(12) United States Patent

Vert et al.

US006360331B2

(10) Patent No.: US 6,360,331 B2
45) Date of Patent: *Mar. 19, 2002

(54)

(75)

(73)

(21)
(22)

(51)
(52)

(58)

(56)

METHOD AND SYSTEM FOR
TRANSPARENTLY FAILING OVER
APPLICATION CONFIGURATION
INFORMATION IN A SERVER CLUSTER
Inventors: John D. Vert, Scattle; Sunita
Shrivastava, Redmond, both of WA
(US)
Assignee: Microsoft Corporation, Redmond, WA
(US)
Notice: This patent 1ssued on a continued pros-
ecution application filed under 37 CFR
1.53(d), and is subject to the twenty year
patent term provisions of 35 U.S.C.
154(a)(2).
Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.
Appl. No.: 09/061,857
Filed: Apr. 17, 1998
Int. CL7 ..o, HO2H 3/05
US.CL ., 714/4; 709/249; 709/239;
714/14; 714/57
Field of Searchc.coonll. 714/4, 14, 13,
714/10, 57; 709/223, 224, 200, 201, 249,
239
References Cited
U.S. PATENT DOCUMENTS
4,736,393 A 4/1988 Grimes et al.
5,021,949 A 6/1991 Moten et al.
5,027,269 A 6/1991 Grant et al.
5117352 A 5/1992 Falek
5,128,885 A 7/1992 Janis et al.
5,165,018 A 11/1992 Simor
5,301,337 A 4/1994 Wells et al.
5341372 A 81994 Kirkham

(List continued on next page.)

Start Shutdown l,_J

OTHER PUBLICATTONS

Chen et al., “Designing Mobile Computing Systems Using,
Distributed Objects,” IEEE Communications Magazine, vol.
35, No. 2, pp. 62-70 (Feb. 1997), http: iel.his.com: 80
cel-bin?iel _egi?se . . . 2ehts printed May 21, 1999.

Chowdhury, et al., “Supporting Dynamic Space—Sharing on
Clusters of Non—-dedicated Workstations,” International

Conference on Daistributed Computing Systems, pp.
149-158 (1997).

Islam et al., “Extensible Resource Management for Cluster
Computing,” Distributed computing Systems, 1997, Pro-
ceedings of the 177 International Conference, pp. 561-568
(May 1997).

Carr, Richard, “The Tandem Global Update Protocol,” 1an-
dem Systems Review, vol. 1, No. 2, 74-85 (1985).

Lamport, Leshie, A Fast Mutual Exclusion Algorithm, Digi-
tal Equipment Corporation, Oct. 31, 1986.

Lamport, Leslie, The Pari—1Time parliament, Digital Equip-
ment Corporation, Sep. 1, 1989.

Primary Examiner—Ayaz Sheikh
Assistant Examiner—Firmin Backer

(74) Attorney, Agent, or Firm—Michalik & Wylie, PLLC
(57) ABSTRACT

A method and system for transparently failing over a legacy
application from a first system to a second system of a server
cluster by tracking and checkpointing changes to application
conilguration information stored 1n a system’s local registry.
When an application running on the first system makes a
change to the application configuration information in a
subtree of the registry, the change 1s detected and a snapshot
of the subtree’s data 1s taken. The snapshot 1s written to a
storage device shared by systems of the cluster, such as a
quorum disk. When the application 1s failed over to a second
system, the snapshot for that application 1s retrieved from
the quorum disk and written to the registry of the second
system 1n a corresponding subtree. The application 1s then
run on the second system using the most-recent application
conilguration information as modified by the other system 1n
the cluster.

32 Claims, 11 Drawing Sheets

11400

1102
Change
1104
MNotification

1112

No FEI'I-.?II"IQ Ye

R

Take New Snapshot
{Checkpoint Data)
of Reqistry Subtree 1106

e

Overwrite Old Registry
Checkpoint Data on
Quorum Disk with New
Snapshot Data

1108

Remove Change /

Notlficatlon

1110
Another
Change -

N

Complete the
Shutdown

!
(End)

No

Motification
Pending
?

Yes

US 6,360,331 B2

Page 2
U.S. PATENT DOCUMENTS 5,812,779 A * 9/1998 Ciscon et al. 395/200.53
5,815,649 A 9/1998 Ultter et al.

5,398,329 A 3/1995 Hirata et al. 5,819.019 A 10/1998 Nelson
5,416,777 A 5/1995 Kirkham 5,822.532 A 10/1998 Tkeda
5,423,037 A 6/1995 Hvasshovd 5832514 A 11/1998 Norin et al.
5,434,865 A 7/1995 Kirkham 5.852.724 A * 12/1998 Glenn, Il et al. 709/239
5,435,003 A 7/1995 Chng et al. 5857073 A * 1/1999 Tsukamoto et al. 395/200.38
5,490,270 A 2/1996 Devarakonda et al. 5,867,714 A * 2/1999 Todd et al.
5,491,800 A 2/1996 Goldsmith et al. 5919247 A * 7/1999 Van Hoff et al. 709/217
5,537,532 A 7/1996 Chng et al. 5,933,422 A 8/1999 Kusano et al.
5,568,491 A 10/1996 Beal et al. 5935230 A * 81999 Pinaietal. ..oooune....... 710/111
5,666,486 A * 9/1997 Alfieri et al. 709/217 5.940,870 A 8/1999 Chi et al.
5,666,538 A * 9/1997 DeNicolacvvvn.... 713/320 5946689 A * 8/1999 Yanaka et al. 707/10
5,710,727 A 1/1998 Mitchell et al. 5,963,960 A 10/1999 Swart et al.
5,715,389 A 2/1998 Komori et al. 5968121 A * 10/1999 Logan et al. 709/219
5,737,601 A 4/1998 Jain et al. 5,968,140 A * 10/1999 Hall ..ooovvveveveeeeanene... 710/14
5,745,669 A * 4/1998 Hugard et al. 714/3 5,982,747 A 11/1999 Ramfelt et al.
5,754,752 A 5/1998 Sheh et al. 5,991,771 A 11/1999 Falls et al.
5,754 877 A 5/1998 Hagersten et al. 5.991.893 A 11/1999 Snider
5,757,642 A 5/1998 Jones 6,003,075 A 12/1999 Arendt et al.
5,768,523 A 6/1998 Schmidt 6,044,367 A * 3/2000 Wolff ..ooovvvvireeeeenenee. 707/1
5,768,524 A 6/1998 Schmudt 6,047323 A * 4/2000 Krauseoceeeeeeen... 709/227
5,781,737 A 7/1998 Schmidt 6,134,673 A * 10/2000 Chrabaszcz 714/13
5,787,247 A 7/1998 Norin et al. 6,173,420 B1 * 1/2001 Sunkara et al. 714/38
5,794,253 A 8/1998 Norin et al. 6,195,760 B1 * 2/2001 Chung et al. 714/4
5,805,839 A 9/1998 Singhal
5,806,075 A 9/1998 JIain et al. * cited by examiner

US 6,360,331 B2

Sheet 1 of 11

Mar. 19, 2002

U.S. Patent

g¢ SAVHO0¥d L "2
NOLLVOIddY
0S = S3TNAOW 9¢ S¢
— e vivad | WvHO0ud SWVYHOO0¥d W31SAS
-I..........Il........_...____._........_..._ ANVHO0¥d | L& ¥3HLO | NOLLVII'lddY | ONILYHIdO
N 7
~
(s)iayndwon 2 . P
a)ouwdY AN -
e
10BN €31y 3pIM ¢ 8z “_ -
MON Bauy * \6 + AN -
r == "
NV g |1 2oEH3 30e}Iaju| doe U] VeUdANU|
1S . mwmtmw | 1Og aALQ anugisial | @auQg WYED0Ud
FIOMION | LTS jeando anaubew ASiJ piEH —
/€ SITINAOWN
NYHOOMd J43H1O
9¢ SWVHOO0Ud
sng Wa)sAs NOILYOIddY
¢z (waysAg ofi4)
¢¢ W3ILSAS
ONILVHIdO
i9ydepy 19ydepy ¢ (Wwu)
}SOH O3pIA S
//// 6o m:_mwuoo._n_ 9¢ SO0Ig
JOJYUOIN pz (WOX)
AIOWdN WdjsAS
LY

