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INTELLECTUAL STRUCTURE FOR SINGLE-
POINT VISUAL REPRESENTATION OF N-
DIMENSIONAL POINTS USING BROKEN-

LINE PARALLEL COORDINATES

HISTORY

The present application 1s a continuation-in-part of
allowed U.S. Pat. Ser. No. 5,917,500, filed on Jan. 5, 1998,
and 1ssuing on Jun. 29, 1999. The subject matter of the U.S.

Patent 1s 1incorporated herein by reference.

BACKGROUND

1. The Field of the Invention

This invention relates generally to the organization and
understanding of data generated 1n multi-dimensional space.
More speciiically, a data system of multi-dimensional data
points 1s visualized 1n a parallel coordinate system. An area
of interest 1s then identified, and the n point representations
of conventional parallel coordinates are brought back into a
single point representation that is the single point vector
resultant of n dimensional spaces viewable 1n familiar three
dimensional display space.

2. The State of the Art

Problem solving in multi-dimensional (or multi-variate)
space 1s an 1ncreasingly important field of research. This 1s
particularly true because data sets (systems) are becoming
increasingly complex and large. The number of systems that
require analysis 1s growing faster than the existing systems
can be analyzed. Furthermore, the existing tools are proving
to be madequate for the large systems.

Statistical methods are the classical means used to derive
meaning from data defined systems. Such methods typically
apply their analyses to whole regions of data. For example,
conventional software analysis tools combine statistical
analysis methods 1n conjunction with conventional visual-
1zation techniques. A second class of methods are known as
data mining. A typical product employing such techniques is
SGI’s Mine Set product line.

Visualization of data can at least enable 1dentification of
a domain of relevance to which statistical analyses should be
directed. These visualization techniques include the method
developed by A. Inselberg, Parallel Coordinates, A Tool for
Visualizing Multi-variate Relations. A. Klinger, in Human
Machine Interactive Systems which exemplifies the use of
one approach to visualization of multi-dimensional spaces.
Another 1s the work of nDimensional Visualization (the nDV
method) which is explained in the parent case. These visu-
alization techniques may reveal other relationships that
conventional statistical tools might miss. The visualizations
may also identify possible rotations and rejuxtapositions of
coordinates that can be relevant to developing new under-
standings of relationships. A helpful summary of the state of
the art in visualization can be found 1n the recently published

book Readings in Information Visualization: Using Vision (o
Think, by S. Card, J. Mackinlay and B. Shneiderman.

It 1s also known 1n the art to map from parallel or
concurrent multi-dimensional spaces back into classical
orthogonal three dimensional space in order to display the
ciiect of the selected three dimensions upon each other.
However, those using this method do not teach, suggest, or
otherwise contemplate displaying data in anything other
than classical orthogonal three dimensional (or two
dimensional) relationships.

Insight to data-defined relationships 1s provided by nDi-
mensional Visualizations’s technique (the nDV method) for
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2

viewing data within a parallel coordinate system. This
unique directrix-based-geometry maps classical familiar
geometric shapes 1n orthogonal space 1nto the corresponding
shapes 1n parallel coordinates. The nDV method provides
the basic understanding of what to look for while examining
data models 1n their parallel coordinate data spaces. These
new understandings of the geometry of parallel coordinates
reveal possible curve-fitable waveforms that can now be
more readily recognized, but which have not been previ-
ously considered for curve fittings because they could not be
seen 1n classical parallel coordinate mapping.

Classical geometries that are mapped using the original
ogeneratrix mapping of the nDV method include straight
lines, mtersecting straight lines, circles, squares, polygons,
cylinders, cones, spheres, cubes, and polyhedra. These clas-
sic shapes are mapped from familiar two dimensional and
three dimensional shapes into parallel coordinate models
using line-generatrices. Line-generatrices are important
because these are the shapes typically encountered 1n data-
defined space models. Knowledge about the meanings of the
line structures encountered in parallel coordinate data
defined spaces 1s vital when synthesizing the cumulative
cifect or meaning of those structures.

Most prominent of these new waveforms are those gen-
erated as products of sin/cos functions. For example, Fourier
analyses typically look only for the sums of sin/cos func-
tions. Such sin/cos product functions can be decomposed by
classic trigonometric 1dentities 1nto the sum and difference
frequencies represented by these product functions. Knowl-
edge of the meaning of sum and difference frequencies
allows usage of these trigonometric 1dentities to reveal the
spherical relationships between those coordinates that could
not be otherwise recognized.

It was a concept of the parent case that animated data
space models using the nDV method are the basis for being
able to see, recognize for their significance, and then use
structures and relationships within the data. What 1s now
needed 1s a new method of deriving more information about,
or 1dentifying new relationships within, the data space
models created using the nDV method.

It would be an advantage over the prior art to be able to
select any number of coordinates that are observed 1n the
parallel coordinates generated by using the nDV method,
and map them back into three dimensional orthogonal (but
not necessarily 90 degree orthogonal) space.

It would be another advantage to apply curve-fitable
waveforms to these transformed coordinates to thereby
identify portions of the data that 1s mapped i1n parallel
coordinate space which correspond to recognizable wave-
forms.

OBIJECTS AND SUMMARY OF THE
INVENTION

It 1s an object of the present invention to provide a method
for transforming multi-variate data shown in a parallel
coordinate system to Single-point representations of

n-dimensional points using Broken-line Parallel coordinates
(or SBP space).

It 1s another object to transform multi-variate data shown
in SBP space to a parallel coordinate system.

It 1s another object to facilitate recognition of structure,
patterns and trends within data plotted in parallel coordinate
space or SBP space.

It 1s another object to facilitate 1dentification of structures
or relationships generated along, across and among the
coordinates of multi-dimensional data.
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It 1s another object to facilitate quantification of these
relationships.

It 1s another object to facilitate understanding of how
these structures are descriptive of relationships among or
between the variables within a system.

It 1s another object to facilitate learning the behavior of a
system through observation of the data in SBP space.

It 1s another object to facilitate the understanding of
multi-variate data from observation 1n SBP space such that
further experiments using the system can be implemented to
thereby obtain more usetul data.

It 1s another object to facilitate the understanding of
multi-variate data from observation of the data 1n SBP space
such that further observations of other portions of the
multi-variate data can be selected based on a previous
observation.

The presently preferred embodiment of the present inven-
fion 1s realized n a method for utilizing an intellectual
structure for visualizing a system of multi-variate data points
in a parallel coordinate system, identifying an area of
interest within the system, and then transforming a selected
portion of the system for visualization 1n single-point rep-
resentations of n-dimensional points using broken-line par-
allel coordinates.

