(12) United States Patent

Murphy

US006348919B1

US 6,348,919 B1
Feb. 19, 2002

(10) Patent No.:
45) Date of Patent:

(54) GRAPHICS SYSTEM WITH OPTIMIZED USE 5,490,238 A * 2/1996 Watkinscccu.n... 345/422
OF UNIFIED LOCAL AND FRAME BUFFERS 5,613,050 A * 3/1997 Hochmuth et al. 345/422
5,640,496 A * 6/1997 Hardy et al. 345/421
(75) Inventor: N(;(:Bholas J. N. Mlll'phy, The Sands OTHER PUBILICATIONS
(GB) Press Release, Nov. 13, 1995, S3 Incorporated, 2770 San
(73) Assignee: 3Dlabs Inc, Ltd., Hamilton (BM) Tomas Expwy., Santa Clara, CA 95051-0968, re: “S3d
Advanced Graphics Technology First to Enable 3D 1in Main-
(*) Notice: Subject to any disclaimer, the term of this stream PCs, Family of Products From S3 Delivers Fully—
patent 1s extended or adjusted under 35 Featured 3D Graphics for as Low as $40.”
U.S.C. 154(b) by 789 days. ¢ cited by examiner
(21) Appl. No.: 08/659,132 Primary Examiner—Mark Zimmerman
Assistant Examiner—Huedung X Cao
(22) Filed: Jun. 4, 1996 (74) Attorney, Agent, or Firm—Groover & Associates;
Robert Groover
Related U.S. Application Data
(60) Provisional application No. 60/008,798, filed on Dec. 18, (57) ABSTRACT
199> A graphics rendering system and method utilizing a unified
(51) Int. CL7 ..o, GO6T 15/40 memory space for a depth-buffer and the back framebuffer.
(52) US.CL ... 345/421; 345/589; 345/629 To provide very high resolution with a limited memory, each
(58) Field of Search 345/421, 431, primitive 1s rendered once to provide depth values, to
345/432, 435, 419, 589, 619 determine which pixels of each primitive are displayed, and
a second time to store the color values of pixels which are
(56) References Cited to be displayed. A flag bit is used to ensure that depth data

and color data, which coexist 1n a common memory space,

U.S. PALIENT DOCUMENTS cannot be confused or interchanged.

4,885,703 A * 12/1989 Deeringc.ccceeeeeee.n, 345/422

4,992,780 A * 2/1991 Pennaet al. 345/422 21 Claims, 18 Drawing Sheets

l World coordinates (3D)

Transforms into view

Transform coordinates and
canontical view volume
View coordinates (3D)
' - n n
Clip Clip against canonical
view volume

View coordinates (3D)

Project on to view plane

View coordinates (2D)

Map Into view port

Transtorm <

Normalized device coordinates

Transtorm to physical
device coordinates

Physical device coordinates

Render

U.S. Patent Feb. 19, 2002 Sheet 1 of 18 US 6,348,919 Bl

l World coordinates (3D)

Transforms into view
coordinates and
canonical view volume

Transform

View coordinates (3D)

Clip Clip against canonical
view volume

View coordinates (3D)

Project on to view plane

View coordinates (2D)

Transform Map Into view port

Normalized device coordinates

Transform to physical

device coordinates

Physical device coordinates

Render

Fig. 1A

U.S. Patent Feb. 19, 2002 Sheet 2 of 18 US 6,348,919 Bl

VERTICES Vertex Color
RasterPos Normal Index TexGoord

Current Current %E{SPJ
Normal Color Coordinates
ModeIV|ew M

L| htlng and
oloring

PRIMITIVES Primitive Assembly

__
Application- Specn‘lc Clipping ReadPixels
DrawPixels
Pro N{ectlon Teximage
atrix
Plxel
Vlew Volume Cllpplng ?\}I%rdagse
Divide By w:
Viewport Trzg(gf'er
Modes

ot | o
FRAGMENTS| Raster Rasterization
Position
Per-Fragment Operations

PoﬁLS Frame Buffer Memory

Fig. 1B

JUn 29}I3U| Janqawes4

(F2) SSaIppy M Jiu) ade}iaju| 1ajjnqawe.d
(12) ssaippy peay (2€) Bleq pesy (2€) eleg aum

b : b
IR I SRS I S ————

US 6,348,919 B1

pea U - sdg a no
191INQaULRI eydyy i 231607 31NqaLlIEI 1SOH

-

=

S

o

E 08 Q 199] e v(a@
2 10U8]S po

&3 i — eUdy ANXA] 1n0j0N

(2G) ele@ AWM (2G) eleq peay (pe) Ssaippy alm (p2) Ssaippy peay
Hun aIejiajuj 1ajng 2307

U.S. Patent

ig. 2A (10f2)

US 6,348,919 B1

Sheet 4 of 18

Feb. 19, 2002

U.S. Patent

3|00HS

J0SSIS

30e)au|
1S0H

(ino) 04
10S$99014 S2lyde.o

Foer -
(

ul) 0414
10S$990)4 Salyde.o

ig. 2A (2 0f 2)

¢INIT9
“[raunawes;

US 6,348,919 B1

[
d 4

v
Hlj

ge ‘b4

398L/aJU| Jaynqatey

291007

o -
y—
-
-—
)
-+
&
&
o
7
=
=
g =
~
g\ |
=) 19U8)S
1 1
= [2/019
P
et

Ja1ng 207

U.S. Patent

199] _ nojoy — — _ ¥aq
eudyy [T 00 PHL vl

N0j0)

] |
_ Jvel] - —
[

39eL1a)U] Jayng |8207

p S—
>
=
o
- o

3|ddng
10S5198

2107 SaIydeln)

JERIEIAY

1058920i4
Solydeln

AT

()
0414
108539014
Saldelg

I] 1 HostData | 1

<
<D
e
g s
T
X
W
<
-
S e

U.S. Patent Feb. 19, 2002 Sheet 6 of 18 US 6,348,919 Bl

: SCissor :
Rasterizer Stipple Color DDA

Alpha
Test

Pixel
LB - Stencil Depth LB
Read Ownership Test Test Write
(GID)
LOCALBUFFER

Antialias

Application "0g Texture

Logical Op/ Color
o et rama
Mask (Dither)

FRAMEBUFFER

Host
Out

Fig. 2C

US 6,348,919 B1

lapngawesl4 |\

Pedy pua|d sdQ ino
stsmemc- - eydly - —_ salll 221607 - —Egmseu_- - 1S0H
] eShYOeu pue XN

2 | cshydewpUEXON
m
}S9| A IN0j0 vad - - PEdy - - SS3IPPY
eudyy 0 31NIX3] 1n0j07) 3INXaL 9IN1Xa]
m.., u aInjxal Iy
S = 13jjngeaoi
J1da(]
19U]S
- - {19 - _
301} UJeW pue XN

U.S. Patent

&
S
O
@

&)

ig. 2D (10f2)

US 6,348,919 B1

Sheet 8 of 18

Keb. 19, 2002

U.S. Patent

Router

9|ddns
1058199

39J] U9JBIN PUB XN\

_ 197119]SeY

13)SEN N

VN
JSOH

SN(q
jJeqpesy

30eLIalu|
1S0H

Fig. 2D (2 of 2)

US 6,348,919 B1

Sheet 9 of 18

Keb. 19, 2002

U.S. Patent

S|eubig
j0Jju0 Buiw |

Ja1ingqawe

S[eubis [0Jjuon
Jajjngaweid
Paleys

1814nQ[ea07]

S|0.U0N
21007 03pIA

S|0JJU0Y
NOHd]

10]B13U95)
Duiwi] 08pIA

aJe}lalu|

39e}Ia|
Jangawe.

PRIEYS

aJe}Jaju|

99e}Ja)u| 91607
09pIA [eulalx

aJeligiu| NOY
uoIsuedx3

AJOWI\ Jayngawel

AJowa|\ Jayng|eao

3z bi4

JIA

SSedAg
I3jjngsuiel

8109
Salydeln

Ja)jew o4
1ndu| BleQ
VIAC

ssedAg
13]INQJLa07

105582014 Saydess X100y LNIT9

Jun 39e}a)u] Jajngaweld

($2) $S2IpPY Al jluf aJejiaju] Jajngawel4
(b2) Ssalppy peay (2€) eieq peay (2€) e1eq alum
p g p y

US 6,348,919 B1

sdQ HQ
= | (Be} 519 6 "e1ep S0 0y) SH9 6 O sgmem
= S
7 Eeq aIn)xa| inoj0) Jlnve]| 2.NXa)]
m W..W@mm_ ‘eJep Suq 66) suq 19 01 papuedx
S <|(0e1 $q 2 "21ep SHG 6G) SHG 19 0} papUBK; (57) SSaIPDY et
— = 0
2 1jdaQ
— 10UD]S 0

lll

(26) eieq aM (2c) eleq pesy () Ssaippy alUM (i) SS8IpPY peay
Jiun 39e}Iaju| Jajng |ea07

U.S. Patent

Fig. 2F (1 of 2)

US 6,348,919 B1

S}iq 28 0} 99npay 30BLIa)Y

& ISOH

(n0) 04
o 10$599014 Salydeiy

Sheet 11 of 18

Router

| (8

() ¢
9|ddig SHINE
@ (1) 041

105532014 Salydely

N

Keb. 19, 2002

U.S. Patent

Uedg
, peaye ool , beyy 044~

(321S 3AIRUIB)E)
snq abessaly

(Geysug 6 ‘elepsuqge)
sSnq abessay

(pajou aSIMIaU0
ssa|un daap 1) 041

ig. 2F (2 0f 2)

U.S. Patent Feb. 19, 2002 Sheet 12 of 18 US 6,348,919 Bl

Host CPU does 12 bits wide
Geometery Processing| | | ocalbuffer 8 Mbytes DRAM
4 Mbytes
Host GLINT
doorx || R[] Lwron
PCl Local Bus

Fig. 3A

Plug-in Card

48 bits wide
> = 10 Moytes - 32 bits double buffered)

Local

Processor 400TX VRAM LUT-DAG
PCI-PCI
Bridge

PCl Local Bus

Fig. 3B

U.S. Patent Feb. 19, 2002 Sheet 13 of 18 US 6,348,919 Bl

Plug-in Card
e.q S3 Vision 964
GUI J
)
D
S PCI-PCI GLINT
S 400TX LUT-DAC
O
0.
| ocalbuffer
Fig. 3C
Plug-in Card
- For Video Capture
Video and Playback
Coprocessor
S PCI-PC LINT
3 400TX ll LUT-DAC
&
an

Localbuffer

Fig.3D

U.S. Patent Feb. 19, 2002 Sheet 14 of 18 US 6,348,919 Bl

Subordinate Side

\

Subordinate
« Sides

/

Dominant Side

/

Subordinate Side Dominant Side

A

{ d)(SEEEffx”'
Trapezoid B
/ Irapezoid C
d X Dom?

Trapezoid A

count 3

count 2

Knee 1
\

count T

4+—p 4

d X Sub1

Fig. 4B

U.S. Patent Feb. 19, 2002 Sheet 15 of 18 US 6,348,919 Bl

VL-Bus
Mux
VL-Bus
Core
Memory
Interface
Mux

Memory

US 6,348,919 B1

Sheet 16 of 18

Keb. 19, 2002

U.S. Patent

nQ 1SOH

PEoY
18}4nq[ea0

PEay
3.nIxa|

aJUM
181Inqaue.

159]
U1dap/|1ua)S

$S3IPPY

el

gs "bi4

do 21607

I}lUM
1814NQ|BI07

a|dans
J0SSI9S

pedy
Jayngawe

192119)SeY

pus|gd
004

9INIX9]

vaa 10j07

Ul 1SOH

U.S. Patent Feb. 19, 2002 Sheet 17 of 18 US 6,348,919 Bl

Host Bus
VGA
DRAM
Bus (Graphics | ocalbuffer | Memory I
Hyperpipeline Interf
Interface ypPerpip nierrace
VRAM
Fig. 5C
Texture Localbuffer Framebuffer Bypass

Routing and controt

Memory

Fig. 50

US 6,348,919 B1

bej
be| +
+ 8¢
¢t

Emm:w
abesSSaN

$$990.d 1ndu)

Sheet 18 of 18

Keb. 19, 2002

.._....
B

I-..'
| | ||
.____-m.__-
.I...
"moa
..’.“
n" .
I'H..
Ly
.-I‘
.

0414 EleQ pesy

U.S. Patent

Odl4 N

& """ F
W] Pl Y L Ny
|] .l--, l.-.

.-
e
[|

36 “bi4

(2€) e1eg

P Tt e et

» x """
Y Pry
p TR ¥

be|

8¢

be|
|_|

$$820.4d ¢o

uoneIaual SSBIPPY | wieasng
abeSSaA

900418
n (22) ssaippy

u n - AN A l.- - - u -.'.I A u .' | n a mhE m -.
VLN Pyl TSN T Yol W T LR o Y A AN Ty P
" b _E _&0 L an

0414 SSalPPY PEdY

US 6,348,919 B1

1

GRAPHICS SYSTEM WITH OPTIMIZED USE
OF UNIFIED LOCAL AND FRAME BUFFERS

CROSS-RELATED TO RELATED APPLICATION

This application claims priority from provisional No.
60/008,798, filed Dec. 18, 1995, which 1s hereby 1ncorpo-
rated by reference.

BACKGROUND AND SUMMARY OF THE
INVENTION

The present application relates to computer graphics and
animation systems, and particularly to 3D graphics render-
ing hardware. Background of the art and a summary of the
innovative system and method of the present application is
described below. Some of the distinctions of the presently
preferred embodiment are particularly noted beginning on
page 8, 9.

COMPUTER GRAPHICS AND RENDERING

Modern computer systems normally manipulate graphical
objects as high-level entities. For example, a solid body may
be described as a collection of triangles with specified
vertices, or a straight line segment may be described by
listing 1ts two endpoints with three-dimensional or two-
dimensional coordinates. Such high-level descriptions are a
necessary basis for high-level geometric manipulations, and
also have the advantage of providing a compact format
which does not consume memory space unnecessarily.

Such higher-level representations are very convenient for
performing the many required computations. For example,
ray-tracing or other lighting calculations may be performed,
and a projective transformation can be used to reduce a
three-dimensional scene to its two-dimensional appearance
from a given viewpoint. However, when an 1mage contain-
ing graphical objects 1s to be displayed, a very low-level
description 1s needed. For example, in a conventional CRT
display, a “flying spot” is moved across the screen (one line
at a time), and the beam from each of three electron guns is
switched to a desired level of intensity as the flying spot
passes each pixel location. Thus at some point the 1mage
model must be translated into a data set which can be used
by a conventional display. This operation i1s known as
“rendering.”

The graphics-processing system typically interfaces to the
display controller through a “frame store” or “frame bufler”
of special two-port memory, which can be written to ran-
domly by the graphics processing system, but also provides
the synchronous data output needed by the video output
driver. (Digital-to-analog conversion is also provided after
the frame buffer.) Such a frame buffer is usually imple-
mented using VRAM memory chips (or sometimes with
DRAM and special DRAM controllers). This interface
relieves the graphics-processing system of most of the
burden of synchronization for video output. Nevertheless,
the amounts of data which must be moved around are very
sizable, and the computational and data-transfer burden of
placing the correct data into the frame buffer can still be very
large.

Even 1if the computational operations required are quite
simple, they must be performed repeatedly on a large
number of datapoints. For example, in a typical 1995
high-end configuration, a display of 1280x1024 elements
may need to be refreshed at 72 Hz, with a color resolution
of 24 bits per pixel. If blending 1s desired, additional bits
(e.g. another 8 bits per pixel) will be required to store an

5

10

15

20

25

30

35

40

45

50

55

60

65

2

“alpha” or transparency value for each pixel. This implies
manipulation of more than 3 billion bits per second, without
allowing for any of the actual computations being per-
formed. Thus 1t may be seen that this 1s an environment with
unique data manipulation requirements.

If the display 1s unchanging, no demand 1s placed on the
rendering operations. However, some common operations
(such as zooming or rotation) will require every object in the
image space to be re-rendered. Slow rendering will make the

rotation or zoom appear jerky. This 1s highly undesirable.
Thus efficient rendering 1s an essential step 1n translating an
image representation into the correct pixel values. This 1s
particularly true 1n animation applications, where newly
rendered updates to a computer graphics display must be
ogenerated at regular intervals.

The rendering requirements of three-dimensional graph-
ics are particularly heavy. One reason for this 1s that, even
after the three-dimensional model has been translated to a
two-dimensional model, some computational tasks may be
bequeathed to the rendering process. (For example, color
values will need to be interpolated across a triangle or other
primitive.) These computational tasks tend to burden the
rendering process. Another reason 1s that since three-
dimensional graphics are much more lifelike, users are more
likely to demand a fully rendered image. (By contrast, in the
two-dimensional 1mages created e¢.g. by a GUI or simple
game, users will learn not to expect all areas of the scene to
be active or filled with information.)

FIG. 1A 1s a very high-level view of other processes
performed 1 a 3D graphics computer system. A three
dimensional 1mage which 1s defined 1n some fixed 3D
coordinate system (a “world” coordinate system) is trans-
formed into a viewing volume (determined by a view
position and direction), and the parts of the image which fall
outside the viewing volume are discarded. The visible
portion of the image volume 1s then projected onto a viewing
plane, 1n accordance with the familiar rules of perspective.
This produces a two-dimensional 1mage, which 1s now
mapped 1nto device coordinates. It 1s 1important to under-
stand that all of these operations occur prior to the operations
performed by the rendering subsystem of the present imnven-
tion. FIG. 1B 1s an expanded version of FIG. 1A, and shows
the flow of operations defined by the OpenGL standard.

A vast amount of engineering effort has been invested 1n
computer graphics systems, and this area 1s one of increasing
activity and demands. Numerous books have discussed the
requirements of this area; see, e.g., ADVANCES IN COMPUTER
GRAPHICS (ed. Enderle 1990-); Chellappa and Sawchuk,
DIGITAL IMAGE PROCESSING AND ANALYSIS (1985); CoM-
PUTER GRAPHICS HARDWARE (ed. Reghbati and Lee 1988);
COMPUTER GRAPHICS: IMAGE SYNTHESIS (ed. Joy et al.);
Foley et al., FUNDAMENTALS OF INTERACTIVE COMPUTER
GRAPHICS (2.ed. 1984); Foley, COMPUTER GRAPHICS PRIN-
CIPLES & PRACTICE (2.ed. 1990); Foley, INTRODUCTION TO
COMPUTER GRAPHICS (1994); Giloi, Interactive Computer
Graphics (1978); Hearn and Baker, COMPUTER GRAPHICS
(2.ed. 1994); Hill, COMPUTER GRAPHICS (1990); Latham,
DICTIONARY OF COMPUTER GRAPHICS (1991); Magnenat-
Thalma, IMAGE SYNTHESIS THEORY & PRACTICE (1988);
Newman and Sproull, PRINCIPLES OF INTERACTIVE (COM-
PUTER GRAPHICS (2.ed. 1979); PICTURE ENGINEERING (ed. Fu
and Kunii 1982); PICTURE POCESSING & DIGITAL FILTERING
(2.ed. Huang 1979); Prosise, How COMPUTER GRAPHICS
WORK (1994); Rimmer, BIT MAPPED GRAPHICS (2.ed. 1993);
Salmon, COMPUTER GRAPHICS SYSTEMS & CONCEPTS
(1987); Schachter, COMPUTER IMAGE GENERATION (1990);
Watt, THREE-DIMENSIONAL COMPUTER GRAPHICS (2.ed.

US 6,348,919 B1

3

1994); Scott Whitman, MULTIPROCESSOR METHODS FOR
COMPUTER GRAPHICS RENDERING; the SIGGRAPH PRro-
CEEDINGS for the years 1980-1994; and the IEEE Computer
Graphics and Applications magazine for the years
1990-1994; all of which are hereby incorporated by refer-
ence.

Background: Graphics Animation

In many areas of computer graphics a succession of
slowly changing pictures are displayed rapidly one after the
other, to give the impression of smooth movement, 1n much
the same way as for cartoon animation. In general the higher
the speed of the animation, the smoother (and better) the
result.

When an application 1s generating animation 1mages, it 1s
normally necessary not only to draw each picture mto the
frame buffer, but also to first clear down the frame buffer,
and to clear down auxiliary buffers such as depth (Z) buffers,
stencil buffers, alpha bufifers and others. A good treatment of
the general principles may be found 1n Computer Graphics.
Principles and Practice, James D. Foley et al., Reading
Mass.: Addison-Wesley. A specific description of the various
auxiliary buffers may be found 1n The OpenGL Graphics
System: A Specification (Version 1.0), Mark Segal and Kurt
Akeley, SGI.

In most applications the value written, when clearing any
orven buller, 1s the same at every pixel location, though
different values may be used 1n different auxiliary buifers.
Thus the frame buffer 1s often cleared to the value which
corresponds to black, while the depth (Z) buffer is typically
cleared to a value corresponding to infinity.

The time taken to clear down the buffers 1s often a
significant portion of the total time taken to draw a frame, so
it 1s 1mportant to minimize it.

Background: Parallelism in Graphics Processing

Due to the large number of at least partially independent
operations which are performed 1n rendering, many propos-
als have been made to use some form of parallel architecture
for graphics (and particularly for rendering). See, for
example, the special 1ssue of Computer Graphics on parallel
rendering (September 1994). Other approaches may be
found 1n earlier patent filings by the assignee of the present

application and 1ts predecessors, ¢.g. U.S. Pat. No. 5,195,
186, and published PCT applications PCT/GB90/00987,

PCT/GB90/01209, PCT/GB90/01210, PCT/GB90/01212,
PCT/GB90/01213, PCT/GB90/01214, PCT/GB90/01215,
and PCT/GB90/01216, all of which are hereby incorporated
by reference.

Background: Pipelined Processing Generally

There are several general approaches to parallel process-
ing. One of the basic approaches to achieving parallelism in
computer processing 1s a technique known as pipelining. In
this technique the individual processors are, 1 effect, con-
nected 1n series 1n an assembly-line configuration: one
processor performs a first set of operations on one chunk of
data, and then passes that chunk along to another processor
which performs a second set of operations, while at the same
fime the first processor performs the first set operations
again on another chunk of data. Such architectures are
ogenerally discussed 1n Kogge, THE ARCHITECTURE OF PIPE-
LINED COMPUTERS (1981), which is hereby incorporated by
reference.

Background: The OpenGL™ Standard

The “OpenGL” standard 1s a very important software
standard for graphics applications. In any computer system
which supports this standard, the operating system(s) and

10

15

20

25

30

35

40

45

50

55

60

65

4

application software programs can make calls according to
the OpenGL standards, without knowing exactly what the
hardware configuration of the system 1is.

The OpenGL standard provides a complete library of
low-level graphics manipulation commands, which can be
used to 1implement three-dimensional graphics operations.
This standard was originally based on the proprietary stan-
dards of Silicon Graphics, Inc., but was later transformed
into an open standard. It 1s now becoming extremely
important, not only in high-end graphics-intensive
workstations, but also 1n high-end PCs. OpenGL 1s sup-
ported by Windows NT™ which makes it accessible to
many PC applications.

The OpenGL specification provides some constraints on
the sequence of operations. For instance, the color DDA
operations must be performed before the texturing
operations, which must be performed before the alpha
operations. (A “DDA” or digital differential analyzer, 1s a
conventional piece of hardware used to produce linear
ogradation of

Other graphics interfaces (or “APIs”), such as PHIGS or
XGL, superset of most of these.