US 6,360,331 B2

Sheet 2 of 11

Mar. 19, 2002

U.S. Patent

[
Wa)SAS

09

14
Wa)SAS

Vo9

¢ Old

d40IA30A
ANYONO

AdlS|D3Y

A31SN1O

sjoysdeus

aan}qNS

WwajsAg

€09

A
LWB)SAS

¢09

oLl

LS

8Ll

c8

4
LWB)SAS

bog

96

U.S. Patent Mar. 19,2002 Sheet 3 of 11 US 6,360,331 B2

Cluster Management
69
Tools

63 RPC

74
9 IPC

57 _
142 embership
Storage Manager
Device Checkpoint 92
87 Manager \ \
Quorum 98
Resource Failover \ __ Event \~ \ Manager 2

Manager

Processor

—
84 Node
/ \ _ Manager

Log
Manager

Resour 80
Monitors 102 Comm.
A 100 4

Manager

2y

Database
Manager

App
Resource

Logical App Physical -
Resource Resource Resource

DLL DLL DLL DLL
. : - . TO
' 102 Other
Logical S Systems

Cluster
Unaware

App

Resource |96 Physical

Object

Resource
Object

vy OId

ViVA NAQ A3¥H 0 [+
OIANOD LNIHAND ASMH) H
s¥asn“AaNH 0 [+]

wolsis L[] '

u wesboaq I '

US 6,360,331 B2

\
S
= —u}
<t z wesbosd CI[-] |
M | weaboad I _H_
FHYMLI0S I |+
~ funseg COJ |+
S yomppN OJ [+
= asempieq I |+
W \0 wnug OJ |+

b0l (0) 0L000000X0 3INIVA a¥Ooma O byuoo CJ [+

01100000 INTVAANVNIBD| 3NHOVATIVIOT ATIMH =3[~

b ONIRYLS. 3NTVYAONINLS O _ _
¥ISN INIYUND AINH I [+]

U.S. Patent

Agp1

t901

<90l

2]

U.S. Patent Mar. 19,2002 Sheet 5 of 11 US 6,360,331 B2

96 601
APPLICATION SYSTEM 1
(Program?2)
104
112
Subtree 1
Subtree 2A
: 114
NOTIFICATION
Subtree k MECHANISM
REGISTRY CHECKPOINT
SNAPSHOT | | MANAGER
MECHANISM

116 .

1184 . [SNAPSHOT f .
82 118, DATA 1 LIST OF REGISTERED

SNAPSHOT SUBTREES (PrograZ) .
DATA 2
OTHER FILES CLUSTER REGISTRY

(DATABASES) : .

SNAPSHOT 108

QUORUM DEVICE

FIG. 5 o

U.S. Patent Mar. 19,2002 Sheet 6 of 11 US 6,360,331 B2

60
96 2
 APPLICATION SYSTEM 2
- (Program2 g
L. ‘ _________ L 124 120

Subtree 1
Subtree 2A

126

............. NOTIFICATION
MECHANISM

Subtree k

- W W W — T W W o W Yw Wm W W T W W w T m = - e wm Ty

REGISTRY

RESTORE

MECHANISM
CHECKPOINT

MANAGER

1184 _ | SNAPSHOT
82 118, FILE 1 LIST OF REGISTERED |,
SNAPSHOT SUBTREES (Program2)
FILE 2

OTHER FILES

CLUSTER REGISTRY
(DATABASES)

SNAPSHOT
118, FILE m 110

QUORUM DEVICE

FIG. 6 >

U.S. Patent

FIG. 7

Mar. 19, 2002

700

Receive Request to
Create Registry

Checkpoint for
Specified Application

702

Receive Specified

Subtree(s) Associated
with Application

To FIG. 8

Sheet 7 of 11

706

Receive Request to Run

Specified Application

708
Does
Specified
Application
No Have Existing

Checkpoint
?

US 6,360,331 B2

U.S. Patent

Mar. 19, 2002 Sheet 8 of 11

From FIG. 7

Select First Subtree 800
Associated with

Specified Application

Take Snapshot 802
(Checkpoint Data) of
Selected Registry Subtree
on Local Machine

Write Checkpoint 804
Data to Quorum Disk

806

Another Subtree
Associated with

810

Specified
Application
Running
?

No

Specified
Application
?

Yes

To FIG. 10

Select Next
Reqist ubtree
Yes gistry S v

.

US 6,360,331 B2

808

U.S. Patent

FIG. 9

To FIG. 10

No

Mar. 19, 2002 Sheet 9 of 11

From FIG. 7

Select First Checkpoint
Associated with
Specified Application

900

Retrieve Selected 902
Registry Checkpcint
Data from Quoruin Disk

Overwrite Corresponding
Location in Local
Machine's Existing
Registry with Retrieved
Checkpoint Data

904

906

Another
Checkpoint
Associated with
Specified
Application
?

Yes

Select Next Chcpoint
Associated witn
Specified Application

US 6,360,331 B2

908

U.S. Patent

FIG. 10

To FIG. 11

Mar. 19, 2002 Sheet 10 of 11

From FIG. 9

Register for Registry

Subtree Change
Notifications

_ _ 1001
Begin Running
Application

1002

1000

Change
to Registry
Subtree
Detected
?

Yes 1004

No Take New Snapshot
(Checkpoint Data) of
Registry Subtree
1006

Overwrite Old Registry
Checkpoint Data on
Quorum Disk with New

Snapshot

1008

End of
Application

?

Yes No

US 6,360,331 B2

U.S. Patent Mar. 19,2002 Sheet 11 of 11 US 6,360,331 B2

1100

1102

Change

Notification
Pending

1104

Yes

Take New Snapshot
(Checkpoint Data)
of Registry Subtree 1106

Overwrite Old Registry
Checkpoint Data on
Quorum Disk with New

Snapshot Data
- — 1108
| Remove Change
Notification
1110
Another
1112 Change R

Notification
No

. " Yes
Complete the Pending
Shutdown ?

US 6,360,331 B2

1

METHOD AND SYSTEM FOR
TRANSPARENTLY FAILING OVER
APPLICATION CONFIGURATION

INFORMATION IN A SERVER CLUSTER

FIELD OF THE INVENTION

The 1nvention relates generally to computer network
servers, and more particularly to computer servers arranged
in a server cluster.

BACKGROUND OF THE INVENTION

A server cluster 1s a group of at least two independent
servers connected by a network and managed as a single
system. The clustering of servers provides a number of
benelits over independent servers. One 1important benedit 1s
that cluster software, which 1s run on each of the servers 1n
a cluster, automatically detects application failures or the
failure of another server in the cluster. Upon detection of
such failures, failed applications and the like can be termi-
nated and restarted on a surviving server.

Other benefits include the ability for administrators to
inspect the status of cluster resources, and accordingly
balance workloads among different servers in the cluster to
improve performance. Dynamic load balancing is also avail-
able. Such manageability also provides administrators with
the ability to update one server 1n a cluster without taking
important data and applications offline. As can be
appreciated, server clusters are used in critical database
management, fille and intranet data sharing, messaging,
general business applications and the like.