In a first aspect of the mvention, the n point representa-
fions of conventional parallel coordinates are brought back
into a single point representation that 1s the single point
vector resultant of n dimensional spaces viewable 1n familiar
three dimensional display space.

In a second aspect of the invention, coordinates are
ogrouped 1n pairs, and the angle of inclination of the planes
between the coordinate pairs 1n the presently preferred
embodiment 1s chosen to be 180/n degrees, thereby resulting
in evenly distributed planes.

These and other objects, features, advantages and alter-
native aspects of the present invention will become apparent
to those skilled in the art from a consideration of the
following detailed description taken in combination with the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a graphical illustration 1n two dimensions that
show a system which has parallel axes, where a second axis
1s positioned parallel to a first axis, but at a distance between
them that 1s equal to the magnitude of the each point x1 from
the X axis.

FIG. 2 1s an 1llustration of the graph in FIG. 1 as seen from
above, where the x and y axes are still parallel, and the y axis
1s broken 1nto segments. In this figure, the graphing of six
values (x1,y1; x2,y2; x3,y3; x4,y4; x5,y5; x6,y6) is implied.

FIG. 3 1s a graphical illustration of the plane of the second
pair of axes (u,v) which is rotated at a 45 degree angle with

respect to the x-y plane, while keeping the u-v axis pair
parallel to the x-y axis.

FIG. 4 1s a graphical perspective illustration of SBP space
which 1s used to display independent locations of four
dimensions.

FIG. 5 1s a graphical 1llustration of 3D SBP space showing
the first three coordinates 1 90 degree orthogonal
relationship, with the next (n-3) coordinates shown in the
SBP structure.

FIG. 6 1s a classical view of two 1ntersecting straight lines
in three orthogonal coordinate space, and a plane defined by
the intersecting lines.
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FIG. 7 1s a classical view of the same two intersecting
lines of FIG. 6, but now mapped to parallel coordinates.

FIG. 8 1s a classical view of 1n three orthogonal coordi-
nates of a cylinder approximated by a helix of pitch p.

FIG. 9 1s a classical view of the helix of FIG. 8, but now
mapped to parallel coordinates.

FIG. 10 1s a graphical 1llustration showing a cube 1n three
dimensional orthogonal coordinates, with red and blue lines
defining one side of the cube, and green and yellow lines
defining another side.

FIG. 11 1s a mapping of the red and blue lines 1n parallel
coordinates.

FIG. 12 1s a mapping of the green and yellow lines 1n
parallel coordinates.

FIG. 13 1s a graphical illustration showing a hexagon
defined by four straight lines forming a plane.

FIG. 14 1s a graphical 1llustration of a polyhedron.

FIG. 15 1s a graphical 1llustration of a polyhedron which
1s defined as a function of a corner of a cube.

FIG. 16 1s a graphical 1llustration of a polyhedron which
1s now mapped to parallel coordinates.

FIG. 17 1s a graphical 1illustration of a four dimensional
cube shown 1n SBP space.

DETAILED DESCRIPTION OF THE
INVENTION

Reference will now be made to the drawings 1n which the
various elements of the present mnvention will be given
designations and 1n which the 1nvention will be discussed so
as to enable one skilled in the art to make and use the
invention. It 1s to be understood that the following descrip-
tion 1s only exemplary of the principles of the present
invention, and should not be viewed as narrowing the claims
which follow.

The present invention has demonstrated that there are
cognifive 1nsights to be gained by reverse mapping data
points displayed 1 a parallel coordinate system back into
orthogonal spaces. Specifically, reverse mapping back into
orthogonal space makes 1t possible to see multi-dimensional
structures wherein a single point represents the last of the n
dimensional vectors, rather than the n points generated in
parallel coordinate representations.

The present invention 1s designed to generate Single-point
representations of n-dimensional points using Broken-line
Parallel coordinates to generate three dimensional surfaces
(also referred to as the SBP technique). However, before
delving into this SBP technique, 1t 1s useful to examine the
overall process, beginning with a set of multi-variate data.

Consider data space that 1s defined by multi-variate data
representing any kind of collective activity. The activity 1s to
be referred to hereinafter as a system. Desirably, the behav-
1or of 1nterest for that system 1s characterized by one or more
sets of data that has been collected 1n one or more experi-
ments or observations of the system. These sets of data are
typically organized, or are organizable, 1n spreadsheet for-
mat. In other words, the columns of a spreadsheet are
considered the dimensions or coordinates, and the rows are
considered the instances or sequentially indexed points or
cach coordinate. The values 1n each of the spreadsheet cells
are the values of each indexed instance (row) or each
coordinate (column). Furthermore, separate spreadsheets
can be considered to be different but correlated sets of data
space models.

The parent application, of which this application 1s a
continuation thereof, describes wvisualization tools which
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build a digital model of such systems that can be viewed on
a computer display, then animated and manipulated to
thereby visually reveal relationships that might be discern-
ible 1n that data space. The tools provide a geometrical
understanding of the many kinds of waveforms that can
appear 1n such data spaces. The present invention is then an
extension of the first visualization tools. The present inven-
fion brings the n point representations of conventional
parallel coordinates back into a single point representation
that 1s the single point vector resultant of n dimensional
spaces that are viewable 1n familiar three dimensional dis-
play space, as will be shown.

One of the mitial purposes of developing the SBP tech-
nique was to develop a method for visualizing a single point
in conventional three dimensional display space that was
cumulatively and uniquely representative of n dimensions.
Parallel coordinate representations of a system are excellent
for understanding the influence of each coordinate by 1tself.
However, the effect of the value of each coordinate on the
other coordinates 1s 1mpossible to understand from the
parallel coordinate representation. For example, cumulative
phase relationships between the coordinates are just not
picked up or noticed by our minds. In contrast, orthogonal
representations are uniquely powerful 1in showing these
cumulative effects of the coordinate’s values one upon the
other. An important aspect of the SBP technique is therefore
a process for visualizing these cumulative effects.

With this mntroduction to the SBP technique 1in mind, the
process will be explained using illustrative examples. It 1s
desirable to move data from the parallel coordinate system
to a three dimensional coordinate system. A three dimen-
sional visualization environment 1s preferable because the
data 1s typically portrayed i a visually understandable
manner. That 1s, the human mind 1s able to more readily
comprehend the data. For example, looking at the 1°, 4 and
5% coordinates of a 5 dimensional sphere in parallel coor-
dinates reveals none of the structure that 1s immediately
recognizable when looking at these three coordinates in
three dimensional orthogonal space. This concept will be
demonstrated more fully in the illustrations to follow.

The basic SBP technique disclosed in this presently
preferred embodiment 1s to rotate, break between points, and
separate parallel coordinate axes, with the amount of sepa-
ration being determined by the magnitude of each point, and
the amount of rotation being determined by the number of
such axes.

