US006366968B1
a2y United States Patent (10) Patent No.: US 6,366,968 B1
Hunsaker 45) Date of Patent: Apr. 2, 2002
(54) PHYSICAL WRITE PACKETS PROCESSING 5,065,354 A * 11/1991 Jons et al.ccceenen..... 714/5
WHEN POSTED WRITE ERROR QUEUE IS 5,408,644 A * 4/1995 Schneider et al. 714/1
FULL, WITH POSTED WRITE ERROR 5448719 A * 9/1995 Schultz et al. v.ev.e......... 714/5
QUEUE STORING PHYSICAL WRITE 5588125 A * 12/1996 Bennett 710/126
REQUESTS WHEN POSTED WRITE PACKET 5615334 A * 3/1997 Wang et al.ooouee..... 714/48
FAILS 6,148,348 A * 11/2000 Garnett et al. 710/14
(75) Inventor: Mikﬂl C. Hunsaker, El DOI’&dO HIHS, 6?2235231 Bl * 4/2001 Mankudec........nn. 710/38
CA (US) 6,247,102 B1 * 6/2001 Chin et al. 711/150
6,256,685 Bl * 7/2001 Loftcoeeiiniiiinininnn.n. 710/52
(73) Assignee: Intel Corporation, Santa Clara, CA
(US) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this
%atsel(ljt 1;’ SZ]EE;HS e% Zra a;i]usted under 35 Primary Examiner—I'homas Lee
o Y r> Assistant Examiner—Tanh Nguyen
(21) Appl. No.: 09/105,500 (74) Attorney, Agent, or Firm—3Blakely, Sokoloff, Taylor &
! Zaiman LLP
(22) Filed: Jun. 26, 1998
(51) Int.CL7 ..o GO6F 13/00; GO6F 13/38; (57) ABSTRACT
(52) US.Cl Gt 11/00; ;}10(;1;211%3”/2(30?10%086 A system for handling write requests 1s described. The
T 710/39710/53 710/57.’710 /112’. 714 /4é system uses two queues for storing posted write requests.
(58) Field of Search 710/22, 29, 30, When a posted write error results, software handles the
710/38, 39, 52, 53-57, 112; 709/212, 236, posted write error using mformation stored 1n a first queue
238; 714/48, 49, 54, 798, 799 of the two queues. The write request producing the posted
(56) References Cited write error 15 cleared from the second queue which continues

U.S. PATENT DOCUMENTS

to handle physical packets containing write requests.

41888691 A * 12/1989 George et al. .uoueeee...... 714/15 16 Claims, 4 Drawing Sheets
Systern 136
Memory |/
PC1 Bus
Fifo data (31:0) A
100
Y [120 Y/ 140 /
Physical \ |Physical Responsc Queue Posted Write Error
Response Slot 1 Slot 1 e
Q;?; ©) [Physical Response Queue Postcd Wnite Error
Slot 2 Slot 2
Na]22 N 740 General Receive _\
Fifo] 04
Physical Response DMA
~1decrement decrement - 734
152 2
ent 139
146 \ v /126 A
Physical 130 physical count >
Posted Write| | p . Packet 105
Count TOPPIS : | Decoder -
software posted ounter Counter |« Increment
write error — AA
queue read 7 . 7 ack
156 | Increment S code
. & ™
- posted write count | B l12s
=
150 -

US 6,366,968 B1

Sheet 1 of 4

Apr. 2, 2002

U.S. Patent

001

SO 76¢ 1
901 5 0ST

scl m. JUno2 UM pajsod
-

9POJ} 3 JUSUISIOU] 9T

o = . peal ananb

J0JIQ ILIm
19p023(J ST IoUl Iaunoy) 121UN0" pa1sod a1em1jos
_mvmm\. 190 d mmﬂommom SILIA\ POISOJ
unod [eorskyd ¢ [B21SAYd
9Cl or [

