(12) United States Patent
Chuang et al.

US006356918B1

US 6,356,918 B1
Mar. 12, 2002

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND SYSTEM FOR MANAGING
REGISTERS IN A DATA PROCESSING
SYSTEM SUPPORTS OUT-OF-ORDER AND
SPECULATIVE INSTRUCTION EXECUTION

(75) Inventors: Chiao-Mei Chuang, Cupertino, CA

(US); Hung Qui Le, Austin, TX (US)
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 08/507,542

(22) Filed: Jul. 26, 1995

(51) Int. CL7 ..o GO6F 12/00

(52) US.CL ..o, 707/203; 707/202; 712/34;

712/218; 712/219; 712/228; 712/230; 712/233;
712/234; 712/236
(58) Field of Search 707/203, 202;
712/34, 218-219, 228, 230, 233, 234, 2309;
711/109; 708/709
(56) References Cited
U.S. PATENT DOCUMENTS
41388682 A 6/1983 EIdridgecovvvenne... 712/211
4,455,604 A 6/1984 Ahlstrom et al. 712/211
4,456,954 A 6/1984 Bullions, III et al. 711/207
(List continued on next page.)
FOREIGN PATENT DOCUMENTS
EP 0463 973 A2 1/1992 GOOE/9/38
EP 0514 763 A2 11/1992 GOOE/9/38

OTHER PUBLICAITTONS

IEEE publication, “The named—state register file: implemen-
tation and performance” by Peter Nuth et al., Hewlett

Packard Labs., pp. 4-13, Jan. 1995.*

aaaaaaaa

IEEE publication, Organization, management and VLSI
implementation of a multiple register window f{ile {for
LISP—oriented architectures: by B. Furht et al., Dept. of
Electrical and Computer Science, Coral Gables, Flonida, pp.
2382477, Jan. 1998.*

IBM Technical Disclosure Bulletin, “Multisequencing a

Single Instruction Stream Register Renaming and the Size of
the Common Virtual Register File”, vol. 36, No. 04, Apr.
1993,

Primary Fxaminer—Thomas Black

Assistant Examiner—Diane D. Mizrahi
(74) Attorney, Agent, or Firm—Anthony V.S. England;

Bracewell & Patterson L.L.P.
(57) ABSTRACT

A method and a system 1n a data processing system for
managing registers 1 a register array wherein the data
processing system has M architected registers and the reg-
ister array has greater than M registers. A first physical
register address 1s selected from a group of available physi-
cal register addresses 1n a renamed table 1n response to
dispatching a register-modifying instruction that specifies an
architected target register address. The architected target
register address 1s then associated with the first physical
register address, and a result of executing the register-
modifying nstruction is stored 1n a physical register pointed
to by the first physical register address. In response to
completing the register-modifying instruction, the first
physical address in the rename table 1s exchanged with a
second physical address 1n a completion renamed table,
wheremn the second physical address i1s located i1n the
completion rename table at a location pointed to by the
architected target register address. Therefore, upon instruc-
tion completion, the completion rename table contains
pointers that map architected register addresses to physical
register addresses. The rename table maps architected reg-
ister addresses to physical register addresses for mstructions
currently being executed, or for 1nstructions that have “fin-
ished” and have not yet been “completed.” Bits indicating
the validity of an association between an architected register
address and a physical register address are stored before
instructions are speculatively executed following an unre-
solved conditional branch.

14 Claims, 11 Drawing Sheets

Reglster Rename an d
Ins

true

tion Flow Conergl

2365 238y 240y
u y wri

(15T}

. Jeaa2
O;:m&:," -

Ca

{343 (EEU rEEE fiﬁ#

* 24 'I“;, Fiintarr pr & af
Cemplation I
pointar Bl Instrug tion
Sequenging |E
Table inish fr

naculign

secLiian

Lniis

Predictad

[[[[[[[[[[

BBBBBB

EEEEEEEEEEEEEE

US 6,356,918 Bl

Page 2
U.S. PATENT DOCUMENTS 4,992 938 A 2/1991 Cocke et al. 712/217
5,134,561 A 7/1992 Liptayccccccveeveenne... 711/164
4,574,349 A 3/1986 Rechtschatfen 711/154 5,144,551 A 9/1992 CepuliSccvvvnvennne... 711/163
4,612,612 A 9/1986 Wottinden et al. 7117207 5,167,023 A 11/1992 de Nicolas et al. 703/27
4,691,277 A 9/1987 Kronstadt et al. 711/213 5371684 A 12/1994 Tladonato et al. 716/9
4,853,849 A 8/1989 Bain, Jr. et al. 7117202 5764970 A * 6/1998 Ranaetal.occeo...... 712/233
4,901,222 A 2/1990 Joyce et al. ...occeennn. 714/15 5777918 A * 7/1998 Chan et al. 708/709
4,901,233 A 2/1990 Liptay ..o 712/28 5974240 A * 10/1999 Chanccceeeveeeeeennne.. 712/236
4943913 A 7/1990 Clark eeeeveeeeeeeeeeeeannn. 711/206
4,956,805 A 9/1990 Biffle et al. ...ccovueen..... 710/65 * cited by examiner

U.S. Patent Mar. 12,2002 Sheet 1 of 11 US 6,356,918 B1

100\

I SEQUENTIAL BRANCH
FETCHER PROBESSING

112 102

DISPATCH 114
BUFFER

116

DISPATCH UNIT

INSTRUCTION UNIT

110
108
GPR FILE FPR FILE
& LOAD/STORE & FLOATING
INTEGER GP Rename UNIT FP Rename POINT
UNIT Registers Registers UNIT

136 439 ' 128

126 1187 =

120

BUS INTERFACE UNIT
1 AooRess sus 122

DATA BUS 124

fg. 1

U.S. Patent Mar. 12,2002 Sheet 2 of 11 US 6,356,918 B1

. 200
Register Rename andg
l 206 Instruction Flow Control

220

202 (—— T 218 20
204 2124 214307))c218y) Readther
Cam read

Completion
Rename
Table
(CRT)
236y 238y 240

234
L~ 244
Completion _ |
pointer Instruction 299
Sequencing [JExecution
Lock

Read then
write

finish from

+ : 242 axacution
units 11| [Execution
pointer 798 . units
resetting
Ca
230

Source Physical Destination Source lock
pointers to physical bits to
execution pointer to execulion

248 250 2759 254 units z:tliet{;utiun units

lID after| Branch o o i:0ied Alternate|Freelist 296
branch |dependency address | head
246
Pending Branch Table {PBT)

Y 258
Branch resolution

Branch Branch
wrongs corrects

fg. 2

U.S. Patent Mar. 12,2002 Sheet 3 of 11 US 6,356,918 B1

Rename Table and Completion
Rename Table Configuration

Number of architected register = m
Number of physical rename register
Number of speculative branch = |

n

CAM address CAM read .
Binary decode write Binary decode write
Binary decode read Binary decode read

0 ~212 tlogm-1 214 216 218 213 o _220 log(m+n)-1

0 .
Architected : Physical

Architected . Physical
N N I)

Rename Table

Fig. JA

0 log{m+n)-1

Physical
Pointer

Physical
Pointer

Completion Rename Table

Fig. 3B

226

Binary Decods
Read and write

232

Binary Decode

Read and write
m- 1

Lock Register

Fig. 3C

U.S. Patent Mar. 12,2002 Sheet 4 of 11 US 6,356,918 B1

Register File Configuration

Number of architected register = m
Number of physical rename register = n

0 max data width (i.e 63)

Binary Decode
Read and write
from source and
destination
physical pointers

m+n-1
m out of m+n locations always contain the architected operands.