FIG. 1 1s an 1llustration 1n two dimensions that shows a
system which has parallel axes. The first step 1n the SBP
technique 1s to position a second axis parallel to a first axis,
but at a distance between them that 1s equal to the magnitude
of the first point x1 from the x axis. Then next step 1s to plot
the value yl perpendicular to the displacement x1. The
process continues in this manner with each succeeding xi1
point. FIG. 2 1s provided to illustrate this process with a view
of 6 such points.

In summary, for each x1 point, the process 1s to break and
relocate an appropriate y axis segment at each of the xi
successive points along the (unbroken) x axis, such that each
y1 segment starts at the end of each x1 segment. The y axis
is thus broken into segments, each (probably but not
necessarily) located at a different distance from the x axis.
All y1 pomnt segments are plotted perpendicular to the xi1
displacements, and all y1 axis (broken) segments are parallel
to the unbroken x axis.

Accordingly, the y1 values are plotted perpendicular to the
direction of the x1 values, and the y axis 1s broken into a
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jagged line, each segment of which 1s perpendicular to the
displacements x1. However, all segments of the broken y
axis are parallel to the single line representation of the x axis.
Together, the x axis and the y axis broken lines make a plane;
looking down on this plane 1 FIG. 1, an observer would see
the diagram shown in FIG. 2.

In FIG. 2, note that the x and y axes are parallel, even
though the y axis 1s broken into segments. With an even
number of n dimensions, pairs of axes can be associated in
an orthogonal fashion such as i1s shown 1 FIG. 2. The
inventors observed that one possible strategy 1s to then
position these pairs (of orthogonal axes) in a consistent
manner with respect to each other.

For example, consider two pairs of axes that are con-
structed as suggested above. In order to locate this pair of
(two-parallel-axis constructs) orthogonally with respect to
teach other, 1t 1s possible to do 1t 1 classical Cartesian
fashion (perpendicular to the plane of x-y).

FIG. 3 shows that alternatively, one can rotate the plane
of the second pair of axes (u,v) at a 45 degree angle (or at
any other desired angle) with respect to the x-y plane, while
keeping the u-v axis pair parallel to the x-y axis.
Accordingly, all points u1 and vi can be plotted orthogonally
with respect to each other on the u-v plane, and this plane 1s
then orthogonal (but not at a 90 degree angle) to the plane
X-y 1n the sense that the u1 and vi points are independent of
the x1 and y1 points. In this figure, these u1 and vi directions
and values are at 45 degrees with respect to the x1 and y1, and
not 90 degrees. It should also be apparent that the u axis and
the v axis are parallel to the x axis and the y axis.

Next, in order to obtain a single end point for this four
dimensional vector, 1t 1s necessary to determine the origin of
cach point ui. The single end point 1s to be on a broken line
segment of the u axis originating at the end of each y1 point
and located 1n the 45 degree u-v plane. This means that the
u-v plane 1n the diagram above 1s really a broken-plane, with
cach segment of that plane being parallel to the 45 degree
plane shown 1n FIG. 3. In similar fashion to how the yi1
points were plotted on broken segments of the y axis m the
original x-y plane, the vi points are now plotted in the 45
degree plane: the origin of each point vi will be at the end
of the corresponding point u1, and directed perpendicular to
the u1 vector and perpendicular to the 45 degree u-v planelet
as established for each ui value. In effect, this establishes a
four dimensional, orthogonal arrangement with four inde-
pendent axes all situated 1n parallel, but with three of the
axes consisting of broken line segments oriented such that
pairs of these axes are at 45 degrees with respect to each
other.

The objective of the method described above 1s to obtain
one final four dimensional point rather than the four points
that are generated in conventional Inselberg or nDimen-
sional (as disclosed in the parent case) parallel coordinate
systems. This point 1s unique 1n the sense that it can be
reached consistently by the trajectory indicated, but 1t 1s not
unique 1n that other values of x, y, u, and v can be generated
to also reach this same point, as in the classical perspective
drawings.

FIG. 4 1s a further 1llustration of the concepts described
above. This figure 1s of SBP space which shows structure
that 1s used to display independent locations of four dimen-
sions. It should be noted that what 1s called the x-axis 1s the
parametric reference axis used i1n display space against
which are plotted vertically the x1 values. Similarly, the y
axi1s 1s the parametric axis used graphically in display space
along which are plotted the y values y1 1n display space. It
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1s 1mportant to note that the display space distance A
mentioned 1n the earlier descriptions of the specification
refer to the separation between x1 and x2 1n FIG. 4 along this
parametric reference axis X.

An 1mportant aspect of the present invention is that three
dimensional SBP space 1s capable of displaying classical
three dimensional objects extended by n dimensions. This
process 15 an extension of the concept used for displaying
independent orthogonal (but not 90 degree orthogonal)
space to allow depiction of the first three coordinates as
classical orthogonal objects with the next (n-3) dimensions
displayed beyond but functionally connected to the first
three classical dimensions.

This extension process 1s as follows. First, each z1 com-
ponent 1s drawn 1n 1ts classical 90 degree orthogonal posi-
tion. The result 1s a classical three dimensional object, but
done 1n this case using broken line parallel coordinates.
However, in order to represent each of the subsequent (n-3)
coordinates, they are drawn as described in FIG. 4. This
process builds the vector of subsequent dimensional com-
ponents on top of the original three orthogonal components,
but draws them 1n this new SBP structure. This yields a
classical perspective drawing as done by SBP for the (n-3)
dimensions “on top” of the original three dimensional
orthogonal structure. This completed structure, showing the
first three coordinates 1n 90 degree orthogonal relationship,
with the next (n-3) coordinates shown in the SBP structure,
1s depicted as shown in FIG. 5.

To generalize this process to n dimensions, the coordi-
nates can be grouped 1n pairs, and the angle of inclination of
the planes between the pairs 1n the presently preferred
embodiment can be chosen to be 180/n degrees. For an odd
number of coordinates, the last coordinate need have no
corresponding y segment. Alternatively, each coordinate can
be rotated to be at 1ts own angle of 90/n degrees with respect
to the plane of the preceding coordinate’s plane.

The objective of the presently preferred embodiment of
the 1nvention 1s to obtain a set of m resultant single points
(in the z direction of display space), one for each of the m
(conceptual) single points in the original set of (n dimen-
sional valued) single points in classical orthogonal space,
but done using (broken-line) parallel coordinates. In this
situation, 1t 1s possible to draw and see all m points, each
being the single point resultant of the whole (mxn) dimen-
sional enfity. These final m points are then viewed in

classical three dimensional orthogonal display space (see
FIG. 16).