ol

SET _
5 bk
2 ~ JUQUIDIOOP JUIUIAIDAP

VA 2suodsay [eorsAyd
O — -
IATIDIY [BIAUIN) CP I~ cCl ~N
¢ 10§ ¢ 101§ ZIT

JOJIF] IILIAN PSSO andon() asuodsay [BoIsAyJ o0

21 T 101S [10]S asuodsay
JOLIF QLA POI1SO] anang) asuodsay Euﬁbm_ LRITNIB|

ovi 0cl
(0°T¢€) erep OJ1]
st [Od

AJTOUIRIA]
UIDISAS

US 6,366,968 B1

Sheet 2 of 4

Apr. 2, 2002

U.S. Patent

7 AN
ASNG DDV é (7 = JUnod) nyg 1SoNDbIY MO0 I0 peady £
ONIANAL DV E (CT>3umod) N1 JON | 3S9NDY 4207 10 pedy | | .
ASNg DV E (T =1unod) [ng }SONDIY OJLIM 17
ONIANAd MOV (T =1umod) [y (¢ >1unod) [n, 10N 707
E 2> Junod) [[n4 0N (T > 3unod) [ng 10N 1Sonbay ALIM 88¢

r 1] dnang)
_ PO PV onan() 1011 LM P33IsoJ || dsuodsay reoisAyg adA 1 195 1e01sAyg
144 9LC cLC §0¢

U.S. Patent Apr. 2, 2002 Sheet 3 of 4 US 6,366,968 B1

Receive Physical
write request packet
from bus

3A

Figure

304

12

Do not accept

308 here space physical write
in the physical NoO request END
feii?;ie Transmit ack_busy
d ' packet
Yes
316

Store physical write

request packet in
General Receive FIFO

320

Increment physical
response counter

o ' 28
324 Accept physical
Are write as non-posted
posted writes N¢ BEGIN (B)
enabled? Transmit
ack_pending packet
332

Is the posted
write error
queue full?

Accept physical
336 write as pOSted

In&.e?eg POStted Transmit BEGIN (B)
rite Lounter ack_complete

packet

U.S. Patent Apr. 2, 2002 Sheet 4 of 4 US 6,366,968 B1

BEGIN (B)

544 Physical write
requests packet

arrives at top of

(General Receive FIFO _F igure 3B

Store physical write
request packet header
in physical response
queue and, if room,
the posted write error
queue

348

352

Write packet data
t0 memory

o8

356

Was the Yes

write posted?

Did the write
have an error?

370

Y 36 364
e Set the error bit

in the posted
Yeg| write error
queue, Transmit

increment response_
posted write ||complete packet
error queue

pointer

368

Did
the write
have an
error?

Transmit

response_
error packet

366
372

374 Decrement_both
the physical
response counter

Decrement only
the physical

Decrement only [|Decrement only
the physical the physical

response response response

counter counter counter

' ‘ R

END (B) END (B) END (B) END (B)

and the posted
write counter

US 6,366,968 Bl

1

PHYSICAL WRITE PACKETS PROCESSING
WHEN POSTED WRITE ERROR QUEUE IS
FULL, WITH POSTED WRITE ERROR
QUEUE STORING PHYSICAL WRITE
REQUESTS WHEN POSTED WRITE PACKET
FAILS

BACKGROUND OF THE INVENTION

Field of the Invention

The 1nvention applies to the field of imterface circuits
connecting memory systems to a bus. The invention 1is
particularly applicable to the field of handling pending
memory request signals from a bus.

Background Information

A general purpose computer system typically includes a
processor, memory, and one or more peripheral devices
coupled together by one or more buses. These buses may use
asynchronous transmission, 1sochronous transmission or a
combination of the two. Asynchronous transmission places
an emphasis on guaranteed delivery of the data. In asyn-
chronous transmission, the recipient of the data, typically a
processor acknowledges when asynchronous data has
arrived and has been properly written to memory. Isochro-
nous transmission places an emphasis on guaranteed timing
of the data. Isochronous data typically has a guaranteed
latency 1n that a packet of data 1s transferred at predeter-
mined time 1ntervals In 1sochronous transmission, when data
1s lost, the data 1s often not recoverable. Isochronous trans-
mission 1s often used 1n real time communications such as
video communication systems.