The OpenGL standard 1s described 1n the OPENGL PRO-
GRAMMING GUIDE (1993), the OPENGL REFERENCE MANUAL
(1993), and a book by Segal and Akeley (of SGI) entitled
THE OPENGL GRAPHICS SYSTEM: A SPECIFICATION (Version
1.0), all of which are hereby incorporated by reference.

FIG. 1B 1s an expanded version of FIG. 1A, and shows the
flow of operations defined by the OpenGL standard. Note
that the most basic model 1s carried 1n terms of vertices, and
these vertices are then assembled into primitives (such as
triangles, lines, etc.). After all manipulation of the primitives
has been completed, the rendering operations will translate
each primitive into a set of “fragments.” (A fragment is the
portion of a primitive which affects a single pixel.) Again, it
should be noted that all operations above the block marked
“Rasterization” would be performed by a host processor, or
possibly by a “geometry engine” (i.e. a dedicated processor
which performs rapid matrix multiplies and related data
manipulations), but would normally not be performed by a
dedicated rendering processor such as that of the presently
preferred embodiment.

One disadvantage of standards such as OpenGL i1s that
they require that texturing or other processor-intensive
operations be performed on data before pixel elimination
tests, e.g. depth testing, 1s performed, which wastes proces-
sor time by performing costly texturing calculations on
pixels which will be eliminated later 1n the pipeline. When
the OpenGL specification 1s not required or when the current
OpenGl state vector cannot eliminate pixels as a result of the
alpha test, however, 1t would be much more efficient to
climinate as many pixels as possible before doing these
calculations. The present application discloses a method and
device for reordering the processing steps in the rendering
pipeline to either accommodate order-specific specifications
such as OpenGL, or to provide for an optimized throughput
by only performing processor-intensive operations on pixels
which will actually be displayed.

Background: Texturing

Texture patterns are commonly used as a way to apply
realistic visual detail at the sub-polygon level. See Foley et
al., COMPUTER GRAPHICS: PRINCIPLES AND PRACTICE (2.ed.
1990, corr. 1995), especially at pages 741-744; Paul S.
Heckbert, “Fundamentals of Texture Mapping and Image
Warping,” Thesis submitted to Dept. of EE and Computer
Science, University of California, Berkeley, Jun. 17, 1994;

US 6,348,919 B1

S

Heckbert, “Survey of Computer Graphlcs ” IEEE Computer
Graphics, November 1986, pp.56it; all of which are hereby
incorporated by reference. Since the surfaces are trans-
formed (by the host or geometry engine) to produce a 2D
view, the textures will need to be similarly transformed by
a linear transform (normally projective or “affine”). (In
conventional terminology, the coordinates of the object
surface, 1.e. the primitive being rendered, are referred to as
an (s,t) coordinate space, and the map of the stored texture
is referred to a (u,v) coordinate space.) The transformation
in the resulting mapping means that a horizontal line 1n the
(x,y) display space is very likely to correspond to a slanted
line in the (u,v) space of the texture map, and hence many
page breaks will occur, due to the texturing operation, as

rendering walks along a horizontal line of pixels.

Innovative System and Methods

Particularly for low-end users, the cost of graphics hard-
ware 1s 1mportant. One variable expense of graphics hard-
ware 1S the cost of dedicated DRAM, VRAM, and/or other
memory. Higher resolutions and performance generally
require more dedicated memory. The user must therefore
balance the utility of higher resolution, faster performance,
and lower memory cost when selecting hardware. The
present application provides for a system which allows high
resolutions while requiring less memory, with a slight per-
formance cost.

The presently preferred embodiment provides for a graph-
ics rendering system and method utilizing a unified memory
space 1n place of the normally separate local and frame
buffers. It 1s possible to operate this memory by simply
defining a partition between local memory and frame
memory. However, the disclosed circuit includes capability
for multiplexing depth and color information into the same
address space (i.¢. the depth-buffer and the back framebuffer
can be multiplexed together). To provide this capability,
there 1s a command for stuffing the alpha MSB (for depth/
color buffer tagging).

High-Resolution Rendering

This innovative rendering system allows (along with
many other capabilities) a slower high-resolution rendering
procedure, which permits more resolution to be achieved
(for a given local buffer size) than would otherwise be
possible. Alternatively, this procedure can be used to reduce
memory requirements, €.g. to allow more or bigger texture
maps.

In one class of embodiments, each primitive 1s rendered
once to provide depth values (and thus determine which
pixels of each primitive are displayed), and a second time to
store the color values of pixels which are to be displayed. A
speciflied bit of the color values 1s used to ensure that depth
data and color data, which coexist in a common memory
space, cannot be confused or interchanged.

By combining the memory space of the depth buffer and
back framebuffer, the user 1s saved the cost of individual
memory spaces for each function, yet retains the high quality
output of higher resolution, depth buffered graphics. To
accomplish this, however, each primitive must go through a
two-pass rendering process, which reduces the rendering
throughput.

The first rendering pass computes the depth values for
cach pixel of each primitive, and stores the depth value 1n the
combined buffer only 1f 1t 1s less than the value currently in
the bufler, 1.€. the pixel is “on top of” the previous pixel, and
ignores the color data. The second rendering pass recom-
putes the depth and color values of each pixel of each
primitive, and compares each depth value with the depth

10

15

20

25

30

35

40

45

50

55

60

65

6

value for that pixel stored in the combined buifer. If the
values are equal, indicating that the current pixel 1s actually
to be displayed, the color data of the pixel 1s written to the
buffer, replacing the depth value. At the same time, one bit
of the color data, the most significant alpha bit 1n the current
embodiment, 1s forced high. Because depth data never has
this bit high, this bit effectively functions as a flag bit to

ensure that color data 1s always distinguished from depth
data.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosed 1inventions will be described with reference
to the accompanying drawings, which show important
sample embodiments of the invention and which are incor-
porated 1n the specification hereof by reference, wherein:

FIG. 1A, described above, 1s an overview of key elements
and processes 1n a 3D graphics computer system.

FIG. 1B 1s an expanded version of FIG. 1A, and shows the
flow of operations defined by the OpenGL standard.

FIG. 2A 1s an overview of the core graphics rendering
chip which forms the basis of the presently preferred
embodiment.

FIG. 2B 1s an alternative embodiment of the graphics
rendering chip of FIG. 2A, which includes additional
texture-manipulation capabilities.

FIG. 2C 1s a more schematic view of the sequence of

operations performed 1n the graphics rendering chip of FIG.
2A.

FIG. 2D 1s a different view of the graphics rendering chip
of FIG. 2A, showing the connections of a readback bus
which provides a diagnostic pathway.

FIG. 2E 1s yet another view of the graphics rendering chip
of F1G. 2A, showing how the functions of the core pipeline
of FIG. 2C are combined with various external interface
functions.

FIG. 2F 1s yet another view of the graphics rendering chip
of FIG. 2A, showing how the details of FIFO depth and

lookahead are implemented, in the presently preferred
embodiment.

FIG. 3A shows a sample graphics board which incorpo-
rates the chip of FIG. 2A.

FIG. 3B shows another sample graphics board
implementation, which differs from the board of FIG. 3A in
that more memory and an additional component 1s used to
achieve higher performance.

FIG. 3C shows another graphics board, in which the chip
of FIG. 2A shares access to a common frame store with GUI

accelerator chip.

FIG. 3D shows another graphics board, 1n which the chip
of FIG. 2A shares access to a common frame store with a

video coprocessor (which may be used for video capture and
playback functions.

FIG. 4A1llustrates the definition of the dominant side and
the subordinate sides of a triangle.

FIG. 4B 1illustrates the sequence of rendering an Anti-
aliased Line primitive.

FIG. 5A 1s a block diagram of the graphics processor of
the presently preferred embodiment.

FIG. 5B 1s a view of the sequence of operations performed
in the graphics rendering chip of the presently preferred
embodiment.

FIG. 5C shows a sample graphics board which incorpo-
rates the chip of the presently preferred embodiment,

FIG. 5D 1s a block diagram of the memory unit of the
presently preferred embodiment.

US 6,348,919 B1

7

FIG. 5E 1s a block diagram of the texture read unit of the
presently preferred embodiment.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The numerous innovative teachings of the present appli-
cation will be described with particular reference to the
presently preferred embodiment (by way of example, and
not of limitation). The presently preferred embodiment is a
GLINT™ Gi1G1™ 3D rendering chip. The Hardware Refer-
ence Manual and Programmer’s Reference Manual for this
chip describe further details of this sample embodiment, and
arec both hereby incorporated by reference. Both are
available, as of the effective filing date of this application,

from 3Dlabs Inc. Ltd., 181 Metro Drive, Suite 520, San Jose
Calif. 95110.

The text on pages 14—-134 1s taken from the description of
the core graphics processor on which the presently preferred
embodiment 1s based. The description of the particular
structure and process of the presently preferred embodiment
immediately follows.

The GLINT Graphics Processor
Definitions
The following definitions may help 1n understanding the

exact meaning of terms used 1n the text of this application:

application: a computer program which uses graphics ani-
mation.

depth (Z) buffer: A memory buffer containing the depth
component of a pixel. Used to, for example, eliminate
hidden surfaces.

blt double-buffering: A technique for achieving smooth
animation, by rendering only to an undisplayed back
buffer, and then copying the back bufler to the front once
drawing 1s complete.

FrameCount Planes: Used to allow higher animation rates by
enabling DRAM local buffer pixel data, such as depth (Z),
to be cleared down quickly.

frame buffer: An area of memory containing the displayable
color buffers (front, back, left, right, overlay, underlay).
This memory 1s typically separate from the local buifer.

local butfer: An area of memory which may be used to store
non-displayable pixel information: depth(Z), stencil,

FrameCount and GID planes. This memory 1s typically

separate from the framebufifer.

pixel: Picture element. A pixel comprises the bits in all the
buffers (whether stored in the local buffer or framebuffer),
corresponding to a particular location in the framebulifer.

stencil buffer: A buffer used to store information about a
pixel which controls how subsequent stencilled pixels at
the same location may be combined with the current value
in the framebuffer. Typically used to mask complex
two-dimensional shapes.

Preferred Chip Embodiment—Overview
The GLINT™ high performance graphics processors

combine workstation class 3D graphics acceleration, and

state-of-the-art 2D performance 1 a single chip. All 3D
rendering operations are accelerated by GLINT, including

Gouraud shading, texture mapping, depth buffering, anti-

aliasing, and alpha blending.

The scalable memory architecture of GLINT makes it
ideal for a wide range of graphics products, from PC boards
to high-end workstation accelerators.

There will be several of the GLINT family of graphics
processors: the GLINT 300SX™ is the primary preferred
embodiment which 1s described herein in great detail, and
the GLINT 300TX™ 1s a planned alternative embodiment

which 1s also mentioned hereimmbelow. The two devices are

10

15

20

25

30

35

40

45

50

55

60

65

3

cgenerally compatible, with the 300TX adding local texture
storage and texel address generation for all texture modes.

FIG. 2A 1s an overview of the graphics rendering chip of
the presently preferred embodiment (i.e. the GLINT

300SX ™).

General Concept

The overall architecture of the GLINT chip is best viewed
using the software paradigm of a message passing system. In
this system all the processing blocks are connected 1n a long
pipeline with communication with the adjacent blocks being
done through message passing. Between each block there 1s
a small amount of buffering, the size being specific to the

local communications requirements and speed of the two
blocks.

The message rate 1s variable and depends on the rendering,
mode. The messages do not propagate through the system at
a fixed rate typical of a more traditional pipeline system. If
the receiving block can not accept a message, because its
input buffer 1s full, then the sending block stalls until space
1s available.

The message structure 1s fundamental to the whole system
as the messages are used to control, synchronize and inform
cach block about the processing it 1s to undertake. Each
message has two fields—a 32 bit data field and a 9 bit tag
field. (This is the minimum width guaranteed, but some local
block to block connections may be wider to accommodate
more data.) The data field will hold color information,
coordinate information, local state information, etc. The tag
field 1s used by each block to i1dentify the message type so
it knows how to act on 1it.

Each block, on receiving a message, can do one of several
things:

Not recognize the message so 1t just passes it on to the

next block.

Recognize it as updating some local state (to the block) so
the local state 1s updated and the message terminated,
1.. not passed on to the next block.

Recognize 1t as a processing action, and 1f appropriate to
the unit, the processing work specific to the unit 1s
done. This may entail sending out new messages such
as Color and/or moditying the initial message before
sending it on. Any new messages are 1njected into the
message stream before the 1nitial message 1s forwarded
on. Some examples will clarify this.

When the Depth Block receives a message ‘new
fragment’, 1t will calculate the corresponding depth and do
the depth test. If the test passes then the ‘new fragment’
message 1s passed to the next unit. If the test fails then the
message 1s modified and passed on. The temptation 1s not to
pass the message on when the test fails (because the pixel 1s
not going to be updated), but other units downstream need
to keep their local DDA units in step. (In the present
application, the messages are being described 1n general
terms so as not to be bogged down 1n detail at this stage. The
details of what a ‘new fragment” message actually specifies
(i.e. coordinate, color information) is left till later. In
ogeneral, the term “pixel” 1s used to describe the picture
clement on the screen or in memory. The term “fragment” 1s
used to describe the part of a polygon or other primitive
which projects onto a pixel. Note that a fragment may only
cover a part of a pixel.)

When the Texture Read Unit (if enabled) gets a ‘new
fragment’” message, 1t will calculate the texture map
addresses, and will accordingly provide 1, 2, 4 or 8 texels to
the next unit together with the appropriate number of
interpolation coeflicients.

Each umt and the message passing are conceptually
running asynchronous to all the others. However, 1n the

US 6,348,919 B1

9

presently preferred embodiment there 1s considerable syn-
chrony because of the common clock.

How does the host process send messages? The message
data field 1s the 32 bit data written by the host, and the
message tag is the bottom 9 bits of the address (excluding
the byte resolution address lines). Writing to a specific
address causes the message type associated with that address
to be inserted mto the message queue. Alternatively, the
on-chip DMA controller may fetch the messages from the
host’s memory.

The message throughput, 1n the presently preferred
embodiment, 1s 50M messages per second and this gives a
fragment throughput of up to 50M per second, depending on
what 1s being rendered. Of course, this rate will predictably
be further increased over time, with advances 1n process
technology and clock rates.

Linkage

The block diagram of FIG. 2A shows how the units are
connected together 1n the GLINT 300SX embodiment, and
the block diagram of FIG. 2B shows how the units are

connected together 1n the GLINT 300TX embodiment.
Some general points are:

The following tunctionality 1s present in the 300TX, but
missing from the 300SX: The Texture Address (TAddr)
and Texture Read (TRd) Units are missing. Also, the
router and multiplexer are missing from this section, so
the unit ordering 1s Scissor/Stipple, Color DDA, Tex-
ture Fog Color, Alpha Test, LB Rd, etc.

In the embodiment of FIG. 2B, the order of the units can
be configured 1n two ways. The most general order
(Router, Color DDA, Texture Unit, Alpha Test, LB Rd,
GID/Z/Stencil, LB Wr, Multiplexer) and will work in
all modes of OpenGL. However, when the alpha test 1s
disabled 1t 1s much better to do the Graphics ID, depth
and stencil tests before the texture operations rather
than after. This 1s because the texture operations have
a high processing cost and this should not be spent on
fragments which are later rejected because of window,
depth or stencil tests.

The loop back to the host at the bottom provides a simple
synchronization mechanism. The host can insert a Sync
command and when all the preceding rendering has
finished the sync command will reach the bottom host
interface which will notify the host the sync event has
occurred.

Benefits

The very modular nature of this architecture gives great
benefits. Each unit lives 1n 1solation from all the others and
has a very well defined set of input and output messages.
This allows the internal structure of a unit (or group of units)
to be changed to make algorithmic/speed/gate count trade-
oifs.

The 1solation and well defined logical and behavioral
interface to each unit allows much better testing and veri-
fication of the correctness of a unit.

The message passing paradigm 1s easy to simulate with
software, and the hardware design 1s nicely partitioned. The
architecture 1s self synchronizing for mode or primitive
changes.

The host can mimic any block 1n the chain by inserting
messages which that block would normally generate. These
message would pass through the earlier blocks to the mim-
icked block unchanged and from then onwards to the rest of
the blocks which cannot tell the message did not originate
from the expected block. This allows for an easy work
around mechanism to correct any flaws in the chip. It also
allows other rasterization paradigms to be implemented

10

15

20

25

30

35

40

45

50

55

60

65

10

outside of the chip, while still using the chip for the low level
pixel operations.

“A Day 1n the Life of a Triangle”

Before we get too detailed 1n what each unit does it 1s
worth while looking in general terms at how a primitive (e.g.
triangle) passes through the pipeline, what messages are
ogenerated, and what happens in each unit. Some simplifi-
cations have been made 1n the description to avoid detail
which would otherwise complicate what 1s really a very
simple process. The primitive we are going to look at 1s the
familiar Gouraud shaded Z buffered triangle, with dithering.
[t 1s assumed any other state (i.e. depth compare mode) has
been set up, but (for simplicity) such other states will be
mentioned as they become relevant.

The application generates the triangle vertex information
and makes the necessary OpenGL calls to draw it.

The OpenGL server/library gets the vertex information,
transforms, clips and lights 1t. It calculates the initial
values and derivatives for the values to interpolate
(Xiepr X, igne T€d, green, blue and depth) for unit change
in dx and dxdy, .. All these values are in fixed point
integer and have unique message tags. Some of the
values (the depth derivatives) have more than 32 bits to
cope with the dynamic range and resolution so are sent
in two halves Finally, once the derivatives, start and end
values have been sent to GLINT the ‘render triangle’
message 1S sent.

On GLINT: The derivative, start and end parameter
messages are received and filter down the message
stream to the appropriate blocks. The depth parameters
and derivatives to the Depth Unit; the RGB parameters
and derivative to the Color DDA Unit; the edge values
and derivatives to the Rasterizer Unit.

The ‘render triangle’ message 1s received by the rasterizer
unit and all subsequent messages (from the host) are
blocked until the triangle has been rasterized (but not
necessarily written to the frame store). A ‘prepare to
render’ message 1s passed on so any other blocks can
prepare themselves.

The Rasterizer Unit walks the left and right edges of the
triangle and fills in the spans between. As the walk
progresses messages are send to indicate the direction
of the next step: StepX or StepYDomEdge. The data
field holds the current (X, y) coordinate. One message
1s sent per pixel within the triangle boundary. The step
messages are duplicated 1nto two groups: an active
group and a passive group. The messages always start

off 1n the active group but may be changed to the
passive group if this pixel fails one of the tests (e.g.
depth) on its path down the message stream. The two
ogroups are distinguished by a single bit 1n the message
tag. The step messages (in either form) are always
passed throughout the length of the message stream,
and are used by all the DDA units to keep their
interpolation values 1n step. The step message elfec-
tively 1dentifies the fragment and any other messages
pertaining to this fragment will always precede the step
message 1n the message stream.

The Scissor and Stipple Unit. This unit does 4 tests on the
fragment (as embodied by the active step message).
The screen scissor test takes the coordinates associated
with the step message, converts them to be screen
relative (if necessary) and compares them against the
screen boundaries. The other three tests (user scissor,
line stipple and area stipple) are disabled for this
example. If the enabled tests pass then the active step

US 6,348,919 B1
11 12

1s forwarded onto the next unit, otherwise 1t 1s changed 1. If the step message 1s passive then no further action
into a passive step and then forwarded. OCCUTS.

The Color DDA unit responds to an active step message 2. On an active step message 1t calculates the linear
by generating a Color message and sending this onto address in the framebuffer of the required data. This
the next unit. The active step message 1s then forwarded 5 is done using the (X, Y) position recorded in the step
to the next unit. The Color message holds, 1n the data message and locally stored information on the
field, the current RGBA value from the DDA. If the ‘screen width’ and window base address. Separate
step message 1S passive then no Color message 1s read and write addresses are caleulated.

generated. After the Color message is sent (or would
have been sent) the step message is acted on to incre-
ment the DDA 1n the correct direction, ready for the
next pixel.

Texturing, Fog and Alpha Tests Units are disabled so the
messages just pass through these blocks.

In general terms the Local Buffer Read Unit reads the
Graphic ID, Stencil and Depth information from the
Local Buffer and passes it onto the next unit. More
specifically 1t does:

1. If the step message 1s passive then no further action
OCCUTS.

3. The addresses are passed to the Framebuifer Inter-
10 face Unit and the 1dentified framebuffer location
read. The write address 1s held for use later.

4. Sometime later the color data 1s returned and inserted
into a ‘Frame Buifer Data’ message and passed on to
the next unit. The actual data read from the

15 framestore can be 1n several formats to allow nar-
rower width memories to be used 1n cost sensitive
systems. The formatting of the data 1s deferred until
the Alpha Blend Unit as 1t 1s the only unit which
needs to match 1t up with the internal formats. In this

2. On an active step message it calculates the linear 2V exgmple no alpha blending or logical operations are
address 1n the local buffer of the required data. This taking place, so reads are disabled and hence no read
is done using the (X, Y) position recorded in the step address 1s sent to the Framebuftfer Interface Unit. The
message and locally stored information on the Color and step messages just pass through.

‘screen width” and window base address. Separate The Alpha Blend Unit is disabled so just passes the
read and write addresses are calculated. 25 messages through.

3. The addresses are passed to the Local Buffer Inter-
face Unit and the 1dentified local buffer location read.
The write address 1s held for use later.

4. Sometime later the local buffer data 1s returned and
1s formatted 1nto a consistent internal format and ;g
inserted 1nto a ‘Local Buffer Data’ message and
passed on to the next unit. The message data field 1s

made wider to accommodate the maximum ILocal

The Dither Unit stores the Color message internally until

an active step 1s received. On receiving this 1t uses the
least significant bits of the (X, Y) coordinate informa-
tion to dither the contents of the Color message. Part of
the dithering process i1s to convert from the internal
color format into the format of the framebuffer. The
new color 1s mnserted into the Color message and passed

Buffer width of 52 bits (32 depth, 8 stencil, 4 graphic on, followed by the step message.
ID, 8 frame count) and this extra width just extends ,. The Logical Operations are disabled so the Color message
to the Local Buffer Write block. The actual data read is just converted into the FBWriteData message (just
from the local buffer can be in several formats to the tag changes) and forwarded on to the next unit. The
allow narrower width memories to be used 1n cost step message just passes through.
sensitive systems. The narrower data 1s formatted The Framebuffer Write Unit performs any writes which
into a consistent internal format in this block. 40 are necessary. The FBWriteData message has its data
The Graphic ID, Stencil and Depth Unit just passes the posted to the Framebuifer Interface Unit to be written
Color message through and stores the LBData message into the memory (the write address is already waiting in
until the step message arrives. A passive step message the Framebuffer Interface Unit). The step message is
would just pass straight through. When the active step just passed through.
message 1s recerved the internal Graphic ID, stencil and 45 The Host Out Unit is mainly concerned with synchroni-
depth values are compared with the ones 1n the LBData zation with the host so for this example will just
message as specified by this unit’s mode nformation. consume any messages which reach this point in the
If the enabled tests pass then the new local buffer data message stream.
1s sent 1in the LBWriteData message to the next unit and This description has concentrated on what happens as one
the active step message forwarded. If any of the 50 fragment flows down the message stream. It is important to
enabled tests fail then an LBCancelWrite message 1s remember that at any instant 1n time there are many frag-
sent followed by the equivalent passive step message. ments flowing down the message stream and the further
The depth DDA 1s stepped to update the local depth down they reach the more processing has occurred.
value. Interfacing Between Blocks
The Local Bufter Write Unit performs any writes which 55 FIG. 2A shows the FIFO buffering and lookahead con-
arc necessary. The LBWriteData message has its data nections which are used in the presently preferred embodi-
formatted into the external local buffer format and this ment. The FIFOs are used to provide an asynchronous
1s posted to the Local Buffer Interface Unit to be written interface between blocks, but are expensive in terms of gate
into the memory (the write address 1s already waiting 1n count. Note that most of these FIFOs are only one stage deep
the Local Buffer Interface Unit). The LBWriteCancel 60 (except where indicated), which reduces their area. To
message just informs the Local Buffer Interface Unit maintain performance, lookahead connections are used to
that the pending write address 1s no longer needed and accelerate the “startup” of the pipeline. For example, when
can be discarded. The step message 1s just passed the Local-Buffer-Read block issues a data request, the
through. Texture/Fog/Color blocks also receive this, and begin to
In general terms the Framebuffer Read Unit reads the 65 transfer data accordingly. Normally a single-entry deep
color information from the framebuffer and passes it FIFO cannot be read and written 1n the same cycle, as the
onto the next unit. More specifically it does: writing side doesn’t know that the FIFO 1s going to be read

US 6,348,919 B1

13

in that cycle (and hence become eligible to be written). The
look-ahead feature give the writing side this insight, so that
single-cycle transfer can be achieved. This accelerates the
throughput of the pipeline.
Programming Model

The following text describes the programming model for
GLINT.