Thus, the failover of an application from one server (i.c.,
machine) to another may be automatic in response to a
software or hardware failure on the first machine, or alter-
natively may be manually initiated by an administrator. In
any event, to failover an application 1n a manner that 1s
transparent to the application and to the client requires that
the application’s execution environment be recreated on the
other machine. This execution environment comprises dis-
finct parts having different characteristics from one another,
a first part of which 1s the application code. The application
code changes very rarely, and thus an application’s code
environment may be replicated either by installing the
application on all of the machines which may run 1n a
cluster, or by installing the application on storage that is
shared by all machines 1 the cluster. When an application
needs to be restarted, the exact code 1s thus available to the
cluster.

Another part of the execution environment 1s the appli-
cation’s data, which changes very regularly. The applica-
fion’s data environment 1s best preserved by having the
application store all of 1ts data files on a shared disk, a task
that 1s ordinarily accomplished by inputting appropriate
information via the application’s user interface. When an
application needs to be restarted, the exact data 1s thus
available to the cluster.

A third part of the execution environment 1s the applica-
fion configuration information, which changes occasionally.
Applications that are “cluster-aware” (i.¢., designed with the
knowledge that they may be run in a clustering environment)
store their application configuration mnformation 1n a cluster
registry maintained on a shared disk, thus ensuring reliable
failover.

However, existing applications that are not cluster-aware
(i.e., legacy applications) use their local machine registry to
store their application configuration information. For

10

15

20

25

30

35

40

45

50

55

60

65

2

example, Windows NT applications use the WIN32 Regis-
try. As a result, this configuration data 1s not available to the
rest of the cluster. At the same time, it 1s impractical (and
likely very dangerous) to attempt to modify these legacy
applications so as to use the cluster registry mstead of their
local registry. Moreover, 1t 1s not feasible to transparently
redirect each of the local registries 1n the various machines
to the cluster registry, and costly to replicate copies of each
of the local registries to the various machines. Nevertheless,
in order to ensure correct and transparent behavior after a
failover, the application configuration information needs to
be recreated at the machine on which the application 1s being
restarted.

SUMMARY OF THE INVENTION

The present invention provides a method and system for
transparently failing over resource configuration 1nforma-
tion stored by a resource (such as an application) on a local
machine. More particularly, the application configuration
information written to a registry of a local machine 1s made
available to other machines of the cluster. The other
machines can rapidly obtain this application configuration
information and use 1t to recreate the application’s execution
environment on another machine in the cluster, ensuring a
rapid and transparent faillover operation.

Briefly, the present invention transparently fails over a
legacy application by tracking and checkpointing changes to
application configuration information that 1s stored locally,
such as 1n a system’s local registry. When an application
running on the first system makes a change to the application
conilguration mnformation 1n a subtree of the registry, the
change 1s detected by a notification mechanism. A snapshot
mechanism 1s notified, takes a snapshot of the subtree’s data,
and causes 1t to be written to a storage device shared by
systems of the cluster. When the application is failed over to
a second system, the snapshot for that application i1s
retrieved from the quorum disk by a restore mechanism and
written to the registry of the second system 1n a correspond-
ing subtree. The application 1s then run on the second system
using the restored application configuration mnformation for
that application.

Other benefits and advantages will become apparent from
the following detailed description when taken 1n conjunction
with the drawings, in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram representing a computer system
into which the present invention may be incorporated;

FIG. 2 1s a block diagram representing a server cluster
including various cluster machines and a shared quorum
device for storing cluster information;

FIG. 3 1s a representation of various components within
the clustering service of a machine;

FIG. 4 1s a representation of a local registry maintained on
a local machine;

FIG. 5 1s a block diagram generally representing the
components for writing local registry information to the
quorum device from a local machine 1n accordance with one
aspect of the present invention;

FIG. 6 1s a block diagram generally representing the
components for restoring registry information from the
quorum device to a registry of a local machine 1n accordance
with one aspect of the present mmvention; and

FIGS. 7-11 comprise a flow diagram generally represent-
ing the steps taken to failover application configuration
information in accordance with one aspect of the present
invention.

US 6,360,331 B2

3

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT
Exemplary Operating Environment

FIG. 1 and the following discussion are intended to
provide a brief general description of a suitable computing,
environment in which the invention may be implemented.
Although not required, the invention will be described 1n the
general context of computer-executable mstructions, such as
program modules, being executed by a personal computer.
Generally, program modules include routines, programs,
objects, components, data structures and the like that per-
form particular tasks or implement particular abstract data
types. Moreover, those skilled 1n the art will appreciate that
the mvention may be practiced with other computer system
configurations, including hand-held devices, multi-
processor systems, microprocessor-based or programmable
consumer electronics, network PCs, minicomputers, main-
frame computers and the like. The 1nvention may also be
practiced 1n distributed computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
computing environment, program modules may be located
in both local and remote memory storage devices.

With reference to FIG. 1, an exemplary system for imple-
menting the invention includes a general purpose computing
device 1n the form of a conventional personal computer 20
or the like acting as a node (1.e., system) in a clustering
environment. The computer 20 includes a processing unit
21, a system memory 22, and a system bus 23 that couples
various system components including the system memory to
the processing unit 21. The system bus 23 may be any of
several types of bus structures including a memory bus or
memory controller, a peripheral bus, and a local bus using
any of a variety of bus architectures. The system memory
includes read-only memory (ROM) 24 and random access
memory (RAM) 25. A basic input/output system 26 (BIOS),
containing the basic routines that help to transfer informa-
fion between elements within the personal computer 20,
such as during start-up, 1s stored in ROM 24. The personal
computer 20 may further include a hard disk drive 27 for
reading from and writing to a hard disk, not shown, a
magnetic disk drive 28 for reading from or writing to a
removable magnetic disk 29, and an optical disk drive 30 for
reading from or writing to a removable optical disk 31 such
as a CD-ROM or other optical media. The hard disk drive
27, magnetic disk drive 28, and optical disk drive 30 are
connected to the system bus 23 by a hard disk drive interface
32, a magnetic disk drive interface 33, and an optical drive
interface 34, respectively. The drives and their associated
computer-readable media provide non-volatile storage of
computer readable instructions, data structures, program
modules and other data for the personal computer 20.
Although the exemplary environment described herein
employs a hard disk, a removable magnetic disk 29 and a
removable optical disk 31, 1t should be appreciated by those
skilled 1n the art that other types of computer readable media
which can store data that 1s accessible by a computer, such
as magnetic cassettes, flash memory cards, digital video
disks, Bernoulli cartridges, random access memories
(RAMs), read-only memories (ROMs) and the like may also
be used 1n the exemplary operating environment.

A number of program modules may be stored on the hard
disk, magnetic disk 29, optical disk 31, ROM 24 or RAM 28§,
including an operating system 35 (which may be considered
as including or operatively connected to a file system), one
or more application programs 36, other program modules 37
and program data 38. A user may enter commands and

10

15

20

25

30

35

40

45

50

55

60

65

4

information mto the personal computer 20 through input
devices such as a keyboard 40 and pointing device 42. Other
input devices (not shown) may include a microphone,
joystick, game pad, satellite dish, scanner or the like. These
and other 1nput devices are often connected to the processing
unit 21 through a serial port interface 46 that 1s coupled to
the system bus, but may be connected by other interfaces,
such as a parallel port, game port or universal serial bus
(USB). A monitor 47 or other type of display device is also
connected to the system bus 23 via an interface, such as a
video adapter 48. In addition to the monitor 47, personal
computers typically include other peripheral output devices
(not shown), such as speakers and printers.