Fig. 3D

U.S. Patent Mar. 12, 2002

Initializing tables at
power-on reset

Fig. 4

Sheet 5 of 11

US 6,356,918 B1

JOO

Initialize "head"
and "tail" pointers
in rename table
(e.g., set to 0)

Set VO, V1, and V2
bits to inactive
(e.g., set to 0)

Initialize pointers in
completion rename
table (CRT) to point to
architected registers
and initialize pointers
in free list in rename
table to point to
additional registers

Set bits in lock

register to
"not locked”
(e.g., set to 0)

Set completion
pointer and
dispatch pointer in
instruction sequencing
table to same value

(6.q., set both to 0)

Initialize F bit in
instruction
sequencing table

(IST) to "not finished”
(e.g., set to 0)

302

304

306

308

310

312

314

End

U.S. Patent

320

324

Assign instruction
|D to dispatched

instruction using
dispatch pointer

326

Reset F bil
in instruction
sequencing table
at location pointed to
by dispatch pointer

328

Increment dispatch
pointer

330

Branch
instruction

dispatched
?

332

Save in pending

branch table (PBT):
next instruction {D
(dispatch pointer),
branch dependency
information needed

to resolve branch,
whether branch was

nredicted taken, next
insiruction address

if branch was
mispredicted

Fig. 5

Mar. 12, 2002

NO

Sheet 6 of 11

Entering data in

322 tables during
instruction dispatch

Instruction

dispatched
?

YES

334 350

Instruction Instruction
modifies NO dispatched
register ? speculatively

?

YES 336 YES 352

Write instruction RT
address into renams

table CAM location
pointed to by head
pointer

Save all VO (valid)

bits in V1 or V2 in
rename table

Jo4

338 Save head pointer
. . in free list pointer
Set VO (valid) bit field in pending
340 branch table
Increment head
pointer
342

Search other CAM
entries in rename

table for matching
RT address

344

Matching
RT address

found
7

NO

Store in IST at
location pointed to 346
by instruction ID

{current dispatch
potnter) the number

Reset VO (valid)

bit of matching
enltry

of registers updated
by the instruction

356
End

US 6,356,918 Bl

U.S. Patent Mar. 12,2002 Sheet 7 of 11 US 6,356,918 B1

Modifying data in
tables during

instruction execution 160

362

Execution

unit finishes

instruction
2

YES

J64

Reset lock bit(s) in
lock register pointed

to by physical RT

pointer associated with
each instruction that

writes to a rename
register

366

Set F bit(s) in
instruction
sequencing table at
location pointed to by

instruction ID of
finished instruction

368

End

Fig. 6

U.S. Patent Mar. 12,2002 Sheet 8§ of 11 US 6,356,918 B1

Modifying data in
tables during
instruction completion

|s F

bit set in
|IST at location

of completion

pointer
?

370

YES
374

number of

registers modified YES
by instruction pointed
to by completion
376

Read architected RT pointers
in CAM fields of rename table
pointed to by taii pointer and
consecutive locations
determined by number of
registers modified by the
completing instruction {i.e., read
completion rename table (CRT)
completion addresses)

378

Read physical RT pointers in
free list fields of rename table
pointed to by tail pointer and
any subsequent locations
modified by the completing
instruction (i.e., read physical
completion register pointers)

380

Read CRT at locations pointed
to by CRT completion addresses
and write data from CRT into
free list field of rename table
at locations pointed to by
tail pointer

382

Write physical completion
register pointers into CRT

at locations pointed to by
CRT complelion addresses

F’Lg 7 384

Increment tail pointer by

number of registers
specified tn instruction

sequencing table

386

Increment completion pointer

U.S. Patent Mar. 12,2002 Sheet 9 of 11 US 6,356,918 B1

Modifying data in
tables at branch
resolution 390

Speculative
branch resolved

Correct

path executeo
?

NO 396

Copy appropriate V1 or
V2 bits to VO bits in

rename table

398

Copy appropriate free
list head stored in PBT

to head pointer in
rename table

400

Copy appropriate
instruction ID in PBT

to dispatch pointer
in IST

F’ig. 0 402

Fetch next instruction

from alternate address
recalled from PBT

U.S. Patent Mar. 12,2002 Sheet 10 of 11 US 6,356,918 B1

Modifying data in

tables at interrupt 410
Start

Completing
instruction causing

interrupt
?

YES 414

Set head and tail
pointers Iin rename

table to same valuse
(e.g9., =0)

416
Set all VO, V1, and
V2 bits to inactive
(e.g., =0)
418

Set all bits in lock
register to

"not locked® (e.g., =0)
420

F/Lg. 9 Set completion pointer

and dispatch pointer

to same value
(e.g., set both = 0)

U.S. Patent Mar. 12,2002 Sheet 11 of 11 US 6,356,918 B1

430

432

Search all rename table
CAM fields for source

address match (CAM search)
for all architected source

pointers in the instruclion

Using tables to
send proper
physical addresses
to execution units

434

Source

address matched
and VO set

NO

YES 436 438

Read physical source
pointer from CRT at
location pointed to by
architected source pointers

Read physical source
pointer from free list
field in rename table
at matched table entry

440

Read lock bits in lock
register at locations

pointed to by physical
source pointers

4472

Rename
destination register

required
?

NO

YES 444

Read destination physical
‘register pointer from
rename table at location

pointed to by head pointer

4406

Set lock bit in lock register
at location pointed to by
destination physical pointer

448

Fg. 10

Send source and

destination physical
pointers to execution units

450

Send source lock bils
to execution unit

US 6,356,918 Bl

1

METHOD AND SYSTEM FOR MANAGING
REGISTERS IN A DATA PROCESSING
SYSTEM SUPPORTS OUT-OF-ORDER AND
SPECULATIVE INSTRUCTION EXECUTION

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates in general to an 1improved
data processing system, and in particular to a method and
system for managing addressable registers 1n a data process-
ing system. More particularly, the present invention relates
to a method and system for controlling and monitoring a
register array 1n a data processing system that processes out
of sequence nstructions, and a method and system that
provides register content restoration upon the occurrence of
an interrupt condition or the determination that instructions

in a mispredicted branch have been executed.
2. Description of the Related Art:

The design of a typical computer data processing system
requires the establishment of a fixed number of addressable
registers, such as general purpose registers (GPR’s) and
floating-point registers (FPR’s), for the programmer to use
in designing programs for the data processing system.
Changing the number of architecturally available registers
once a system 1s available would require substantial rewrit-
ing of programs to make use of the newly added registers.

The design of computers and computer programs 1s also
based on the assumption that computer data processing
system program 1nstructions are executed by the data pro-
cessing system 1n the order in which they are written 1n the
program and loaded 1nto the data processing system. While
instructions must logically appear to the data processing
system to have been executed 1n program order, 1t has been
learned 1n an effort to 1mprove computer performance that
some 1nstructions do not have to be physically performed 1n
program order, provided that certain dependencies do not
exist with other mstructions. Further, 1f some instructions are
executed out-of-order, and one of such instructions 1s a
branch instruction, wherein a branch prediction 1s made to
select the subsequent 1struction sequence, a need to restore
the registers aitfected by instructions in the predicted branch
to their original values can occur if the branch is mispre-
dicted. In such a case, the data processing system 1s restored
to the condition before the branch was taken. The process of
ciiciently executing instructions out of order requires that
values for registers prior to the predicted branch be main-
tained for registers affected by the 1nstructions following the
branch, while provision 1s made to contingently store new
values for registers affected by instructions following the
predicted branch. When branch instructions are resolved, the
contingency of the new register values 1s removed, and the
new values become the established values for the registers.