GLINT as a Register file

The simplest way to view the mterface to GLINT 1s as a
flat block of memory-mapped registers (i.e. a register file).
This register file appears as part of Region 0 of the PCI
address map for GLINT. See the GLINT Hardware Refer-
ence Manual for details of this address map.

When a GLINT host software driver 1s initialized 1t can
map the register file into its address space. Each register has
an assoclated address tag, giving its offset from the base of
the register file (since all registers reside on a 64-bit
boundary, the tag offset is measured in multiples of 8 bytes).
The most straightforward way to load a value into a register
1s to write the data to its mapped address. In reality the chip
interface comprises a 16 entry deep FIFO, and each write to
a register causes the written value and the register’s address
tag to be written as a new entry in the FIFO.

Programming GLINT to draw a primitive consists of
writing 1nitial values to the appropriate registers followed by
a write to a command register. The last write triggers the
start of rendering.

GLINT has approximately 200 registers. All registers are
32 bits wide and should be 32-bit addressed. Many registers
are split into bit fields, and 1t should be noted that bit 0 1s the
least significant bait.

Register Types

GLINT has three main types of register:

Control Registers
Command Registers

Internal Registers

Control Registers are updated only by the host—the chip
effectively uses them as read-only registers. Examples of
control registers are the Scissor Clip unit min and max
registers. Once 1nitialized by the host, the chip only reads
these registers to determine the scissor clip extents.

Command Registers are those which, when written to,
typically cause the chip to start rendering (some command
registers such as ResetPickResult or Sync do not 1nitiate
rendering). Normally, the host will initialize the appropriate
control registers and then write to a command register to
initiate drawing. There are two types of command registers:
begin-draw and continue-draw. Begin-draw commands
cause rendering to start with those values specified by the
control registers. Continue-draw commands cause drawing
to continue with internal register values as they were when
the previous drawing operation completed. Making use of
continue-draw commands can significantly reduce the
amount of data that has to be loaded into GLINT when
drawing multiple connected objects such as polylines.
Examples of command registers include the Render and
ContinueNewLine registers.

For convenience this application will usually refer to
“sending a Render command to GLINT” rather than saying
(more precisely) “the Render Command register 1s written
to, which 1nitiates drawing”.

Internal Registers are not accessible to host software.
They are used internally by the chip to keep track of
changing values. Some control registers have corresponding
internal registers. When a begin-draw command 1s sent and
before rendering starts, the internal registers are updated
with the values 1n the corresponding control registers. If a

10

15

20

25

30

35

40

45

50

55

60

65

14

continue-draw command 1s sent then this update does not
happen and drawing continues with the current values 1n the
internal registers. For example, if a line 1s being drawn then
the StartXDom and StartY control registers specify the (x, y)
coordinates of the first point 1n the line. When a begin-draw
command 1s sent these values are copied into internal
registers. As the line drawing progresses these internal
registers are updated to contain the (x, y) coordinates of the
pixel being drawn. When drawing has completed the internal
registers contain the (x, y) coordinates of the next point that
would have been drawn. If a continue-draw command 1s
now given these final (x, y) internal values are not modified
and further drawing uses these values. If a begin-draw
command had been used the internal registers would have
been reloaded from the StartXDom and StartY registers.

For the most part internal registers can be ignored. It 1s
helpful to appreciate that they exist in order to understand
the continue-draw commands.

GLINT I/O Interface
There are a number of ways of loading GLINT registers
for a given context:

The host writes a value to the mapped address of the
register

The host writes address-tag/data pairs into a host memory
buffer and uses the on-chip DMA to transfer this data
to the FIFO.

The host can perform a Block Command Transfer by
writing address and data values to the FIFO 1interface
registers.

In all cases where the host writes data values directly to
the chip (via the register file) it has to worry about FIFO
overflow. The InFIFOSpace register indicates how many
free entries remain in the FIFO. Before writing to any
register the host must ensure that there 1s enough space left
in the FIFO. The values 1n this register can be read at any
time. When using DMA, the DMA controller will automati-
cally ensure that there 1s room 1n the FIFO before it performs

further transfers. Thus a buffer of any size can be passed to
the DMA controller.

FIFO Control

The description above considered the GLINT interface to
be a register file. More precisely, when a data value 1s
written to a register this value and the address tag for that
register are combined and put into the FIFO as a new entry.
The actual register 1s not updated until GLINT processes this
entry. In the case where GLINT 1s busy performing a time
consuming operation (e.g. drawing a large texture mapped
polygon), and not draining the FIFO very quickly, it is
possible for the FIFO to become full. If a write to a register
1s performed when the FIFO 1s full no entry 1s put into the
FIFO and that write 1s effectively lost.

The input FIFO 1s 16 entries deep and each entry consists
of a tag/data pair. The InFIFOSpace register can be read to
determine how many entries are free. The value returned by
this register will never be greater than 16.

To check the status of the FIFO before every write 1s very
inefficient, so 1t 1s preferably checked before loading the data
for each rectangle. Since the FIFO 1s 16 entries deep, a
further optimization 1s to wait for all 16 entries to be free
after every second rectangle. Further optimizations can be
made by moving dXDom, dXSub and dY outside the loop
(as they are constant for each rectangle) and doing the FIFO
wait after every third rectangle.

The InFIFOSpace FIFO control register contains a count
of the number of entries currently free in the FIFO. The chip
increments this register for each entry 1t removes from the
FIFO and decrements it every time the host puts an entry in

the FIFO.

US 6,348,919 B1

15

The DMA Interface

Loading registers directly via the FIFO 1s often an inef-
ficient way to download data to GLINT. Given that the FIFO
can accommodate only a small number of entries, GLINT
has to be frequently interrogated to determine how much
space 1s left. Also, consider the situation where a given API
function requires a large amount of data to be sent to GLINT.
If the FIFO 1s written directly then a return from this
function 1s not possible until almost all the data has been
consumed by GLINT. This may take some time depending
on the types of primitives being drawn.

To avoid these problems GLINT provides an on-chip
DMA controller which can be used to load data from
arbitrary sized (<64K 32-bit words) host buffers into the
FIFO. In 1ts simplest form the host software has to prepare
a host butfer containing register address tag descriptions and
data values. It then writes the base address of this buffer to
the DMAAddress register and the count of the number of
words to transfer to the DMACount register. Writing to the
DMACount register starts the DMA transfer and the host can
now perform other work. In general, 1f the complete set of
rendering commands required by a given call to a driver
function can be loaded mto a single DMA buifer then the
driver function can return. Meanwhile, in parallel, GLINT 1s
reading data from the host buffer and loading it into its FIFO.
FIFO overtlow never occurs since the DMA controller
automatically waits until there 1s room in the FIFO before
doing any transfers.

The only restriction on the use of DMA control registers
1s that before attempting to reload the DMACount register
the host software must wait until previous DMA has com-
pleted. It 1s valid to load the DM AAddress register while the
previous DMA 1s in progress since the address 1s latched
internally at the start of the DMA transfer.

Using DMA leaves the host free to return to the
application, while in parallel, GLINT 1s performing the
DMA and drawing. This can increase performance signifi-
cantly over loading a FIFO directly. In addition, some
algorithms require that data be loaded multiple times (e.g.
drawing the same object across multiple clipping
rectangles). Since the GLINT DMA only reads the buffer
data, 1t can be downloaded many times simply by restarting
the DMA. This can be very beneficial 1if composing the
buffer data 1s a time consuming task.

The host can use this hardware capability 1n various ways.
For example, a further optional optimization 1s to use a
double buffered mechanism with two DMA buifers. This
allows the second buffer to be filled before waiting for the
previous DMA to complete, thus further improving the
parallelism between host and GLINT processing. Thus, this
optimization 1s dependent on the allocation of the host
memory. If there 1s only one DMA host buffer then either it
1s being filled or 1t 1s being emptied—it cannot be filled and
emptied at the same time, since there 1s no way for the host
and DMA to interact once the DMA transfer has started. The
host 1s at liberty to allocate as many DMA buffers as it
wants; two 1s the minimum to do double buffering, but
allocating many small buifers 1s generally better, as i1t gives
the benefits of double buffering together with low latency
time, so GLINT 1s not 1dle while large buffer 1s being filled
up. However, use of many small buffers 1s of course more
complicated.

In general the DMA buffer format consists of a 32-bit
address tag description word followed by one or more data
words. The DMA bulifer consists of one or more sets of these
formats. The following paragraphs describe the different
types of tag description words that can be used.

10

15

20

25

30

35

40

45

50

55

60

65

16
DMA Tag Description Format

There are 3 different tag addressing modes for DMA:
hold, increment and indexed. The different DMA modes are
provided to reduce the amount of data which needs to be
transferred, hence making better use of the available DMA
bandwidth. Each of these 1s described 1n the following
sections.

Hold Format

In this format the 32-bit tag description contains a tag
value and a count specitying the number of data words
following 1n the buifer. The DMA controller writes each of
the data words to the same address tag. For example, this 1s
uselul for image download where pixel data 1s continuously
written to the Color register. The bottom 9 bits specifty the
register to which the data should be written; the high-order
16 bits specify the number of data words (minus 1) which
follow 1n the buffer and which should be written to the
address tag (note that the 2-bit mode field for this format is

zero so a given tag value can simply be loaded into the low
order 16 bits).

A special case of this format 1s where the top 16 bits are
zero indicating that a single data value follows the tag (i.e.
the 32-bit tag description 1s simply the address tag value
itself). This allows simple DMA buffers to be constructed
which consist of tag/data pairs.

Increment Format

This format 1s similar to the hold format except that as

cach data value is loaded the address tag is incremented (the
value 1n the DMA bulifer 1s not changed; GLINT updates an
internal copy). Thus, this mode allows contiguous GLINT
registers to be loaded by specitying a single 32-bit tag value
followed by a data word for each register. The low-order 9
bits specily the address tag of the first register to be loaded.
The 2 bit mode field 1s set to 1 and the high-order 16 bits are
set to the count (minus 1) of the number of registers to
update. To enable use of this format, the GLINT register file
has been organized so that registers which are frequently
loaded together have adjacent address tags. For example, the
32 AreaStipplePattern registers can be loaded as follows:

AreaStipplePattern), Count=31, Mode=1

row O bits

row 1 bits

row 31 bits
Indexed Format

GLINT address tags are 9 bit values. For the purposes of
the Indexed DMA Format they are organized into major
ogroups and within each group there are up to 16 tags. The
low-order 4 bits of a tag give its offset within the group. The
high-order 5 bits give the major group number.

The following Register Table lists the individual registers
with their Major Group and Offset 1n the presently preferred
embodiment:

Register Table

The following table lists registers by group, giving their

tag values and indicating their type. The register groups may
be used to improve data transfer rates to GLINT when using

DMA.

17

US 6,348,919 B1

The following types of register are distinguished:

Major
Group Offset
Unit Register (hex) (hex) Type
Rasterizer StartXDom 00 0 Conftrol
dXDom 00 1 Control
StartXSub 00 2 Control
dXSub 00 3 Control
StartY 00 4 Confrol
dY 00 5 Control
Count 00 6 Confrol
Render 00 7 Command
ContinueNewlLine 00 8 Command
ContinueNewDom 00 9 Command
ContinueNewSub 00 A Command
Continue 00 B Command
FlushSpan 00 C Command
BitMaskPattern 00 D Mixed
Rasterizer PointTable|0-3] 01 0-3 Control
RasterizerMode 01 4 Control
Scissor ScissorMode 03 0 Control
Stipple
ScissorMinXY 03 1 Control
ScissorMaxXY 03 2 Control
ScreenSize 03 3 Control
AreaStippleMode 03 4 Control
LineStippleMode 03 5 Control
LoadLineStipple 03 6 Control
Counters
UpdateLineStipple 03 7 Command
Counters
SaveLineStipple 03 8 Command
State
WindowOrigin 03 9 Control
Scissor AreaStipplePat- 04 0-F Control
Stipple tern| 0—31 | 05 0-F
Texture Texel(0C 0 Control
Color/Fog
Texell 0C 1 Confrol
Texel? 0C 2 Conftrol
Texel3 0C 3 Control
Texeld 0C 4 Conftrol
Texel5 0C 5 Control
Texel6 0C 6 Conftrol
Texel7 0C 7 Control
[nterp0 0C 3 Control
Interpl 0C 9 Control
Interp2 0C A Control
Interp3 0C B Control
Interp4 0C C Control
TextureFilter 0C D Control
Texture/Fog TextureColor 0D 0 Control
Color Mode
TextureEnvColor 0D 1 Control
FogMode 0D 2 Control
FogColor 0D 3 Control
EStart 0D 4 Conftrol
dFdx 0D 5 Control
dFdyDom 0D 6 Control
Color DDA RStart OF 0 Control
dRdx OF 1 Control
dRdyDom OF 2 Control
GStart OF 3 Control
dGdx OF 4 Control
dGdyDom OF 5 Control
BStart OF 6 Confrol
dBdx OF 7 Control
dBdyDom OF 3 Control
AStart OF 9 Conftrol
dAdx OF A Control
dAdyDom OF B Control
ColorDDAMode OF C Control
ConstantColor OF D Control
Color OF E Mixed
Alpha Test AlphaTestMode 10 0 Control
AntialiasMode 10 1 Control
Alpha Blend AlphaBlendMode 10 2 Control

10

15

20

25

30

35

40

45

50

55

60

65

138

-continued
Major
Group Offset
Unit Register (hex) (hex) Type
Dither DitherMode 10 3 Control
Logical Ops FBSoftwareWrite 10 4 Control
Mask
LogicalOpMode 10 5 Control
FBWriteData 10 6 Control
LB Read [LBReadMode 1] 0 Control
LLBReadFormat 1’ 1 Control
LBSourceOftset 1] 2 Control
LBStencil 1 5 Output
LBDepth 1 6 Output
LBWindowBase 1! 7 Control
LB Write LBWriteMode 1’ 8 Control
LBWriteFormat 11 9 Control
GID/Stencil/ Window 13 0 Control
Depth
StencilMode 13 1 Control
StencilData 13 2 Control
Stencil 13 3 Mixed
DepthMode 13 4 Control
Depth 13 5 Mixed
IStartlJ 13 6 Control
IStartl. 13 7 Control
dZdxU 13 3 Control
dZdxL 13 9 Control
dZdyDomU 13 A Control
dZdyDomL 13 B Control
FastClearDepth 13 C Control
FB Read FBReadMode 15 0 Control
FBSourceOffset 15 1 Control
FBPixelOffset 15 2 Control
FBColor 15 3 Output
FBWindowBase 15 6 Control
FB Write FBWriteMode 15 7 Control
FBHardwareWrite 15 8 Control
Mask
FBBlockColor 15 9 Control
Host Out FilterMode 18 0 Control
StatisticMode 18 1 Control
MinRegion 18 2 Control
MaxRegion 18 3 Control
ResetPickResult 18 4 Command
MinHitRegion 18 5 Command
MaxHitRegion 18 6 Command
PickResult 18 7 Command
Sync 18 3 Command

This format allows up to 16 registers within a group to be
loaded while still only specifying a single address tag
description word.

If the Mode of the address tag description word 1s set to
indexed mode, then the high-order 16 bits are used as a mask
to indicate which registers within the group are to be used.
The bottom 4 bits of the address tag description word are
unused. The group 1s specified by bits 4 to 8. Each bit 1n the
mask 1s used to represent a unique tag within the group. If
a bit 1s set then the corresponding register will be loaded.
The number of bits set in the mask determines the number
of data words that should be following the tag description
word 1n the DMA buflfer. The data 1s stored 1n order of
increasing corresponding address tag.

DMA Bulffer Addresses

Host software must generate the correct DMA bufler
address for the GLINT DMA controller. Normally, this
means that the address passed to GLINT must be the
physical address of the DMA bufler 1n host memory. The
buffer must also reside at contiguous physical addresses as
accessed by GLINT. On a system which uses virtual
memory for the address space of a task, some method of
allocating contiguous physical memory, and mapping this
into the address space of a task, must be used.

US 6,348,919 B1

19

If the virtual memory buffer maps to non-contiguous
physical memory, then the buffer must be divided into sets
of contiguous physical memory pages and each of these sets
transferred separately. In such a situation the whole DMA
buffer cannot be transferred 1n one go; the host software
must wait for each set to be transterred. Often the best way
to handle these fragmented transfers 1s via an interrupt

handler.

DMA Interrupts

GLINT provides interrupt support, as an alternative
means of determining when a DMA transfer 1s complete. It
enabled, the interrupt 1s generated whenever the DMACount
register changes from having a non-zero to having a zero
value. Since the DMACount register 1s decremented every
fime a data item 1s transferred from the DMA buffer this
happens when the last data item 1s transterred from the DMA
buffer.

To enable the DMA interrupt, the DMAInterruptEnable
bit must be set 1n the IntEnable register. The interrupt
handler should check the DMAFlag bit in the IntFlags
register to determine that a DMA interrupt has actually
occurred. To clear the interrupt a word should be written to
the IntFlags register with the DMAFlag bit set to one.

This scheme frees the processor for other work while
DMA 1s being completed. Since the overhead of handling an
interrupt 1s often quite high for the host processor, the
scheme should be tuned to allow a period of polling before
sleeping on the interrupt.

Output FIFO and Graphics Processor FIFO Interface

To read data back from GLINT an output FIFO 1s pro-
vided. Each entry 1n this FIFO 1s 32-bits wide and 1t can hold
tag or data values. Thus 1ts format 1s unlike the input FIFO
whose entries are always tag/data pairs (we can think of each
entry 1n the mput FIFO as being 41 bits wide: 9 bits for the
tag and 32 bits for the data). The type of data written by
GLINT to the output FIFO 1s controlled by the FilterMode
register. This register allows filtering of output data in
various categories including the following:

Depth: output 1 this category results from an 1mage
upload of the Depth buifer.
Stencil: output 1n this category results from an 1mage

upload of the Stencil buffer.

Color: output in this category results from an image
upload of the framebuffer.

Synchronization: synchronization data 1s sent 1n response

to a Sync command.

The data for the FilterMode register consists of 2 bits per
category. If the least significant of these two bits is set (0x1)
then output of the register tag for that category 1s enabled;
if the most significant bit is set (0x2) then output of the data
for that category 1s enabled. Both tag and data output can be
enabled at the same time. In this case the tag 1s written first
to the FIFO followed by the data.

For example, to perform an image upload from the
framebuffer, the FilterMode register should have data output
enabled for the Color category. Then, the rectangular area to
be uploaded should be described to the rasterizer. Each pixel
that 1s read from the framebutfer will then be placed into the
output FIFO. If the output FIFO becomes full, then GLINT
will block mnternally until space becomes available. It 1s the
programmer’s responsibility to read all data from the output
FIFO. For example, 1t 1s important to know how many pixels
should result from an 1mage upload and to read exactly this
many from the FIFO.

To read data from the output FIFO the OutputFIFOWords
register should first be read to determine the number of

entries in the FIFO (reading from the FIFO when it is empty

10

15

20

25

30

35

40

45

50

55

60

65

20

returns undefined data). Then this many 32-bit data items are
read from the FIFO. This procedure is repeated until all the
expected data or tag 1items have been read. The address of the
output FIFO 1s described below.

Note that all expected data must be read back. GLINT will
block if the FIFO becomes full. Programmers must be
careful to avoid the deadlock condition that will result 1f the
host 1s waiting for space to become free 1n the mput FIFO
while GLINT 1s waiting for the host to read data from the
output FIFO.

Graphics Processor FIFO Interface

GLINT has a sequence of 1Kx32 bit addresses in the PCI

Region 0 address map called the Graphics Processor FIFO
Interface. To read from the output FIFO any address in this
range can be read (normally a program will choose the first
address and use this as the address for the output FIFO). All
32-bit addresses 1n this region perform the same function:
the range of addresses 1s provided for data transfer schemes
which force the use of incrementing addresses.

Writing to a location 1n this address range provides raw
access to the mnput FIFO. Again, the first address 1s normally
chosen. Thus the same address can be used for both 1nput
and output FIFOs. Reading gives access to the output FIFO;
writing gives access to the mput FIFO.

Writing to the input FIFO by this method 1s different from
writing to the memory mapped register file. Since the
register file has a unique address for each register, writing to
this unique address allows GLINT to determine the register
for which the write 1s mntended. This allows a tag/data pair
to be constructed and inserted into the mput FIFO. When
writing to the raw FIFO address an address tag description
must first be written followed by the associated data. In fact,
the format of the tag descriptions and the data that follows
1s 1dentical to that described above for DMA bulifers. Instead
of using the GLINT DMA 1t 1s possible to transfer data to
GLINT by constructing a DM A-style buffer of data and then
copying cach item 1n this buffer to the raw mput FIFO
address. Based on the tag descriptions and data written
GLINT constructs tag/data pairs to enter as real FIFO
entriecs. The DMA mechanism can be thought of as an
automatic way of writing to the raw 1mput FIFO address.
Note, that when writing to the raw FIFO address the FIFO
full condition must still be checked by reading the
InFIFOSpace register. However, writing tag descriptions
does not cause any entries to be entered mto the FIFO: such
a write simply establishes a set of tags to be paired with the
subsequent data. Thus, free space need be ensured only for
actual data items that are written (not the tag values). For
example, 1n the simplest case where each tag 1s followed by
a single data item, assuming that the FIFO 1s empty, then 32
writes are possible before checking again for free space.

Other Interrupts

GLINT also provides mterrupt facilities for the following:

Sync: If a Sync command 1s sent and the Sync interrupt
has been enabled then once all rendering has been
completed, a data value 1s entered into the Host Out
FIFO, and a Sync interrupt is generated when this value
reaches the output end of the FIFO. Synchronization 1s
described further 1n the next section.

External: this provides the capability for external hard-
ware on a GLINT board (such as an external video
timing generator) to generate interrupts to the host
Processor.

Error: 1f enabled the error interrupt will occur when

GLINT detects certain error conditions, such as an
attempt to write to a full FIFO.

Vertical Retrace: 1f enabled a vertical retrace interrupt 1s
generated at the start of the video blank period.