The personal computer 20 operates 1n a networked envi-
ronment using logical connections to one or more remote
computers 49. At least one such remote computer 49 1is
another system of a cluster communicating with the personal
computer system 20 over the networked connection. Other
remote computers 49 may be another personal computer
such as a client computer, a server, a router, a network PC,
a peer device or other common network system, and typi-
cally includes many or all of the elements described above
relative to the personal computer 20, although only a
memory storage device 50 has been illustrated in FIG. 1. The
logical connections depicted 1 FIG. 1 include a local area
network (LAN) 51 and a wide area network (WAN) 52. Such
networking environments are commonplace in offices,
enterprise-wide computer networks, Intranets and the Inter-
net. Other mechanisms suitable for connecting computers to
form a cluster include direct connections such as over a
serial or parallel cable, as well as wireless connections.
When used 1n a LAN networking environment, as 1s typical
for connecting systems of a cluster, the personal computer
20 1s connected to the local network 51 through a network
interface or adapter 53. When used in a WAN networking
environment, the personal computer 20 typically includes a
modem 54 or other means for establishing communications
over the wide area network 52, such as the Internet. The
modem 54, which may be internal or external, 1s connected
to the system bus 23 via the serial port interface 46. In a
networked environment, program modules depicted relative
to the personal computer 20, or portions thereof, may be
stored 1n the remote memory storage device. It will be
appreciated that the network connections shown are exem-
plary and other means of establishing a communications link
between the computers may be used.

The preferred system 20 further includes a host adapter 55
or the like which connects the system bus 23 to a SCSI
(Small Computer Standard Interface) bus §6 for communi-
cating with at least one persistent memory storage device 57,
also referred to herein as a quorum device. Of course, other
ways of connecting cluster systems to a storage device,
including Fiber Channel, are equivalent. In any event, as
shown 1n FIG. 2, the computer system 20 may comprise the
system 60,, while one of the remote computers 49 may be
similarly connected to the SCSI bus 56 and comprise the
system 60,, and so on. Note that multiple shared storage
devices may be connected to the SCSI bus 56 (or the like)
such as for purposes of resilience to disk failure through the
use of multiple disks, 1.e., software and/or hardware-based
redundant arrays ol inexpensive or independent disks
(RAID).

To create a new cluster, a system administrator runs a
cluster installation utility on a system that then becomes a
first member of the cluster 58. For a new cluster 58, a
database 1s created and the initial cluster member 1nforma-
tion 1s added thereto. The administrator then configures any

US 6,360,331 B2

S

devices that are to be managed by the cluster software. At
this time, a cluster exists having a single member, after
which the installation procedure 1s run on each of the other
members of the cluster. For each added member, the name
of the existing cluster 1s entered and the new system receives
a copy of the existing cluster database.

As shown 1n FIG. 3, to accomplish cluster creation and to
perform other administration of cluster resources, systems,
and the cluster itself, a cluster application programming
interface (API) 68 is provided. Applications and cluster
management admainistration tools 69 call various interfaces
in the API 68 using remote procedure calls (RPC), whether
running in the cluster or on an external system. The various
interfaces of the API 68 may be considered as being cat-
cgorized by their association with a particular cluster
component, 1.€., systems, resources and the cluster 1itself.
Cluster Service Components

FIG. 3 provides a representation of the cluster service
components and their general relationships in a single sys-
tem (e.g., 60,) of a Windows NT cluster. A cluster service 70
controls the cluster operation on a cluster system 38, and 1s
preferably implemented as a Windows NT service. The
cluster service 70 includes a node manager 72, which
manages node configuration information and network con-
figuration information (e.g., the paths between nodes). The
node manager 72 operates 1n conjunction with a membership
manager 74, which runs the protocols that determine what
cluster membership 1s when a change (e.g., regroup) occurs.
A communications manager 76 (kernel driver) manages
communications with other systems of the cluster 58 via one
or more network paths. The communications manager 76
sends periodic messages, called heartbeats, to counterpart
components on the other systems of the cluster 38 to provide
a mechanism for detecting that the communications path 1s
oood and that the other systems are operational. Through the
communications manager 76, the cluster service 70 1s essen-
fially 1n constant communication with the other systems of
the cluster. In a small cluster, communication 1s fully
connected, 1.e., all systems of the cluster 58 are 1n direct
communication with all other systems.

Systems (¢.g., 60,—60; of FIG. 2) in the cluster 58 have the
same view ol cluster membership, and 1n the event that one
system detects a communication failure with another
system, the detecting system broadcasts a message to the
cluster 58 causing other members to verify their view of the
current cluster membership. This 1s known as a regroup
event, during which writes to potentially shared devices are
disabled until the membership has stabilized. If a system
does not respond, 1t 1s removed from the cluster 58 and its
active groups are failed over (“pulled”) to one or more active
systems. Note that the failure of a cluster service 70 also
causes 1ts locally managed resources to fail.

The cluster service 70 also includes a configuration data-
base manager 80 which implements the functions that main-
tain a cluster configuration database on a local device such
as a disk and/or memory, and a configuration database 82
(FIG. 2) on the common persistent storage devices, (e.g.,
storage device 57). The database maintains information
about the physical and logical entities 1n the cluster 58,
including the cluster itself, systems, resource types, quorum
resource conflguration, network configuration, groups, and
resources. Note that both persistent and volatile information
may be used to track the current and desired state of the
cluster. The database manager 80 cooperates with counter-
part database managers of systems in the cluster 38 to
maintain configuration information consistently across the
cluster 58. As described below, global updates are used to

10

15

20

25

30

35

40

45

50

55

60

65

6

ensure the consistency of the cluster database 1 each of
systems. The configuration database manager 80 also pro-
vides an interface to the configuration database 82 for use by
the other cluster service 70 components.

A logging manager 84 provides a facility that works with
the database manager 80 to maintain cluster state informa-
fion across a situation 1n which a cluster shuts down and a
new cluster 1s later formed with no members common to the
previous cluster, known as a temporal partition. The logging
manager 84 operates with a log file, preferably maintained
on the quorum device (storage device 57), to unroll logged
state changes when forming a new cluster following a
temporal partition.

A failover manager 87 makes resource/group manage-
ment decisions and initiates appropriate actions, such as
startup, restart and failover. The failover manager 87 1is
responsible for stopping and starting the system’s resources,
managing resource dependencies, and for initiating failover
of groups. A group 1s a collection of resources organized to
allow an administrator to combine resources into larger
logical units and manage them as a unit. Usually a group
contains all of the elements needed to run a specific
application, and for client systems to connect to the service
provided by the application. For example, a group may
include an application that depends on a network name,
which in turn depends on an Internet Protocol (IP) address,
all of which are collected 1n a single group. In a preferred
arrangement, the dependencies of all resources 1n the group
are maintained 1 a directed acyclic graph, known as a
dependency tree. Group operations performed on a group
affect all resources contained within that group. Dependency
trees are described 1n more detail in U.S. patent application
Ser. No. 08/963,049 entitled “Method and System for
Resource Monitoring of Disparate Resources 1n a Server
Cluster,” assigned to the same assignee as the present
invention.

The failover manager 87 receives resource and system
state information from at least one resource monitor 90 and
the node manager 72, for example, to make decisions about
ogroups. The failover manager 87 1s responsible for deciding
which systems 1n the cluster should “own” which groups.
Those systems that own 1ndividual groups turn control of the
resources within the group over to their respective failover
managers 87.

An event processor 92 connects the components of the
cluster service 70 via an event nofification mechanism. The
event processor 92 propagates events to and from applica-
tions (e.g., 94 and 96) and to and from the components
within the cluster service 70, and also performs miscella-
neous services such as delivering signal events to cluster-
aware applications 94. The event processor 92, in conjunc-
tion with an object manager 98, also maintains various
cluster objects. A global update manager 100 operates to
provide a global update service that 1s used by other com-
ponents within the Cluster Service 70.