Large processors have for many years employed overlap-
ping techniques under which multiple instructions in the
data processing system are 1n various states of execution at
the same time. Such techniques may be referred to as
pipelining. Whenever pipelining 1s employed, control logic
1s required to detect dependencies between instructions and
alter the usual overlapped operation so that results of the
instructions are those that follow the one-instruction-at-a-
fime architectural data processor model. In a pipelined
machine, separate hardware 1s provided for different stages
of an 1nstruction’s processing. When an instruction finishes
it’s processing at one stage, it moves to the next stage, and
the following instruction may move into the stage just
vacated.

10

15

20

25

30

35

40

45

50

55

60

65

2

In many pipelined machines, the instructions are kept 1n
sequence with regard to any particular stage of 1its
processing, even though different stages of processing for
different instructions are occurring at the same time. If the
controls detect that a result that has not yet been generated
1s needed by some other executing instruction, the controls
must stop part of the pipeline until the result 1s generated and
passed to the part of the pipeline where 1t 1s needed.
Although this control logic can be complex, keeping instruc-
fions 1n sequence 1n the pipeline helps to keep the complex-
ity under control.

A more complex form of pipelining occurs if the data
processing system 1ncludes separate execution units.
Because different instructions have different execution times
in their particular type of execution unit, and because the
dependencies between instructions will vary 1n time, it 1s
almost 1nevitable that mstructions will execute and produce
their results in a sequence different from the program order.
Keeping such a data processing system operating in a
logically correct manner requires more complex control
mechanisms than that required for pipeline organization.

One problem that arises 1n data processing systems having
multiple executions units 1s providing precise interrupts at
arbitrary points 1n program execution. For example, 1f an
instruction creates an overflow condition, by the time such
overtlow 1s detected, 1t 1s enftirely possible that a subsequent
instruction has already executed and placed a result 1n a
register or 1n main storage—a condition that should exist
only after the interrupting instruction has properly executed.
Thus, 1t 1s difficult to detect an interruption and preserve
status of the data processing system with all prior but no
subsequent 1nstructions having been executed. In this
example, the overtlow interrupt will actually be recognized
later than 1t occurred. Other similar situations are possible in
the prior art.

Designers of some prior art data processing systems chose
to handle interrupts by allowing all instructions that were in
some state of execution at the time of the interrupt to
complete their execution as much as possible, and then take
an “imprecise” interruption which reported that some
instruction in the recent sequence of instructions had created
an mterrupt condition. This may be a reasonable way to
handle interrupts for conditions such as overflow, where
results will be returned to a programmer who will fix a
program bug or correct the mput data, and then rerun the
program from the beginning. However, this 1s an unaccept-
able way to handle interrupts like page faults, where the
system program will take some corrective action and then
resume execution from the point of interruption.

Applicant 1s aware of U.S. Pat. No. 4,574,349, 1n which
additional registers are provided to be associated with each
GPR and 1n which register renaming occurs with the use of
a poimnter value. However, this patent does not solve the
problem of precise recovery from interrupts or recovery
from 1ncorrectly guessed branches during out-of-order
execution.

In an article 1n the IBM Technical Disclosure Bulletin,
enfitled “General Purpose Register Extension,” August,
1981, pages 1404—1405 discloses a system for switching
between multiple GPR sets to avoid use of storage when
switching subroutines. Another article 1n the IBM Technical
Disclosure Bulletin, entitled “Vector-Register Rename
Mechanism,” June, 1982, pages 86—87 discloses the use of
a dummy register during instruction execution. When execu-
tion 1s complete, the register 1s renamed as the architected
register named by the instruction for receiving results.

US 6,356,918 Bl

3

During execution, the register 1s transparent and this allows
for extra physical registers. However, neither of these
articles deals with the problems caused by out-of-order
instruction execution.

An article 1n the IBM Technical Disclosure Bulletin,
entitled “Use of a Second Set of General Purpose Registers
to Allow Changing General-Purpose Registers During Con-
ditional Branch Resolutions,” August, 1986, pages 991-993
shows a one-for-one matched secondary set of GPRs to hold
the original GPR contents during conditional branch reso-
lution so that such GPR contents may be used to restore the
system status 1f necessary. Conditional mode tags are used
with the GPRs to regulate status of the registers, or to restore
the original contents of the register.

SUMMARY OF THE INVENTION

It 1s therefore one object of the present invention to
provide an improved data processing system.

It 1s another object of the present invention to provide a
method and system for managing addressable registers 1n a
data processing system.

It 1s yet another object of the present invention to provide
a method and system for controlling and monitoring a
register array 1 a data processing system that processes
out-of-sequence 1instructions, and provide a method and
system that provides register content restoration upon the
occurrence of an interrupt condition or the determination
that instructions 1n a mispredicted branch have been
executed.

The present invention provides a register management
system for the addressable registers associated with the
central processing unit (CPU) of a data processing system.
The register management system provides for out-of-order
execution of instructions and includes mechanisms for pre-
cise recovery from a mispredicted conditional branch or an
interrupt condition.

The foregoing objects are achieved as 1s now described.
In a data processing system having M architected registers
and a register array that includes a number of registers
orcater than M, a first physical register address 1s selected
from a rename table 1n response to dispatching a register-
modifying instruction having an architected target register
address. The first physical register address 1s selected from
a group ol available physical register addresses in the
rename table. The architected target register address 1s then
associated with the first physical register address and a result
of executing the register-modifying instruction 1s stored in a
physical register pointed to by the first physical register
address. In response to completing the register-modifying
instruction, the first physical address in the rename table 1s
exchanged with a second physical address 1n a completion
rename table wherein the second physical address 1s stored
in the completion rename table at a location pointed to by the
architected target register address. Thus, the completion
rename table contains pointers that map architected register
addresses to physical register addresses. And similarly, the
rename table maps architected register addresses to physical
register addresses for 1nstructions currently being executed,
or for 1nstructions that have “finished” and have not yet been
“completed.” Bits showing the validity of an association
between an architected register address and a physical
register address are stored before instructions are executed
following an unresolved conditional branch. Such data bits
are available to restore the condition of the rename table to
its condition prior to the conditional branch upon determin-
ing that the conditional branch was mispredicted. Because

10

15

20

25

30

35

40

45

50

55

60

65

4

instructions following a conditional branch are never com-
pleted before branch resolution, means for restoring address
pointers 1n the completion rename table to a condition prior
to the conditional branch 1s not needed. Therefore, the need
to preserve an entire table of register remapping pointers 1s
climinated by storing selected bits 1n the rename table. Head
and tail pointers 1n the rename table point to physical register
addresses available for association with newly dispatched
architected register addresses, and physical register
addresses ready for storage 1n the completion rename table
when 1ts associated instruction 1s completed.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth 1n the appended claims. The i1nvention itself
however, as well as a preferred mode of use, further objects

and advantages thereof, will best be understood by reference
to the following detailed description of an 1illustrative
embodiment when read 1n conjunction with the accompa-
nying drawings, wherein:

FIG. 1 depicts a superscaler data processing system 1n
accordance with a preferred embodiment of the present
mvention;

FIG. 2 1s a high-level block diagram illustrating the
components of, and the data flow 1n, the method and system
for managing a register array 1n accordance with the present
mvention;

FIGS. 3A-3D depict various tables and table fields 1n

accordance with the method and system of the present
mvention;

FIG. 4 1s a high-level flowchart illustrating the process of
initializing tables at power on reset 1n accordance with the
method and system of the present invention;

FIG. 5 1s a high-level flowchart illustrating the process of
entering data 1n tables during instruction dispatch in accor-
dance with the method and system of the present invention;

FIG. 6 1s a high-level flowchart illustrating the process of
modifymg data i the tables during instruction execution
according to the method and system of the present invention;

FIG. 7 1s a high-level flowchart illustrating the process of
modifying data in tables during instruction completion in
accordance with the method and system of the present
mvention;

FIG. 8 1s a high-level flow chart 1llustrating the process of
modifymng data in the tables when a conditional branch 1is
resolved 1n accordance with the method and system of the
present 1nvention;

FIG. 9 1s a high-level flowchart that shows the process of
modifying data in tables upon the occurrence of an interrupt
condition 1n accordance with the method and system of the
present 1nvention; and

FIG. 10 1s a high-level flowchart showing the process of
using tables to send physical addresses to execution units in
accordance with the method and system of the present
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

With reference now to the figures, and 1n particular with
reference to FIG. 1, there 1s depicted a superscaler data
processing system 1n accordance with the method and sys-
tem of the present mvention. Note that data processing
system 100 1s illustrated as a conceptual block diagram
intended to show the basic features rather than an attempt to
show how these features are physically implemented on a
chip.