In order to speed up reading and writing to memory,
asynchronous transmission includes a protocol defining a
subcategory of data called “physical packets.” Typically, a
software layer determines how most data packets are
handled. However, the software layer 1s slow. Physical
packets bypass the software layer, allowing access to
memory via hardware which 1s faster than the software.

In order to handle physical packets, the device transmit-
ting the data and the device receiving the data must be
compatible. Compatible devices usually include hardware
and protocols that allow direct reads and writes to specific
memory addresses without software intervention. The hard-
ware also generates acknowledge signals to acknowledge
receipt of the physical write packet.

Certain speciiications, mncluding the IEEE 1394-OHCI
(Open Hosts Controller Interface) specify two methods of
handling a physical packet, containing a write request. In a
first method, when a write request 1s received, the receiving
device outputs an acknowledgment pending (“ACK__
PENDING”) packet or signal indicating that the write
request has been received. When processing of the received
write request 1s complete and the data i1s written to an
appropriate section of memory, a response packet, such as an

ACK__COMPLETE packet 1s transmitted.

The IEEE-1394-OHCI specification also defines a second
method of handling write requests as a “posted write.” When
handling posted writes, the hardware of the receiving device
transmits an ACK_COMPLETE packet upon receipt of a
write request 1 a physical packet. The received write
request 1s stored 1n a builer in the hardware of the receiving
device to be executed at a later time. If, at the later time, the
data 1s properly written to memory, no further action needs
to be taken because the ACK_COMPLETE packet which

was transmitted indicated that the information was already

10

15

20

25

30

35

40

45

50

55

60

65

2

properly written to memory. However, 1f the receiving
device 1s unable to execute the write request, an error occurs.
The software of the receiving device handles the error. The
software may re-route the write request. Typically, software
in the recewving device transmits an error packet to the
originator of the write request indicating that the ACK
COMPLETE packet 1s invalid and that the data has not been
properly written to memory. However, until software clears
the error, the buffer maintains the information corresponding
to the write request, preventing further receiving of write
requests. Because software can be slow, an error in a posted
write can significantly slow down operation of the system.

Thus, an improved method of handling physical packets
containing write requests 1s needed.

SUMMARY OF THE INVENTION

A circuit for handling memory access request 1s
described. The circuit includes a receive memory device to
temporarily store physical packets, including memory
access requests from a bus. The physical packets mclude
write requests. A posted write error queue 1s coupled to the
receive memory device. The posted write error queue stores
physical write requests for processing when a physical write
request that was handled as a posted write request fails. A
physical response queue also coupled to the memory device
continues to accept non-posted write packets when the
posted write error queue 1s full.

BRIEF DESCRIPITION OF THE DRAWINGS

FIG. 1 1illustrates one embodiment of a physical packet
handling circuat.

FIG. 2 1s a table summarizing the acknowledgment codes
output by the circuit of FIG. 1.

FIGS. 3A and 3B 1llustrates the operation of the circuit of
FIG. 1.

DETAILED DESCRIPTION OF THE
INVENTION

In the following description, a system and method will be
described for handling physical packets transmitted from a
bus to a physical packet handling circuit. In the description,
numerous specific details will be given including circuits,
flow diagrams, etc., 1n order to provide a thorough under-
standing of the present mvention. In other mstances, well-
known structures and techniques have not been shown in
detail because to do so would unnecessarily obscure the
present 1nvention. The specific arrangements and methods
described here are 1llustrative of the principles of the present
invention. Numerous modifications in form and detail may
be made by those of ordinary skill in the art without
departing from the scope of the present invention.

One embodiment of a physical packet handling circuit
100 1s shown 1n FIG. 1. The physical packet handling circuit
includes memory devices, such as a receive First-In, First-
Out memory (FIFO) 104 which receives physical packets
from a 1394 bus 106. A packet decoder 108, including logic
circuitry coupled to receive FIFO 104, determines whether
the data received from bus 108 1s a physical packet type.
“Physical packet types” may include write requests, read
requests, or lock requests. Write requests write data to a
specific memory location, read requests read data from a
specific memory location and lock requests perform a
compare-swap to a specific memory location. If the data is
a physical packet type, packet decoder 108 determines the
state of a physical response queue 112 and a posted write
error queue 116 to determine how to handle the physical
packet type.