US 6,348,919 B1

21

Each of these are enabled and cleared in a similar way to
the DMA 1nterrupt.
Synchronization

There are three main cases where the host must synchro-
nize with GLINT:

before reading back from registers

before directly accessing the framebuffer or the local-
buffer via the bypass mechanism

framebuifer management tasks such as double buffering

Synchronizing with GLINT implies waiting for any pend-
ing DMA to complete and waiting for the chip to complete
any processing currently being performed. The following
pseudo-code shows the general scheme:

GLINTData data ;

// wait for DMA to complete
while (*DMACount !=0) {

poll or wait for interrupt
h

while (*InFIFOSpace < 2) {
; // wait for free space 1n the FIFO

h
// enable sync output and send the Sync command
data.Word = 0 ;

data.FilterMode.Synchronization = 0Ox1 ;
FilterMode (data.Word) ;
Sync(0x0) ;
/* wait for the sync output data */
do {

while (*OuwtFIFOWords == 0)

: // poll waiting for data in output

FIFO
twhile (*OutputFIFO != Sync_ tag) ;

Initially, we wait for DMA to complete as normal. We
then have to wait for space to become free in the FIFO (since
the DMA controller actually loads the FIFO). We need space
for 2 registers: one to enable generation of an output sync
value, and the Sync command itself. The enable flag can be
set at mnitialization time. The output value will be generated
only when a Sync command has actually been sent, and
GLINT has then completed all processing.

Rather than polling it 1s possible to use a Sync interrupt
as mentioned 1n the previous section. As well as enabling the
interrupt and setting the filter mode, the data sent in the Sync
command must have the most significant bit set 1n order to
ogenerate the mterrupt. The interrupt 1s generated when the
tag or data reaches the output end of the Host Out FIFO. Use
of the Sync imterrupt has to be considered carefully as
GLINT will generally empty the FIFO more quickly than 1t
takes to set up and handle the interrupt.

Host Framebufiler Bypass

Normally, the host will access the framebuffer indirectly
via commands sent to the GLINT FIFO interface. However,
GLINT does provide the whole framebuffer as part of its
address space so that it can be memory mapped by an
application. Access to the framebuffer via this memory
mapped route 1s independent of the GLINT FIFO.

Drivers may choose to use direct access to the framebuifer
for algorlthms which are not supported by GLINT. The
framebufler bypass supports big-endian, little-endian and
GIB-endian formats.

A driver making use of the framebuifer bypass mecha-
nism should synchronize framebuifer accesses made
through the FIFO with those made directly through the
memory map. If data 1s written to the FIFO and then an
access 1s made to the framebuffer, it 1s possible that the
framebuffer access will occur before the commands in the

10

15

20

25

30

35

40

45

50

55

60

65

22

FIFO have been fully processed. This lack of temporal
ordering 1s generally not desirable.

Framebuifer Dimensions and Depth

At reset time the hardware stores the size of the frame-
buffer in he FBMemoryControl register. This register can be
read by software to determine the amount of VRAM on the
display adapter. For a given amount of VRAM, software can
configure different screen resolutions and off-screen
Memory regions.

The framebuffer width must be set up in the FBReadMode
register. The first 9 bits of this register define 3 partial
products which determine the offset in pixels from one
scanline to the next. Typically, these values will be worked
out at mitialization time and a copy kept 1n software. When
this register needs to be modified the software copy 1is
retrieved and any other bits modified before writing to the
register.

Once the offset from one scanline to the next has been
established, determining the visible screen width and height
becomes a clipping 1ssue. The visible screen width and
height are set up 1n the ScreenSize register and enabled by
setting the ScreenScissorEnable bit in the ScissorMode
register.

The framebuffer depth (8, 16 or 32-bit) is controlled by
the FBModeSel register. This register provides a 2 bat field
to control which of the three pixel depths 1s being used. The
pixel depth can be changed at any time but this should not
be attempted without first synchronizing with GLINT. The
FBModeSel register 1s not a FIFO register and 1s updated
immediately 1t 1s written. If GLINT i1s busy performing
rendering operations, changing the pixel depth will corrupt
that rendering.

Normally, the pixel depth 1s set at 1nitialization time. To
optimize certain 2D rendering operations it may be desirable
to change it at other times. For example, 1f the pixel depth
is normally 8 (or 16) bits, changing the pixel depth to 32 bits
for the duration of a bitblt can quadruple (or double) the blt
speed, when the blt source and destination edges are aligned
on 32 bit boundaries. Once such a blt sequence has been set
up the host software must wait and synchronize with GLINT
and then reset the pixel depth before continuing with further
rendering. It 1s not possible to change the pixel depth via the
FIFO, thus explicit synchronization must always be used.

Host Localbuifer Bypass

As with the framebultfer, the localbuffer can be mapped 1n
and accessed directly. The host should synchronize with
GLINT before making any direct access to the localbulifer.

At reset time the hardware saves the size of the localbuifer
in the LBMemoryControl register (localbuffer visible region
size). In bypass mode the number of bits per pixel is either
32 or 64. This mmformation 1s also set 1n the LBMemory-
Control register (localbuffer bypass packing). This pixel
packing defines the memory offset between one pixel and the
next. A further set of 3 bits (localbuffer width) in the
LBMemoryControl register defines the number of valid bits
per pixel. A typical localbuffer configuration might be 48
bits per pixel but 1n bypass mode the data for each pixel
starts on a 64-bit boundary. In this case valid pixel data will
be contained 1n bits 0 to 47. Software must set the LBRead-
Format register to tell GLINT how to interpret these valid
bits.

Host software must set the width 1n pixels of each scanline
of the localbuffer in the LBReadMode FIFO register. The
first 9 bits of this register define 3 partial products which
determine the offset in pixels from one scanline to the next.
As with the framebuffer partial products, these values will
usually be worked out at initialization time and a copy kept

US 6,348,919 B1

23

in software. When this register needs to be modified the
software copy 1s retrieved and any other bits modified before
ertmg to the register. If the system 1s set up so that each
pixel 1n the framebuifer has a corresponding pixel 1n the
localbuifer then this width will be the same as that set for the
framebulifer.

The localbuifer 1s accessible via Regions 1 and 3 of the
PCI address map for GLINT. The localbuifer bypass sup-
ports big-endian and little-endian formats. These are
described 1n a later section.

Register Read Back

Under some operating environments, multiple tasks waill
want access to the GLINT chip. Sometimes a server task or
driver will want to arbitrate access to GLINT on behalf of
multiple applications. In these circumstances, the state of the
GLINT chip may need to be saved and restored on each
context switch. To facilitate this, the GLINT control regis-
ters can be read back. (However, iternal and command
registers cannot be read back.)

To perform a context switch the host must first synchro-
nize with GLINT. This means waiting for outstanding DMA
to complete, sending a Sync command and waiting for the
sync output data to appear 1n the output FIFO. After this the
registers can be read back.

To read a GLINT register the host reads the same address
which would be used for a write, 1.e. the base address of the
register file plus the ofiset value for the register.

Note that since internal registers cannot be read back care
must be taken when context switching a task which 1is
making use of continue-draw commands. Continue-draw
commands rely on the internal registers maintaining previ-
ous state. This state will be destroyed by any rendering work
done by a new task. To prevent this, continue-draw com-
mands should be performed via DMA since the context
switch code has to wait for outstanding DMA to complete.
Alternatively, continue-draw commands can be performed
in a non-preemptable code segment.

Normally, reading back individual registers should be
avolded. The need to synchronize with the chip can
adversely affect performance. It 1s usually more appropriate
to keep a software copy of the register which 1s updated
when the actual register 1s updated.

Byte Swapping

Internally GLINT operates 1n little-endian mode.
However, GLINT 1s designed to work with both big- and
little-endian host processors. Since the PCIBus specification
defines that byte ordering 1s preserved regardless of the size
of the transfer operation GLINT provides facilities to
handle byte swapping. Each of the Configuration Space,
Control Space, Framebuifer Bypass and Localbufler Bypass
memory areas have both big and little endian mappings
available. The mapping to use typically depends on the
endian ordering of the host processor.

The Configuration Space may be set by a resistor 1n the
board design to be either little endian or big endian.

The Control Space 1n PCI address region 0, 1s 128K bytes
in size, and consists of two 64K sized spaces. The first 64K
provides little endian access to the control space registers;
the second 64K provides big endian access to the same
registers.

The framebufler bypass consists of two PCI address
regions; Region 2 and Region 4. Each 1s independently
configurable to by the Aperture0 and Aperturel control
registers respectively, to one of three modes: no byte swap,
16-bit swap, full byte swap. Note that the 16 bit mode 1s
needed for the following reason. If the framebuffer is
configured for 16-bit pixels and the host 1s big-endian then

10

15

20

25

30

35

40

45

50

55

60

65

24

simply byte swapping 1s not enough when a 32-bit access 1s
made (to write two pixels). In this case, the required effect
1s that the bytes are swapped within each 16-bit word, but the
two 16-bit halves of the 32-bit word are not swapped. This
preserves the order of the pixels that are written as well as
the byte ordering within each pixel. The 16 bit mode 1is
referred to as GIB-endian in the PCI Multimedia Design
Guide, version 1.0.

The localbuffer bypass consists of two PCI address
regions: Region 1 and Region 3. Each 1s independently
configurable to by the Aperture0 and Aperturel control
registers respectively, to one of two modes: no byte swap,
full byte swap.

To save on the size of the address space required for
GLINT, board vendors may choose to turn off access to the
big endian regions (3 and 4) by the use of resistors on the
board.

There 1s a bit available in the DMAControl control
register to enable byte swapping of DMA data. Thus for
big-endian hosts, this control bit would normally be enabled.

Red and Blue Swapping

For a given graphics board the RAMDAC and/or API will
usually force a given interpretation for true color pixel
values. For example, 32-bit pixels will be interpreted as
either ARGB (alpha at byte 3, red at byte 2, green at byte 1
and blue at byte 0) or ABGR (blue at byte 2 and red at byte
0). The byte position for red and blue may be important for
software which has been written to expect one byte order or
the other, 1in particular when handling 1mage data stored in
a file.

GLINT provides two registers to specily the byte posi-
tions of blue and red internally. In the Alpha Blend Unit the
AlphaBlendMode register contains a 1-bit field called Col-
orOrder. If this bit 1s set to zero then the byte ordering is
ABGR; 1f the bit 1s set to one then the ordering 1s ARGB. As
well as setting this bit 1n the Alpha Blend unait, it must also
be set 1n the Color Formatting unit. In this unit the Dither-
Mode register contains a Color Order bit with the same
interpretation. The order applies to all of the true color pixel
formats, regardless of the pixel depth.

Hardware Data Structures

Some of the hardware data structure implementations
used 1n the presently preferred embodiment will now be
described 1n detail. Of course these examples are provided
merely to 1llustrate the presently preferred embodiment in
orcat detail, and do not necessarily delimit any of the
claimed inventions.

[ocalbuffer

The localbuffer holds the per pixel information corre-
sponding to each displayed pixel and any texture maps. The
per pixel information held 1n the localbuflfer are Graphic ID
(GID), Depth, Stencil and Frame Count Planes (FCP). The
possible formats for each of these fields, and their use are
covered individually 1n the following sections.

The maximum width of the localbuffer 1s 48 bits, but this
can be reduced by changing the external memory

conflguration, albeit at the expense of reducing the func-
tionality or dynamic range of one or more of the fields.

The localbuffer memory can be from 16 bits (assuming a
depth buffer 1s always needed) to 48 bits wide in steps of 4
bits. The four fields supported i1n the localbuffer, their
allowed lengths and positions are shown in the following

table:

US 6,348,919 B1

25

Field Lengths Start bit positions

Depth 16, 24,32 O

Stencil 0, 4, 8 16, 20, 24, 28, 32

FrameCount 0, 4, 8 16, 20, 24, 28, 32, 306, 40

GID 0, 4 16, 20, 24, 28, 32, 36, 40, 44, 48

2

The order of the fields 1s as shown with the depth field at
the least significant end and GID field at the most significant
end. The GID 1s at the most significant end so that various
combinations of the Stencil and FrameCount field widths

can be used on a per window basis without the position of
the GID fields moving. If the GID field 1s 1n a different

positions 1n different windows then the ownership tests
become 1mpossible to do.

The GID, FrameCount, Stencil and Depth fields in the
localbuffer are converted into the internal format by right
justification 1if they are less than their internal widths, 1.e. the
unused bits are the most significant bits and they are set to

0.
The format of the localbuifer 1s specified in two places:

the LBReadFormat register and the LBWriteFormat register.
It 1s still possible to part populate the localbuifer so other
combinations of the field widths are possible (i.e. depth field
width of 0), but this may give problems if texture maps are
to be stored 1n the localbuifer as well.
Any non-bypass read or write to the localbuffer always

reads or writes all 48 bits simultaneously.
GID field

The 4 bit GID field 1s used for pixel ownership tests to
allow per pixel window clipping. Each window using this

facility 1s assigned one of the GID values, and the visible
pixels 1 the window have their GID field set to this value.
[the test 1s enabled the current GID (set to correspond with
the current window) is compared with the GID in the
localbuffer for each fragment. If they are equal this pixel
belongs to the window so the localbuifer and framebuifer at
this coordinate may be updated.

Using the GID field for pixel ownership tests 1s optional
and other methods of achieving the same result are:

clip the primitive to the window’s boundary (or rectan-
gular tiles which make up the window’s area) and
render only the visible parts of the primitive

use the scissor test to deflne the rectangular tiles which
make up the window’s visible areca and render the
primitive once per tile (This may be limited to only

those tiles which the primitive intersects).
Depth Field

The depth field holds the depth (Z) value associated with
a pixel and can be 16, 24 or 32 bits wide.

Stencil Field

The stencil field holds the stencil value associated with a
pixel and can be 0, 4 or 8 bits wide.

The width of the stencil buffer i1s also stored in the
StencilMode register and 1s needed for clamping and mask-
ing during the update methods. The stencil compare mask
should be set up to exclude any absent bits from the stencil
compare operation.

FrameCount Field

The Frame Count Field holds the frame count value
assoclated with a pixel and can be 0, 4 or 8 bits wide. It 1s
used during animation to support a fast clear mechanism to
aid the rapid clearing of the depth and/or stencil fields
needed at the start of each frame.

In addition to the fast clear mechanism the extent of all
updates to the localbuffer and framebuffer can be recorded

10

15

20

25

30

35

40

45

50

55

60

65

26

(MinRegion and MaxRegion registers) and read back
(MinHitRegion and MaxHitRegion commands) to give the
bounding box of the smallest area to clear. For some
applications this will be significantly smaller than the whole
window or screen, and hence faster.

The fast clear mechanism provides a method where the
cost of clearing the depth and stencil buifers can be amor-
tized over a number of clear operations issued by the
application. This works as follows:

The window 1s divided up into n regions, where n 1s the
range of the frame counter (16 or 256). Every time the
application 1ssues a clear command the reference frame
counter is incremented (and allowed to roll over if it exceeds
its maximum value) and the nth region is cleared only. The
clear updates the depth and/or stencil buifers to the new
values and the frame count buffer with the reference value.
This region 1s much smaller than the full window and hence
takes less time to clear.

When the localbuffer 1s subsequently read and the frame
count 1s found to be the same as the reference frame count
(held in the Window register) the localbuffer data is used
directly. However, 1f the frame count 1s found to be different
from the reference frame count (held in the Window register)
the data which would have been written, if the localbuffer
had been cleared properly, 1s substituted for the stale data
returned from the read. Any new writes to the localbuifer
will set the frame count to the reference value so the next
read on this pixel works normally without the substitution.
The depth data to substitute 1s held in the FastClearDepth
register and the stencil data to substitute 1s held i1n the
StencilData register (along with other stencil information).

The fast clear mechanism does not present a total solution
as the user can elect to clear just the stencil planes or just the
depth planes, or both. The situation where the stencil planes
only are ‘cleared’ using the fast clear method, then some
rendering 1s done and then the depth planes are ‘cleared’
using the fast clear will leave ambiguous pixels in the
localbuffer. The driver software will need to catch this
situation, and fall back to using a per pixel write to do the
second clear. Which field(s) the frame count plane refers to
1s recorded 1n the Window register.

When clear data 1s substituted for real memory data
(during normal rendering operations) the depth write mask
and stencil write masks are 1gnored to mimic the OpenGL
operation when a bufler 1s cleared.

Localbuffer Coordinates

The coordinates generated by the rasterizer are 16 bit 2°s
complement numbers, and so have the range +32767 to
—-327768. The rasterizer will produce values 1n this range, but
any which have a negative coordinate, or exceed the screen
width or height (as programmed into the ScreenSize
register) are discarded.

Coordinates can be defined window relative or screen
relative and this 1s only relevant when the coordinate gets
converted to an actual physical address 1n the localbufier. In
ogeneral 1t 1s expected that the windowing system will use
absolute coordinates and the graphics system will use rela-
tive coordinates (to be independent of where the window
really is).

GUI systems (such as Windows, Windows NT and X)
usually have the origin of the coordinate system at the top
left corner of the screen but this 1s not true for all graphics

systems. For imnstance OpenGL uses the bottom left corner as
its origin. The WindowOrigin bit in the LBReadMode
register selects the top left (0) or bottom left (1) as the origin.

US 6,348,919 B1

27

The actual equations used to calculate the localbuifer
address to read and write are:

Bottom left origin:
Destination address=.BWindowBase-Y*W+X
Source address=LBWindowBase-Y*W+X+
[.BSourceOffset

Top left origin:
Destination address=L. BWindowBase+Y*W+X
Source address=LBWindowBase+Y*W+X+

[.BSourceOffset
where:

X 1s the pixel’s X coordinate.

Y 1s the pixel’s Y coordinate.

L.BWindowBase holds the base address in the localbufter
of the current window.

LBSourceOfifset 1s normally zero except during a copy
operation where data 1s read from one address and
written to another address. The offset between source
and destination 1s held in the LBSourceOffset register.

W 1s the screen width. Only a subset of widths are
supported and these are encoded into the PP0, PP1 and
PP2 fields 1in the LBReadMode register.

These address calculations translate a 2D address into a
linear address.

The Screen width 1s specified as the sum of selected
partial products so a full multiply operation 1s not needed.
The partial products are selected by the fields PP0O, PP1 and
PP2 1n the LBReadMode register.

For arbitrary width screens, for instance bitmaps in ‘off
screen” memory, the next largest width from the table must
be chosen. The difference between the table width and the
bitmap width will be an unused strip of pixels down the right
hand side of the bitmap.

Note that such bitmaps can be copied to the screen only
as a series of scanlines rather than as a rectangular block.
However, often windowing systems store offscreen bitmaps
in rectangular regions which use the same stride as the
screen. In this case normal bitblts can be used.

Texture Memory
The localbuffer 1s used to hold textures 1n the GLINT

300TX wvariant. In the GLINT 300SX wvariant the texture
information 1s supplied by the host.

Framebuffer

The framebufler 1s a region of memory where the infor-
mation produced during rasterization i1s written prior to
being displayed. This information 1s not restricted to color
but can mnclude window control data for LUT management
and double buifering.

The framebuifer region can hold up to 32 MBytes and
there are very few restrictions on the format and size of the
individual buffers which make up the video stream. Typical
buffers include:

True color or color index main planes,
Overlay planes,

Underlay planes,

Window ID planes for LUT and double buffer
management,

Cursor planes.

Any combination of these planes can be supported up to
a maximum of 32 MBytes, but usually it 1s the video level
processing which is the limiting factor. The following text
examines the options and choices available from GLINT for
rendering, copying, etc. data to these buifers.

To access alternative buffers either the FBPixelOffset

register can be loaded, or the base address of the window

5

10

15

20

25

c 30

35

40

45

50

55

60

65

23

held 1n the FBWindow-Base register can be redefined. This
1s described 1n more detail below.

Bufler Orgamzatlon

Each buffer resides at an address in the framebuifer
memory map. For rendering and copying operations the
actual buffer addresses can be on any pixel boundary.
Display hardware will place some restrictions on this as 1t
will need to access the multiple bufifers in parallel to mix the
buffers together depending on their relative priority, opacny
and double buffer selection. For instance, visible buifers
(rather than offscreen bitmaps) will typlcally need to be on
a page boundary.

Consider the following highly configured example with a
1280x1024 double buifered system with 32 bit main planes
(RGBA), 8 bit overlay and 4 bits of window control infor-
mation (WID).

Combining the WID and overlay planes in the same 32 bit
pixel has the advantage of reducing the amount of data to
copy when a window moves, as only two copies are
required—one for the main planes and one for the overlay
and WID planes.

Note the position of the overlay and WID planes. This was
not an arbitrary choice but one imposed by the (presumed)
desire to use the color processing capabilities of GLINT
(dither and interpolation) in the overlay planes. The conver-
sion of the internal color format to the external one stored 1n
the framebufler depends on the size and position of the
component. Note that GLINT does not support all possible
configurations. For example; if the overlay and WID bits
were swapped, then eight bit color mndex starting at bit 4
would be required to render to the overlay, but this is not
supported.

Framebuiler Coordinates

Coordimate generation for the framebuifer 1s similar to
that for the localbuffer, but there are some key differences.

As was mentioned before, the coordinates generated by
the rasterizer are 16 bit 2’s complement numbers. Coordi-
nates can be defined as window relative or screen relative,
though this 1s only relevant when the coordinate gets con-
verted to an actual physical address 1n the framebuifer. The
WindowOrigin bit in the FBReadMode register selects top
left (0) or bottom left (1) as the origin for the framebuffer.

The actual equations used to calculate the framebuflfer
address to read and write are:

Bottom left origin:

Destination address=FBWindowBase-Y*W+X+
FBPixelOftset
Source address=FBWindowBase-Y*W+X+

FBPixelOffset+ FBSourceOffset

Top left origin:
Destination address=FBWindowBase+Y*W+X+
FBPixelOffset
Source address=FBWindowBase+Y *W+X+
FBPixelOffset+FBSourceOffset

These address calculations translate a 2D address into a
linear address, so non power of two framebuffer widths (i.e.
1280) are economical in memory.

The width 1s specified as the sum of selected partial
products so a full multiply operation 1s not needed. The
partial products are selected by the fields PP0O, PP1 and PP2
in the FBReadMode register. This 1s the same mechanism as
1s used to set the width of the localbufler, but the widths may
be set mdependently.

For arbitrary screen sizes, for instance when rendering to
‘off screen” memory such as bitmaps the next largest width
from the table must be chosen. The difference between the
table width and the bitmap width will be an unused strip of
pixels down the right hand side of the bitmap.

Note that such bitmaps can be copied to the screen only

as a series of scanlines rather than as a rectangular block.

US 6,348,919 B1

29

However, often windowing systems store offscreen bitmaps
in rectangular regions which use the same stride as the
screen. In this case normal bitblts can be used.

Color Formats

The contents of the framebuiler can be regarded 1n two
ways:

As a collection of fields of up to 32 bits with no meaning

or assumed format as far as GLINT 1s concerned. Bit
planes may be allocated to control cursor, LUT, multi-
buffer visibility or priority functions. In this case
GLINT will be used to set and clear bit planes quickly
but not perform any color processing such as interpo-
lation or dithering. All the color processing can be
disabled so that raw reads and writes are done and the
only operations are write masking and logical ops. This
allows the control planes to be updated and modified as
necessary. Obviously this technique can also be used
for overlay buffers, etc. providing color processing 1s

not required.

As a collection of one or more color components. All the

processing of color components, except for the final
write mask and logical ops are done using the internal
color format of 8 bits per red, green, blue and alpha
color channels. The final stage before write mask and
logical ops processing converts the internal color for-
mat to that required by the physical configuration of the
framebuffer and video logic. The nomenclature n{@m
means this component 1s n bits wide and starts at bat
position m in the framebuifer. The least significant bit
position 1s 0 and a dash in a column 1ndicates that this
component does not exist for this mode. The Col-
orOrder 1s speciiied by a bit 1n the DitherMode register.