US 6,356,918 Bl

S

A superscaler processor 1s one that 1ssues multiple 1nde-
pendent 1nstructions into multiple pipelines allowing mul-
tiple 1nstructions to execute 1n parallel. As illustrated 1n FIG.
1, superscaler data processing system 100 includes five
independent execution units and two register files. The five
independent execution units may 1nclude: branch processing

unit (BPU) 102, load/store unit 104, integer unit 106, and
flowing-point unit 108. Register files may include: general
purpose register file (GPR) 107 for integer operands, and
floating-point register file (FPR) 109 for single-space or
double-precision floating-point operands. Furthermore, both
GPR 107 and FPR 109 may include a set of rename registers.

Instruction unit 110 contains sequential fetcher 112, dis-
patch buffer 114, dispatch unit 116, and branch processing,
unit 102. Instruction unit 110 determines the address of the
next instruction to be fetched based upon information
received from sequential fetcher 112 and branch processing

unit 102.

Sequential fetcher 112 fetches instructions from instruc-
fion cache 118 and loads such instructions into dispatch
buffer 114. Branch instructions are identified by sequential
fetcher 112, and forwarded to branch processing unit 102
directly, bypassing dispatch buffer 114. Such a branch
instruction is either executed and resolved (if the branch is
unconditional or if required conditions are available), or is
predicted. Non-branch instructions are issued from dispatch
buffer 114, with the dispatch rate being contingent on
execution unit busy status, rename and completion buifer
availability, and the serializing behavior of some 1nstruc-
tions. Instruction dispatch 1s done m program order. BPU
102 uses static and dynamic branch prediction -on unre-
solved conditional branches to allow instruction unit 110 to
fetch 1nstructions from a predicted target instruction stream
while a conditional branch 1s evaluated. Branch processing,
unit 102 folds out branch instructions for unconditional
branches or conditional branches unaffected by instructions
in progress 1n the execution pipeline.

Dispatch buffer 114 holds several instructions loaded by
sequential fetcher 112. Sequential fetcher 112 continuously
loads 1instructions to keep the space 1n dispatch buifer 114
filled. Instructions are dispatched to their respective execu-
fion units from dispatch unit 116. In operation, instructions
are fetched from 1nstruction cache 118 and placed in either
dispatch buifer 114 or branch processing unit 102. Instruc-
tions entering dispatch bufler 114 are 1ssued to the various
execution umits from dispatch buifer 114, and instructions
are frequently dispatched more than one at a time, which
may require renaming of multiple target registers according
to the method and system described below. Dispatch buifer
114 1s the backbone of the master pipeline for superscaler
data processing system 100, and may contain, for example,
an 8-entry queue. If while filling dispatch buffer 114, a
request from sequential fetcher 112 misses 1n 1nstruction
cache 118, then arbitration for a memory access will begin.

Data cache 126 provides cache memory function for
load/store unit 104. Instruction memory management unit
128 and data memory management unit 130 support
accesses to virtual memory and physical memory for both
instructions and data, respectively. Such memory manage-
ment units perform address translations and determine
whether a cache hit or miss has occurred.

Bus mterface unit 120 controls access to the external
address and data buses by participating 1n bus arbitration.
The external address bus 1s shown at reference numeral 122,
and the external data bus 1s shown at reference numeral 124.

Completion unit 136 retires executed 1nstructions from an
instruction sequencing table (IST) in the completion unit and

10

15

20

25

30

35

40

45

50

55

60

65

6

updates register files and control registers. An 1nstruction 1s
retired from the IST when it has “finished” execution and all
instructions ahead of 1t have been “completed.” The 1nstruc-
tion’s result 1s made visible 1n the appropriate register file at
or after completion. Several instructions can complete
simultaneously. Completion unit 136 also recognizes excep-
tion conditions and discards any operations being performed
on subsequent 1nstructions in program order.

With reference now to FIG. 2, there 1s depicted a high-
level block diagram illustrating the components of, and the
data flow 1n, the method and system for managing a register
array 1n accordance with the present invention. As
illustrated, dispatch buifer 200 holds instructions awaiting
dispatch to an execution unit. Such instructions may contain
fields that hold op-code 202, architected target register
address 204, architected source-A register address 206, and
architected source-B register address 208.

Coupled to dispatch buifer 200 1s rename table 210. The
number of table entries in rename table 210 1s equal to the
number of additional physical registers (i.e., the number of
registers 1n the register array that 1s greater than the number
of architected registers). According to an important aspect of
the present invention, rename table 210 1s implemented with
a content addressable memory (CAM). Content addressable
memory 1s memory that allows data to be retrieved 1n
response to a match 1n one or more searched fields. Such
searched fields of rename table 210 include field 212 for
storing architected register address pointers, ficld 214 for
storing data that indicates the contents of a particular rename
table entry are valid or active, field 216 and 218 for
temporarily storing data from field 214, and field 220 for
storing physical address pointers.

Also associated with rename table 210 are a pair of
circular pointers for pointing to particular entries in rename
table 210. Such pointers are head pointer 222 and tail pointer
224. Head pointer 222 1s utilized to select the next rename
table entry to receive and store an architected target register
address from dispatch bufifer 200. Tail pointer 224 1s utilized
to point to physical address pointers that will be processed
when the instruction associated with the table entry 1s
completed. Both head and tail pointers may be incremented
by one or more counts, and wrapped around from table
entries at the bottom of the rename table to table entries at
the top of the rename table

Completion rename table (CRT) 226 is coupled to rename
table 210 and dispatch buffer 200, and stores physical
register address pointers that map architected register
addresses to physical addresses within the data processing,
system. The number of table entries in completion rename
table 226 1s equal to the number of architected registers 1n
the data processing system. To locate data that should be
stored 1n an architected register, completion rename table
226 1s addressed with the architected register address to
recall a physical register address that holds the current
contents of that particular architected register. As 1llustrated,
completion rename table 226 1s addressed by data from field
212 1n rename table 210, and architected source-A and -B
register address fields 206 and 208. Information retrieved
from completion register rename table 226 1s provided to the
execution units during dispatch and to field 220 of rename
table 210 during instruction completion.

MUXes 228 and 230 are coupled to both completion
rename table 226 and rename table 210 for receiving physi-
cal address pointers. Outputs of MUXes 228 and 230
provide physical address pointers to execution units SO that
the execution units may locate the proper input operands and

US 6,356,918 Bl

7

store the result of executing an instruction in the proper
output register or target register.

MU Xes 228 and 230 also communicate data to and from
lock register 232. Lock register 232 stores information used
fo prevent execution units from using data in selected
registers, often because such data 1s not yet valid. Typically,
lock register 232 includes a single bit associated with each
register 1n the data processing system. As execution units
finish 1nstructions, and data in physical registers becomes
valid for use by other instructions, bits in lock register 232
are set to “unlock™ the use of data 1n corresponding physical
registers.

Instruction sequencing table 234 includes a field 236 for
storing an “F” bit, a field 238 for storing an interrupt
indicator, and a field 240 for storing a value that indicates the
number of registers aflected by an instruction associated
with the particular table entry.