US 6,366,968 Bl

3

Both physical response queue 112 and posted write error
queue 116 are buffers which store iformation until the
information 1s ready to be used. For this illustrated
embodiment, physical response queue 112 and posted write
error queue 116 are FIFO memory devices, although other
memory types may be used. Herein, physical response queue
112 includes a first physical response queue slot 120 and a
second physical response queue slot 122. Each queue slot 1s
configured to store either a physical packet or the header of
a physical packet. Thus, as illustrated, the physical response
queue 112 can receive a physical packet in the first physical
response queue slot 120, while a prior physical packet is
processed 1n a second physical response queue slot 122.

When packet decoder 108 determines that a read or lock
request physical packet has been received and the physical
response queue 112 1s not full 1t places the packet 1n the
receive FIFO. The count of physical response counter 126
indicates the number of requests stored 1n the physical
response queue, thus, concurrent with the transfer of data
from the receive FIFO 104 to the physical response queue
112, the packet decoder 108 transmits an increment signal
124 to a physical response counter 126. Packet decoder 108

also outputs an acknowledgment pending (“ACK__
PENDING”) packet on acknowledgment code line 128.

When packet decoder 108 determines that a received read
or lock physical packet cannot be accepted because physical
response queue 112 1s full and unable to handle additional
read or lock requests, packet decoder 108 transmits an
acknowledgment busy (“ACK__BUSY”) on code line 128.
In the 1llustrated embodiment, packet decoder 108 deter-
mines whether physical response queue 112 1s full by
comparing the physical count signal from physical response
counter 126 on line 130 to the maximum size of physical
response queue 112. When the count 1n the physical count
signal and the number of slots 1n the physical response queue
arc equal, physical response queue 112 1s full. In the
illustrated embodiment, the maximum number of physical
packets that can be stored 1n the physical response queue 1s
two.

When a physical request packet arrives at the top of the
oeneral receive FIFO, the packet header i1s placed in the
physical response queue. When the physical request 1s a read
or lock request, a physical response direct memory access
(DMA) 134 executes the request. After the read or lock
request 1s executed, the information stored in physical
response queue 112 corresponding to the read or locked data
1s deleted from the physical response queue and the DMA
fransmits a decrement signal along decrement line 138 to
decrement physical response counter 126.

When packet decoder 108 determines that a received
physical packet 1s a write request, physical packet handling
circuit 100 determines whether posted writes are enabled.
When posted writes are not enabled, and physical response
queue 112 1s not full, the incoming write requests are stored
in received FIFO 104 and the packet decoder 108 outputs an
ACK_PENDING packet. When the write requests arrives at
the top of the receive FIFO, the packet header 1s stored 1n the
physical response queue. After DMA 134 executes the write
request and writes the data to the system memory 136, the
physical response DMA engine transmits a response packet.
The DMA removes the data from write request queue 112
and decrements physical response counter 126.

Some specifications, including the IEEE 1394 OHCI

specification allow write requests to be handled as posted
writes. When posted writes are allowed, posted write error
queue 116 1s used in parallel with physical response queue

10

15

20

25

30

35

40

45

50

55

60

65

4

112. As receive FIFO 104 receives a write request, packet
decoder 108 determines whether physical response queue
112 and posted write error queue 116 are full. Packet
decoder 108 determines whether posted write error queue
116 1s full by comparing a count from a posted write counter
146 with the storage capacity of the posted write error
queue. In the embodiment 1llustrated 1n FIG. 1, posted write
error queue 116 has a first posted write error queue slot 140
and a second posted write error queue slot 142, for a
maximum capacity of two, although alternative embodi-
ments may include only one error queue slot or three or more
additional posted write error queue slots to handle larger
numbers of posted write errors.