Some 1mportant points to note:
The alpha channel 1s always associated with the RGB

color channels rather than being a separate buffer. This
allows it to be moved 1n parallel and to work correctly
in multi-buffer updates and double buffering. If the
framebufler 1s not configured with an alpha channel
(c.g. 24 bit framebuffer width with 8:8:8:8 RGB
format) then some of the rendering modes which use
the retained alpha buffer cannot be used. In these cases
the NoAlphaBuifer bit in the AlphaBlendMode register
should be set so that an alpha value of 255 1s substi-
tuted. For the RGB modes where no alpha channel 1s
present (e.g. 3:3:2) then this substitution is done auto-
matically.

For the Front and Back modes the data value 1s replicated

into both bufters.

All writes to the framebuffer try to update all 32 baits

irrespective of the color format. This may not matter 1f
the memory planes don’t exist, but 1f they are being
used (as overlay planes, for example) then the write
masks (FBSoftware WriteMask Or
FBHardwareWriteMask) must be set up to protect the
alternative planes.

When reading the framebuffer RGBA components are

scaled to their internal width of 8 bits, 1f needed for
alpha blending.
CI values are left justified with the unused bits (if any) set

to zero and are subsequently processed as the red compo-
nent. The result 1s replicated into each of the streams G,B
and A giving four copies for CI8 and eight copies for CI4.

The 4:4:4:4 Front and Back formats are designed to

support 12 bit double buifering with 4 bit Alpha, 1n a 32
bit system.

The 3:3:2 Front and Back formats are designed to support

8 bit double buffering 1n a 16 bit system.

10

15

20

25

30

35

40

45

50

55

60

65

30

The 1:2:1 Front and Back formats are designed to support

4 bit double butt

ering 1n an 8 bit system.

It 1s possible to have a color index buifer at other positions

as long as reduced functionality 1s acceptable. For
example a 4 bit CI buffer at bit position 16 can be
achieved using write masking and 4:4:4:4 Front format
with color interpolation, but dithering is lost.

The format information needs to be stored in two places:
the DitherMode register and the AlphaBlendMode register.

Internal Color Channel

Format Name R G B A
Color 0 8:8:8:8 8@0 @8 8@l 824
Order: 1 5:5:5:5 5@0 55 510 5@15
RGB 2 4:4:4:4 4@0 44 4(@8 412
3 4:4:4:4 4@0 48 4@le 424
Front 4@4 @12 4@20 4@?28
4 4:4:4:4 4@0 48 4@le 424
Back 4@4 @12 4@20 4@?28
5 3:3:2 3@0 3(@3 2(@6 —
Front 3@8 311 2@14
6 3:3:2 3@0 3@3 2(@6 —
Back 3@8 311 2@14
7 1:2:1 1@0 2@l 1(@3 —
Front 1@4 2(@5 1@7
8 1:2:1 1@0 2@l 1@3 —
Back 14 25 1@7
Color 0 8:8:8:8 S@l6 S@8 @0 @24
Order: 1 5:5:5:5 S@10 5@5 5@0 5@15
BGR 2 4:4:4:4 4@8 44 4@0 412
3 4:4:4:4 4@l6 4@8 4@0 424
Front 4@20 4@12 4@4 4?28
4 4:4:4:4 4@l6 4@8 4@0 424
Back 4@20 4@l2 4@4 4?28
5 3:3:2 3@5 3@?2 2@0 —
Front 3@13 3@10 2(@8
6 3:3:2 3@5 3@? 2@0 —
Back 3@l13 3@l10 2(@8
7 1:2:1 1@3 2@l 1@0 —
Front 1@7 25 14
8 1:2:1 1@3 2@l 1@0 —
Back 1@7 25 1@4
CI 14 C18 @0 0 0 0
15 Cl4 4@0 0 0 0

Overlays and Underlays
In a GUI system there are two possible relationships
between the overlay planes (or underlay) and the main

planes.

The overlay planes are fixed to the main planes, so that 1f
the window 1s moved then both the data in the main
planes and overlay planes move together.

The overlay planes are not fixed to the main planes but
floating, so that moving a window only moves the

assoclated main or overlay planes.

In the fixed case both planes can share the same GID. The
pixel offset 1s used to redirect the reads and writes between

the main planes and the overlay (underlay) buf
ownership tests using the GID field 1n the localbu:

as expected.

In the floating case dif
because the same GID planes 1n the localbu:

er. The pixel
Ter work

‘erent GIDs are the best choice,
fer can not be

used for pixel ownership tests. The alternatives are not to use

the GID based plxel ownership tests for one of the buil

CI'S

but rely on the scissor clipping, or to mstall a second set of

GID planes so each bu

either approach.

ter has 1t’s own set. GLINT allows

If rendering operations to the main and overlay planes

both need the depth or stencil bufl
cach overlap then each buil

er will

ers, and the windows 1n
need its own exclusive

US 6,348,919 B1

31

depth and/or stencil buffers. This 1s easily achieved with
GLINT by assigning different regions 1n the localbuffer to
cach of the buffers. Typically this would double the local-
buffer memory requirements.

One scenar1io where the above two considerations do not
cause problems, 1s when the overlay planes are used exclu-
sively by the GUI system, and the main planes are used for
the 3D graphics.

VRAM Modes
High performance systems will typically use VRAM for

the framebuffer and the extended functionality of VRAM
over DRAM can be used to enhance performance for many

rendering tasks.

Hardware Write Masks.

These allow write masking in the framebuifer without
incurring a performance penalty. If hardware write masks
are not available, GLINT must be programmed to read the
memory, merge the value with the new value using the write
mask, and write 1t back.

To use hardware write masking, the required write mask
1s written to the FBHardwareWriteMask register, the
FBSoftware WriteMask register should be set to all 1°s, and
the number of framebuffer reads is set to 0 (for normal
rendering). This is achieved by clearing the ReadSource and
ReadDestination enables in the FBReadMode register.

To use software write masking, the required write mask 1s
written to the FBSoftware WriteMask register and the num-
ber of framebuffer reads is set to 1 (for normal rendering).
This 1s achieved by setting the ReadDestination enable 1n the

FBReadMode register.

Block Writes

Block writes cause consecutive pixels 1n the framebufler
to be written stmultaneously. This 1s useful when filling large
arcas but does have some restrictions:

No pixel level clipping 1s available;

No depth or stencil testing can be done;

All the pixels must be written with the same value so no

color interpolation, blending, dithering or logical ops
can be done; and

The area 1s defined 1n screen relative coordinates.

Block writes are not restricted to rectangular areas and
can be used for any trapezoid. Hardware write masking is
available during block writes.

The following registers need to be set up before block fills
can be used:

FBBlockColor register with the value to write to each
pixel; and

FBWriteMode register with the block width field.

Sending a Render command with the Primitive Type field
set to “trapezoid” and the FastFillEnable and FastFilllncre-
ment fields set up will then cause block filling of the area.
Note that during a block fill of a trapezoid any inappropriate
state 1s 1gnored so even if color interpolation, depth testing
and logical ops, for example, are enabled they have no efiect.

The block sizes supported are 8, 16 and 32 pixels. GLINT
takes care of filling any partial blocks at the end of spans.

Graphics Programming,

GLINT provides a rich variety of operations for 2D and
3D graphics supported by i1ts Pipelined architecture.

The Graphics Pipeline

This section describes each of the units in the graphics
Pipeline. FIG. 2C shows a schematic of the pipeline. In this
diagram, the localbuffer contains the pixel ownership values
(known as Graphic IDs), the FrameCount Planes (FCP),
Depth (Z) and Stencil buffer. The framebuffer contains the
Red, Green, Blue and Alpha bitplanes. The operations 1n the
Pipeline include:

10

15

20

25

30

35

40

45

50

55

60

65

32

Rasterizer scan converts the given primitive into a series
of fragments for processing by the rest of the pipeline.

Scissor Test clips out fragments that lie outside the bounds
of a user defined scissor rectangle and also performs
screen clipping to stop 1llegal access outside the screen
Mmemory.

Stipple Test masks out certain fragments according to a
specified pattern. Line and area stipples are available.

Color DDA 1s responsible for generating the color infor-
mation (True Color RGBA or Color Index(CI)) asso-
clated with a fragment.

Texture 1s concerned with mapping a portion of a speci-
fied 1mage (texture) onto a fragment. The process
involves filtering to calculate the texture color, and
application which applies the texture color to the frag-

ment color.

Fog blends a fog color with a fragment’s color according,
to a given fog factor. Fogging 1s used for depth cuing
images and to simulate atmospheric fogging.

Antialias Application combines the mncoming fragment’s

alpha value with 1ts coverage value when antialiasing 1s
enabled.

Alpha Test conditionally discards a fragment based on the
outcome of a comparison between the fragments alpha
value and a reference alpha value.

Pixel Ownership 1s concerned with ensuring that the
location in the framebufler for the current fragment 1s
owned by the current visual. Comparison occurs
between the given fragment and the Graphic ID value
in the localbuiffer, at the corresponding location, to
determine whether the fragment should be discarded.

Stencil Test conditionally discards a fragment based on
the outcome of a test between the given fragment and
the value in the stencil buffer at the corresponding
location. The stencil buffer 1s updated dependent on the
result of the stencil test and the depth test.

Depth Test conditionally discards a fragment based on the
outcome of a test between the depth value for the given
fragment and the value in the depth buffer at the
corresponding location. The result of the depth test can
be used to control the updating of the stencil buffer.

Alpha Blending combines the incoming fragment’s color
with the color 1 the framebuifer at the corresponding
location.

Color Formatting converts the fragment’s color into the
format 1 which the color information 1s stored 1n the
framebuifer. This may optionally involve dithering.

The Pipeline structure of GLINT 1s very eflicient at

processing fragments, for example, texture mapping calcu-
lations are not actually performed on fragments that get
clipped out by scissor testing. This approach saves substan-
tial computational effort. The pipelined nature does however
mean that when programming GLINT one should be aware
of what all the pipeline stages are doing at any time. For
example, many operations require both a read and/or write
to the localbuffer and framebuffer; 1n this case 1t 1S not
sufficient to set a logical operation to XOR and enable
logical operations, but 1t 1s also necessary to enable the
reading/writing of data from/to the framebuifer.

A Gouraud Shaded Triangle

We may now revisit the “day in the life of a triangle”

example given above, and review the actions taken 1n greater
detail. Again, the primitive being rendered will be a Gouraud
shaded, depth buffered triangle. For this example assume
that the triangle 1s to be drawn into a window which has its

US 6,348,919 B1

33

colormap set for RGB as opposed to color index operation.
This means that all three color components; red, green and
blue, must be handled. Also, assume the coordinate origin 1s
bottom left of the window and drawing will be from top to
bottom. GLINT can draw from top to bottom or bottom to
top.

Consider a triangle with vertices, v, v, and v; where each
vertex comprises X, Y and Z coordinates. Each vertex has a
different color made up of red, green and blue (R, G and B)
components. The alpha component will be omitted for this
example.

Initialization

GLINT requires many of its registers to be initialized in
a particular way, regardless of what 1s to be drawn, for
instance, the screen size and appropriate clipping must be set
up. Normally this only needs to be done once and for clarity
this example assumes that all initialization has already been
done.

Other state will change occasionally, though not usually
on a per primitive basis, for instance enabling Gouraud
shading and depth buifering.

Dominant and Subordinate Sides of a Triangle

As shown 1n FIG. 4A, the dominant side of a triangle 1s
that with the greatest range of Y values. The choice of
dominant side 1s optional when the triangle 1s either flat
bottomed or flat topped.

GLINT always draws triangles starting from the dominant
cdge towards the subordinate edges. This simplifies the
calculation of set up parameters as will be seen below.

These values allow the color of each fragment 1n the
friangle to be determined by linear interpolation. For

example, the red component color value of a fragment at X,
Y. could be calculated by:

adding dRdy, , for each scanline between Y, and Y, , to
R,.

then adding dRdx for each fragment along scanline Y
from the left edge to X .

The example chosen has the ‘knee,’ 1.e. vertex 2, on the
right hand side, and drawing 1s from left to right. If the knee
were on the left side (or drawing was from right to left), then
the Y deltas for both the subordinate sides would be needed
to interpolate the start values for each color component (and
the depth value) on each scanline. For this reason GLINT
always draws triangles starting from the dominant edge and
towards the subordinate edges. For the example triangle, this
means left to right.

Register Set Up for Color Interpolation

For the example triangle, the GLINT registers must be set
as follows, for color interpolation. Note that the format for
color values 1s 24bit, fixed point 2°s complement.

// Load the color start and delta values to draw
// a triangle

RStart (R;)

GStart (Gy)

BStart (B,)
dRdyDom (dRdy,;)
1GdyDom (dGdy,5)
BdyDom (dBdy,5)
Rdx (dRdx) // To walk along the scanline
Gdx (dGdx)

Bdx (dBdx)

// To walk up the dominant edge

Calculating Depth Gradient Values
To draw from left to right and top to bottom, the depth
gradients (or deltas) required for interpolation are:

10

15

20

25

30

35

40

45

50

55

60

65

34

43 — 2
Y3 =Y

dldy,, =

And from the plane equation:

(Y2 —Y3) (Y3—Y1)}

C

dZdx ={(Z, - Z) {22 - 23)

where

c=|(X1-X5)(Y>-Y5)-(X—-X;5) (Y- Y1)

The divisor, shown here as c, 1s the same as for color
gradient values. The two deltas dZdy,, and dZdx allow the
7. value of each fragment in the triangle to be determined by
linear interpolation, just as for the color interpolation.

Register Set Up for Depth Testing,

Internally GLINT uses fixed point arithmetic. Each depth
value must be converted into a 2’s complement 32.16 bit
fixed point number and then loaded 1nto the appropriate pair
of 32 bit registers. The ‘Upper’ or ‘U’ registers store the
integer portion, whilst the ‘Lower’ or ‘L’ registers store the
16 fractional bits, left justified and zero {filled.

For the example triangle, GLINT would need its registers
set up as follows:

// Load the depth start and delta values

// to draw a triangle

ZStartU (Z1__MS)
ZStartL (Z1__LS)
dzdyDomU (dZdy13_MS)
dZdyDomL (dZdy13__LS)
dZdxU (dZdx_ MS)
dZdxL (dZdx__LS)

Calculating the Slopes for each Side

GLINT draws filled shapes such as triangles as a series of
spans with one span per scanline. Therefore 1t needs to know
the start and end X coordinate of each span. These are
determined by ‘edge walking’. This process mnvolves adding
one delta value to the previous span’s start X coordinate and
another delta value to the previous span’s end x coordinate
to determine the X coordinates of the new span. These delta
values are 1n effect the slopes of the triangle sides. To draw

from left to right and top to bottom, the slopes of the three
sides are calculated as:

X2 — X]
dXy3 = dXyp = dXy3 =
Y3 — Y Yo =Y

X3 — X2
Y3 — ¥»

This triangle will be drawn 1n two parts, top down to the
‘knee’ (1.e. vertex 2), and then from there to the bottom. The
dominant side 1s the left side so for the top half:

dXDom=dX ;
dXSub=dX,

The start XY, the number of scanlines, and the above
deltas give GLINT enough information to edge walk the top
half of the triangle. However, to indicate that this 1s not a flat
topped triangle (GLINT is designed to rasterize screen
aligned trapezoids and flat topped triangles), the same start
position 1n terms of X must be given twice as StartXDom
and StartXSub.

To edge walk the lower half of the triangle, selected
additional information 1s required. The slope of the domi-

US 6,348,919 B1

35

nant edge remains unchanged, but the subordinate edge
slope needs to be set to:

dXSub=dX ,,

Also the number of scanlines to be covered from Y, to Y,
needs to be given. Finally to avoid any rounding errors
accumulated in edge walking to X, (which can lead to pixel
errors), StartXSub must be set to X.,.

Rasterizer Mode

The GLINT rasterizer has a number of modes which have
clfect from the time they are set until they are modified and
can thus affect many primitives. In the case of the Gouraud
shaded triangle the default value for these modes are suit-
able.

Subpixel Correction

GLINT can perform subpixel correction of all interpo-
lated values when rendering aliased trapezoids. This correc-
tion ensures that any parameter (color/depth/texture/fog) is
correctly sampled at the center of a fragment. Subpixel
correction will generally always be enabled when rendering
any trapezoid which 1s smooth shaded, textured, fogged or
depth buffered. Control of subpixel correction i1s in the
Render command register described 1n the next section, and
1s selectable on a per primitive basis.

Rasterization

GLINT 1s almost ready to draw the triangle. Setting up the
registers as described here and sending the Render command
will cause the top half of the example triangle to be drawn.

For drawing the example triangle, all the bit fields within
the Render command should be set to 0 except the Primi-

tiveType which should be set to trapezoid and the SubPix-
clCorrectionEnable bit which should be set to TRUE.

// Draw triangle with knee

// Set deltas

StartXDom (X,<<16) // Converted to 16.16 fixed
point

dXDom (((X5-X,)<<16)(Y;-Y,))

StartXSub (X;<<16)

dXSub (((X,-X,)<<16)/(Y,-Y,))

StartY (Y,<<16)

dY (-1<<16)

Count (Y,-Y,)

// Set the render command mode

render.PrimitiveType=GLINT_TRAPEZOID__
PRIMITIVE

render.SubPixelCorrectionEnable=TRUE
// Draw the top half of the triangle

Render (render)

After the Render command has been 1ssued, the registers
in GLINT can immediately be altered to draw the lower halt
of the triangle. Note that only two registers need be loaded
and the command ContinueNewSub sent. Once GLINT has
received ContinueNewSub, drawing of this sub-triangle will
begin.

// Setup the delta and start for the new edge

StartXSub (X,<<16)
dXSub (((X5-X,)<<16)/(Y;-Y,))
// Draw sub-triangle

ContinueNewSub (Y,-Y,) // Draw lower half

Rasterizer Unit

The rasterizer decomposes a given primitive 1nto a series
of fragments for processing by the rest of the Pipeline.

GLINT can directly rasterize:

10

15

20

25

30

35

40

45

50

55

60

65

36

aliased screen aligned trapezoids
aliased single pixel wide lines
aliased single pixel points

antialiased screen aligned trapezoids

antialiased circular points

All other primitives are treated as one or more of the
above, for example an antialiased line 1s drawn as a series of
antialiased trapezoids.

Trapezoids

GLINT’s basic area primitives are screen aligned trap-
czolds. These are characterized by having top and bottom
edges parallel to the X axis. The side edges may be vertical
(a rectangle), but in general will be diagonal. The top or
bottom edges can degenerate 1nto points 1n which case we
are left with either flat topped or flat bottomed triangles. Any
polygon can be decomposed into screen aligned trapezoids
or triangles. Usually, polygons are decomposed into tri-
angles because the interpolation of values over non-
triangular polygons 1s 1ll defined. The rasterizer does handle
flat topped and tlat bottomed ‘bow tie” polygons which are
a special case of screen aligned trapezoids.

To render a triangle, the approach adopted to determine
which fragments are to be drawn 1s known as ‘edge walk-
ing’. Suppose the aliased triangle shown in FIG. 4A was to
be rendered from top to bottom and the origin was bottom
left of the window. Starting at (X1, Y1) then decrementing
Y and using the slope equations for edges 1-2 and 1-3, the
intersection of each edge on each scanline can be calculated.
This results 1n a span of fragments per scanline for the top
trapezoid. The same method can be used for the bottom
trapezoid using slopes 2-3 and 1-3.

It 1s usually required that adjacent triangles or polygons
which share an edge or vertex are drawn such that pixels
which make up the edge or vertex get drawn exactly once.
This may be achieved by omitting the pixels down the left
or the right sides and the pixels along the top or lower sides.
GLINT has adopted the convention of omitting the pixels
down the right hand edge. Control of whether the pixels
along the top or lower sides are omitted depends on the start
Y value and the number of scanlines to be covered. With the
example, 1f StartY=Y1 and the number of scanlines is set to
Y1-Y2, the lower edge of the top half of the triangle will be
excluded. This excluded edge will get drawn as part of the
lower half of the triangle.

To mimimize delta calculations, triangles may be scan
converted from left to right or from right to left. The
direction depends on the dominant edge, that 1s the edge
which has the maximum range of Y values. Rendering
always proceeds from the dominant edge towards the rel-
evant subordinate edge. In the example above, the dominant
edge 1s 1-3 so rendering will be from right to left.

The sequence of actions required to render a triangle (with
a ‘knee’) is:

Load the edge parameters and derivatives for the domi-

nant edge and the first subordinate edges in the first
triangle.

Send the Render command. This starts the scan conver-
sion of the first triangle, working from the dominant
edge. This means that for triangles where the knee 1s on
the left we are scanning right to left, and vice versa for
triangles where the knee 1s on the right.

Load the edge parameters and derivatives for the remain-
ing subordinate edge 1n the second triangle.

Send the ContinueNewSub command. This starts the scan
conversion of the second triangle.

US 6,348,919 B1

37

Pseudocode for the above example 1s:

// Set the rasterizer mode to the default
RasterizerMode (0)
// Setup the start values and the deltas.
// Note that the X and Y coordinates are converted
// to 16.16 format
StartXDom (X1<<16)
dxDom (((X3- X1)<<16)/(Y3 - Y1))
StartXSub (X1<<16)
dxSub (((X2- X1)<<16)/(Y2 - Y1))
StartY (Y1<<16)
dY (-1<<16)
Count (Y1 - Y2)

// Set the render mode to aliased primitive with

// subpixel correction.

render.PrimitiveType = GLINT_TRAPEZOID__PRIMITIVE
render.SubpixelCorrectionEnable = GLINT_TRUE
render.AntialiasEnable = GLINT__DISABLE

// Draw top half of the triangle

Render (render)

// Set the start and delta for the second half of

// the triangle.

StartXSub (X2<<16)

dXSub (((X3- X2)<<16)/(Y3 - Y2))

// Draw lower half of triangle

ContinueNewSub (abs(Y2 - Y3))

/f Down the screen

After the Render command has been sent, the registers 1n
GLINT can immediately be altered to draw the second half

of the triangle. For this, note that only two registers need be
loaded and the command ContinueNewSub be sent. Once
drawing of the first triangle 1s complete and GLINT has
received the ContinueNewSub command, drawing of this
sub-triangle will start. The ContinueNewSub command reg-
ister 1s loaded with the remaining number of scanlines to be
rendered.

Lines
Single pixel wide aliased lines are drawn using a DDA

algorithm, so all GLINT needs by way of mput data 1s
StartX, StartY, dX, dY and length.

For polylines, a ContinueNewLine command (analogous
to the Continue command used at the knee of a triangle) is
used at vertices.

When a Continue command 1s 1ssued some error will be
propagated along the line. To minimize this, a choice of
actions are available as to how the DDA units are restarted
on the receipt of a Continue command. It 1s recommended
that for OpenGL rendering the ContinueNewlLine command
1s not used and i1ndividual segments are rendered.

Antialiased lines, of any width, are rendered as antialiased
screen-aligned trapezoids.

Points
GLINT supports a single pixel aliased point primitive. For

points larger than one pixel trapezoids should be used. In this
case the Primitive Type field in the Render command should
be set to equal GLINT_ _POINT__PRIMITIVE.

Antialiasing

GLINT uses a subpixel point sampling algorithm to
antialias primitives. GLINT can directly rasterize antialiased
trapezoids and points. Other primitives are composed from
these base primitives.

The rasterizer associlates a coverage value with each
fragment produced when antialiasing. This value represents
the percentage coverage of the pixel by the fragment.
GLINT supports two levels of antialiasing quality:

normal, which represents 4x4 pixel subsampling

10

15

20

25

30

35

40

45

50

55

60

65

33

high, which represents 8x8 pixel subsampling.
Seclection between these two 1s made by the Antialias-

ingQuality bit within the Render command register.