It 1s 1mperative to understand that this single SBP
n-dimensional point 1s seen and viewed in conventional
three dimensional display space. Additionally, the n vectors
contributing to this single end point can also be seen and
displayed (or not) in conventional three dimensional display
space. Thus, 1n this SBP independent orthogonal parallel
coordinate space, what 1s obtained 1s one unique end point
for all of the n values 1n 1ts data space. The set of these single
end points can be seen and viewed (typically as surfaces,
each at their unique angle in display space) in conjunction
with the n vectors that contribute to their final location. It 1s
this SBP generated surface that 1s different from the surfaces
seen 1n the parallel coordinate visualizations of the parent
case. However, 1t 1s also observed that this SBP generated
surface also shares some geometric characteristics that are
similar to the parent case.

The SBP representation generates viewable single points
in classical three dimensional human perception display
space of the n dimensional entities, which are the resultants
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of each n intervening vector. Most importantly, the concep-
tual power of these classical three dimensional orthogonal
coordinate projections 1n SBP space lies in the end points
representing the influence of each preceding point. Those
projections at 90 degrees yield unique single end points, but
perspective drawing projections at less than 90 degrees
allow consistent and repeatable visualization of single n
points for n dimensional entities. The SBP technique of
spacing the pairs of vectors by broken pieces of the parallel
coordinate y generates these SBP single end points.

Disadvantageously however, 1 classical three dimen-
sional display space, an observer cannot see the end result-
ants of more than three coordinates’ values. The SBP
technique places the intervening coordinate values on planes
at smaller angles so that any number of coordinates can be
seen 1n three dimensional display space. And with its broken
y axis segments and single end point for n coordinates’
values, these SBP end points represent a single point that 1s
the cumulative effect of each intervening coordinate. By
placing pairs of coordinates at these smaller angles, one can
select which coordinates to pair so that conventional
orthogonality results can be seen 1n each of the paired-
coordinate planes. And by placing these paired planes at
consistent angles (with respect to each other), surfaces can

be observed (in display space) showing the cumulative
behavior across the data model for each of these coordinate

pairs.

One result 1s that while the single n-dimensional point in
broken parallel coordinate space (SBP space) is not a
representation of classical orthogonal coordinates, it 1s a
consistent point 1n three dimensional display space, and 1t
oenerates shapes that are identical, for example, to the
classically drawn four dimensional cube.

By building the first three coordinates orthogonally, it 1s
possible to display all subsequent coordinates using the SBP
technique superimposed on classical three dimensional geo-
metric structures. This enables the display of the subsequent
(n-3) coordinates on top of the original (classical) three
dimensional orthogonal display, but synchronized with that
geometry. These subsequent coordinates can be representa-
tive of forces, independent parameters such as charge or
parity, or any other parameters of interest.

These subsequent dimensions can be shown 1n a manner
which distinguishes them from other related parameters. For
example, 1n an alternative embodiment, different colors are
used to thereby differentiate their relationships from the first
three physical space coordinates, or they can be observed
individually, or their end resultant surface can be observed
by itsell.

As a summary, 1t 1s observed that possible correlations
between structures (curve fit waveforms) seen in some
parallel coordinate systems, or 1in the SBP representations, 1s
illuminated quite differently when those coordinates are
mapped back into orthogonal coordinates. This can be done
by sets of any three parallel coordinates, taking three of them
at a time back into three dimensional orthogonal space. In
SBP models which themselves show n dimensional models
in two dimensional (flat) space, mappings back into classical
three dimensional space must also be done only three
dimensions at a time, because that 1s all that can be con-
ventionally modeled 1n visualizable orthogonal spaces.

For example, the correlational significance of sin/cos
waves moving along in three parallel coordinates 1s dramati-

cally conveyed by seeing those waveforms mapped back
into three dimensional space. There, the waves appear as
spheres. Such a spherical relationship 1s not at all evident
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when looking at just their phased parallel coordinate repre-
sentation. Spherical relationships among many dimensions
1s, for example, directly visualizable in the SBP space
models, but recognition of the meaning of different shapes
scen 1n SBP space comes only via the experience gained
through mapping geometric shapes back and forth from
three dimensional space to SBP space.

Accordingly, the SBP method enables the scaling of data
so that the entire data space model can be visualized at once.
Alternatively, different colors can be assigned to appropriate
parts of the display space models of data. It 1s also proposed
that it 1s possible to insert zero valued coordinates or data
values 1 order to generate visual reference relationships in
display space models. It 1s also useful to be able to save
display space models as they are oriented during experi-
mental animations. Another useful technique 1s the super-
impose several models of different but related data sets
where these models can be superimposed directly on top of
cach other, offset vertically one above the other, or offset
horizontally adjacent to each other and aligned for visual-
1zations along or across the coordinates. It 1s also proposed
that 1t 1s advantageous to embed known geometric structures
in huge data sets for visualization and analysis, for example,
from a distance. Finally, it 1s suggested that analysis tech-
niques can be developed for determining shapes and rela-
tionships 1n huge data bases when examined from a distance.

As explained previously, SBP 1s a technique for display-
ing orthogonal representations of the cumulative effects of
coordinates’ values upon each other. Another motivation
behind development of this technique was the desire to be
able to make a movie wherein n dimensional entities can be
intuitively seen as supermmposed on real three dimension
geometries. Such a movie can be used for scientific visual-
1zation purposes, for intellectual comprehension, for mili-
tary or civilian command and control operations, or for
entertainment purposes.

For example, the movie “The Picture of Dorian Gray”
depicted what happened to a person’s image (a painting) as
he aged and as his character developed. With the technique
of broken parallel coordinates (SBP), it is now possible to
accomplish this fictional purpose mathematically. It would
be necessary to provide the equations (dimensions) for the
effects of age, emotion, character, attitude (motivation), etc.
The SBP technique would make 1t possible to age Dorian
Gray’s sculpture, not just a picture.

Another application of the three dimensional SBP tech-
nique of the presently preferred embodiment 1s that of
scientific visualization. In molecular chemaistry, for example,
atoms are physically located 1n a three dimensional arrange-
ment as a consequence of many parameters such as physical
forces, allowed valence bonds, etc. Each of these parameters
1s a dimension as used above, and since each parameter 1s
mathematically described, the final three dimensional physi-
cal location can be mapped directly according to the math-
ematics describing each parameter (or dimension in this
visualization sense). Similarly in astrophysics, particle or
matter location 1s a function of many parameters, and so
physical location can be mapped and seen as a direct visual
resultant of the many dimensions ivolved.

It should also be realized, however, that 1t 1s also a
consequence of the contortions employed to achieve the SBP
representation that the result can also mask and distort the
relationships among the many dimensions. SBP 1s a different
mapping into m (n vector) point set surfaces that can be
displayed and examined for structure and relationships
among the n dimensions. It has been discovered that the
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orthogonality of pairs of dimensions can be particularly
useful 1n certamn circumstances. Likewise, the rotational

symmetry among the pairs of dimensions can also generate
particularly useful results 1 different circumstances.