Instruction sequencing table 234 1s loaded with data at the
table entry pointed to by dispatch pointer 242. Completion
pointer 244 1s used to retrieve information from instruction
sequencing table 234 at completion time of an instruction
having an instruction ID that 1s same as the completion
pointer value. Dispatch pointer 242 has the same value as the
mnstruction ID of instructions currently being dispatched
from dispatch buffer 200. Dispatch pointer 242 and comple-
tion pointer 244 are circular pointers that have values
ranging from zero to the highest mstruction ID 1n the data
processing system. Since superscalar data processing system
100 allows multiple 1nstruction dispatching and completion,
dispatch pointer 242 and completion pointer 244 may be
incremented by one or more counts, depending upon the
number of 1nstructions dispatched and completed 1n a cycle
respectively. Instruction IDs are numbers that are associated
with 1nstructions dispatched from dispatch buffer 200 at
dispatch time for the purpose of tracking instruction execu-
tion of multiple 1nstructions in the data processing system.

Pending branch table 246 1s used to store information that
aids recovery of various pointers and addresses once the
determination has been made that a conditional branch has
been mispredicted. Pending branch table 246 includes a
number of table entries equal to the number of speculative
branches supported by the data processing system. Fields
included 1n pending branch table 246 include: Field 248 for
storing the instruction ID of an instruction that immediately
follows a conditional branch 1n the predicted path, ficld 250
for storing branch dependency information, field 252 for
storing 1nformation that indicates the branch was taken or
not taken, field 254 for storing an instruction address of the
first 1nstruction following the conditional branch in the
branch that was not predicted, and field 256 for storing the
head pointer 222 in rename table 210 immediately preceding
the conditional branch.

Branch resolution logic 258 receives the condition code
data that the branch instruction i1s dependent on from the
execution units. Using branch dependency information
stored 1n field 250, and predicted information stored i field
252, branch resolution unit 258 determines 1f the direction
that branch processing unit 102 predicted 1s correct or
wrong. Branch resolution logic 258 sends “correct” or
“wrong” resolution signals to all execution units. If the
prediction 1s correct no corrective action 1s required. If the
prediction 1s wrong all units will abort execution of specu-
lative 1nstructions that belong to the mispredicted path. The
correct 1nstruction 1s fetched from instruction cache 118
using the mstruction address stored 1n field 254 of pending,

branch table 246.

10

15

20

25

30

35

40

45

50

55

60

65

3

With reference now to FIGS. 3A-3D, there are depicted
various tables and table fields in accordance with the method
and system of the present invention. More specifically, with
reference to FIG. 3A, there 1s depicted rename table 210
having fields 212-220. Physical address pointers which are
recalled from rename table 210 are stored in field 220.
Rename table 210 1s a content addressable memory
addressed by matching information in fields 212-219. Field
212 stores architected register address pointers. Fields
214-219 store information (typically single bits) that indi-
cate the present validity, or validity at some point in the past,
of the association between architected register pointers

stored 1 field 212 and physical register pointers stored 1n
field 220.

With reference now to FIG. 3B, there 1s depicted comple-
tion rename table 226, which stores physical register address
pointers. The number of entries 1n completion rename table
226 15 equal to the number of architected registers in the data
processing system. Completion rename table 226 serves to
map architected register addresses to physical register
addresses by storing physical register addresses 1n table
entries having architected register address values. For
example, a data processing system having 32 registers will
utilize a completion register rename table 226 having 32
entries addressed zero to 31.

With reference now to FIG. 3C, lock register 232 1s
depicted. Typically, lock register 232 includes a single bit of
information for each register in the data processing system
wherein such bits indicate that in a corresponding physical
register 1s either valid and available to be used by another
mnstruction or invalid and unavailable. For example, a data
processing system having 32 architected registers and 8
additional registers will have 40 entries 1n lock register 232.

With reference now to FIG. 3D, there i1s depicted the
register file configuration in the data processing system. The
register file provides source and destination registers for all
execution units 1n the data processing system. Registers used
as source registers according to a dispatched instruction
supply data to an execution unit, and a register specified as
a destination or target register by a dispatched instruction
provides a place to store a result produced by the execution
unit. The register file 1ncludes a number of architected
registers, plus an additional number of registers to be used
according to the method and system of the present invention.

With reference now to the flowcharts for a more detailed
description of the operation of the present invention, FIG. 4
depicts a high-level flowchart illustrating the process of
initializing tables at power-on reset 1n accordance with the
method and system of the present invention. As illustrated,
the process begins at block 300, and thereafter passes to
block 302 wheremn the “head” and “tail” pointers 222 and
224 in the rename table 210 are initialized (see FIG. 2).
Typically, such head and tail pointers are set to zero during
initialization.

Next, valid bits VO, V1, and V2 (fields 214-218 in FIG.
2) are set to indicate data entries in the rename table are
inactive or invalid. Typically, such bits are set to zero. Next,
pointers 1n the completion rename table are initialized to
point to architected registers, and pointers 1n the “free list”
(ficld 220 of rename table 210, see FIG. 2) are initialized to
point to the additional registers (i.e., the registers in the array
that exceed the number of architected registers), as depicted

at block 306.

As the 1nifialization process continues, bits in lock reg-
ister 232 are set to indicate a “not locked” condition, as

illustrated at block 308. Typically, such bits are set to zero

US 6,356,918 Bl

9

to 1indicate not locked. In 1nstruction sequencing table 234,
completion pointer 244 and dispatch pointer 242 are set to
the same value, as depicted at block 310. Typically, both
pointers are set to zero. Also 1n the instruction sequencing,
table, F bits 236 are initialized to indicate a “not finished”
state for each table entry, as illustrated at block 312.
Typically, such F bits are set to zero. Thereafter, the process

of mitializing tables at power-on reset ends, as depicted at
block 314.

With reference now to FIG. §, there 1s depicted a high-
level flowchart illustrating the process of entering data in
tables during instruction dispatch in accordance with the
method and system of the present invention. As depicted, the
process begins at block 320 and thereafter passes to block
322 wherein the process determines whether or not an
instruction has been dispatched. If an instruction has not
been dispatched, the process waits until an instruction has
been dispatched, as illustrated by the “no” branch from
block 322. Those persons skilled 1n the art should recognize
that more than one 1nstruction may be dispatched 1n the same
cycle. If more than one 1nstruction 1s dispatched, the process
described and 1llustrated 1 the flow charts below 1s repeated
for each instruction within the duration of the cycle 1n which
the 1nstructions were dispatched.

If an 1nstruction has been dispatched, the process begins
several tasks in parallel. In one task, an instruction ID (IID)
1s assigned to each dispatched instruction using the dis-
patched pointer, as depicted at block 324. In the instruction
sequencing table 234 at the location or table entry pointed to
by the dispatch pointer 242, the F bit 236 1s reset to indicate

that the associated instruction has not yet finished, as 1llus-
trated by block 326.

Next, the dispatch pointer 242 1s incremented to a new
value for the next instruction to be dispatched, as depicted
at block 328. Thereafter, the process determines whether or
not a branch instruction was dispatched, as illustrated at
block 330. If a branch instruction has been dispatched, the
process saves the following information i1n the pending
branch table 246: The next instruction ID 248 (i.c., the
dispatch pointer), branch dependency information 250
needed to resolve the branch, whether or not the branch was
taken, and the next instruction address 254 1if the branch was
mispredicted, as depicted at block 332. With reference again
to block 330, if a branch instruction was not dispatched, the
pending branch table 1s not modified.

In another parallel task, the process determines whether or
not the dispatched instruction modifies or changes data 1n a
register, as 1llustrated by block 334. If the dispatch 1nstruc-
fion modifies a register, the process writes the architected
target register address into the rename table CAM 212
location pointed to by the rename table head pointer 222, as
depicted at block 336. The head pomter 222 points to the
next rename table entry containing a physical register
address that 1s available for receiving a result from the
dispatched instruction.