When rendering antialiased primitives with GLINT the
FlushSpan command 1s used to terminate rendering of a
primitive. This 1s due to the nature of GLINT anftialiasing.
When a primitive 1s rendered which does not happen to
complete on a scanline boundary, GLINT retains antialiasing
information about the last sub-scanline(s) it has processed,
but does not generate fragments for them unless a FlushSpan
command 18 received. The commands ContinueNewSub,
ContinueNewDom or Continue can then be used, as
appropriate, to maintain continuity between adjacent trap-
ezolds. This allows complex antialiased primitives to be
built up from simple trapezoids or points.

To 1llustrate this consider using screen aligned trapezoids
to render an antialiased line. The line will 1n general consist

of three screen aligned trapezoids as shown 1n FIG. 4B. This
Figure 1illustrates the sequence of rendering an Antialiased
Line primitive. Note that the line has finite width.

The procedure to render the line 1s as follows:

// Setup the blend and coverage application units
// as appropriate—not shown

// In this example only the edge deltas are shown
// loaded 1nto registers for clarity. In reality
// start X and Y values are required

// Render Trapezoid A

dY(1<<16)

dXDom(dXDoml<<16)
dXSub(dXSub1<<16)

Count(countl)

render. Primitive Type=GLINT__ TRAPEZOID
render.AntialiasEnable=GLINT TRUE
render.AntialiasQuality=GLINT__MIN__ ANTIALIAS
render.CoverageEnable=GLINT__TRUE
Render(render)

// Render Trapezoid B

dXSub(dXSub2<<16)
ContinueNewSub(count2)

// Render Trapezoid C
dXDom(dXDom2<<16)

ContinueNewDom(count3)

// Now we have finished the primitive flush out
// the last scanline

FlushSpan()

Note that when rendering antialiased primitives, any
count values should be given 1n subscanlines, for example 1t
the quality 1s 4x4 then any scanline count must be multiplied
by 4 to convert 1t into a subscanline count. Similarly, any
delta value must be divided by 4.

When rendering, AntialiasEnable must be set in the

Antialias-Mode register to scale the fragments color by the
coverage value. An appropriate blending function should
also be enabled.

Note, when rendering antialiased bow-ties, the coverage
value on the cross-over scanline may be incorrect.

GLINT can render small antialiased points. Antialiased
points are treated as circles, with the coverage of the
boundary fragments ranging from 0% to 100%. GLINT
Supports:

US 6,348,919 B1

39

poimnt radu of 0.5 to 16.0 m steps of 0.25 for 4x4
antialiasing
point radii of 0.25 to 8.0 1n steps of 0.125 for 8x8
antialiasing
To scan convert an antialiased point as a circle, GLINT
fraverses the boundary in sub scanline steps to calculate the
coverage value. For this, the sub-scanline intersections are
calculated incrementally using a small table. The table holds
the change 1n X for a step in Y. Symmetry 1s used so the table
only holds the delta values for one quadrant.
StartXDom, StartXSub and StartY are set to the top or

bottom of the circle and dY set to the subscanline step. In the
case of an even diameter, the last of the required entries 1n

the table 1s set to zero.

Since the table i1s configurable, point shapes other than
circles can be rendered. Also 1f the StartXDom and StartX-
Sub values are not coincident then horizontal thick lines
with rounded ends, can be rendered.

Block Write Operation

GLINT supports VRAM block writes with block sizes of
8, 16 and 32 pixels. The block write method does have some
restrictions: None of the per pixel clipping, stipple, or
fragment operations are available with the exception of write
masks. One subtle restriction 1s that the block coordinates
will be interpreted as screen relative and not window relative
when the pixel mask 1s calculated 1 the Framebuffer Units.

Any screen aligned trapezoid can be filled using block
writes, not just rectangles.

The use of block writes 1s enabled by setting the FastFil-
1IEnable and FastFillIncrement fields 1n the Render command
register. The framebuifer write unit must also be configured.
Note only the Rasterizer, Framebufler Read and Frame-
buffer Write units are involved in block filling. The other
units will 1ignore block write fragments, so 1t 1s not necessary
to disable them.

Sub Pixel Precision and Correction
As the rasterizer has 16 bits of fraction precision, and the

screen width used is typically less than 2'° wide a number
of bits called subpixel precision bits, are available. Consider
a screen width of 4096 pixels. This figure gives a subpixel

precision of 4 bits (4096=2"%). The extra bits are required for
a number of reasons:

antialiasing (where vertex start positions can be supplied
to subpixel precision)

when using an accumulation buffer (where scans are
rendered multiple times with jittered input vertices)

for correct interpolation of parameters to give high quality
shading as described below
GLINT supports subpixel correction of interpolated val-

ues when rendering aliased trapezoids. Subpixel correction
ensures that all interpolated parameters associated with a
fragment (color, depth, fog, texture) are correctly sampled at
the fragment’s center. This correction 1s required to ensure
consistent shading of objects made from many primitives. It
should generally be enabled for all aliased rendering which
uses 1terpolated parameters.

Subpixel correction 1s not applied to anftialiased primi-
fives.

Bitmaps

A Bitmap primitive 1s a trapezoid or line of ones and zeros
which control which fragments are generated by the raster-
izer. Only fragments where the corresponding Bitmap bit 1s

set are submitted for drawing. The normal use for this 1s in

10

15

20

25

30

35

40

45

50

55

60

65

40

drawing characters, although the mechanism is available for
all primitives. The Bitmap data 1s packed contiguously into
32 bit words so that rows are packed adjacent to each other.
Bits 1n the mask word are by default used from the least
significant end towards the most significant end and are
applied to pixels 1n the order they are generated 1n.

The rasterizer scans through the bits in each word of the
Bitmap data and increments the X,Y coordinates to trace out
the rectangle of the given width and height. By default, any
set bits (1) in the Bitmap cause a fragment to be generated,
any reset bits (0) cause the fragment to be rejected.

The selection of bits from the BitMaskPattern register can
be mirrored, that 1s, the pattern 1s traversed from MSB to
LSB rather than LSB to MSB. Also, the sense of the test can
be reversed such that a set bit causes a fragment to be
rejected and vice versa. This control 1s found 1n the Raster-
1zerMode register.

When one Bitmap word has been exhausted and pixels in
the rectangle still remain then rasterization is suspended
until the next write to the BitMaskPattern register. Any
unused bits 1n the last Bitmap word are discarded. Image
Copy/Upload/Download

GLINT supports three “pixel rectangle” operations: copy,
upload and download. These can apply to the Depth or
Stencil Buffers (held within the localbuffer) or the frame-
buffer.

It should be emphasized that the GLINT copy operation
moves RAW blocks of data around buffers. To zoom or
re-format data, 1n the presently preferred embodiment, exter-
nal software must upload the data, process it and then
download 1t again.

To copy a rectangular arca, the rasterizer would be
configured to render the destination rectangle, thus gener-
ating fragments for the area to be copied. GLINT copy
works by adding a linear offset to the destination fragment’s
address to find the source fragment’s address.

Note that the offset 1s independent of the origin of the
buffer or window, as 1t 1s added to the destination address.
Care must be taken when the source and destination overlap
to choose the source scanning direction so that the overlap-
ping area 1s not overwritten before it has been moved. This
may be done by swapping the values written to the StartX-
Dom and StartXSub, or by changing the sign of dY and
setting StartY to be the opposite side of the rectangle.

Localbuffer copy operations are correctly tested for pixel
ownership. Note that this implies two reads of the
localbuffer, one to collect the source data, and one to get the
destination GID for the pixel ownership test.

GLINT buffer upload/downloads are very similar to cop-
ies 1n that the region of interest 1s generated 1n the rasterizer.
However, the localbuffer and framebulffer are generally
configured to read or to write only, rather than both read and
write. The exception 1s that an 1image load may use pixel
ownership tests, in which case the localbuifer destination
read must be enabled.

Units which can generate fragment values, the color DDA
unit for example, should generally be disabled for any
copy/upload/download operations.

Warning: During 1image upload, all the returned fragments
must be read from the Host Out FIFO, otherwise the GLINT
pipeline will stall. In addition 1t 1s strongly recommended
that any units which can discard fragments (for instance the

US 6,348,919 B1

41

following tests: bitmask, alpha, user scissor, screen Scissor,
stipple, pixel ownership, depth, stencil), are disabled other-
wise a shortfall 1n pixels returned may occur, also leading to

deadlock.

Note that because the areca of interest in copy/upload/
download operations 1s defined by the rasterizer, it 1s not
limited to rectangular regions.

Color formatting can be used when performing image
copies, uploads and downloads. This allows data to be
formatted from, or to, any of the supported GLINT color
formats.

Rasterizer Mode

A number of long-term modes can be set using the

Rasterizer-Mode register, these are:

Mirror BitMask: This 1s a single bit flag which specifies
the direction bits are checked 1n the BitMask register.
If the bit 1s reset, the direction 1s from least significant
to most significant (bit 0 to bit 3), if the bit is set, it 1s
from most significant to least significant (from bit 31 to

bit 0).

Register Name

Render

ContinueNewDom

ContinueNewSub

Continue

ContinueNewlLine

FlushSpan

Invert BitMask: This 1s a single bit which controls the
sense of the accept/reject test when using a Bitmask. If
the bit 1s reset then when the BitMask bit 1s set the
fragment 1s accepted and when 1t 1s reset the fragment
1s rejected. When the bit 1s set the sense of the test 1s
reversed.

Fraction Adjust: These 2 bits control the action taken by

the rasterizer on receiving a ContinueNewlLine com-
mand. As GLINT uses a DDA algorithm to render lines,

10

15

60

65

42

an error accumulates 1 the DDA value. GLINT pro-
vides for greater control of the error by doing one of the
follow1ing;:

leaving the DDA running, which means errors will be
propagated along a line.

or setting the fraction bits to either zero, a half or almost
a half (Ox7FFF).

Bias Coordinates: Only the integer portion of the values
in the DDAs are used to generate fragment addresses.
Often the actual action required 1s a rounding of values,
this can be achieved by setting the bias coordinate bat
to true which will automatically add almost a half
(Ox7FFF) to all input coordinates.

Rasterizer Unit Registers

Real coordinates with fractional parts are provided to the

rasterizer in 2’s complement 16 bit integer, 16 bit fraction
format. The following Table lists the command registers
which control the rasterizer unit:

Description

Starts the rasterization process

Allows the rasterization to continue with a new dominant
edge. The dominant edge DDA 1s reloaded with the new
parameters. The subordinate edge 1s carried on from the
previous trapezoid. This allows any convex polygon to be
broken down 1nto a collection of trapezoids, with continuity
maintained across boundaries.

The data field holds the number of scanlines (or sub scan-
lines) to fill. Note this count does not get loaded into the
Count register.

Allows the rasterization to continue with a new subordinate
edge. The subordinate DDA 1s reloaded with the new
parameters. The dominant edge 1s carried on from the
previous trapezoid. This 1s useful when scan converting
triangles with a ‘knee’ (i.e. two subordinate edges).

The data field holds the number of scanlines (or sub
scanlines) to fill. Note this count does not get loaded into
the Count register.

Allows the rasterization to continue after new delta value(s)
have been loaded, but does not cause either of the
trapezoid’s edge DDAs to be reloaded.

The data field holds the number of scanlines (or sub
scanlines) to fill. Note this count does not get loaded into
the Count register.

Allows the rasterization to continue for the next segment in
a polyline. The XY position 1s carried on from the
previous line, but the fraction bits in the DDAs can be:
kept, set to zero, half, or nearly one half, under control of
the RasterizerMode.

The data field holds the number of scanlines to fill. Note
this count does not get loaded into the Count register.

The use of ContinueNewLine 1s not recommended for
OpenGL because the DDA units will start with a slight
error as compared with the value they would have been
loaded with for the second and subsequent segments.

Used when antialiasing to force the last span out when not

all sub spans may be defined.

The following Table shows the control registers of the
rasterizer, 1n the presently preferred embodiment:

RasterizerMode Defines the long term mode of operation of the rasterizer.

StartXDom [nitial X value for the dominant edge in trapezoid filling,
or 1nitial X value in line drawing.
dXDom Value added when moving from one scanline {(or sub

US 6,348,919 B1

43

-continued

RasterizerMode Defines the long term mode of operation of the rasterizer.

scanline) to the next for the dominant edge in trapezoid 5
filling. Also holds the change in X when plotting lines so
for Y major lines this will be some fraction (dx/dy),
otherwise it 1s normally = 1.0, depending on the
required scanning direction.
StartXSub [nitial X value for the subordinate edge.
dXSub Value added when moving from one scanline {(or sub 10
scanline) to the next for the subordinate edge in trapezoid
filling.
StartY [nitial scanline (or sub scanline) in trapezoid filling, or
initial Y position for line drawing.
dY Value added to Y to move from one scanline to the next.
For X major lines this will be some fraction (dy/dx), 15
otherwise it 1s normally = 1.0, depending on the
required scanning direction.
Count Number of pixels in a line.
Number of scanlines in a trapezoid.
Number of sub scanlines in an antialiased trapezoid.
Diameter of a point in sub scanlines. 50
BitMaskPattern Value used to control the BitMask stipple operation (if
enabled).
PointTableO Antialias point data table. There are 4 words 1n the table
PointTablel and the register tag 1s decoded to select a word.
PointTable2
Point'Table3
25
Bit Name
0 Area-
Stipple-
Enable
1 Line-
Stipple-
Enable
2 Reset-
Line-
Stipple

3 FastFillEnable

4,5

6, 7

Fast-Fill-
Increment

Primitive-

Type

8 Antialias-
Enable

QO Anti-

aliasing

Quality

44

For efficiency, the Render command register has a number

of bit fields that can be set or cleared per render operation,
and which quality other state mformation within GLINT.
These bits are AreaStippleEnable, LineStippleEnable,
ResetLineStipple, TextureEnable FogEnable, CoverageEn-

able and SubpixelCorrection.

One use of this feature can occur when a window 1s
cleared to a background color. For normal 3D primitives,
stippling and fog operations may have been enabled, but
these are to be 1gnored for window clears. Initially the
FogMode, AreaStippleMode and LineStippleMode registers
are enabled through the UnitEnable bits. Now bits need only
be set or cleared within the Render command to achieve the
required result, removing the need for the FogMode, AreaSt-
ippleMode and LineStippleMode registers to be loaded for

every render operation.

The batfields of the Render command register, in the
presently preferred embodiment, are detailed below:

Description

This bit, when set, enables area stippling of the fragments
produced during rasterization. Note that area stipple in the
Stipple Unit must be enabled as well for stippling to occur.
When this bit 1s reset no area stippling occurs irrespective of
the setting of the area stipple enable bit in the Stipple Unit.
This bit 1s useful to temporarily force no area stippling for this
primitive.

This bit, when set, enables line stippling of the fragments
produced during rasterization in the Stipple Unit. Note that
line stipple 1n the Stipple Unit must be enabled as well for stip-
pling to occur.

When this bit 1s reset no line stippling occurs 1rrespective of
the setting of the line stipple enable bit in the Stipple Unit.
This bit 1s useful to temporarily force no line stippling for this
primitive.

This bit, when set, causes the line stipple counters in the
Stipple Unit to be reset to zero, and would typically be used
for the first segment 1n a polyline. This action 1s also qualified
by the LineStippleEnable bit and also the stipple enable bits 1n
the Stipple Unit.

When this bit 1s reset the stipple counters carry on from where
they left off (if line stippling is enabled)

This bit, when set, causes fast block filling of primitives.
When this bit 1s reset the normal rasterization process occurs.
This two bit field selects the block size the framebuffer
supports. The sizes supported and the corresponding codes
are:

0 = 8 pixels

1 = 16 pixels

2 = 32 pixels

This two bit field selects the primitive type to rasterize. The
primitives are:

0 = Line

1 = Trapezoid

2 = Point

This bit, when set, causes the generation of sub scanline data
and the coverage value to be calculated for each fragment.

The number of sub pixel samples to use is controlled by the
AntialiasingQuality bit.

When this bit 1s reset normal rasterization occurs.

This bit, when set, sets the sub pixel resolution to be 8x8
When this bit 1s reset the sub pixel resolution 1s 4x4.

Bit Name

10 UsePoint-

Table
11 SyncOn-
BitMask
12 SyncOn
HostData

13 TextureEnable

14 Fog-
Enable

15 Coverage-
Enable

16 SubPixel-
Correc-
tion
Enable

US 6,348,919 B1

45

-continued

Description

When this bit and the AntialiasingEnable are set, the dx values
used to move from one scanline to the next are derived from
the Point Table.

This bit, when set, causes a number of actions:

The least significant bit or most significant bit (depending on
the MirrorBitMask bit) in the Bit Mask register is extracted
and optionally inverted (controlled by the InvertBitMask bit).
[f this bit 1s O then the corresponding fragment is culled from
being drawn.

After every fragment the Bit Mask register is rotated by one
bit.

[T all the bits in the Bit Mask register have been used then
rasterization 1s suspended until a new BitMaskPattern 1s
recerved. If any other register 1s written while the rasterization
1s suspended then the rasterization is aborted. The register
write which caused the abort is then processed as normal.
Note the behavior is slightly different when the SyncOnHostData
bit 1s set to prevent a deadlock from occurring.

[n this case the rasterization doesn’t suspend when all the bits
have been used and if new BitMaskPattern data words are not
received 1n a timely manner then the subsequent fragments will
just reuse the bitmask.

When this bit is set a fragment 1s produced only when one of
the following registers has been written by the host: Depth,
FBColor, Stencil or Color. If SyncOnBitMask 1s reset, then if
any register other than one of these four is written to, the
rasterization 1s aborted. If SyncOnBitMask 1s set, then if any
register other than one of these four, or BitMaskPattern, 1s
written to, the rasterization 1s aborted. The register write
which caused the abort 1s then processed as normal. Writing to
the BitMaskPattern register doesn’t cause any fragments to be
generated, but just updates the BitMask register.

This bit, when set, enables texturing of the fragments produced
during rasterization. Note that the Texture Units must be
suitably enabled as well for any texturing to occur.

When this bit 1s reset no texturing occurs irrespective of the
setting of the Texture Unit controls.

This bit 1s usetul to temporarily force no texturing for this
primitive.

This bit, when set, enables fogging of the fragments produced
during rasterization. Note that the Fog Unit must be suitably
enabled as well for any fogging to occur.

When this bit 1s reset no fogging occurs irrespective of the
setting of the Fog Unit controls.

This bit 1s useful to temporarily force no fogging for this
primitive.

This bit, when set, enables the coverage value produced as part
of the antialiasing to weight the alpha value in the alpha test
unit. Note that this unit must be suitably enabled as well.
When this bit 1s reset no coverage application occurs irrespec-
tive of the setting of the AntialiasMode in the Alpha Test unit.
This bit, when set enables the sub pixel correction of the color,
depth, fog and texture values at the start of a scanline. When
this bit 1s reset no correction 1s done at the start of a scanline.
Sub pixel corrections are only applied to aliased trapezoids.

A number of long-term rasterizer modes are stored in the
RasterizerMode register as shown below:

55 Bit Name

Bit Name Description

0 Mirror- When this bit is set the bitmask bits are consumed
BitMask from the most significant end towards the least

significant end. When this bit is reset the bitmask bits

are consumed from the least significant end towards 60
the most significant end.
1 InvertBit- When this bit 1s set the bitmask 1s inverted first before
Mask being tested.
2, 3 Fraction- These bits control the action of a ContinueNewLine
Adjust command and specify how the fraction bits 1n the Y
and XDom DDAs are adjusted 65

0: No adjustment 1s done

4, 5 BiasCoor-
dinates

46

-continued

Description

1: Set the fraction bits to zero

2: Set the fraction bits to half

3: Set the fraction to nearly half, 1.e. Ox 7t

These bits control how much 1s added onto the
StartXDom, StartXSub and StartY values when they
are loaded into the DDA units. The original registers

are not affected:
0: Zero 1s added
1: Half 1s added
2: Nearty half, 1.e. Ox7{if 15 added

US 6,348,919 B1

47

Scissor Unit

Two scissor tests are provided 1n GLINT, the User Scissor
test and the Screen Scissor test. The user scissor checks each
fragment against a user supplied scissor region; the screen
scissor checks that the fragment lies within the screen.

This test may reject fragments if some part of a window
has been moved off the screen. It will not reject fragments
if part of a window 1s simply overlapped by another window
(GID testing can be used to detect this).

Stipple Unit

Stippling 1s a process whereby each fragment 1s checked
against a bit 1n a defined pattern, and 1s rejected or accepted

depending on the result of the stipple test. If 1t 1s rejected it
undergoes no further processing; otherwise 1t proceeds down

the pipeline. GLINT supports two types of stippling, line and
area.

Area Stippling

A 32x32 bit area stipple pattern can be applied to frag-
ments. The least significant n bits of the fragment’s (X,Y)
coordinates, index into a 2D stipple pattern. If the selected
bit 1n the pattern 1s set, then the fragment passes the test,
otherwise 1t 1s rejected. The number of address bits used,
allow regions of 1,2,4,8,16 and 32 pixels to be stippled. The
address selection can be controlled independently 1n the X

and Y directions. In addition the bit pattern can be mnverted
or mirrored. Inverting the bit pattern has the effect of
changing the sense of the accept/reject test. If the mirror bit
1s set the most significant bit of the pattern 1s towards the left
of the window, the default 1s the converse.

In some situations window relative stippling 1s required
but coordinates are only available screen relative. To allow
window relative stippling, an offset 1s available which 1s
added to the coordinates before indexing the stipple table. X
and Y offsets can be controlled independently.

Line Stippling

In this test, fragments are conditionally rejected on the
outcome of testing a linear stipple mask. If the bit 1s zero
then the test fails, otherwise it passes. The line stipple
pattern 1s 16 bits 1n length and 1s scaled by a repeat factor r
(in the range 1 to 512). The stipple mask bit b which controls
the acceptance or rejection of a fragment 1s determined
using:

b=(floor(s/r))mod 16

where s 15 the stipple counter which 1s incremented for every
fragment (normally along the line). This counter may be
reset at the start of a polyline, but between segments 1t
continues as if there were no break.

The stipple pattern can be optionally mirrored, that 1s the
bit pattern 1s traversed from most significant to least sig-
nificant bits, rather than the default, from least significant to
most significant.

Color DDA Unit

The color DDA unit 1s used to associate a color with a
fragment produced by the rasterizer. This unit should be
enabled for rendering operations and disabled for pixel
rectangle operations (i.e. copies, uploads and downloads).
Two color modes are supported by GLINT, true color RGBA
and color index (CI).

Gouraud Shading

When in Gouraud shading mode, the color DDA unit
performs linear 1nterpolation given a set of start and incre-
ment values. Clamping 1s used to ensure that the iterpolated
value does not undertlow or overflow the permitted color
range.

For a Gouraud shaded trapezoid, GLINT interpolates
from the dominant edge of a trapezoid to the subordinate
edges. This means that two increment values are required

10

15

20

25

30

35

40

45

50

55

60

65

43

per color component, one to move along the dominant edge
and one to move across the span to the subordinate edge.

Note that 1f one 1s rendering to multiple buffers and has
initialized the start and increment values 1n the color DDA
unit, then any subsequent Render command will cause the
start values to be reloaded.

If subpixel correction has been enabled for a primitive,
then any correction required will be applied to the color
components.

Flat Shading,

In flat shading mode, a constant color 1s associated with
cach fragment. This color 1s loaded 1nto the ConstantColor
register.

Texture Unait

The texture unit combines the incoming fragment’s color
(generated in the color DDA unit) with a value derived from
interpolating texture map values (texels).