In another alternative embodiment, reassignment of
dimensions 1n different orderings might also prove useful as
one studies these SBP surfaces to discover hidden or new
relationships among the variables. Spreading the paired-
vector planes at angles greater than the original orientation
can facilitate viewing of these planes individually. Uniquely
coloring these paired-vector planes also facilitates viewing
them individually. Eliminating all but the paired-vector
plane of interest can also be done to thereby improve the
discernment of relationships within any paired-vector plane.

It was stated at the beginning of the SBP process that 1n
the presently preferred embodiment, the steps comprised
rotating, breaking between points, and separating parallel
coordinate axes. It was also shown that the rotation was
preferably equal between each dimension. However, an
alternative embodiment envisions making non-uniform rota-
tions of the planes in SBP space. The purpose i1s still to
reveal structure, patterns and trends that 1n one or more pairs
of dimensions can be seen as relevant.

Along with SBP space, 1t 1s an alternative aspect of the
invention to visualize n Orthogonal Dimension (nOD) dis-
play space. The technique for being able to visualize pro-
portional depth (real depth, not perspective depth) using the
prior art technique of ChromaDepth 1s to encode the colors
used on a computer monitor, or 1n a computer printer, in the
natural (Newtonian) prism deflected spectral sequence of
colors. To do this, the first step 1s to determine the mapping
for the red, green, and blue (RGB) color sequences that
correspond to the natural spectral sequence, and then use
those RGB codes to assign colors to structures 1n the display
space model such that those structures appear at the desired
linear depths. This technique 1s to be referred to as
Linearized-Color Depth (or L-DC) display space.

Use of the nDV method for n dimensional cubes exem-
plifies what n dimensional cubes actually look like 1n L-CD
display space. L-CD display space consists of triplets of
visually orthogonal dimensional models. Each triplet 1s
displayed optically on a different zone of the display, or on
different, separate, individual displays. These displays can
be L-CD displays, or on a machine such as the EVANS &
SUTHERLAND (TM) STAR RIDER (TM) display, or
Muckerheide acoustic mechanical displays. An important
requirement 1s that the display must be able to show realistic
three dimensional relationships such that they show linear
depth perceptions 1n addition to conventional two dimen-
sional X and y relationships.

Accordingly, nOD displays consist of n sets of triplet
displaying zones. For visual simplicity, these zones (or three
dimensional display units) should be as close to each other
as possible. One of the new aspect of the invention 1s the use
of concatenated triplet displays, each showing the next three
levels of orthogonal dimensions, to be thus able to generate
meaningiul, comprehendible, visual representations of n
dimensions 1 90 degree orthogonal relationship to each
other.

The detailed descriptions above are explanations of SBP
space and nOD space, and how to use visualizations thereof
in conjunction with the nDV method which plots multi-
variate data in parallel coordinates and enables movement
therethrough to 1denftily structures, patterns and trends. It 1s
helptul in this context to therefore examine actual constructs
in display space.
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In the presently preferred embodiment, a display space
model 1s constructed with spreadsheet data. This model plots
the parameters used to represent each aspect of behavior
along one axis. Conceptually, 1t 1s useful to consider these
parameters to be the columns 1n a spreadsheet. The model
then plots the instances (or events) for each parameter along
a second perpendicular axis. Conceptually, 1t 1s useful to
consider these instances to be the rows 1n a spreadsheet.
Finally, the model plots the values for each 1nstance of each
parameter as the height above the horizontal plane estab-
lished by the first two axes. Conceptually, 1t 1s useful to
consider these height values to be the values contained in
cach cell of the spreadsheet. This kind of model 1s often
referred to as a “Manhattan” view of data. It shows what
might be considered to be skyscrapers arranged around a
rectangular grid of streets. The difference 1n the display
space model of the present invention 1s that the “avenues”
are considered to be dimensions, the “streets” are considered
to be the rows or indexed value sets of the dimensions, and
the heights are considered to be the values 1n each cell of the
spreadsheet. This multi-dimensional perspective on what 1s
being displayed 1s vital 1n the analysis process when dis-
cerning possible relationships, and when looking for struc-
tures 1n the modeled data spaces.

Understanding the mapping of geometric relationships
back and forth between familiar three dimensional orthogo-
nal space and three dimensional parallel coordinate space
comes from familiarity with shapes 1n display space. With
this familiarity, conventional waveshapes are then analyzed
by conventional curve-fitting techniques for interpolation or
extrapolation. These geometrical mappings allow intuitive
generalizations to show how to interpret unit-dimensional
behavior one parameter at a time, as multi-dimensional
behavior 1n parallel coordinates. This mapping then enables
grouping of parameters next to each other for mapping back
into three dimensional orthogonal space. In other words, this
understanding enables grouping of columnar data within a
spreadsheet to thereby clarify a useful order in which to
consider or place those columns.

In order to recognize important shapes and relationships
from data displayed 1n parallel coordinates, 1t 1s helpful to
know what simple geometric shapes from three dimensional
orthogonal coordinates look like 1n parallel coordinates. For
this knowledge, 1t 1s possible to generalize these shapes in
three parallel coordinates to arbitrarily many parallel coor-
dinates. It was also stated previously that experience 1is
helpful when learning to recognize different shapes seen 1n
SBP space. Typically, this experience 1s gained by mapping
shapes back and forth between three dimensional space and
SBP space, as will be demonstrated.

FIG. 6 1s an illustration of two 1ntersecting straight lines.
It 1s known that straight lines 1n orthogonal space map 1nto
straight lines 1 each of the coordinates of parallel coordi-
nate space. Note that the two straight lines L1 and L2
intersect at point 1, where the x, y and z coordinates of each
straight line are all equal 1n value. Also note that the plane
defined by these two intersecting lines 1s depicted here by
the generatrix: lines g..

FIG. 7 1s the corresponding view of the straight intersect-
ing lines of FIG. 6. Note that the heavy lines are the
individual coordinate projections of each of the generatrix
lines g; shown below the intersection in the orthogonal
views. The upper generatrix lines are not shown here for the
simplicity of viewing this structure. Thus, in parallel
coordinates, a plane appears as planelets 1n each of the
multiple coordinates for which that plane 1s defined to exist.

[t should also be observed that these intersecting lines (for
each individual axis) are in the display plane normal to the
(X, ¥, Z, w . ..) plane containing these coordinate axes.
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FIG. 8 1s a classical view of 1n three orthogonal coordi-
nates of a cylinder approximated by a helix of pitch p. The
helix mtersects the x-z plane first at 11, then 1t intersects the
X-y plane at 12, next 1t intersects the xz plane at 13, then the
yZ plane at 14, and finally the x-z plane at 15.