The global update protocol (GLUP) is used by the global
update manager 100 to broadcast updates to each node 1n a
cluster. GLUP generally comprises a standard global update
message format, state information maintained 1n each node,
and a set of rules that specify how global update should be
processed and what steps should be taken when failures
occur. In general, according to the GLUP protocol, one node
(e.g. 60.) serves as a “locker” node. The locker node 60,
ensures that only one global update 1s 1n progress at any
given time. With GLUP, a node (e.g., 60,) wishing to send
an update to other nodes first sends a request to the locker
node 60,. When any preceding updates are complete, the

US 6,360,331 B2

7

locker node 60, gives permission for this “sender” node 60,
to broadcast its update to the other nodes 1n the system. In
accordance with GLUP, the sender node sends the updates,
one at a time, to the other nodes 1n a predetermined GLUP
order that 1s ordinarily based on a unique number assigned
to each node. GLUP can be utilized to replicate data to the
machines of a cluster, including application conifiguration
imnformation, as described below. A more detailed discussion
of the GLUP protocol 1s described 1n the publication “Tan-
dem Systems Review” Volume 1, Number 2, June, 1985 pp.
74-84.

A resource monitor 90 runs 1n one or more processes that
may be part of the cluster service 70, but are shown herein
as being separate from the cluster service 70 and commu-
nicating therewith via Remote Procedure Calls (RPC) or the
like. The resource monitor 90 monitors the health of one or
more resources (e.g., 102,—102;) via callbacks thereto. The
monitoring and general operation of resources 1s described
in more detail in U.S. patent application Ser. No. 08/963,
049, hereby incorporated by reference herein 1n its entirety.

The resources (e.g., 102,—-102,) are implemented as one
or more Dynamically Linked Libraries (DLLS) loaded into
the address space of the Resource Monitor 102. For
example, resource DLLs may include physical disk, logical
volume (consisting of one or more physical disks), file and
print shares, network addresses and names, generic service
or application, and Internet Server service DLLs. Certain
resources (e.g., provided by a single source) may be run in
a single process, while other resources may be run 1n at least
one other process. The resources 102,—-102; run in the
system account and are considered privileged code.
Resources 102,-102. may be defined to run in separate
processes, created by the Cluster Service 70 when creating,
rESOUrces.

Resources expose 1mnterfaces and properties to the cluster
service 70, and may depend on other resources, with no
circular dependencies allowed. I a resource does depend on
other resources, the resource 1s brought online after the
resources on which 1t depends are already online, and 1is
taken offline before those resources. Moreover, each
resource has an associated list of systems 1n the cluster on
which this resource may execute. For example, a disk
resource may only be hosted on systems that are physically
connected to the disk. Also associated with each resource 1s
a local restart policy, defining the desired action in the event
that the resource cannot continue on the current system.

Systems 1n the cluster need to maintain a consistent view
of time. One of the systems, known as the time source and
selected by the administrator, includes a resource that imple-
ments the time service. Note that the time service, which
maintains consistent time within the cluster 58, 1s 1mple-
mented as a resource rather than as part of the cluster service
70 1tself.

From the point of view of other systems 1n the cluster 58
and management interfaces, systems in the cluster 38 may be
in one of three distinct states, offline, online or paused. These
states are visible to other systems 1n the cluster 58, and thus
may be considered the state of the cluster service 70. When
offline, a system 1s not a fully active member of the cluster
58. The system and its cluster service 70 may or may not be
running. When online, a system 1s a fully active member of
the cluster 38, and honors cluster database updates, can
contribute one or more votes to a quorum algorithm, main-
tains heartbeats, and can own and run groups. Lastly, a
paused system 1s a fully active member of the cluster 58, and
thus honors cluster database update, can contribute votes to
a quorum algorithm, and maintain heartbeats. Online and

10

15

20

25

30

35

40

45

50

55

60

65

3

paused are treated as equivalent states by most of the cluster
software, however, a system that 1s 1n the paused state cannot
honor requests to take ownership of groups. The paused state
1s provided to allow certain maintenance to be performed.

Note that after 1initialization 1s complete, the external state
of the system 1s offline. The event processor calls the node
manager 72 to begin the process of joining or forming a
cluster. To join a cluster, following the restart of a system,
the cluster service 70 1s started automatically. The system
configures and mounts local, non-shared devices. Cluster-
wide devices are left offline while booting, because they may
be 1n use by another node. The system tries to communicate
over the network with the last known members of the cluster
58. When the system discovers any member of the cluster,
it performs an authentication sequence wherein the existing
cluster system authenticates the newcomer and returns a
status of success if authenticated, or fails the request if not.
For example, 1f a system 1s not recognized as a member or
its credentials are invalid, then the request to join the cluster
1s refused. If successful, the newcomer 1s sent an updated
copy of the shared database. The joining system uses this
shared database to find shared resources and to bring them
online as needed, and also to find other cluster members.

If a cluster 1s not found during the discovery process, a
system will attempt to form its own cluster. In general, to
form a cluster, the system gains exclusive access to a special
resource known as the quorum resource (quorum device or
disk) §7. The quorum resource 57 1s used as a tie-breaker
when booting a cluster and also to protect against more than
one node forming its own cluster 1if communication fails in
a multiple node cluster. The quorum resource is often (but
not necessarily) a disk that maintains the state of the cluster,
which a node arbitrates for and needs possession of before
it can form a cluster. The quorum resource 57 preferably
maintains a log file that 1s unrolled to ensure consistency
across a temporal partition when forming a new cluster, after
another cluster previously existed. The node 57 that has
possession of the quorum resource 1s responsible for logeing
operations, and thus 1f application configuration information
1s replicated, such an operation 1s logged. Also, the quorum
resource 357 offers a method for arbitrating a quorum
resource object, typically by challenging (or defending) for
an exclusive reservation of a storage device (e.g., 57 of FIG.
2A) such as a disk that ordinarily stores log data for the
cluster. Amethod for releasing an exclusive reservation may
also be provided. The general operation of quorum resources
including arbitration and exclusive possession of the quorum
resource 1s described in more detail in U.S. patent applica-
tion Ser. No. 08/963,050 entitled “Method and System {for
Quorum Resource Arbitration in a Server Cluster,” assigned
to the same assignee and hereby incorporated by reference
herein 1n its entirety.

When leaving a cluster, a cluster member will send a
ClusterExit message to all other members 1n the cluster,
notifying them of its intent to leave the cluster. The exiting
cluster member does not wait for any responses and 1mme-
diately proceeds to shutdown all resources and close all
connections managed by the cluster software. Sending a
message to the other systems in the cluster when leaving
saves the other systems from discovering the absence by a
fime-out operation.

Once online, a system can have groups thereon. A group
can be “owned” by only one system at a time, and the
individual resources within a group are present on the
system which currently owns the Group. As a result, at any
orven 1nstant, different resources within the same group
cannot be owned by different systems across the cluster.

US 6,360,331 B2

9

Groups can be failed over or moved from one system to
another as atomic units. Each group has a cluster-wide
policy associated therewith comprising an ordered list of
owners. A group fails over to systems in the listed order.

For example, if a resource (e.g., an application) fails, the
fallover manager 87 may choose to restart the resource, or
to take the resource offline along with any resources depen-
dent thereon. If the failover manager 87 takes the resource
offline, the group 1s restarted on another system in the
cluster, known as pushing the group to another system. A
cluster administrator may also manually 1nitiate such a
oroup transfer. Both situations are similar, except that
resources are gracefully shutdown for a manually mitiated
failover, while they are forcefully shut down in the failure
case.

When an entire system 1n the cluster fails, its groups are
pulled from the failed system to another system. This
process 1s similar to pushing a group, but without the
shutdown phase on the failed system. To determine what
groups were running on the failed system, the systems
maintain group information on each node of the cluster in a
database to track which systems own which groups. To
determine which system should take ownership of which
ogroups, those systems capable of hosting the groups nego-
fiate among themselves for ownership, based on system
capabilities, current load, application feedback and/or the
group’s system preference list. Once negotiation of a group
1s complete, all members of the cluster update their data-
bases to properly reflect which systems own which groups.