Next, the process sets the VO bit 214 to indicate that the
assoclation or mapping between the architected register
address 1n field 212 and the physical register address 1n field
220 1s active or valid, as 1llustrated by block 338. Next, the
head pomnter 222 1s incremented, as depicted at block 340.

The process then searches other CAM entries in the
rename table for an address that matches the current archi-
tected target register address written 1nto the rename table,
as 1llustrated at block 342. If the process determines that a
matching architected register address has been found, as
depicted at block 344, the process resets the VO bit of the

10

15

20

25

30

35

40

45

50

55

60

65

10

matching table entry to indicate that this table entry does not
point to the most recent data for a particular architected
register, as 1llustrated at block 346.

Following the search of the rename table and resetting the
necessary VO bits, the process stores the number of registers
affected or updated by the instruction in the instruction
sequencing table 234 at a location pointed to by the instruc-

tion ID (the current dispatch pointer), as depicted at block
348.

Referring again to block 334, if the dispatched instruction
does not modify a register, the numbering of registers
updated by the 1nstruction that 1s entered into the IST 1s zero.
In yet another parallel task, the process determines whether
or not the instruction was dispatched speculatively—that 1s,
dispatched following an unresolved conditional branch
instruction—as 1llustrated at block 350. If the instruction
was dispatched speculatively, the process saves all VO bits
214 1 the rename table 210 1n either the V1 field 216 or the
V2 field 218 (see FIG. 2), depending upon which of these
fields 1s available to temporarily store the condition of the
rename table before another speculatively branch 1s taken, as
depicted at block 352. In addition to saving the valid bits, the
process saves the head pointer 222 1n the free list pointer
field 256 in the pending branch table 246 (see FIG. 2), as
illustrated at block 254.

Once these parallel tasks have been completed, the pro-
cess of entering data 1n tables during instruction dispatch
ends, as depicted at block 356.

With reference now to FIG. 6, there 1s depicted a high-
level flowchart 1llustrating the process of modifying data in
the tables during instruction execution according to the
method and system of the present invention. The process
begins at block 360 and thereafter passes to block 362
wherein the process determines whether or not an execution
unit has finished an instruction. If an execution unit has not

finished an instruction, the process waits, as 1llustrated by
the “no” branch from block 362.

If an execution unit has finished an instruction, the
process resets the lock bit or lock bits 1n the lock register
232, wherein such bit(s) are pointed to by the physical
address pointer associated with each finishing instruction
that writes to a rename register, as illustrated at block 364.
Resetting the lock bits places the lock bits 1n an “unlocked”
condition so that other instructions waiting to use data in
particular physical registers will be allowed to proceed using
the correct data written by the recently finishing instruction.

Next, the process sets the F bit or bits 236 in the
instruction sequencing table 234 at the location pointed to by
the 1nstruction ID of the finishing instruction, as depicted at
block 366. Such F bits indicate that the finishing instruction
1s ready for completion. Thereafter, the process of modifying
data 1n tables during instruction execution ends, as 1llus-

trated at block 368.

With reference now to FIG. 7, there 1s depicted a high-
level flowchart 1llustrating the process of modifying data in
tables during instruction completion 1n accordance with the
method and system of the present invention. The process
begins at block 370, and therecafter passes to block 372,
wherein the process determines whether or not the F bit 236
1s set 1n the 1nstruction sequencing table 234 at the location
pointed to by the completion pointer 244. If the F bit 1s not
set at the completion pointer location, the process waits until
the F bit 1s set, indicating that the instruction has finished.

If the F bit 1s set, the process determines whether or not
the number of registers modified by the finishing instruction
pointed to by the completion pointer 1s equal to zero, as

US 6,356,918 Bl

11

1llustrated at block 374. If the number of registers modified
1s not equal to zero, the process reads the architected register
address 1n the CAM fields of the rename table pointed to by
the tail pointer 244 and 1n consecutive locations determined
by the number of registers modified by the completing
instruction, as depicted at block 376. During this step, the
process reads the completion rename table s (CRT) comple-

tion addresses from field 212 (see FIG. 2).

Next, the process reads the physical address pointers 220
in the rename table 210 pointed to by the tail pointer 224 and
any subsequent locations modified by the completing
instruction, as 1illustrated at block 378. In this step, the
process reads the physical completion register pointers.

Next, the process reads the completion register table 226
at locations pointed to by the completion register table
completion addresses, and writes data from the completion
register table 226 into the free list field 220 of rename table
210 at locations pointed to by the tail pointer 224, as
illustrated at block 380, and in a similar manner, the process
writes the physical completion register pointers into the
completion register table 226 at locations pointed to by the
completion register table completion addresses, as depicted
at block 382. Thereafter, the process increments the tail
pomter 224 by the number of registers specified 1n the
instruction sequencing table 234, as depicted at block 384.

Thus, the operation 1llustrated by blocks 376—384 perform
an exchanging operation wherein a physical address 1n the
rename table 210 1s exchanged with a physical address 1n the
completion rename table 226 so that the completion rename
table 226 contains a current map of architected register
addresses to physical register addresses, indicating the loca-
fion of data resulting from completing 1nstructions 1n pro-
oram order. Physical addresses moved from completion
rename table 226 to the rename table 210 will be reused as
such physical address 1s associated with a newly dispatched
instruction.

Referring again to block 374, if the process determines
that the number of registers modified by the completing
instruction 1s equal to zero, the process merely 1increments
the completion pointer 244 in the instruction sequencing
table 234, as depicted at block 386. Thereatter, the process
returns to block 370 to await the completion of another
instruction.

With reference now to FIG. 8, there 1s depicted the
process of modilying data in the tables when a conditional
branch 1s resolved i accordance with the method and
system of the present invention. The process begins at block
390 and thereafter passes to block 392 wherein the process
determines whether or not a speculative branch has been
resolved. If a speculative branch has not been resolved, the

process waits, as illustrated by the “no” branch from block
392.

If a speculative branch has been resolved, the process
determines whether or not instructions in the correct path
were executed, as 1llustrated at block 394. If instructions 1n
the correct path were executed, the process returns to block
392 to await the resolution of the next speculative branch. If,
however, mstructions were executed 1in an incorrect path, the
process copies the appropriate V1 216 or V2 218 bats to the
VO bit field 214 in rename table 210 (see FIG. 2), as depicted
at block 396. V1 or V2 bits are selected depending upon
which set of bits stored the condition of rename table 210
before the particular branch that was resolved. Thereafter,
the process copies the appropriate free list head pointer
stored 1n field 256 of pending branch table 246 to the head
pointer 222 in rename table 210 (see FIG. 2), as illustrated

10

15

20

25

30

35

40

45

50

55

60

65

12

at block 398. Thus, blocks 396 and 398 illustrate how the
process restores the condition of the rename table 210 to its
condition 1mmediately preceding the mispredicted branch
instruction.

Next, the process copies the appropriate instruction 1D
stored 1n field 248 1n pending branch table 246 to dispatch
pointer 242 1n instruction sequencing table 234 (sece FIG. 2),
as depicted at block 400. The process then fetches the next
instruction from the alternate address recalled from field 254
in pending branch table 246 (see FIG. 2), as illustrated at
block 402. Thereafter, the process returns to block 392 to
await the next resolution of a speculative branch instruction.

Referring now to FIG. 9, there 1s depicted a high-level
flowchart that shows the process of modifying data in tables
upon the occurrence of an interrupt condition in accordance
with the method and system of the present invention. This
process begins at block 410 and thereafter passes to block
412 wherein the process determines whether or not a com-
pleting 1nstruction has caused an interrupt condition. If an
mterrupt condition has not been caused, the process waits for

an mterrupt condition as depicted by the “no” branch from
block 412.