FIG. 9 15 a classical view of the helix of FIG. 8 1n three
parallel dimensions. The x and y projections of the helix 1n
orthogonal coordinates are the sin/cos waves shown here 1n
these two parallel coordinates. This assumes that the helix in
the three dimensional coordinates 1s a circle 1n the x-y plane.
Therefore, 1n three parallel coordinates, the value of z
increases linearly (with slope p) as the helix progresses. This
assumes that the helix in three orthogonal dimensions is
linear 1n z. The parametric equations for this cylindrical
helix are:

x=R cos 0 Equation 1
y=R sin O Equation 2
z=nf Equation 3

A cylindrical surface 1s generated for continuous values of
n, and a cylindrical helix 1s generated for integer values of
n.

A cone can be represented by a three dimensional helix,
again of controlled pitch in the z direction, with the diameter
of the sin/cos waves X and y varying uniformly from zero
with respect to z, to thereby generate a cone shaped helix, as
opposed to a cylindrical shape as 1n FIG. 8.

Helical conical sections are therefore the classic intersec-
tions of a plane with this helical cone. Drawings of such
Intersections are again easier to make, and to extrapolate 1n
parallel coordinates than in orthogonal coordinates. Gener-
alizations of these (helical approximations) to many parallel
coordinates are again made by repeating the sin/cos
waveforms, keeping the z orientation of the cone. Correct-
ness ol these multidimensional generalizations needs to be
checked by mapping the inferred parallel coordinate struc-
tures back 1nto orthogonal space, three dimensions at a time.

In application to visualizations of data, one method of
cfectively using these understandings of simple geometry in
parallel coordinates 1s to use the nDV method of showing
“in-lime” spreadsheet 1mages of each spreadsheet’s data
space aligned one above the other. This gives n surfaces for
n spreadsheets, each surface spaced a display distance d
above the surrounding data surfaces. Examined visually 1n
this matter, 1t 1s possible to reach an opinion about which
major structures may be relevant for further analysis.

A similar technique 1n display space would be to super-
impose a set of n spreadsheets instances of a given data
space study, superimposing each data surface directly on top
of the other n instances. Using a different color for each
instance would help visually clarily the differences between
cach of the n instances of a given data space study. This
technique of superposition of data surfaces 1s a powerfully
intuitive way to see what 1s different about each instance.

In order to understand how a sphere can appear 1n parallel
coordinates, 1t 1S necessary to determine the parametric
equation for a spherical helix. The parametric equations for
a sphere of radius p and centered at the origin are

x=p sin O sin ro Equation 4
y=p sin O cos no Equation 5
z=p cos 0 Equation 6

The parameter0 1s not related to any of spherical coordi-
nate angles in three dimensional orthogonal space. The
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parameter0 1s the graphing parameter used to separate the
plots of each instance of each coordinate by the display
space (artifact) incremental value A along their respective
reference axes (unit-dimensional axes) in display space.

In parallel coordinates, these parametric expressions for
spherical relationships among three coordinates will look
similar to those show 1n FIG. 9. A sphere of radius R 1s
approximated with a helix of frequency0 and amplitude R
varying sinusoidally with n0O in x and co-sinusoidally with
n0 in y. Therefore, 1n parallel coordinate data space, any set
of two 1ndividual coordinates having values that vary as sin
0 cos nO with a third coordinate varying as cos 0 can be
assoclated together and interpreted as a spherical helix 1n
three dimensional orthogonal dimensional space.

The process above can be generalized to n dimensional
spheres. Using R as the radius of the n dimensional sphere,
and the notation of D" to represent the nth dimension, the n
dimensional parametric representations of a sphere are:

D'=R cos 6 Equation 7
D*=R sin 6 cos k0 Equation 8
D°=R sin 6 sin kO cos jO Equation 9

D?=R sin 0 sin kO sin jO cos i0 Equation 10

D’=R sin 0 sin &0 sin jO sin {0 cos m0 Equation 11

D" '=R gin 0 sin kO sin jO sin [0 sin m0O . . . cos(n-1

)0 Equation 12

D"=R sin 0 sin k0 sin jO sin 10 sin m0O . . . sin(n-1)0 Equation 13

where n 1s the number of dimensions. It should be noted
that only the last two equations of the set have the same
number of factors, (n—-1) in quantity, and that they
always end with a pair consisting of a cos term and a
sin term. These equations (with appropriate
substitutions) satisfy the expressions for a sphere in n
Cartesian coordinates:

R*=(DYY*+(D*)*+(D)*+ . . . +(D")* Equation 14

Therefore, when considering if an interpolated (curve-fit)
structure in any set of n coordinates (n columns in a
spreadsheet) might be curve fitted to an n dimensional
sphere, it 1s preferred that the curve fitting mathematics be
capable of determining the approximation, where a product
of sin/cos functions might appropriately describe the wave-
shape represented by the data.

Spherical relationships 1n three dimensions are expressed
by the product of two sin/cos functions. Such a relationship
might be visually determined to exist among three coordi-
nates (columns in a spreadsheet) that are not necessarily
adjacent to each other. And spherical relationships among
several coordinates that are not adjacent to each other 1n the
spreadsheet might exist and be visually discernable by
recognizing the characteristic shapes of these multiple sin/
cos products waveforms.

It 1s noted that when generalizing any structure from its
three dimensional views to 1ts n dimensional views in
parallel coordinates, any of several methods can be applied
by the user. Only when there is an algebraic definition (such
as there 1s for an n dimensional sphere) does the generali-
zation to n dimensions have to be constrained to fit that
algebraic definition for n dimensional objects. This situation
applies to the n dimensional sphere described in Equation
14.

Surfaces and solids 1n parallel coordinates are useful to
recognize when utilizing the present invention. Polyhedra
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are typically depicted as a series of intersecting plane
surfaces. Recognizing a plane surface 1n parallel coordinates
1s a basic capability. For example, defining a plane by two
intersecting straight lines can be used to define the surfaces
of a cube.

FIG. 10 1s provided to show a cube 1n three dimensional
orthogonal coordinates. The end “box” or square plane
segment is defined by the two (red and blue) intersecting
straight lines.

For comparison purposes, FIG. 11 1s an illustration of the
red and blue lines of FIG. 10, but shown 1n parallel coor-
dinates. In defining the projections of these colored lines
onto the coordinate axes, it 1s useful to establish a sequenc-
ing convention for deciding which 1s pomt 1, point 2, etc.
The preferred sequence 1s to start at the origin of FIG. 10 and
count outward for each axis i1n turn, and then number the end
points 1n this sequence. This produces the projections shown
in red and blue m FIG. 11.