When a previously failed system comes back online, the
fallover manager 87 decides whether to move some groups
back to that system, 1n an action referred to as failback. To
automatically failback, groups require a defined preferred
owner. Groups for which the newly online system 1s the
preferred owner are pushed from the current owner to the
new system. Protection, 1n the form of a timing window, 1s
included to control when the failback occurs.

Failing Over Application Configuration Information

Although the present invention primarily provides ben-
cfits with legacy applications, as will become apparent
below, other types of resources may be failed over to other
systems of a cluster. Accordingly, the present mvention will
be described with respect to the failing over of application
conflguration information stored 1n a local registry, however
it 1s understood that i1t will operate 1n an equivalent manner
with other types of resources that may store their configu-
ration information locally rather than with the cluster. Thus,
as used herein, the term “application” and “resource” are
equivalent when used with respect to the failing over of
appropriate conflguration mformation.

In accordance with one aspect of the present invention,
there 1s provided a method and system for tracking and
checkpointing changes to a local system’s registry, such that
application configuration changes that would otherwise be
lost are protected from machine failures. As will be
described below, because the registry checkpointing 1s trans-
parent to the application, no application changes are
required, whereby a legacy application which stores its
coniliguration in the local registry may be reliably used 1n a
fallover environment.

As represented 1n FIG. 4, a local system’s registry 104 1s
essentially a database indexed by a number of keys
106,—106, hierarchically arranged into trees and subtrees.
As shown 1n FIG. 4, the keys (particularly the low level
subtrees) typically have named data associated therewith
including strings, binary values and/or DWORDs. As
described above, legacy applications store configuration

10

15

20

25

30

35

40

45

50

55

60

65

10

information 1n the local registry 104, and occasionally make
changes thereto. For example, as shown in FIG. 4, an
application named “Program?2” has configuration informa-
tion 1ndexed at HKEY_LOCAL_MACHINE/
SOFTWARE/Program?2, including a string, a binary value
and a DWORD.

FIG. 5 represents the general architecture for tracking and
checkpointing changes to configuration information on a
first system (e.g., 60.), while FIG. 6 represents the general
architecture for failing over the information to another
system (e.g., 60,) of the cluster 58. In general, whenever an
application 96 1s 1nitially nstalled on any cluster machine,
a list 108 of registry subtrees associated with that application
96 may be generated. As can be appreciated, this may be
accomplished by noting the differences to the local registry
key structure after the application 96 1s installed. This list
108 1s preferably stored in the cluster registry 110 of the
quorum device 57 under a registry key for that resource,
however it may be maintained elsewhere in the cluster (such
as replicated in its systems) if desired. In any event, when-
ever the application 96 1s run, a checkpoint manager 112
accesses the list 108 and registers each subtree in the
application’s list of registry subtrees with a noftification
mechanism 114. The notification mechanism 114 watches
the registry 104, and, whenever a change to a registered
subtree 1s detected, informs the checkpoint manager 112 of
the change. When notified of a change, the checkpoint
manager 112, via a snapshot mechanism 116, takes a snap-
shot of the listed subtree data and records the snapshot as
data 118,-118 _ associated with that application 96 (e.g.,
snapshot data 118,) on the quorum device 57. The data may
be stored as text (i.e., human readable) data.

More particularly, to accomplish the checkpointing
operation, the checkpoint manager 112 1s associated with an
interface that includes three cluster resource controls which
may be sent to a particular application resource’s DLL (e.g.,
102, FIG. 3) with a ClusterResourceControl function. A
first resource control, CLCTL ADD REGISTRY
CHECKPOINT, includes a pointer named lpInBuffer, which
points to a null-terminated Unicode string. The string speci-
fies the name of the registry key at the root of the subtree that
should be checkpointed for the specified resource. Since
local application subtrees are stored under the HKEY_ _
LOCAL__MACHINE key 1065, the key name string 1is
preferably shortened relative to HKEY__LOCAL__
MACHINE, ¢.g., the exemplary application 1s simplified to
“SOFTWARE/Program?2.” Thus, this control function adds a
subtree to the subtree list 108 that 1s associated with an
application.

A second resource control, which essentially performs the
opposite function, 1s named CLCTL_DELETE__
REGISTRY__CHECKPOINT, and similarly includes a
pointer, IpInBufler, to a null-terminated Unicode string. This
string speciiies the name of a registry key that was previ-
ously registered with CLCTL__ADD__REGISTRY__
CHECKPOINT. When called, the specified subtree pointed
to by lpInBuifer will no longer be checkpointed for the
specified resource. Lastly, a control function named
CLCTL_GET__REGISTRY__CHECKPOINTS includes a
pointer to a bufler named IpOutBufler, which when 1nvoked,
returns a REG__MULTI_SZ list of registry keys that have
been added to the specified resource’s list 108 with
CLCTL_ADD__REGISTRY__CHECKPOINT.

Using this general-purpose checkpointing facility, each
resource may have a list of registry subtrees 108 to check-
point. To receive notifications when the application 96
changes 1its configuration information, the notification

US 6,360,331 B2

11

mechanism 114 preferably utilizes a WIN32 API named
RegNotifyChangeKey(), via which a registry notification
will be posted on each of a resource’s subtrees when that
resource 1s online. When any registry data 1s modified in a
subtree with a notification posted thereon, a notification fires
and the snapshot mechanism 116 of the checkpoint manager
112 takes a snapshot of the registry subtree (or trees). To
accomplish the snapshot, the snapshot mechanism 116 pref-
erably utilizes the WIN32 API named RegSaveKey().

In keeping with the invention, to provide faillover support,
the snapshot data 1s saved to the quorum device 57, refer-
enced by the resource ID (a globally unique identifier, or
GUID) and a unique checkpoint ID, which is an arbitrary
DWORD. The interface for saving the data to the quorum
device 1s set forth 1n the table below:

DWORD

CpSaveData(
IN PEM__RESOURCE Resource,
IN DWORD dwCheckpointld,
IN PVOID IpData,
IN DWORD lpcbData

)

The CpSaveData function checkpoints arbitrary data for
the specified resource. The checkpointed data 1182 1s stored
on the quorum device 57 to ensure that 1t survives temporal
partitions, and so that any node 1n the cluster may save or
retrieve the checkpointed data 1182. The Resource arcument
supplies the resource associated with this data, while the
dwCheckpointld argcument provides a unique checkpoint
identifier describing this data. The caller 1s responsible for
ensuring the uniqueness of the checkpoint identifier. Another
arcument, lpData supplies a pointer to the checkpoint data,
while IpcbData provides the length (in bytes) of the check-
point data pointed to by IpData. The function returns a value
of ERROR__SUCCESS 1f successtul, or a Win32 error code
otherwise.

In accordance with another aspect of the present
invention, once application configuration information 1is
checkpointed (e.g., as the data 118,) to the quorum device
57, the application configuration information may be
restored to any other node of the cluster §8. Thus, to faillover
an application to another system 60,, the checkpoint man-
ager 120 on the other system 60, includes a restore mecha-
nism 122 that essentially reverses the checkpointing opera-
tion. As represented in FIG. 6, when a resource 96 1s failed
over, but before it 1s brought online on another system, (as
represented by the dashed box), its checkpointed registry
data 118, 1s retrieved and restored into the other system’s
local registry 124.

To this end, another function, CpGetData(), 1s provided to
retrieve the checkpointed data for a specified resource 96,
1.€., the data 118, which was saved to the quorum device 57
by CpSaveData(). The CpGetData() function is set forth in
the table below:

DWORD

CpGetData(
IN PEM_ RESOURCE Resource,
IN DWORD dwCheckpointld,
OUT PVOID *IpData,
OUT DWORD *lpcbData

)

10

15

20

25

30

35

40

45

50

55

60

65

12

In the present example with the CpGetData function,
Resource 1dentifies the resource 96 associated with this data
118, while dwCheckpointld supplies the unique checkpoint
ID describing this data. The lpData argument returns a
pointer to the checkpoint data, and lpcbData returns the
length (in bytes) of the checkpoint data pointed to by IpData.
The caller 1s responsible for freeing the memory, and as
before, the caller 1s responsible for ensuring the uniqueness
of the checkpoint identifier. The CpGetData function returns
a value of ERROR SUCCESS 1f successtul, or a Win32
error code otherwise.