When the posted write error queue 1s not full, the write
request 1s handled as a posted write and receive FIFO 104
forwards the write request to both physical response queue
112 and posted write error queue 116. Both queues store the
packet header which mcludes data needed for responding to
the posted write, which typically includes a source identi-
fication to 1dentify the source of the write request, an address
indicating where 1n memory, the data is to be stored.

When a write request 1s stored m receive FIFO 104,
packet decoder 108 outputs an ACK-COMPLETE packet on
code line 128. When the packet arrives at the top of the
receive FIFO, the packet header 1s stored 1n the physical
response queue and the posted write error queue. The write
requests remain in physical response queue 112 and posted
write error queue 116 until physical response DMA 134
writes the data successtully to system memory 136. When
the data 1s successfully written to system memory 136, the
write request 1s removed from physical response queue 112
and physical response DMA 134 transmits a decrement
signal to physical response counter 126. The data 1s also
removed from posted write error queue 116 and physical
response DMA 134 decrements posted write counter 146 by
transmitting a counter decrement signal along decrement
line 152 through gate 154. No further acknowledgment
codes regarding the write packet need to be transmitted
because the ACK__COMPLETE signal has alrecady been

transmitted indicating successful writing to memory.

When physical response DMA 134 attempts to write to
system memory 136 and the write 1s unsuccesstul, a posted
write error occurs. Posted write errors are undesirable and
require that the ACK__COMPLETE signal already output
from code line 128 be corrected. Such correction 1s handled
by software. However, software handling of posted write
errors takes significant amounts of time. In systems lacking
an adequate physical response queue, handling of write
requests may be suspended until the posted write error 1s
corrected. However, 1n the illustrated embodiment, physical
response DMA 134 clears the write request which produced
the posted write errors from the physical response queue
before software has completed handling of the posted write
error. The cleared data allows new physical packets to flow
into general receive FIFO and into physical response queue
112. Posted write error queue 116 retains the header data
corresponding to the posted write error until software appro-
priately handles the error. After software has properly
handled the write error, the corresponding write request may
be removed from the posted write error queue and the
software transmits a decrement counter signal along soft-
ware posted write error queue read line 156 through gate
154, decrementing posted write counter 126.

As software handles errors in posted write error queue
116, physical response queue 112 continues to receive write
requests as posted writes until posted write error queue 116
1s full. In the 1llustrated embodiment, this occurs when there

US 6,366,968 Bl

S

are two errors 1n posted write error queue 116. When the
posted write error queue 1s full, the physical response queue
may still receive write requests as a non-posted write
requests. When the physical response queue receives a
non-posted write request, packet decoder 108 transmits an
ACK_PENDING packet along code line 128. After execut-
ing the non-posted write request, packet decoder 108 trans-
mits a response complete packet. When software clears at
least one slot in the posted write error queue, new write
requests will be handled as posted writes.

FIG. 2 1s a table that summarizes the acknowledgment
codes output by packet decoder 108. The acknowledgment
codes output 204 by the packet decoder 108 depends on
physical packet type 208, the state of physical response
queue 212, and the state of posted write error queue 216.
When the physical packet type 1s a read or lock request and
the physical response queue 1s not full, an ACK__PENDING
packet 1s output, as illustrated 1n row 220. When the physical
response queue 1S full, the read or lock request cannot be
received and an ACK__ BUSY packet 1s output, as illustrated
in row 224.

Physical packets containing write requests may be
handled as either posted writes or non-posted writes. When
both the physical response queue and the posted write error
queue are not full, incoming write requests may be treated
as a posted write. In a posted write, an ACK__ COMPLETE
packet 1s output at the time at which the write request 1s
received, as 1llustrated in row 228. When only the posted
write error queue 1s full but the physical response has space,
the write request will be handled as a non-posted write
request and an ACK__ PENDING packet will be transmitted,
as 1llustrated 1n row 232. Later, a response packet 1s output
after the write requests 1s executed and data 1s written to
memory. When the physical response queue 1s full, as
illustrated 1 row 236, an ACK_BUSY signal i1s output
because the write request cannot be handled until a slot 1s
available 1n the physical response queue.