If a completing instruction has caused an interrupt
condition, the process sets the head 222 and tail 224 pointers
in the rename table 210 to the same value, which 1s typically
equal to zero, as 1illustrated at block 414. Next, the process
sets all valid bits, VO 214, V1 216, and V2 218, to indicate
an 1active state, which 1s typically equal to zero, as depicted
at block 416. The process then sets all bits 1n the lock
register 232 to indicate a “not locked” condition, which 1s
typically equal to zero, as 1llustrated at block 418 and finally,
the process sets the completion pointer 244 and the dispatch
pointer 242 1n the instruction sequencing table 234 to the
same value, wherein both are set (typically) to zero, as

depicted at block 420.

After completing the process of modifying data upon the
occurrence of an interrupt condition as described above, the
process returns to block 412 to await the next occurrence of
an 1nterrupt condition.

Note that because the interrupt condition 1s processed
during instruction completion, the completion rename table
210 actually reflects the state of the data processing system
up to a pomnt immediately preceding the instruction that
caused the imterrupt condition. Therefore, no adjustments to
the rename table are necessary because the state of the
machine registers are accurately stored i1n the completion
rename table. An 1important advantage of the present inven-
tion over the prior art is that upon the occurrence of an
interrupt condition, register mapping tables do not need to be
copied or substituted by another table, thus reducing pro-
cessor overhead during an interrupt condition, eliminating
the need to restore registers following an interrupt routine,
and reducing chip space required by the backup tables.

Referring now to FIG. 10, there 1s a depicted a high-level
flowchart showing the process of using tables to send
physical addresses to execution units 1n accordance with the
method and system of the present invention. The process
begins at block 430 and thereafter passes to block 432
wherein the process searches all rename table CAM fields
212 and 214 for an architected source register address for all
architected source pointers required by the instruction. This
step may be referred to as a CAM search. Block 434
illustrates the process of determining whether or not a source
register address 1n a source operand field 1n an instruction
has matched a register address 1n field 212 of rename table
210 and such a table entry has its VO bit 214 set to imndicate

US 6,356,918 Bl

13

that 1t 1s active or valid. If such a match has occurred, the
process reads the physical register address pointer from free
list field 220 1in rename table 210 at the matching table entry,
as depicted at block 436. The process then reads the lock bits
in the lock register 232 at locations pointed to by physical
source register pointers, as 1illustrated at block 440. Such
lock bits prevent the execution unit from utilizing data
stored 1n the physical register before such data 1s valid.

Referring again to block 434, 1f a source address match 1s
not found 1n field 212 of rename table 210, the process reads
the physical source pointer from the completion rename
table 226 at the location in the table pointed to by the
architected source pointers, as depicted at block 438. Thus,
if the mstruction that produced the source result required by
the currently dispatched instruction has completed, physical
source pointers will be obtained from the completion rename
table 226. Otherwise, if the instruction that calculates the
source for the currently dispatching instruction has not yet
completed, the physical source pointers are read from field
220 1n rename table 210. Moreover, any information sent to
execution units from rename table 210 must be verified as
active or valid, as indicated by the VO biut.

Once physical source register addresses have been read
from either the rename table or the completion rename table,
the process determines whether or not destination register
address 1s required, as depicted at block 442. It a destination
or target register 1s required by the instruction, the process
reads the destination physical register pointer from the
rename table at a location pointed to by head pointer 222, as
illustrated at block 444. Thereafter, the process sets the lock
bit 1n the lock register 232 at the location pointed to by the
destination physical register pointer, as depicted at block

446.

If a destination register 1s not required, or after the
destination physical register pointer has been obtained from
the rename table, the process sends the source and destina-
fion physical pointers to the requesting execution unit, as
illustrated at block 448. The process also sends the source
lock bits to the requesting execution unit, as depicted at
block 450. Thus, the flowchart of FIG. 10 describes the
process of providing current source and destination register
information, including lock bit information, to an execution
unit when an instruction requiring such information 1s
dispatched to the execution unit.

The 1invention described above 1s an efficient method and
system for managing a register array in a data processing
system that executes instructions out of order and specula-
fively executes instructions following conditional branches.
The present invention utilizes two tables to map a number of
architected registers to a corresponding one of a greater
number of registers in a register array. The present invention
provides quick and easy recovery of information stored in
one of such tables upon the determination that a conditional
branch has been mispredicted. During an interrupt condition,
or during recovery from a mispredicted branch, data 1n only
one of the two tables must be processed or adjusted, while
the other table always maintains a current map of registers
according to the m-order completion of instructions.

In another embodiment of the present invention, the three
valid bits, VO, V1, and V2, may be treated as equal, instead
of as a primary and two levels of backups. When a valid bat
1s set by the destination register renaming, the corresponding
bit in another available valid columns are also set. Then,
when a conditional branch i1s encountered, a particular valid
column 1s marked unavailable. The correct valid bit for each
free list entry will be chosen by a MUX from the three valid

10

15

20

25

30

35

40

45

50

55

60

65

14

bit columns, depending upon which column 1s the current
column. Thus, copying between primary and the two levels
of backups may be avoided.

The foregoing description of a preferred embodiment of
the 1nvention has been presented for the purpose of 1llus-
tration and description. It 1s not intended to be exhaustive or
to limit the mvention to the precise form disclosed. Obvious
modifications or variations are possible in light of the above
teachings. The embodiment was chosen and described to
provide the best 1llustration of the principles of the invention
and 1ts practical application, and to enable one of ordinary
skill 1n the art to utilize the invention 1n various embodi-
ments and with various modifications as are suited to the
particular use contemplated. All such modifications and
variations are within the scope of the invention as deter-
mined by the appended claims when interpreted in accor-
dance with the breadth to which they are fairly, legally, and
equitably entitled.

What 1s claimed 1s:

1. A method 1n a data processing system for managing a
register array, wherein said data processing system includes
M architected registers and said register array includes M
registers and N additional registers, and wherein said data
processing system dispatches instructions to a selected one
of a plurality of execution units, said method comprising the
steps of:

in response to dispatching a register-modifying instruc-

tion having an architected target register address,
selecting a first physical register address from a rename
table;

associating said architected target register address with
said first physical register address;

storing a result of executing said register-modifying
Instruction 1n a register pointed to by said first physical
register address; and
in response to completing said register-modifying
instruction, exchanging said first physical address 1n
said rename table with a second physical address 1n a
completion rename table that 1s stored at a location
pointed to by said architected target register address,
wherein said register-modifying instruction 1s associ-
ated with said first physical register address from said
rename table, and, upon completion of said register-
modifying instruction, said second physical address 1s
moved to said rename table to be available for asso-
cilation with a subsequent register-modifying instruc-
tion.
2. The method 1n a data processing system for managing
a register array according to claim 1 wherein said rename
table includes a content addressable memory, and wherein
said step of associating said architected target register
address with said first physical register address includes
storing said architected target register address 1n a same
table entry with said first physical register address.
3. The method 1n a data processing system for managing
a register array according to claim 2 wherein said rename
table includes a head pointer for pointing to a rename table
entry, and wherein said step of storing said architected target
register address 1n a same table entry with said first physical
register address includes the steps of:

storing said architected target register address 1n a same
table entry with said first physical register address at a
table entry pointed to by said head pointer; and

incrementing said head pointer to point to a next table
entry 1n said rename table.

