joining the system by respectively reducing
and increasing the number of replicas of each of the
replicable components affected; and

the failure detector 1s distributed over the system nodes by
having an instance of the failure detector located at
cach system node, the failure detector having an object
register for storing a list of system objects and being
configured to monitor for failure of any of the system
objects listed 1n the object register and, on failure, to
report such failure to the replication manager.

16. A system according to claim 15, wherein for each
system object for which there 1s an object register entry there
1s stored 1n the object register as a part of that entry a
secondary list of other ones of the system objects that have
an 1nterest 1n the health of that system object, the failure
detector being configured to report failure of that object also
to each of the objects on the secondary list.

17. A system according to claim 15, wherein one of the
replicable components of the system 1s a file store for storing
data objects with respective object 1dentifiers.

18. A system according to claim 17, wherein the replica-
fion manager 1s configured to maintain at any one time at
least two replicas of the file store on respective nodes of the
system.

10

15

20

25

30

35

40

45

50

55

16

19. A system according to claim 17, wherein one of the
replicable components of the system 1s a checker, the
checker having a signature store for holding object-speciiic
signatures computed for each of the objects stored 1n the file
store.

20. A system according to claim 19, wherein the file store
has a signature generator for computing said signatures and
wherein the checker includes a comparator operable to
compare, on the basis of a specified object identifier, a
signature retrieved from the signature store with a corre-
sponding signature computed by the signature generator
from an object retrieved from the file store.

21. A system according to claim 15, wherein one of the
replicable components of the system 1s a logger for main-
taining a log of recent system activity in non-volatile storage
and the replication manager 1s configured to access the log,
when a node 1s rejoining the system.

22. A method of servicing a write request from a remote
client by a file server system, the method comprising the
steps of:

receiving a write request containing an object and an
assoclated object 1dentifier;

computing an object-specific signature from the object;

storing the object 1n a back-up file store together with the
object 1dentifier;

storing the computed object-specific signature 1n a signa-
ture checker file store disposed remotely from the
back-up file store together with the object identifier;
and

storing the object 1n a primary store disposed remotely
from at least one of the back-up {file store and checker
file store after the previous storing steps are complete.

23. A method of servicing a read request from a remote
client by a file server system, the method comprising the
steps of:

receving a read request relating to an object and speci-
fying an object identifier for the requested object;

retrieving the object from a file store on the basis of the
object 1dentifier;

computing an object-specific signature from the retrieved
object;
retrieving a further object-specific signature for the object

from a further file store on the basis of the object
identifier;

comparing the computed signature with the retrieved
signature; and

completing servicing of the read request on the basis of
the comparison result.

	Front Page
	Drawings
	Specification
	Claims