FIG. 3A 1illustrates the operations executed by packet
decoder 108 when 1n the embodiment of the invention
shown 1n FIG. 1 handles a physical write request. In block
304, the physical packet handling circuit receives a physical
packet containing a write requests. When 1n decision block
308, an 1ndicator circuit indicates that the physical response
queue does not have space, the physical packet handling
circuit does not accept the physical write request and outputs
a signal indicating that the circuit 1s busy by transmitting an
ACK_ BUSY packet mm block 312. In the embodiment
illustrated 1 FIG. 1, the indicator circuit i1s physical
response counter 126. When the indicator circuit indicates
that there 1s space 1n the physical response queue, the write
request 1s stored in the general receive FIFO, 1n block 316.
The accepted physical write request 1s recorded in the
indicator circuit (e.g., a counter) in block 320.

In decision block 324, the physical packet handling circuit
determines whether communicating devices are compatible
and whether the protocol used between the two communi-
cating devices handles posted writes. In one embodiment,
whether posted writes are handled, 1s determined by the state
of a posted write enable signal. When the enable signal
indicates that posted writes are not handled, incoming write
requests will be accepted as a non-posted write request.
Thus, upon receipt of a write requests, an ACK__ PENDING
signal will be output 1n block 328 acknowledging receipt of
the write request.

When posted writes are enabled 1n decision block 324, a
posted write indicator circuit corresponding to the posted

10

15

20

25

30

35

40

45

50

55

60

65

6

write error queue, determines 1n decision block 332 whether
the posted write error queue can handle the posted write. In
the embodiment shown 1n FIG. 1, the posted write indicator
circuit corresponds to posted write counter 146. When the
posted write 1indicator circuit indicates that the posted write
error queue 1s full, the physical packet handling circuit
handles the write request as a non-posted write request
following the procedures outlined 1n block 328. When the
posted write 1indicator circuit indicates that the posted write
error queue has open spaces or slots, the incoming write
request 1s stored 1n the posted write error queue 1n block 348,
and the posted write queue indicator circuit 1s updated. In the
embodiment illustrated 1n FIG. 1, the indicator circuits are

updated by respectively incrementing posted write counter

146 as described in block 336. In block 340, the packet
decoder accepts the physical write as a posted write and

outputs an ACK__COMPLETE packet.

FIG. 3B illustrates the operation executed by the physical
DMA when the packet decoder 108 of the invention shown
in FIG. 1 accepts a physical write request. In block 344 the
physical write request packet eventually arrives at the top of
the general receive FIFO 1n block 344. In block 348 the
header corresponding to the physical write request packet, or
a physical write request packet header 1s stored i the
physical response queue 1n block 348. If the posted write
error queue 1s not full, the header 1s also stored 1n the posted
write error queue. In block 352 the physical DMA attempts
to execute the physical write request packet by writing
packet data to a system memory.

In decision 356, the physical DMA determines whether
the write request packet was handled as a posted or non-
posted write. If in decision block 356, the write request
packet was handled as a non-posted write request, the
physical DMA then determines 1n block 358 whether the
write request performed 1n block 352 resulted 1 an error.
When the write request performed 1n block 352 does not
result 1n an error and the write request was handled as a
non-posted write request, the physical DMA outputs a
RESPONSE__COMPLETE packet 1n block 360 and decre-

ments the physical response counter 1n block 362.

When 1n decision block 358, 1t 1s determined that the
non-posted write request resulted 1n an error, the physical
DMA transmits a RESPONSE__ERROR packet 1 block
364. The RESPONSE__ERROR packet indicates that the
attempt to write the non-posted write to memory was
unsuccessiul. In block 366, the physical DMA decrements
the physical response counter.