4. The method 1n a data processing system for managing,

a register array according to claim 2 wherein said rename

US 6,356,918 Bl

15

table 1includes a valid field, and wherein said method further
includes the steps of:

In response to associating said architected target register
address with said first physical register address, indi-
cating said association between said architected target
register address and said first physical register address
in said table enfry in said rename table 1s valid by
setting a valid bit 1n said valid field; and

in response to exchanging said first physical address in
said rename table with a second physical address in a
completion rename table that 1s stored at a location
pointed to by said architected target register address,
indicating said association between said architected

target register address and said second physical register
address 1n said table entry in said rename table is

invalid by resetting said valid bit in said valid field.
5. The method 1n a data processing system for managing,
a register array according to claim 4 wherein said data
processing system can speculatively dispatch register-
modifyimng instructions, and wherein said rename table
includes a V1 field, wherein said method further includes the
steps of:

in response to speculatively dispatching a first register-
modifying instruction in a first speculative instruction
path 1n response to a first conditional branch
instruction, copying bits 1n each of said valid fields to
a corresponding one of said V1 fields for storing a
condition of said rename table prior to said specula-
tively dispatched first register-modifying instruction;
and
in response to determining said first conditional branch
instruction was mispredicted, copying bits in each of
said V1 fields to a corresponding one of said valid fields
for restoring said condition of said rename table prior
to said speculatively dispatched first register-modifying
Instruction.
6. The method 1n a data processing system for managing
a register array according to claim 5 wherein said re name
table includes a V2 field, and wherein said method further
includes the steps of:

1n response to speculatively dispatching a second register-
modifying instruction in a second speculative instruc-
tion path 1n response to a second conditional branch
instruction before said first conditional branch instruc-
tion 1s resolved, copying bits 1n each of said valid fields
to a corresponding one of said V2 fields for storing a
condition of said rename table prior to sa 1d specula-
tively dispatched second register-modifying instruc-
tion; and
1n response to determining said second conditional branch
instruction was mispredicted, copying bits in each of
said V2 fields to a corresponding one of said valid fields
for restoring said condition of said rename table prior
to said speculatively dispatched second register-
modifying instruction.
7. The method 1n a data processing system for managing,
a register array according to claim 6 wherein said data
processing system includes a pending branch table, and
wherein said method further includes the steps of:

1n response to speculatively dispatching said first register-
modifying instruction in said first speculative instruc-
tion path in response to said first conditional branch
instruction, saving data in a first table entry in said
pending branch table for determining if said first specu-
lative 1nstruction path was correctly taken, and for
restoring said rename table to a condition that existed
before said first conditional branch instruction; and

10

15

20

25

30

35

40

45

50

55

60

65

16

in response to speculatively dispatching a second register-
modifying instruction 1n a second speculative 1nstruc-
tion path 1n response to a second conditional branch
instruction before said first conditional branch instruc-
tion 1s resolved, saving data 1n a second table entry in
said pending branch table for determining if said sec-
ond speculative instruction path was correctly taken,
and for restoring said rename table to a condition that
existed before said second conditional branch instruc-
tion.

8. A data processing system for managing a register array,
wherein said data processing system 1ncludes M architected
registers and said register array includes M registers and N
additional registers, and wherein said data processing sys-
tem dispatches instructions to a selected one of a plurality of
execution units, said data processing system comprising:

means for selecting a first physical register address from
a rename table 1n response to dispatching a register-
modifying mstruction having an architected target reg-
1ster address;

means for assoclating said architected target register
address with said first physical register address;

means for storing a result of executing said register-
modifying instruction 1n a register pointed to by said
first physical register address; and

means for exchanging said first physical address in said

rename table with a second physical address in a
completion rename table that 1s stored at a location
pointed to by said architected target register address 1n
response to completing said register-modifying
instruction, wherein said register-modifying 1nstruction
1s associated with said first physical register address
from said rename table, and, upon completion of said
register-modilying instruction, said second physical
address 1s moved to said rename table to be available
for association with a subsequent register-modifying
Instruction.

9. The data processing system for managing a register
array according to claim 8 wherein said rename table
includes a content addressable memory, and wherein said
means for associating said architected target register address
with said first physical register address 1includes means for
storing said architected target register address 1n a same
table entry with said first physical register address.

10. The data processing system for managing a register
array according to claim wherein said rename table includes
a head pointer for pointing to a rename table entry, and
wherein said means for storing said architected target reg-
ister address 1n a same table en try with said first physical
register address includes:

means for storing said architected target register address
in a same table entry with said first physical register
address at a table entry pointed to by said head pointer;
and

means for incrementing said head pointer to point to a

next table entry in said rename table.

11. The data processing system for managing a register
array according to claim 9 wheremn said rename table
includes a valid field, and wherein said data processing
system further includes:

means for indicating said association between said archi-
tected target register address and said first physical
register address 1n said table entry in said rename table
1s valid by setting a valid bit in said valid field in
response to associating said architected target register
address with said first physical register address; and

US 6,356,918 Bl

17

means for indicating said association between said archi-

tected target register address and said second physical

register address 1n said table entry in said rename table

1s 1nvalid by resetting said valid bit 1n said valid field

in response to exchanging aid first physical address 1n

said rename table with a second physical address in a

completion rename table that 1s stored at a location
pointed to by said architected target register address.

12. The data processing system for managing a register

array according to claim 11 wherein said data processing

system can speculatively dispatch register-modifying

mstructions, and wherein said rename table includes a V1
field, wherein said data processing system further includes:

means for copying bits 1n each of said valid fields to a
corresponding one of said V1 fields for storing a
condition of said rename table prior to said specula-
tively dispatched first register-modifying mstruction in
response to speculatively dispatching a first register-
modifying instruction 1n a first speculative instruction
path 1n response to a first conditional branch mstruc-
tion; and

means for copying bits in each of said V1 fields to a
corresponding one of said valid fields for restoring said
condifion of said rename table prior to said specula-
tively dispatched first register-modifying mstruction 1n
response to determining said first conditional branch
instruction was mispredicted.

13. The method 1n a data processing system for managing

a register array according to claim 12 wherein said rename
table ncludes a V2 field, and wherein said method further
includes the steps of:

1n response to speculatively dispatching a second register-
modifying instruction in a second speculative instruc-
tion path 1n response to a second conditional branch
instruction before said first conditional branch instruc-
tion 1s resolved, copying bits 1n each of said valid fields

10

15

20

25

30

35

138

to a corresponding one of said V2 fields for storing a
condition of said rename table prior to said specula-
tively dispatched second register-modifying instruc-
tion; and

in response to determining said second conditional branch

instruction was mispredicted, copying bits in each of
said V2 fields to a corresponding one of said valid fields
for restoring said condition of said rename table prior
to said speculatively dispatched second register-
modifying instruction.

14. The data processing system for managing a register
array according to claim 13 wherein said data processing,
system 1ncludes a pending branch table, and wherein said
data processing system further includes:

means for saving data in a {irst table entry in said pending

branch table for determining if said first speculative
instruction path was correctly taken, and for restoring
said rename table to a condition that existed before said
first conditional branch instruction, 1n response to
speculatively dispatching said first registers modifying

instruction 1n said first speculative instruction path in
response to said first conditional branch instruction;
and

means for saving data in a second table entry in said

pending branch table for determining if said second
speculative 1nstruction path was correctly taken, and
for restoring said rename table to a condition that
existed before said second conditional branch
instruction, in response to speculatively dispatching a
second register-modifying instruction 1 a second
speculative instruction path in response to a second
conditional branch instruction before said first condi-
tional branch mstruction 1s resolved.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,356,918 B1 Page 1 of 1
DATED : March 12, 2002
INVENTOR(S) : Chuang et al.

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Title page,
Item |54, please add the word -- THAT -- after "SYSTEM";

Column 16,
Line 46, please add -- 9 -- after "claim";

Column 17,
Line 5, please add -- said -- after "exchange" and delete "aid";

Column 18,
Line 20, please delete "registers modifying" and add -- register-modifying --.

Signed and Sealed this

Twenty-fifth Day of June, 2002

Afttest:

JAMES E. ROGAN
Artesting Officer Direcror of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