To restore the registry, the restore mechanism 122 utilizes
the RegRestoreKey() WIN32 API for each checkpointed
subtree. Once the other system’s registry 124 1s restored, the
resource can be brought online, 1.e., the failed over appli-
cation 96 can be run. However, because this other system
60, may also fail, the application configuration information
1s also first tracked and checkpointed on the new system, in
accordance with the present invention and as described
above, 1.., using a notification mechanism 126.

Turning to an explanation of the operation of the inven-
tion with particular respect to the flow diagrams of FIGS.
7—11, the checkpointing operation 1s initiated when a request
1s received, either to mitially create an initial registry check-
point (step 700) for an application on the quorum device, or
to run the application (step 706). In any event, at this time
a cluster application (e.g., 96) and its associated registry
subtree 108 are known. If the request 1s to create a registry
checkpoint (e.g., 118,), then step 702 obtains the subtree (or
subtrees) associated with the application from the list 108
thereof 1n the cluster registry 110, and continues to step 800
of FIG. 8. Alternatively, if the application 96 1s to be run, any
initial steps to run the application 96, (e.g., allocate space in
memory) may be performed. Then, step 708 determines if a
checkpoint 118, already exists for this particular application
on the quorum device 57, and 1f so, continues on to update
the application’s configuration information and then run the
application 96, as described below with reference to FIG. 9.
If no checkpoint 118, exists for this resource 96, then step
708 branches to step 702 and then to step 800 of FIG. 8.

At step 800 of FIG. 8, to create a registry checkpoint 118.,,
a first subtree associated 1s selected and a snapshot 1s made
of the specified registry subtree (using the RegSaveKey()
WIN32 API) as described above. The registry checkpoint
data 1s then saved to the cluster quorum device 118, as also
described above (CpSaveData). Note that it is possible to
also generate the subtree list 108 associated with the appli-
cation (using CLCTL_ ADD_REGISTRY _
CHECKPOINT) at this time, or the list 108 can be generated
in advance (step 702). If there is more than one subtree of
application configuration information for an application, the
process 1s repeated for each subtree via steps 806—808. This
ensures that the appropriate application configuration infor-
mation will be available to other cluster systems if the
current system fails, as the registry subtree and 1ts location
on the quorum device 57 are now associated with the cluster
application.

When the application has been 1mnitially checkpointed, step
810 tests the state of the cluster application 96. If at step 810
the application 96 1s not currently running, nothing further
needs to be done, and thus the process ends and waits for the
application to be run at some later time. Otherwise the
system proceeds to step 1000 of FIG. 10, where the process
will register for change notifications and take any remaining
steps to run the application (step 1001) as described below.

The steps of FIG. 9 are executed when a request 1s
received to run an application (e.g., 96) that has an existing

US 6,360,331 B2

13

checkpoint 1182 on the quorum device 57. In general, before
the application 96 1s started, the checkpointing process
enumerates all the registry checkpoints associated with the
cluster application 96. To this end, for each checkpoint, via
steps 900-908, cach registry snapshot associated with the
application (e.g., 118.,) is retrieved from its location on the
quorum device 57 (using CpGetData), and restored into the
current machine’s (e.g., 60,) local registry 124 using the
RegRestoreKey() API. As a result, any previously existing
data at that location 1n the current system’s local registry 124
1s overwritten with the stored registry snapshot 118,
whereby the application 96 will not see any stale data that
may have been 1n the current system’s local registry 124.

Next, after each checkpoint has been restored into the
local registry 124, the checkpoint manager 120 (via the
notification mechanism 126) registers for registry change
notifications associated with the registry subtree, using the
WIN32 API named RegNotifyChangeKey() as described
above. At this time, the application 96 1s allowed to run.

As represented 1in FIG. 10, any subsequent modifications
to the specified registry data alert the notification mechanism
126. The API preferably works asynchronously to report a
change to the registry 124, although for purposes of
simplicity, FIG. 10 represents the monitoring for changes (or
detecting the end of the application) in a loop (steps
1002-1008). In any event, when a change 1s detected as
represented by step 1002, at step 1004, the checkpoint
manager 120 takes a snapshot of the registry subtree that has
changed as described above. Then, at step 1006, the existing
registry checkpoint data 118, on the quorum device 57 1s
overwritten with the new snapshot of the registry subtree.
Note that 1n a preferred embodiment, the communication
mechanism of the current system 60, transfers this infor-
mation to the system that has exclusive possession of the
quorum device 57, which then writes the data. In this
manner, each time that the registry data 118, 1s modified, the
appropriate subtree 1s copied to the quorum device 57,
whereby 1f the application 1s moved to another node, the
confliguration information 1s current on the new node.

FIG. 11 represents the steps taken when an application
ends. As shown by steps 1102-1110, any registry change
notifications associated with that application are removed so
as to no longer fire upon a change. This 1s synchronized 1n
such a way as to ensure that any registry modifications
pending during the application shutdown are detected by the
notification mechanism 126 and a new snapshot taken. Then,
the shutdown of the application 1s completed at step 1112.

Lastly, as can be appreciated, instead of using the shared
quorum device 57, the checkpoint manager 104 alternatively
may write the information to at least one other non-volatile
storage device shared by systems 1n the cluster. In another
alternative, the checkpoint manager 104 may cause the
information to be replicated via GLUP or some other com-
munications mechanism to the other systems of the cluster.
Note that such a replication operation would be logged on
the quorum device 57, so that changes to the configuration
information would survive a temporal partition. Moreover,
rather than snapshot the enfire set of subtrees, 1t 1s feasible
to alternatively provide a mechanism that transfers only
change information, for example 1f the subtree data is
otherwise relatively large.

As can be seen from the foregoing detailed description,
there 1s provided a method and system for transparently
failing over resource configuration information stored by an
application on a local machine. The application configura-
tion information written to a registry of a local machine 1s
made available to other machines of the cluster. The other

10

15

20

25

30

35

40

45

50

55

60

65

14

machines can rapidly obtain this application configuration
information and use 1t to recreate the application’s execution
environment on another machine in the cluster, ensuring a
rapid and transparent faillover operation.

While the i1nvention 1s susceptible to various modifica-
tions and alternative constructions, certain 1illustrated
embodiments thereof are shown in the drawings and has
been described above 1n detail. It should be understood,
however, that there 1s no mntention to limit the mvention to
the specific forms disclosed, but on the contrary, the mten-
tion 1s to cover all modifications, alternative constructions,
and equivalents falling within the spirit and scope of the
invention.

What 1s claimed 1s:

1. In a server cluster including at least two server systems,
a method of failing over a non-cluster-aware application
from a first system to a second system of the cluster,
comprising, locally maintaining application conifiguration
information for the non-cluster-aware application on the first
and second systems, the application configuration informa-
fion separately maintained and used by an instance of the
application executing on each system to determine at least
part of an execution environment, running an 1nstance of the
non-cluster-aware application on the first system, the non-
cluster-aware application instance making a change to the
application configuration mnformation, detecting the change
to the application configuration information on the first
system, and, 1n response to the change, making data repre-
sentative of the change available to the second system, and
running another instance of the non-cluster-aware applica-
fion on the second system using the data made available
thereto.

2. The method of claim 1 wherein the application con-
figuration information is maintained 1n a registry of the first
system, and wherein detecting a change to the application
conilguration information includes monitoring for a change
to data 1n at least one subtree associated with the non-
cluster-aware application in the registry.

3. The method of claim 2 wherein making data represen-
tative of the change available to the second system includes
making a copy of the data in each subtree having a change
detected thereto.