The reason for showing the red line and the blue line
segment adjacent to each other 1s that 1t 1s necessary to show
that two lines exist in the same place and have the same
orientation. In other words, the x projection of the red line
from three dimensional space would occupy the same points
as the blue line. Strictly speaking, these lines could also be
superimposed over each other, but this would generally not
yield a meaningful 1mage.

Similarly for the z projection of the red and blue line
components, a pair of lines separated slightly 1s a convenient
way to show the two distinct lines that otherwise fall on top
of each other.

It 1s observed that if the polygon of FIG. 10 were a
rectangle 1nstead of a square, the red and blue lines will be
of different lengths.

FIG. 12 1s generated 1n parallel coordinates by following
the sequencing pattern of FIGS. 10 and 11. The resulting
figure shows the green and yellow lines which define the
second face of the cube. It should now be apparent that 1t
requires six sets of three line sets 1n parallel coordinates to
define the six plane surface segments that make up the six
square faces of the cube of FIG. 10.

FIG. 13 1s an 1llustration of a hexagon which 1s defined by
four straight lines 1n a plane.

FIG. 14 1s an 1illustration of a polyhedra. A pretferred
method of considering polyhedra is as a set of radu ema-
nating from the origin of three dimensional space, with each
radius having as its end a plane polygon (or planelet) defined
by a straight line set such as a rectangle or hexagon. Odd
numbers of sides 1n a polygon planelet defined by straight
lines can therefore be drawn as shown 1n FIG. 14.

FIG. 15 1s provided as another way to visualize polyhedra.
Defining a polyhedron in this fashion 1s accomplished by
considering that the (red edged) polygon planelet (defined
by the blue lines) is attached to the end of the (yellow) radial
vector emanating from the origin of the three dimensional
display as shown in FIG. 15.

To represent this polyhedron of FIG. 15 in parallel
coordinates, the simplest technique 1s to consider the yellow
radial vector coming out from the origin as a “coordinate,”
such as the fourth coordinate. The triangular red planelet
(facet) 1s represented in parallel coordinates (where the
orthogonality of the several coordinates may be unknown; in
data spaces such as spreadsheets data, the columns of the
spreadsheet represent “coordinates” who’s orthogonality 1s
unknown) as in FIG. 11, with the three blue lines of FIG. 15
defining the red triangle.

FIG. 16 1s a parallel coordinate system of the data in FIG.
15. In this figure, X represents the yellow, radial “coordinate”™
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of FIG. 15, and y and z represent the projections of the blue
friangular lines onto fifth and sixth coordinates that lie
perpendicular to the yellow coordinate, and perpendicular to
cach other (like y and z in normal three dimensional
orthogonal coordinates).

These 4™, 57, and 6™ coordinates in parallel space
representations do not have to have any orthogonal relation-
ship to the 1%, 2¢, and 3™ coordinates. These extra coor-

dinates can be defined as desired, as they have been in FIG.
16, for use in FIG. 15. Thus, while the cube (FIGS. 10 and

11) and the red facet (FIGS. 15 and 16) are defined, the

corner of the cube that 1s shown as removed 1n FIG. 15 has
not yet been deleted. Theretfore, for the purpose of seeing
classical geometric shapes of polyhedra in parallel
coordinates, 1t would be desirable to have a simple way of
showing the deleted (black) sections of the cube that lie
beyond the blue/red triangle facet.

FIG. 17 1s an 1illustration of an object which 1s drawn in

SBP space. Specifically, a four dimensional cube 1s 1llus-
trated. It 1s observed that a four dimensional cube consists of

16 unique vertices, and 32 edges. In this SBP representation,
lines are shown connecting vertices 0 through 135.
Alternatively, the figure could just have shown 32 end
points. The figure also shows the difference between the
ogreen perspective angle and the SBP fixed angles per pair of
perpendicular coordinates.

It 1s noted that this technique of using additional angles
for each successive perspective dimension representation 1s
used to represent many pairs of orthogonal dimensions in
what has been defined as SBP space. Perhaps it 1s now more
apparent that the purpose of SBP space 1s to generate a single
resultant point from the n points created by parallel coordi-
nate representations. Furthermore, the reason for wanting a
single resultant point 1s that in parallel coordinates, it 1s
relatively impossible to perceive the phase or functional
relationships among the many parallel or concurrent coor-
dinates.

As has been shown, classical orthogonal representations
of data space hypothesize a single resultant point in n
orthogonal dimensions, but this single resultant point has not
previously been capable of being drawn on two dimensional
surfaces, such as paper. Parallel coordinate representations
generate n distinct points that correspond to this one con-
ceptual end point in n orthogonal space. SBP space generates
one end resultant point in broken-line parallel-coordinate
space. As 1s shown in FIG. 16, the SBP technique also
utilizes what can be considered to be several different
perspective angles, one for each pair of dimensions drawn at
90 degrees with respect to each other.

In a last alternative embodiment of the present invention,
it 1s envisioned that the data being displayed in parallel
coordinates, SBP space or classic orthogonal space can be
heard as well as seen. In other words, 1t 1s possible to hear
the data as separately driven channels of a sound system. It
1s only necessary to define the parameters of a channel, and
data which might not present any visual clues as to patterns,
might present audible clues.

For example, suppose six channels of a sound system are
assigned to six parallel axes of a parallel coordinate system.
Frequency, amplitude or other characteristics of sound can
be made to be functions of the data which 1s graphed
thereon. It 1s then possible to “play” the data as opposed to
seeing 1t. Alternatively, the data can be played while watch-
ing 1t. The data can even be repeated continuously 1n a loop
to bring out features that are not particularly noticeable upon
hearing once. Therefore, it 1s also envisioned that portions of
the graphical data can be focused on and selected specifi-
cally for playback.
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An example of making the data audible 1s to use fre-
quency as a value. The audible range of frequencies are
divided 1n a range of numbers or values that are covered. In
other words, the values are scaled to match the audible
range.

Alternatively, a first dimension 1s selected as frequency.
Then, a second dimension 1s audible amplitude. A third
dimension 1s voice. For example, linear and unique
sequences ol overtones are selected to represent different
qualities of the basic amplitudes and frequencies used as the
first two dimensions. Accordingly, 1t 1s possible to hear three
orthogonal dimensions over a single sound channel.

One consequence of this invention 1s the stacking of three
dimensional triplets in adjacent screens of a computer dis-
play. Therefore, 1t 1s also possible to stack adjacent channels
when making the data audible. The result 1s depth 1n, for
example, 9 orthogonal and viewable dimensions by using
three adjacent screens, or 9 orthogonal and hearable dimen-
sions with 3 concurrent sound channels. The important
observation to make from the explanation given above is to
recognize that 1t 1s possible to obtain a varied mix of visual
and audible transformations of the data in order to recognize
patterns and trends buried within.