Texture application consists of two stages; derivation of
the texture color from the texels (a filtering process) and then
application of the texture color to the fragment’s color,

which is dependent on the application mode (Decal, Blend
or Modulate).

GLINT 300SX compared with the GLINT 300TX Both
the GLINT 3005SX and GLINT 300TX support all the
filtering and application modes described 1n this section.
However, when using the GLINT 3005X, texel values,

interpolants and texture filter selections are supplied by the
host. This implies that texture coordinate interpolation and
texel extraction are performed by the host using texture
maps resident on the host. The recommended technique for
performing texture mapping using the GLINT 300SX 1s to
scan convert primitives on the host and render fragments as
GLINT point primitives.

The GLINT 300TX automatically generates all data
required for texture application as textures are stored in the
localbuffer and texture parameter interpolation with full
perspective correction takes place within the processor. Thus
the GLINT 300TX 1s the processor of choice when full
texture mapping acceleration 1s desired, the GLINT 30058X
1s more suitable 1n applications where the performance of
texture mapping 1s not critical.

Texture Color Generation.

Texture color generation supports all the filter modes of

OpenGL, that 1s:

Nearest

Linear
NearestMipMapNearest
NearestMipMapLinear
LinearMipMapNearest
LinearMipMapLinear
Nearest

Linear

Minification:

Magnification:

Minification 1s the name given to the filtering process
used whereby multiple texels map to a fragment, while
magnification 1S the name given to the filtering process
whereby only a portion of a single texel maps to a single
fragment.

Nearest 1s the simplest form of texture mapping where the
nearest texel to the sample location 1s selected with no
filtering applied.

Linear 1s a more sophisticated algorithm which 1s depen-
dent on the type of primitive. For lines (which are 1D), it
involves linear interpolation between the two nearest texels,
for polygons and points which are considered to have finite
arca, linear 1s 1n fact bi-linear interpolation which interpo-
lates between the nearest 4 texels.

US 6,348,919 B1

49

Mip Mapping 1s a technique to allow the efficient filtering,
of texture maps when the projected area of the fragment
covers more than one texel (ie. minification). A hierarchy of
texture maps is held with each one being half the size (or one
quarter the area) of the preceding one. A pair of maps are
selected, based on the projected area of the texture. In terms
of filtering this means that three filter operations are per-
formed: one on the first map, one on the second map and one
between the maps. The first filter name (Nearest or Linear)
in the MipMap name speciiies the filtering to do on the two
maps, and the second filter name specifies the filtering to do
between maps. So for mstance, linear mapping between two
maps, with linear interpolation between the results 1s sup-
ported (LincarMipMapLinear), but linear interpolation on
one map, nearest on the other map, and linear iterpolation
between the two 1s not supported.

The f{filtering process takes a number of texels and
interpolants, and with the current texture filter mode pro-
duces a texture color.

Fog Unit

The fog unit 1s used to blend the 1ncoming fragment’s
color (generated by the color DDA unit, and potentially
modified by the texture unit) with a predefined fog color.
Fogging can be used to simulate atmospheric fogging, and
also to depth cue 1images.

Fog application has two stages; derivation of the fog
index for a fragment, and application of the fogging etfect.
The fog mdex 1s a value which 1s interpolated over the
primitive using a DDA 1n the same way color and depth are
interpolated. The fogeing effect 1s applied to each fragment
using one of the equations described below.

Note that although the fog values are linearly mterpolated
over a primifive the fog values can be calculated on the host
using a linear fog function (typically for simple fog effects
and depth cuing) or a more complex function to model
atmospheric attenuation. This would typically be an expo-
nential function.

Fog Index Calculation—The Fog DDA

The fog DDA is used to interpolate the fog index (f)
across a primitive. The mechanics are similar to those of the
other DDA units, and horizontal scanning proceeds from
dominant to subordinate edge as discussed above.

The DDA has an internal range of approximately +511 to
—-512, so 1n some cases primitives may exceed these bounds.
This problem typically occurs for very large polygons which
span the whole depth of a scene. The correct solution 1s to
tessellate the polygon until polygons lie within the accept-
able range, but the visual effect 1s frequently negligible and
can often be 1gnored.

The fog DDA calculates a fog index value which 1s
clamped to lie 1n the range 0.0 to 1.0 before it 1s used in the
appropriate fogging equation. (Fogging is applied differently
depending on the color mode.)

Antialias Application Unit

Antialias application controls the combining of the cov-
erage value generated by the rasterizer with the color gen-
erated in the color DDA units. The application depends on
the color mode, either RGBA or Color Index (CI).

Antialias Application

When antialiasing 1s enabled this unit 1s used to combine
the coverage value calculated for each fragment with the
fragment’s alpha value. In RGBA mode the alpha value 1s
multiplied by the coverage value calculated 1n the rasterizer
(its range is 0% to 100%). The RGB values remain
unchanged and these are modified later 1n the Alpha Blend
unit which must be set up appropriately. In CI mode the
coverage value 1s placed 1n the lower 4 bits of the color field.

10

15

20

25

30

35

40

45

50

55

60

65

50

The Color Look Up Table 1s assumed to be set up such that
cach color has 16 intensities associated with 1t, one per
coverage entry.

Polygon Antialiasing

When using GLINT to render antialiased polygons, depth
buffering cannot be used. This 1s because the order the
fragments are combined 1n 1s critical 1n producing the
correct final color. Polygons should therefore be depth
sorted, and rendered front to back, using the alpha blend
modes: Source AlphaSaturate for the source blend function
and One for the destination blend function. In this way the
alpha component of a fragment represents the percentage
pixel coverage, and the blend function accumulates cover-
age until the value 1n the alpha buffer equals one, at which
point no further contributions can made to a pixel.

For the antialiasing of general scenes, with no restrictions
on rendering order, the accumulation buffer is the preferred
choice. This 1s mndirectly supported by GLINT via image
uploading and downloading, with the accumulation buffer
residing on the host.

When antialiasing, interpolated parameters which are
sampled within a fragment (color, fog and texture), will
sometimes be unrepresentative of a continuous sampling of
a surface, and care should be taken when rendering smooth
shaded antialiased primitives. This problem does not occur
in aliased rendering, as the sample point 1s consistently at the
center of a pixel.

Alpha Test Unait

The alpha test compares a fragment’s alpha value with a
reference value. Alpha testing 1s not available 1n color index
(CI) mode. The alpha test conditionally rejects a fragment
based on the comparison between a reference alpha value
and one associated with the fragment.

Localbuffer Read/Write Unait

The localbuffer holds the Graphic ID, FrameCount, Sten-
cil and Depth data associated with a fragment. The local-
buffer read/write unit controls the operation of GID testing,
depth testmg and stencil testing.

Localbuffer Read

The LBReadMode register can be configured to make 0,
1 or 2 reads of the localbuifer. The following are the most
common modes of access to the localbuifer:

Normal rendering without depth, stencil or GID testing.
This requires no localbuffer reads or writes.

Normal rendering without depth or stencil testing and
with GID testing. This requires a localbufler read to get

the GID from the localbuffer.

Normal rendering with depth and/or stencil testing
required which conditionally requires the localbuifer to

be updated. This requires localbuifer reads and writes
to be enabled.

Copy operations. Operations which copy all or part of the
localbuffer with or without GID testing. This requires
reads and writes enabled.

Image upload/download operations. Operations which
download depth or stencil information to the local
buffer or read depth, stencil fast clear or GID from the
localbuffer.

Localbuffer Write

Writes to the localbuffer must be enabled to allow any

update of the localbuffer to take place. The LBWriteMode
register 1s a single bit flag which controls updating of the
buffer.

Pixel Ownership (GID) Test Unit

Any fragment generated by the rasterizer may undergo a

pixel ownership test. This test establishes the current frag-
ment’s write permission to the localbuffer and framebuffer.

US 6,348,919 B1

51

Pixel Ownership Test
The ownership of a pixel is established by testing the GID
of the current window against the GID of a fragment’s

destination 1n the GID bulifer. If the test passes, then a write

can take place, otherwise the write 1s discarded. The sense
of the test can be set to one of: always pass, always fail, pass

if equal, or pass if not equal. Pass if equal 1s the normal
mode. In GLINT the GID planes, if present, are 4 bits deep
allowing 16 possible Graphic ID’s. The current GID 1s
established by setting the Window register.

If the unit 1s disabled fragments pass through undisturbed.

Stencil Test Unit

The stencil test conditionally rejects fragments based on
the outcome of a comparison between the value 1n the stencil
buffer and a reference value. The stencil buifer 1s updated
according to the current stencil update mode which depends
on the result of the stencil test and the depth test.

Stencil Test
This test only occurs if all the preceding tests (bitmask,
scissor, stipple, alpha, pixel ownership) have passed. The
stencil test 1s controlled by the stencil function and the

stencil operation. The stencil function controls the test
between the reference stencil value and the value held in the

stencil buifer. The stencil operation controls the updating of
the stencil bufl

er, and 1s dependent on the result of the stencil
and depth tests.

If the stencil test 1s enabled then the stencil buffer will be
updated depending on the outcome of both the stencil and
the depth tests (if the depth test is not enabled the depth
result is set to pass).

In addition a comparison bit mask 1s supplied 1n the
StencilData register. This 1s used to establish which bits of
the source and reference value are used m the stencil
function test. In addition it should normally be set to exclude
the top four bits when the stencil width has been set to 4 bits
in the StencilMode register.

The source stencil value can be from a number of places
as controlled by a field in the StencilMode register:

LBWriteData

Stencil Use

Test logic This 1s the normal mode.

Stencil This 1s used, for instance, in the OpenGL draw pmels
register function where the host supplies the stencil values 1n the

Stencil register. This 1s used when a constant stencil

value 1s needed, for example, when clearing the stencil

buffer when fast clear planes are not available.
L.BSourceData: This 1s used, for instance, in the OpenGL copy pixels

(stencil function when the stencil planes are to be copied to the
value read destination. The source 1s offset from the destination by
from the the value 1n LBSourceOffset register.

localbuffer)

Source stencil ~ This 1s used, for instance, in the OpenGL copy pixels

value read function when the stencil planes 1n the destination are
from the not to be updated. The stencil data will come either from
localbufter the localbuffer date, or the FCStencil register, depending

on whether fast clear operations are enabled.

Depth Test Unat

The depth (Z) test, if enabled, compares a fragment’s
depth against the corresponding depth 1n the depth buffer.
The result of the depth test can effect the updating of the
stencil buffer if stencil testing 1s enabled. This test 1s only
performed if all the preceding tests (bitmask, scissor, stipple,
alpha, pixel ownership, stencil) have passed. The source
value can be obtained from a number of places as controlled
by a field i the DepthMode register:

10

15

20

25

30

35

40

45

50

55

60

65

52

Source Use
DDA (see This 1s used for normal Depth buffered 3D rendering.
below)

Depth register This 1s used, for instance, 1n the OpenGL draw pixels
function where the host supplies the depth values through
the Depth register.

Alternatively this 1s used when a constant depth value 1s
needed, for example, when clearing the depth buffer
(when fast clear planes are not available) or 2D rendering
where the depth 1s held constant.

This 1s used, for instance, in the OpenGL copy pixels
function when the depth planes are to be copied to the

destination.

LBSourceData:
Source depth
value from the
localbufter

Source Depth ~ This 1s used, for instance, 1n the OpenGL copy pixels

function when the depth planes in the destination are not
updated. The depth data will come either from the
localbuffer or the FCDepth register depending the state
of the Fast Clear modes in operation.

When using the depth DDA for normal depth buifered
rendering operations the depth values required are similar to
those required for the color values in the color DDA unit:

ZStart=Start Z Value
dZdYDom=Increment along dominant edge.

dZdX=Increment along the scan line.
The dZdX value 1s not required for Z-buifered lines.
The depth unit must be enabled to update the depth bulifer.
I 1t 1s disabled then the depth buifer will only be updated it
ForceL-BUpdate 1s set in the Window register.
Framebuifer Read/Write Unait
Before rendering can take place GLINT must be config-
ured to perform the correct framebuffer read and write
operations. Framebuil e modes effect the

er read and wri
operation of alpha blending, logic ops, write masks, image
upload/download operations and the updating of pixels in
the framebuifer.

Framebuifer Read

The FBReadMode register allows GLINT to be config-
ured to make 0, 1 or 2 reads of the framebuffer. The

following are the most common modes of access to the
framebuffer: Note that avoiding unnecessary additional

reads will enhance performance.

Rendering operations with no logical operations, software
write-masking or alpha blending. In this case no read of
the framebuifer i1s required and framebuffer writes

should be enabled.

Rendering operations which use logical ops, software
write masks or alpha blending. In these cases the
destination pixel must be read from the framebuffer and
framebuffer writes must be enabled.

Image copy operations. Here setup varies depending on
whether hardware or software write masks are used.
For software write masks, the framebuffer needs two
reads, one for the source and one for the destination.
When hardware write masks are used (or when the
software write mask allows updating of all bits 1n a
pixel) then only one read is required.

Image upload. This requires reading of the destination
framebufter reads to be enabled and framebuffer writes

to be disabled.

Image download. In this case no framebuffer read is
required (as long as software writemasking and logic
ops are disabled) and the write must be enabled.

For both the read and the write operations, an offset 1s

added to the calculated address. The source oifset

US 6,348,919 B1

53

(FBSourceOffset) is used for copy operations. The pixel
offset (FBPixelOffset) can be used to allow multi-buffer
updates. The oflsets should be set to zero for normal
rendering.

The data read from the framebuifer may be tagged either
FBDefault (data which may be written back into the frame-
buffer or used in some manner to modify the fragment color)
or FBColor (data which will be uploaded to the host). The
table below summarizes the framebuffer read/write control
for common rendering operations:

54
where: C_ 1s the output color; C_ 1s the source color

(calculated internally); C, is the destination color read from
the framebuffer; S 1s the source blending weight; and D 1s
the destination blending weight. S and D are not limited to
linear combinations; lookup functions can be used to 1mple-
ment other combining relations.

If the blend operations require any destination color
components then the framebuffer read mode must be set
appropriately.

Read- ReadDes- Read Data
Source tination Writes Type Rendering Operation

Disabled Disabled Enabled — Rendering with no logical
operations, software write
masks or blending.

Disabled Disabled FEnabled — [Image download.

Disabled Enabled Disabled FBColor Image upload.

Enabled Disabled FEnabled FBDefault Image copy with hardware
write masks.

Disabled Enabled Enabled FBDefault Rendering using logical
operations, software write
masks or blending.

Enabled Enabled Enabled FBDefault Image copy with software

writemasks.

Framebuifer Write

Framebufiler writes must be enabled to allow the frame-
buffer to be updated. A single 1 bit flag controls this
operation.

The framebufler write unit 1s also used to control the
operation of fast block fills, if supported by the framebuifer.
Fast fill rendering 1s enabled via the FastFillEnable bit in the
Render command register, the framebuffer fast block size
must be configured to the same value as the FastFilllncre-
ment 1n the Render command register. The FBBlockColor
register holds the data written to the framebufler during a
block fill operation and should be formatted to the ‘raw’
framebuffer format. When using the framebuffer mn 8 bit
packed mode the data should be replicated into each byte.
When using the framebuffer in packed 16 bit mode the data
should be replicated into the top 16 bits.

When uploading images the UpLoadData bit can be set to
allow color formatting (which takes place in the Alpha
Blend unit).

It should be noted that the block write capability provided
by the chip of the presently preferred embodiment 1s itself
believed to be novel. According to this new approach, a
graphics system can do masked block writes of variable
length (e.g. 8, 16, or 32 pixels, in the presently preferred
embodiment). The rasterizer defines the limits of the block
to be written, and hardware masking logic 1 the frame-
buffer imterface permits the block to be filled 1n, with a
speciflied primitive, only up to the limits of the object being
rendered. Thus the rasterizer can step by the Block Fill
increment. This permits the block-write capabilities of the
VRAM chips to be used optimally, to minimize the length

which must be written by separate writes per pixel.

Alpha Blend Unit

Alpha blending combines a fragment’s color with those of
the corresponding pixel i the framebuifer. Blending 1is
supported 1n RGBA mode only.

Alpha Blending

The alpha blend unit combines the fragment’s color value
with that stored 1n the framebulifer, using the blend equation:

C =CS+C.D

30

35

40

45

50

55

60

65

Image Formatting

The alpha blend and color formatting units can be used to
format 1mage data 1nto any of the supported GLINT frame-
buffer formats.

Consider the case where the framebuffer 1s in RGBA

4:4:4:4 mode, and an area of the screen 1s to be uploaded and
stored 1n an 8 bit RGB 3:3:2 format. The sequence of
operations 1s:

Sct the rasterizer as appropriate
Enable framebuifer reads

Disable framebuilfer writes and set the UpLoadData bit 1n
the FBWriteMode register

Enable the alpha blend unit with a blend function which
passes the destination value and ignores the source
value (source blend Zero, destination blend One) and
set the color mode to RGBA 4:4:4:4

Set the color formatting unit to format the color of
incoming fragments to an 8 bit RGB 3:3:2 framebuifer
format.

The upload now proceeds as normal. This technique can

be used to upload data in any supported format.

The same technique can be used to download data which
1s 1n any supported framebuifer format, 1n this case the
rasterizer 1s set to sync with FBColor, rather than Color. In
this case framebuffer writes are enabled, and the UpLoad-
Data bit cleared.

Color Formatting Unit

The color formatting unit converts from GLINT’s internal
color representation to a format suitable to be written 1nto
the framebuffer. This process may optionally include dith-
ering of the color values for framebuflers with less than 8
bits width per color component. If the unit 1s disabled then
the color 1s not modified 1n any way.

As noted above, the framebuifer may be configured to be
RGBA or Color Index (CI).

Color Dithering

GLINT uses an ordered dither algorithm to implement
color dithering. Several types of dithering can be selected.

If the color formatting unit 1s disabled, the color compo-
nents RGBA are not modified and will be truncated when

US 6,348,919 B1

33

placed 1n the framebufier. In CI mode the value 1s rounded
to the nearest 1nteger. In both cases the result 1s clamped to
a maximum value to prevent overflow.

In some situations only screen coordinates are available,
but window relative dithering 1s required. This can be
implemented by adding an optional offset to the coordinates
before indexing the dither tables. The offset 1s a two bit
number which 1s supplied for each coordinate, X and Y. The
XOffset, YOfIset fields 1 the DitherMode register control
this operation, 1if window relative coordinates are used they
should be set to zero.

Logical Op Unait

The logical op unit performs two functions; logic opera-
tions between the fragment color (source color) and a value
from the framebuffer (destination color); and, optionally,
control of a special GLINT mode which allows high per-
formance flat shaded rendering.

High Speed Flat Shaded Rendering

A special GLINT rendering mode 1s available which
allows high speed rendering of unshaded images. To use the
mode the following constraints must be satisfied:

Flat shaded aliased primitive

No dithering required

No logical ops

No stencil, depth or GID testing required

No alpha blending
The following are available:

Bit masking 1n the rasterizer
Area and line stippling,

User and Screen Scissor test

If all the conditions are met then high speed rendering can
be achieved by setting the FBWriteData register to hold the
framebuffer data (formatted appropriately for the frame-
buffer in use) and setting the UseConstantFBWriteData bit
in the LogicalOpMode register. All unused units should be
disabled.

This mode 1s most useful for 2D applications or for
clearing the framebuifer when the memory does not support
block writes. Note that FBWriteData register should be
considered volatile when context switching.

Logical Operations

The logical operations supported by GLINT are:

Mode Name Operation Mode Name Operation
0 Clear 0 8 Nor ~(S | D)
1 And S&D 9 Equivalent ~(S D)
2 And Reverse S & ~D 10 [nvert ~D
3 Copy S 11 Or Reverse S|~D
4 And Inverted ~S & D 12 Copy Invert ~S
5 Noop D 13 Or Invert ~S | D
6 Xor S D 14 Nand ~(S & D)
7 Or S| D 15 Set 1
Where:
S=Source (fragment) Color, D=Destination (framebuffer)
Color.

For correct operation of this unit 1n a mode which takes
the destination color, GLINT must be configured to allow
reads from the framebuiler using the FBReadMode register.

GLINT makes no distinction between RGBA and CI
modes when performing logical operations. However, logi-
cal operations are generally only used in CI mode.

Framebuifer Write Masks

Two types of framebuifer write masking are supported by
GLINT, software and hardware. Software write masking

10

15

20

25

30

35

40

45

50

55

60

65

56

requires a read from the framebulfer to combine the frag-
ment color with the framebuflfer color, before checking the
bits 1n the mask to see which planes are writeable. Hardware
write masking 1s 1implemented using VRAM write masks
and no framebuifer read 1s required.

Software Write Masks

Software write masking 1s controlled by the FBSoftware-
WriteMask register. The data field has one bit per frame-
buffer bit which when set, allows the corresponding frame-
buffer bit to be updated. When reset 1t disables writing to that
bit. Software write masking 1s applied to all fragments and
1s not controlled by an enable/disable bit. However 1t may
ciiectively be disabled by setting the mask to all 1°s. Note
that the ReadDestination bit must be enabled 1n the FBRead-
Mode register when using software write masks, 1n which
some ol the bits are zero.

Hardware Write Masks

Hardware write masks, if available, are controlled using,
the FBHardwareWriteMask register. If the framebuffer sup-
ports hardware write masks, and they are to be used, then
software write masking should be disabled (by setting all the
bits in the FBSoftwareWriteMask register). This will result
in fewer framebulfer reads when no logical operations or
alpha blending 1s needed.

If the framebuifer 1s used 1n 8 bit packed mode, then an
8 bit hardware write mask must be replicated to all 4 bytes
of the FBHardware WriteMask register. If the framebufler 1s
in 16 bit packed mode then the 16 bit hardware write mask
must be replicated to both halves of the FBHardware Write-
Mask register.

Host Out Unat

Host Out Unit controls which registers are available at the
output FIFO, gathering statistics about the rendering opera-
tions (picking and extent testing) and the synchronization of
GLINT wvia the Sync register. These three functions are as
follows:

Message filtering. This unit 1s the last unit 1n the core so
any message not consumed by a preceding unit will end
up here. These messages will fall 1n to three classifi-
cations: Rasterizer messages which are never con-
sumed by the earlier units, messages associated with
image uploads, and finally programmer mistakes where
an 1nvalid message was written to the mnput FIFO.
Synchronization messages are a special category and
are dealt with later. Any messages not filtered out are
passed on the output FIFO.

Statistic Collection. Here the active step messages are
used to record the extent of the rectangular region
where rasterization has been occurring, or if rasteriza-
tion has occurred 1nside a specific rectangular region.
These facilities are usetul for picking and debug activi-
ties.

Synchronization. It 1s often useful for the controlling
software to find out when some rendering activity has
finished, to allow the timely swapping or sharing of
buffers, reading back of state, etc. To achieve this the
software would send a Sync message and when this
reached this unit any preceding messages or their
actions are guaranteed to have finished. On receiving,
the Sync message 1t 1s entered into the FIFO and
optionally generates an interrupt.

Sample Board-Level Embodiment

A sample board incorporating the GLINT chip may

include simply:

the GLINT chip 1tself, which incorporates a PCI interface;

Video RAM (VRAM), to which the chip has read-write
access through its frame buffer (FB) port;

US 6,348,919 B1

S7

DRAM, which provides a local buifer then made for such
purposes as Z buffering; and

a RAMDAC, which provides analog color values 1n
accordance with the color values read out from the
VRAM.

Thus one of the advantages of the chip of the presently
preferred embodiment 1s that a minimal board implementa-
fion 1s a trivial task.

FIG. 3A shows a sample graphics board which incorpo-
rates the chip of FIG. 2A.