When 1n decision block 356, it 1s determined that the
physical request processed 1n block 352 was a posted write,
the physical DMA determines m block 368 whether the
posted write was successiully written to memory or whether
the posted write resulted 1n an error. When 1n decision block
368, 1t 1s determined that the posted write resulted 1n an
error, an error bit 1s set 1n the posted write error queue and
a pointer indicating the location of the data which the
physical DMA was unable to write to memory 1s 1ncre-
mented 1 block 370. The system also decrements the
physical response counter 1n block 372.

When 1t 1s determined 1n decision block 368 that the
posted write does not produce an error, and thus, the posted
write was successiully written to memory 1n block 352, the
physical DMA decrements both the physical response
counter and the posted write counter in block 374.

Although this mvention has been shown 1n relation to a
particular embodiment, 1t should not be considered to be so
limited. Rather, the invention 1s limited only by the scope of
the appended claims.

US 6,366,968 Bl

7

What 1s claimed 1s:

1. A circuit for handling memory access requests com-

prising;:

a recerve memory device to temporarily store physical
packets of memory access requests from a bus, the
physical packets including physical write request pack-
cls;

a posted write error queue coupled to the recerve memory
device, the posted write error queue to store physical
write requests for processing when a physical write
request packet that was handled as a posted write
request fails; and

a physical response queue coupled to the receive memory
device, the physical response queue accepts physical
write packets even when the posted write error queue 1s
full.

2. The circuit of claim 1 wherein an acknowledgment
packet 1s transmitted when the physical response queue
accepts a physical write packet.

3. The circuit of claim 1 wherein the posted write error
queue 1s capable of storing at least two posted write errors.

4. The circuit of claim 1 wherein the physical response
queue 1s capable of storing at least two physical write
request packets.

5. The circuit of claim 1 wherein an acknowledgment
circuit outputs a busy packet upon receipt of a memory
access request while the physical response queue 1s full.

6. The circuit of claim 1 further comprising a posted write
counter which 1s incremented when a physical write request
1s rece1ved and the posted write counter 1s not at a maximum
value.

7. The circuit of claim 6 wherein the posted write counter
1s decremented when a posted write 1s successtully written
fo a destination memory.

8. The circuit of claim 1 further comprising a physical
response counter which 1s incremented when a physical
write request packet arrives.

9. The circuit of claim 8 wherein the physical response
counter 1s decremented when an attempt to write a posted
write to destination memory 1s made, regardless of whether
the attempt to write to destination memory 1s successiul.

10. The circuit of claim 1 wherein the posted write error
queue 1s capable of storing only one posted write error.

5

10

15

20

25

30

35

40

3

11. The circuit of claim 1 wherein the physical response
queue 1s capable of storing only one physical write request
packet.

12. A method of accepting physical write requests com-
Prising;:

determining when a posted write error queue 1s full;

processing a physical write request as a posted write when
the posted write error queue 1s not full, and,

processing a physical write request as a non-posted write
request when the posted write error queue 1s full.
13. The method of claim 12 further comprising the steps

of:

outputting an ACK__ COMPLETE packet upon receipt of
a physical write request when the posted write error
queue 1s not full; and

outputting an ACK__ PENDING packet upon receipt of a
physical write request when the posted write error
queue 1s full.

14. The method of claim 12 further comprising the steps
of:

transferring the physical write request to a physical
response queue; and

transferring a copy of the physical write request to a
posted write error queue when the posted write error
queue 1s not full.

15. The method of claim 14 further comprising the steps

of:

attempting to execute the physical write request by writ-
ing data to system memory;

deleting the physical write request from the physical
response queue after attempting to execute the physical
write request; and,

processing via software errors which may occur 1n the
attempt to write using the copy of the physical write
request stored 1n the posted write error queue.
16. The method of claim 12 further comprising the step of
updating a counter corresponding to a physical response
queue when a physical write request 1s received.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,366,968 B1 Page 1 of 1
DATED . April 2, 2002
INVENTOR(S) : Hunsaker

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 2,
Line 34, delete “illustrates”, msert -- 1llustrate --.

Signed and Sealed this

Twenty-fifth Day of February, 2003

JAMES E. ROGAN
Direcror of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