In order to provide a complete and enabling disclosure,
several appendices are provided which fully illustrate the
concepts discussed herein. Appendix A 1s a read-me primer
for operating the visualization software. Appendix B 1s an
Open GL program listing for model construction. Appendix
C 15 1s a program listing of the SBP builder. Appendix D 1s
a listing of parametric equations which generate directrix-
defining diagonals for one dimensional, two dimensional,
three dimensional, and four dimensional cubes. Finally,
Appendix E 1s FIG. 17 with the addition of comments
regarding edges.

It 1s to be understood that the above-described arrange-
ments are only illustrative of the application of the principles
of the present invention. Numerous modifications and alter-
native arrangements may be devised by those skilled 1n the
art without departing from the spirit and scope of the present
invention. The appended claims are intended to cover such
modifications and arrangements.

What 1s claimed is:

1. A method for visualizing relationships between a plu-
rality of n parallel coordinates which are plotted 1n a parallel
coordinate system, by transforming the plurality of n parallel
coordinates, and then generating a plurality of independent
dimensions which are then plotted 1n a perspective view,

sald method comprising the steps of:

(1) selecting a pair of independent coordinates from the
parallel coordinate system;

(2) transforming the pair of independent coordinates by
generating a single resultant point representation of the
pair of independent coordinates;

(3) mapping the single resultant point to a perspective

view; and

(4) repeating steps (1) through (3) for at least two more

pairs of independent coordinates and corresponding
resultant points, wherein the at least two more pairs of
independent coordinates are selected from the parallel
coordinate system, and wherein the mapping results 1n
obtaining the perspective view which displays relation-
ships between the pairs of independent coordinates that
are not visible from viewing the independent coordi-
nates 1n the parallel coordinate system.

2. The method as defined 1n claim 1 wherein the step of
mapping the single resultant point further comprises the step
of plotting each subsequent single resultant point as a
function of each previous single resultant point plotted.
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3. The method as defined 1n claim 1 wherein the method
further comprises the step of mapping the single resultant
points back into orthogonal space, where orthogonal 1s
characterized as not having to be 90 degrees.

4. The method as defined 1n claim 1 wherein the method

further comprises the steps of:

(1) mapping the single resultant point in a first plane;
(2) rotating a certain distance along a common axis; and

(3) mapping the corresponding resultant points of each of
the at least two more pairs of independent coordinates
in a different plane, wheremn each of the resulting
different planes share the common axis.

5. The method as defined in claim 4 wherein the step of
rotating a certain distance along the common axis further
comprises the step of rotating a distance as a function of a
total number of the pairs of independent coordinates being
mapped.

6. The method as defined 1n claim 5 wherein the step of
rotating a distance as a function of the total number of the
pairs of independent coordinates further comprises the step
of rotating a non-uniform distance between each rotation.

7. The method as defined 1n claim 4 wherein the step of
mapping the resultant points comprises the step of separat-
ing each of the resulting points as a function of the magni-
tude thereotf.

8. The method as defined 1n claim 1 wherein the method
further comprises the steps of:

(1) mapping a first axis x;

(2) mapping a second axis y which is parallel to the first
axis, and separated from the first axis a distance which
1s equal to a magnitude of a first point x1 from the first
axis;

(3) mapping a second point yl perpendicular to a dis-
placement x1; and

(4) breaking and then relocating each new y axis segment
so as to begin at each subsequent x1 point along the first
axis X, such that each y1 segment begins at an end of

cach x1 segment, thereby obtaining the second axis y
which 1s broken into a plurality of segments, each of
which 1s located at a distance from the first axis x which

1s equal to a magnitude of a corresponding point xi.
9. The method as defined 1n claim 8 wherein the steps of
breaking and then relocating further comprise the step of
mapping cach of the y1 segments perpendicular to a direction
of each corresponding x1 value, where the second axis y 1s
thereby broken mto separate segments which are all parallel

to the first axis x.

10. The method as defined 1n claim 9 wherein the method
further comprises the steps of:

(1) forming a plane from the first axis x and the second
axis y;
(2) rotating around the first axis x a distance which is

equal 1n degrees to 180 divided by a total number of
resultant points being mapped;

(3) forming a second plane which is defined by the first
ax1s X and a new axis, wherein a second resultant point
1s mapped 1n the second plane; and

(4) repeating steps (2) and (3) until all of the resultant
points are plotted 1n a unique plane.
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11. The method as defined 1n claim 10 wherein the method
further comprises the steps of:

(1) assigning the first axis x to be a parametric reference
ax1s used 1n the perspective view, and against which are
vertically plotted the x1 values; and

(2) assigning the second axis y to be a parametric refer-
ence axis used in the perspective view, and against
which are plotted the values yi.

12. The method as defined 1n claim 1 wherein the method
further comprises the step of only plotting a point x1 but not
a corresponding segment y1 1f there are an odd number of
parallel coordinates to be plotted.

13. The method as defined 1n claim 1 wherein the method
further comprises the steps of:

(1) obtaining a set of m resultant points, each of which
represents the last n dimensional vectors of each
dimension, where the set of m resultant points 1s 1n a z
direction of display space; and

(2) viewing the set of m resultant points in orthogonal

space.

14. The method as defined 1n claim 1 wherein the method
further comprises the step of determining 1f a phase rela-
tionship exists between the parallel coordinates.

15. The method as defined in claim 1 wherein the method
further comprises the step of determining 1f a functional
relationship exists between the parallel coordinates.

16. A system for creating an intellectual structure within
a computer memory, such that the intellectual structure can
be observed and manipulated to thereby recognize and
observe characteristics and attributes thereof, said system
comprising;

a means for generating a three dimensional visualization

environment within the computer memory;

a means for modeling a spatial non-orthogonal data space
coordinate system within the three dimensional visu-
alization environment;

a means for generating the intellectual structure so as to
be associated with the spatial non-orthogonal data
space coordinate system of the three dimensional visu-
alization environment:;

a means for providing a point of observation into the three
dimensional visualization environment;

a means for selecting a plurality of independent dimen-

sions; and

a means for plotting the plurality of independent dimen-

sions 1n an orthogonal view to reveal new structures not
visible 1n the spatial non-orthogonal data space coor-
dinate system.

17. The system for creating an intellectual structure as
defined 1n claim 16 wherein the means for generating a three
dimensional visualization environment within the computer
memory further comprises a graphical software program
being executed on a general purpose computer.

18. The system for creating an intellectual structure as
defined 1n claim 17 wherein the system further comprises a
computer display associated with the computer memory to
thereby enable the point of observation to be viewable
thereon.
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