4. The method of claim 1 wherein making data represen-
tative of the change available to the second system com-
prises writing the data to a storage device shared by systems
of the cluster.

5. The method of claim 4 wherein making data represen-
tative of the change available to the second system further
comprises retrieving the data from the storage device and
passing the data to the second system.

6. The method of claim 1 wherein making data represen-
tative of the change available to other systems 1n the cluster
comprises storing the data 1n a quorum device of the cluster.

7. The method of claim 1 wherein making data represen-
tative of the change available to other systems 1n the cluster
comprises the step communicating the data to at least one
other system 1n the cluster.

8. The method of claim 1 wherein the first system and the
second system each locally maintain application configura-
tion mnformation for the non-cluster-aware application in a
registry, and wherein making data representative of the
change available to the second system comprises, reading
subtree data of the registry in the first system, writing the
subtree data to a storage device shared by systems in the
cluster, and retrieving the subtree data from the storage
device to the registry of the second system.

9. The method of claim 1 wherein the non-cluster-aware
application has a list of subtrees associated therewith, and

US 6,360,331 B2

15

further comprising registering each of the subtrees in the list
with a notification mechanism for detecting changes thereto.

10. The method of claim 1 further comprising terminating
the 1nstance of the non-cluster-aware application on the first
system.

11. The method of claim 1 wherein the cluster includes a
third system, and further comprising, locally maintaining
application configuration information for another applica-
fion on the first system, running an instance of the other
application on the first system, detecting a change to the
other application configuration information, and, in response
to the change, making data representative of the change
available to the third system, and running another instance
of the other application on the third system using the data
made available thereto.

12. A computer-readable medium having computer-
executable instructions for performing the method of claim

1.

13. In a server cluster including at least two server
systems, a system for failing over a non-cluster-aware
application from a first system to a second system of the
cluster, comprising, a local registry on each of the first and
second systems that are not replicas of one another, each
local registry configured to store application configuration
information of the non-cluster-aware application, the appli-
cation configuration information used to determine at least
part of an execution environment for instances of the appli-
cation executing on each system, a storage device shared by
the first and second systems, a notification mechanism 1n the
first system configured to detect a change made by an
instance of the application executing on the first system to a
subtree 1n the registry associated with the non-cluster-aware
application and to provide a notification 1n response thereto,
a snapshot mechanism 1n the first system responsive to the
notification and configured to read the registry and save
subtree data to the storage device, and a restore mechanism
in the second system configured to retrieve the subtree data
from the storage device and to update the registry of the
second system therewith such that the execution environ-
ment for an instance of the application executing on the
second system corresponds to the execution environment of
the first system.

14. The system of claim 13 wherein the non-cluster-aware
application has a list of subtrees associated therewith, and
wherein the notification mechanism monitors each of the
subtrees 1n the list for detecting changes thereto.

15. The system of claim 14 wherein the list of subtrees is
stored on the storage device.

16. The system of claim 14 wherein the list of subtrees 1s
stored 1n a cluster registry on the storage device.

17. The system of claim 13 wherein the subtree data
includes a name representative of a key 1n the registry and
at least one value.

18. In a server cluster, a method of using application
conflguration mformation with an application, comprising:

locally maintaining application configuration information
for the application on a system of the cluster, the
application configuration information accessed by the
application to determine at least part of an execution
environment for the application when executed on the
system,

determining 1if a cluster checkpoint of data corresponding,
to the application configuration information for the
application 1s present on a storage device shared by
systems 1n the cluster; and

if the cluster checkpoint exists,
updating the application configuration information of
the local system with the data 1n the storage device,

10

15

20

25

30

35

40

45

50

55

60

65

16

running the application with the updated application
conflguration information, and
updating the cluster checkpoint on the storage device to

correspond to local changes made by the application
to the application configuration information; and

if the checkpoint does not exist,
creating a cluster checkpoint on the storage device,
running the application with the locally maintained
application configuration information, and
updating the cluster checkpoint on the storage device to
correspond to local changes made by the application
to the application configuration information.

19. A computer-readable medium having computer-
executable instructions for performing the method of claim
18.

20. The method of claim 18 wherein the application
conilguration information 1s maintained 1n a local registry of
the system, and further comprising detecting a change to the
application configuration information by monitoring for a

change to data of at least one subtree 1n the registry.

21. In a server cluster including at least two server
systems that each have a local registry that 1s not a replica
of the other, a method of failing over a non-cluster-aware
application from a first system to a second system of the
cluster, comprising, maintaining application configuration
information for the non-cluster-aware application in the
local registry of the first system, the application configura-
tion 1information being used to determine at least part of an
execution environment for an instance of the non-cluster-
aware application when executed on the first system, run-
ning an 1nstance of the non-cluster-aware application on the
first system, detecting a change made by the application
instance to the application configuration mnformation in a
subtree of the local registry, and, 1n response to the change,
writing data of that subtree as subtree data to a storage
device shared by systems of the cluster, terminating the
instance of the non-cluster-aware application on the {first
system, reading the subtree data from the storage device,
modifying the local registry of the second system with the
subtree data read from the storage device, and running
another 1nstance of the non-cluster-aware application on the
second system using the application configuration 1nforma-
tion stored 1n the local registry of the second system,
including accessing the application configuration at the other
instance such that an execution environment for the instance
of the application executing on the second system corre-
sponds to the execution environment of the first system.

22. The method of claim 20 wherein the non-cluster-
aware application has a list of subtrees associated therewith,
and further comprising registering each of the subtrees 1n the
list with a nofification mechanmism for detecting changes
thereto.

23. The method of claim 21 wherein the cluster includes
a third system having a local registry that 1s not a replica of
the local registry of the first system or of the local registry
of the second system, and further comprising, maintaining
other application configuration information for another
application 1n the local registry of the first system, running,
an instance of the other application on the first system,
detecting a change to the other application configuration
information 1n a subtree of the local registry, and, in
response to the change, writing data of that subtree as
subtree data to a storage device shared by systems of the
cluster, terminating the instance of the other application on
the first system, reading the subtree data from the storage
device, moditying the local registry of the third system with
the subtree data read from the storage device, and running

US 6,360,331 B2

17

another 1nstance of the other application on the third system
using the other application configuration information stored
in the local registry of the third system.

24. A computer-readable medium having computer-
executable instructions for performing the method of claim
21.

25. In a server cluster having servers including a first
system and a second system, a method, comprising, main-
taining application confliguration information for a non-
cluster-aware application on the first system, the application
conilguration information being used by an instance of the
non-cluster-aware application to determine at least part of an
execution environment for that instance when executed on
the first system, running the non-cluster-aware application
on the first system making data representative of the appli-
cation configuration information available to the second
system, and running another instance of the non-cluster-
aware application on the second system based on the data
made available thereto, the other 1nstance of the application
accessing the data such that an execution environment for
the mstance of the application running on the second system
corresponds to the execution environment of the first sys-
tem.

26. The method of claim 25 further comprising, detecting

a change to the application configuration information on the
first system.

10

15

20

25

138

27. The method of claim 26 wherein making data repre-
sentative of the application configuration information avail-
able to the second system includes making information

corresponding to the change available to the second system.

28. The method of claim 25 wherein the application
conilguration information 1s locally maintained on the first
system.

29. The method of claim 25 wherein the non-cluster-
aware application 1s failed over from the first system to the
second system.

30. The method of claim 28§ wherein making data repre-
sentative of the application configuration information avail-
able to the second system comprises writing the data to a
storage device shared by systems of the cluster.

31. The method of claim 25 wherein making data repre-
sentative of the application configuration information avail-
able to the second system includes updating application
conflguration mformation of the second system.

32. A computer-readable medium having computer-

executable instructions for performing the method of claim
25.

	Front Page
	Drawings
	Specification
	Claims