FIG. 3B shows another sample graphics board
implementation, which differs from the board of FIG. 3A 1n
that more memory and an additional component 1s used to
achieve higher performance.

FIG. 3C shows another graphics board, 1n which the chip
of FIG. 2A shares access to a common frame store with GUI
accelerator chip.

FIG. 3D shows another graphics board, in which the chip
of FIG. 2A shares access to a common frame store with a
video coprocessor (which may be used for video capture and

playback functions (¢.g. frame grabbing).

Alternative Board Embodiment with Additional Video
Processor

In the presently preferred embodiment, the frame buffer
interface of the GLINT chip contains additional simple
interface logic, so that two chips can both access the same
frame buffer memory. This permits the GLINT chip to be
combined with an additional chip for management to the
ographics produced by the graphical user interface. This
provides a migration path for users and applications who
need to take advantage of the existing software investment
and device drivers for various other graphics chips.

FIG. 3C shows another graphics board, in which the chip
of FIG. 2A shares access to a common frame store with a
GUI accelerator chip (such as an S3 chip). This provides a
path for software migration, and also provides a way to
separate 3D rendering tasks from 2D rendering.

In this embodiment, a shared framebuifer 1s used to enable
multiple devices to read or write data to the same phy51cal
framebuifer memory. Example applications using the

GLINT 30058 X:

Using a video device as a COProcessor 1o GLINT, to grab
live video 1nto the framebuifer, for displaying video 1n
a window or acquiring a video sequence;

Using GLINT as a 3D coprocessor to a 2D GUI
accelerator, preserving an existing mvestment mn 2D
driver software.

In a coprocessor system, the framebuffer 1s a shared
resource, and so access to the resource needs to be arbitrated.
There are also other aspects of sharing a framebufler that
need to be considered:

Memory refreshing;

Transfer of data from the memory cells into the shift
registers of the VRAM;

Control of writemasks and color registers. GLINT uses

the S3 Shared Frame Buffer Interface (SFBI) to share

a framebuffer. This interface 1s able to handle all of the
above aspects for two devices sharing a frame bulifer,
with the GLINT acting as an arbitration master or slave.
Timing Considerations 1in Shared Frame-Bufifer Interface
The Control Signals used i1n the Shared Framebufler
interface, 1 the presently preferred embodiment, are as

follows:
GLINT as Primary Controller

FBRegN 1s 1nternally re-synchronized to System Clock.
FBSelOEN remains negated.

10

15

20

25

30

35

40

45

50

55

60

65

53

FBGntN 1s asserted an unspecified amount of time after
FBRegN 1s asserted. -Framebuifer Address, Data and
Control lines are tri-stated by GLINT (the control lines
should be held high by external pull-up resistors). The
secondary controller 1s now free to drive the Frame-

buft

er lines and access the memory.

FBGntN remains asserted until GLINT requires a frame-
buffer access, or a refresh or transfer cycle.

FBRegN must remain asserted while FBGntN 1s asserted.

When FBGntN 1s removed, the secondary controller must

relinquish the address, data and control bus in a grace-
ful manner—i1.e. RAS, CAS, WE and OFE must all be

driven high before being tri-stated.

The secondary controller must relinquish the bus and
negate FBReqN within 500 ns of FBGntN being

negated.

Once FBRegN has been negated, 1t must remain 1nactive
for at least 2 system clocks (40 ns at 50 MHz).
GLINT as a Secondary Controller

Framebufler Refresh and VRAM transfer cycles by
GLINT are turned off when GLINT 1s a secondary

framebutter controller.

GLINT asserts FBRegN whenever 1s requires a frame-
buffer access.

FBGntN 1s internally re-synchronized to system clock.

When FBGntN 1s asserted, GLINT drives FBselOEN to
enable any external buffers used to drive the control
signals, and then drives the framebuffer address, data
and control lines to perform the memory access.
FBRegN remains asserted while FBGntN 1s asserted.

When FBGntN 1s negated, GLINT finishes any outstand-
ing memory cycles, drives the control lines 1nactive,
negates FBselOEN and then tri-states the address, data
and control lines, then releases FBRegN. GLINT guar-
antees to release FBRegN within 500 ns of FBGntN
being negated.

GLINT will not reassert FBReqN within 4 system clock
cycles (80 ns @ 50 MHz).
Considerations for Board-Level Implementations

The following are some points to be noted when 1mple-
menting a shared framebuifer design with a GLINT 300SX:

Some 2D GUI Accelerators such as the S3 Vision964, and
GLINT use configuration resistors on the framebuflfer
databus at reset. In this case care should be taken with
the configuration setup where it effects read only reg-
isters 1nside either device. If conilicts exist that can not
be resolved by the board initialization software, then
the contlicts should be resolved by 1solating the two
devices from each other at reset so they can read the
correct configuration information. This 1solation need
only be done for the framebuffer databus lines that
cause problems;

GLINT should be configured as the secondary controller
when used with an S3 GUI accelerator, as the S3

devices can only be primary controllers;

GLINT cannot be used on the daughter card interface as
described 1n the S3 documentation, because this gives
no access to the PCI bus. A suitable PCI bridge should
be used 1 a design with a PCI 2D GUI accelerator and
GLINT so they can both have access to the PCI bus;

The use of ribbon cable to carry the framebuiler signals
between two PCI boards 1s not recommended, because
of noise problems and the extra buffering required
would impact performance;

US 6,348,919 B1

59

The GLINT 300SX does not provide a way of sharing its
localbulifer.

In addition to the above capabilities of the 30058X, the

300TX will also allow grabbing of live video into the

localbuffer and real-time texture mapping of that video into

the framebuffer for video manipulation effects.

The GLINT Gi1Gi1 Preferred System Context
Derivation of Gigl from GLINT

Gigl 1s a derivative of GLINT and reuses much of its
technology. The following table outlines how Gigi has been
derived from GLINT, and major changes made.

GLINT Unait (1g1 changes

Rasterizer Antialiasing removed.

Scissor/Stipple Line stipple removed; area stipple simplified to
3X3.

Color DDA Size of color components reduced to 5.3, 5.3,
5.3, 5.3.

Texture Address Support for mipmaps simplified to 2x2

averaging filter.
Similar.

'

Iexture Read

Texture/Fog/Color Support for linear interpolation simplified to
2x2 filter. Decal and blend texture modes not
supported. Blend unit incorporated.

Alpha Test Modified to do color key and color validity

test.

Similar.

GID functionality not supported. Range of Z
values reduced. Stencil simplifed to 1 bit.

ILLocal Bufter Read
GID/Z/Stencil

Local Buffer Write Simuilar.
Framebuffer Read Simuilar.
Blend Moved to the Texture/Fog/Color unit.
Dither Simuilar.
Logic Ops Similar.
Framebuffer Write Simuilar.
Host Out Similar.

Gig1 has added one extra unit to the core, host 1n, which
1s used to unpack data sent from the host.

The GLINT GiG1 system further varies from the above
description 1n that 1s does not differentiate externally
between the local buffer and the framebuffer. This saves pins
and allows eflicient use of memory. Internally, the separate
local buffer and framebufier units have been kept; keeping
them separate allows memory accesses of similar type to be
orouped efliciently. They do occupy the same physical
memory, and the local buffer and back frame buiffer can be
used as a common unified memory.

Access to the memory 1s handled by separate read and
write units. If random reads and writes were done there
would be a danger of stale data in the read unit being used
after a location had been updated by the write unit. This does
not happen within a primitive because the rasterization rules
ensure that each pixel 1s touched only once, hence the
complete primitive can be read before any of 1t 1s written.

It 1s possible that consecutive primitives could touch the
same pixel, so sateguards are needed to make sure that all
writes for one primitive have completed before reads begin
for the next. This 1s triggered by the PrepareToRender
message or Sync message which causes the localbuifer and
framebuil

er read units to suspend reads until the Prepare-
ToRender or Sync message has reached the corresponding
write unit.

The Sync message not only suspends reads until writes
have completed, but also forces all writes to complete before
the message 1s passed on to the next unit. When this message
appears at the host out unit the complete chip will be
synchronized. All data will have been written to memory and
no units will be operating.

10

15

20

25

30

35

40

45

50

55

60

65

60

Synchronization 1s maintained between read and write
units for particular buffer, but not between butlers of differ-
ent types. Because the Gigi memory 1s unified

it 15 possible
to use the framebuifer unit to modity local buffer or texture
buffer data. If this 1s done then the chip should be synchro-
nized before the modified data 1s used. This 1s likely to
happen when textures are downloaded through the frame-

buffer unit; a Sync message should be sent before the texture
1s used.

It would be possible to synchronize the texture read unit
with the framebuil

er write unit, but this would be 1nethicient
for the common case of applying textures because the
pipeline would stall until all writes for the previous primitive

had completed. It 1s more efficient to synchronize the chip
after texture download.

The GLINT GiGa further differs from the above descrip-

fion 1n its use of the inovative memory patching technique
of the present application.
Innovative Use of Unified Local and Frame Buffers

The GLINT GiG1 uses local memory to store front and
back color buffers, a depth buffer, and texture maps. The
memory 1s handled as a unified resource that can be allo-
cated 1n different ways to suit the needs of the application.
If depth buffering i1s not needed then the depth buifer
memory can be used for texture or perhaps a third color
buffer. If texturing i1s not needed then the texture map
memory can be used for other things.

In a system using depth buffering there 1s normally one
depth buifer and two color buif

ers; the front color buffer 1s
displayed while the back bufler 1s drawn to. When the back
buffer 1s complete it 1s swapped with the front buifer to be
displayed while the next frame 1s drawn. The unified
Memory design of the chip of the presently preferred
embodiment gives the mnovative technique that combines
the depth buffer with one of the color buffers.

The depth buffer 1s combined with the back buffer by
performing the rendering 1 two passes. In the first pass
depth information i1s drawn into the buffer and in the second
pass color data 1s drawn 1nto the buffer. This takes two
passes of the 1mage database, and requires the depth data to
be the same size as the color data. In the presently preferred
embodiment, a 16-bit depth buifer 1s used, so a 16 bit pixel
size 1s also preferably used, such as five bits of red, green
and blue, and one bit of alpha.

Half of the depth range 1s sacrificed so that depth data can
be distinguished from color data; the most significant bit 1s
set for color data and cleared for depth data. The simplest
approach starts, 1n the presently preferred embodiment, by
clearing the combined buifer to OX7FFF. The depth test 1s set
to pass 1f the new depth value is less than the old depth
value, so the present 1image 1s to be rendered. Depth data 1s
written to memory, but color data 1s not written. After the

image has been drawn the buil

er holds a record of the depth
values “nearest” to the viewer, 1.e. the visible objects or
object portions on the display. The image 1s then redrawn
with the depth test set to equal, 1.e. the test passes 1t the
current computed depth value for a given pixel equals the
stored depth value from the first pass. On a pass, the new
depth data 1s not written to the memory; instead, the color
data 1s written 1n 1ts place. Thus, the depth data 1n the buifer
1s replaced by color data that corresponds to a pixel of the
same depth value.

When a color i1s written to memory, the MSB, the alpha
bit, 1s set to 1. The chip of the preferred embodiment allows
the alpha value of a color to be forced to 1 or to O when 1t
1s written to memory. This allows the internal alpha value to
be used for blending effects, and the external alpha value to

US 6,348,919 B1

61

be used for control operations such as per pixel double
buffering, overlays, or combined depth and color buifers.
Because the most significant bit 1s set when a color 1s written
over 1ts depth value, 1t 1s not possible for 1t to be interpreted
as a depth value, so 1t will not be replaced.

In an alternative embodiment, the first clear of the depth
buffer 1s removed. The screen 1s cleared to a background
color first, and then the depth values are drawn on top of the
color data. The depth test still functions properly because the

62

Bypass

The bypass does not use fifos for its interface; it has a
single address register that holds the next address, and a
single read data register and a single write data register. A

5 bypass access can be for memory or control register; which

1s 1ndicated by select lines supplied with the address.
Memory Control

The memory unit generates its own refresh signals; these
are combined with signals from the video timing generator

background color has the most significant bit set so all depth 10 that can indicate the need for a VRAM shift register update.
values will be less than 1t and the depth test will pass. This Shared Framebuiler Interface
avolds one clear of the buffer which 1s a useful time saving, The memory unit supports the S3 shared framebuffer
even using block fill modes in VRAMSs to clear buflers very interface as a primary controller. It can accept requests,
quickly. 1ssues grants and control the output enables.
The GLINT G1G1 Memory Unait 15 Memory Types
The memory unit supports up to 12 Mbytes of memory The memory can be composed of a mixture of VRAM and
that can be a combination of VRAM (4 MBytes) and DRAM DRAM, but only data in VRAM can be displayed. The width
(8 MBytes); it is 32 bits wide. All video display i1s from of the memory is always 32 bits; up to two banks of VRAM
VRAM, with pixel sizes of 8, 16 and 24 (unpacked) bits. and two banks of DRAM are supported. Possible memory
There are four interfaces to the memory unit. The texture, 20 configurations with common VRAM and DRAM parts are:
localbuffer and framebuifer connect directly to the core, the
bypass comes from the bus interface. All the connections are
read-write except the texture which 1s read only. A block
diagram of the memory unit is shown in FIG. 5D. | 4 Mbit x
The interfaces to the memory unit are all through fifos; 25 Banks 2 Mbit x 8 19
this allows resynchromization and buffering. The order 1n 1 1 Mbyte 1 Mbyte
which interfaces are serviced 1s important for performance, 2 2 Mbytes 2 Mbytes
and 1is defined by the following rules: ; 3 Mbytes 3 Mbytes
4 4 Mbytes 4 Mbytes
1. Transfers have the highest priority.
2. Refresh has S@COHd' pr.lorlty. _ _ VRAM memory buifer configurations
3. Bypass has next priority to avoid bus time-outs.
4. The texture, local buifer and framebuffer have the same
priority (lowest), but there are some sub-rules:
4.1 Use the source that has the same type (1.e. read or 35 —— 4 Mbit x 16 ig Mbit x
write) as the last and does not cause a page break.
4.2 Use the source that does not cause a page break. ! 1 Mbyte 4 Mbytes
| 2 2 Mbytes 8 Mbytes
4.3 Use the next source 1n round-robin order of texture,
local buffer, framebuffer.
Texture 40 DRAM memory buffer configuations
The texture interface reads texture data from memory. It T'he memory control signals are programmable to allow
supplies addresses and accepts data through fifos. Data is for optimum operation at different Gigt clock speeds with
read as 32 bit words and passed to the fifo 1n 1ts raw format. memory systems using -50 to -80 speed parts. Gigi has
The addresses are aligned to 32 bits and are valid for bits 23 been designed to work with memories with the following
to 2 inclusive . 45 characteristics:
Localbuffer dual CAS;
The localbuffer has separate fifos for read address, read CAS-BEFORE-RAS refresh:
data, write address and write data. The addresses are 22 bits split transfer cycles (VR AM? only):
wide (24 bit address aligned to 32 bits); the data fifos are 32 P 4)
bits wide (the write data also has 2 word enable bits). 50 block fill modes (VRAM only, optional);
Framebuffer write masks (VRAM only, optional).
The framebuffer has separate fifos for read address, read Internal Signal Definition
data, write address and write data. The addresses are 22 bits The memory unit uses the following signals to interface to
wide (24 bit address aligned to 32 bits); the data fifos are 32 the rest of the chip; signal meanings are with respect to the
bits wide (the write data also has 4 byte enable bits). core.
Name Width Source Description
Texture
TXRU = framebuffer read unit, MEM = memory unit.
TXReadAddr 22 TXRU Read address to read address fifo.
TXReadAddrStrobe] TXRU Load data into read address fifo.
TXReadDataStrobe TXRU Advance read data fifo.
TXRead AddrFull MEM Read address fifo 1s full.

US 6,348,919 B1

63

64

-continued
Name Width Source Description
TXReadData 32 MEM Read data from read data fifo.
TXReadDataValid 1 MEM Data 1s valid in read data fifo.
Local Buffer
LBRU = local buffer read unit, MEM = memory unit.
LLBReadAddr 22 LLBRU Read address to read address fifo.
LDReadCmd] LBRU Suspend reads signal in read address fifo.
LLBReadAddrStrobe LBRU Load address and control into fifo.
LBReadAddrFull 1 MEM Read address fifo 1s full.
LLBReadData 32 MEM Read data from read data fifo.
LBReadDataValid] MEM Data 1s valid in read data fifo.
LBReadDataStrobe 1 LBRU Advance read data fifo.
LBWU = localbuffer write unit, MEM = memory unit.
LBWrite Addr 22 LBWU Write address to fifo.
LBWriteData 32 LBWU Write data to fifo.
LBWriteEnables 2 LBWU Short word enables to fifo.
LBWriteCmd] LBWU Command to fifo.
LBWriteStrobe LBWU Load data into fifo.
LBWritesComplete MEM All outstanding writes have completed.
LBWriteFull MEM Fifo is full.
Framebuffer
FBRU = framebuffer read unit, MEM = memory unit.
FBReadAddr 22 FBRU Read address to read address fifo.
FBReadCmd] FBRU Suspend reads signal to read address fifo.
FBReadAddrStrobe FBRU Load data into read address fifo.
FBReadDataStrobe FBRU Advance read data fifo.
FBReadAddrFull 1 MEM Read address fifo 1s full.
FBReadData 32 MEM Read data from read data fifo.
FBReadDataValid 1 MEM Data 1s valid in read data fifo.
FBWU = framebuffer write unit, MEM = memory unit.
FBWrite Addr 22 FBWU Address to fifo.
FBWriteData 32 FBWU Data to fifo.
FBWriteEnables 4 FBWU Byte enables to fifo.
FBWriteCmd 3 FBWU Command data to fifo.
FBWriteStrobe] FBWU Load fifo.
FBWriteFull MEM Write fifo full.
FBWritesComplete MEM All outstanding writes have completed.

Memory Organization
The memory 1s divided into 4 banks of VRAM and 2

banks of DRAM. Not all the banks have to be fitted, the
memory control register specifies the configuration. Banks
of VRAM and DRAM are handled separately and have their
own page detection logic. Banks of a particular type of
memory are interleaved on 32 bit boundaries; as more banks
are fitted they are interleaved with the existing parts. This
extends the size of the memory page. The hardware block fill
mechanism 1n the VRAMSs uses the pixel write mask to
specily which pixels should be written. The formation of the
mask takes the number of banks 1nto account. If the banks
need different mask a number of accesses are done. If any of
the banks need the same mask they are done in the same
cycle. The block fill always handles 32 bytes regardless of
the number of banks present.

The write per bit mask 1s loaded 1nto an internal register;
at each page break 1t 1s loaded 1nto the memory. If the mask
1s aligned to byte boundaries 1t i1s handled by the byte
enables so a mask of all ones 1s loaded. This allows accesses
from the units which do not use the write mask (localbuffer,
bypass) to access the area of memory without forcing a page
break to reload the mask.

The Framebuifer Write Unait

The framebuifer write unit accepts texture data in 1its
natural organization and writes the data to the memory on
the fly according to the inovative patching techniques of
the present disclosure. In this way, the memory patching is
transparent to the user or programmer.

40

45

50

55

60

65

Packing, Copymg and Block Fill in the Framebuffer Write
Unat

The Framebuffer Write Unit combines accesses to bytes
and 16 bitwords to minimize the number of accesses that are
done to memory. The unit inspects the addresses and if
consecutive ones are 1n the same 32 bit word the write 1s not
done; only when the address 1s 1n a different 32 bit word does
outstanding data get written to memory.

The fast block fill mechanism makes use of parallelism 1n
the memory design and special features in the memory
devices. Each VRAM memory part can write to 4 consecu-
tive locations with one operation; the total number of
memory locations filled depends on the number of memory
parts fitted. A mask 1s generated and sent to the memory
along with a block aligned address. The mask shows which

pixels 1n the block should be written. A maximum of 32
pixels can be filled with one write, but the actual number will
depend on the organization of the memory.

Packed copies move 32 bits at a time even though the real
pixel size may be 8 or 16 bits. When packed copies are
enabled the X values and count fed to the rasterizer should
be divided by 2 or 4 (depending on the real pixel size); the
Y values should stay as they are and the partial products kept
the same. The address calculation scales the X value back to
the correct pixel size before using it.

The PackedDatal.imits message holds the left and right X
values for the destination area of the screen in the naftive
pixel format. The actual area rasterized by exceed this
depending on the relative position of the source of the copy.

US 6,348,919 B1

65

Any pixels falling outside these limits are not plotted. The
relative offset field gives the number of pixels that the source
data has to be adjusted by to align with the destination data.
Texture Read Unit Interface to Memory Unait

The Texture Read Unit reads the patched texture data
from the memory and restores 1ts format before passing it to
the graphics system. This translation 1s done transparently
and on the fly. A block diagram of the Texture Read Unit 1s
shown 1n FIG. SE.

The table gives the signals that interface between the
texture read unit and the memory unit. All signals are active
high; the source column shows which unit generates the
signal, TXRU=framebuifer read unit, MEM=memory unit.

Name Width Source Description

TXReadAddr 22 TXRU Read address to read address
fifo.

TXReadAddrStrobe 1 TXRU Load data into read address
fifo.

TXReadDataStrobe 1 TXRU Advance read data fifo.

TXReadAddrFull 1 MEM Read address fifo is full.

TXReadData 32 MEM Read data from read data fifo.

TXReadDataValid 1 MEM Data 1s valid in read data fifo.

Addresses are always aligned to four bytes, so the lower
2 bits are always zero; these bits are not sent to the memory
unit, so TXReadAddress 1s bits 23 to 2 inclusive of the
address.

Texture Read Unit Address Generation
Address generation 1s done by the following equation:

address=(BaseAddress£(T*Width))+S

The (Y*Width) may be added to or subtracted from the base

address depending on whether the texture map origin 1s top
or bottom left.

All addresses are 1n texels, so the final address must be
scaled to form the byte address. Address calculations are
done unsigned to 24 bits. Exceeding 24 bits causes the result
to overflow and wrap around to zero.

The multiplication of Y and texture width 1s stmplified by

supporting a limited number of widths and using partial
products. Three partial products are summed to produce the

final value:

Partial Product Code Add 1nto product Shift amount

0 0 0

1 Y * 32 Y << 5
2 Y * 64 Y << 6
3 Y * 128 Y <</
4 Y * 256 Y << 8
5 Y * 512 Y << 9

Some common texture widths and the corresponding partial
product codes are:

Texture width PPO PP1 PP2 Product
32 1 0 0 Y * (32 +0 + 0)
64 1 1 0 Y * (32 + 32 +0)
640 4 4 3 Y * (256 + 256 + 128)
1280 5 5 4 Y * (512 + 512 + 256)

5

10

15

20

25

30

35

40

45

50

55

60

65

66

The texture widths supported are:

0 32 64 96 128
160 192 224 256 288
320 352 384 416 448
512 544 576 608 640
672 704 768 800 832
896 1024 1056 1088

1152 1280 1536

Shifts are used to convert texel addresses into byte
addresses. Note that S and T replace X and Y from the
normal address chain, but T 1s one bit bigger than Y.

When PackedData 1s enabled, the X value is taken to be
in 32 bit texels while the Y value stays 1n whatever the real
texel size 1s; the partial product values do not have to
change. Data read 1n 1s as handled as though 1t 1s 32 bits
wide; this can be used to accelerate 8 and 16 bit copies.
Packing 1n the Texture Read Unait

This unit combines accesses to bytes and 16 bit words to
minimize the number of accesses that are done to memory.
The address generation process inspects the addresses, and
if consecutive ones are 1n the same 32 bit word only the first
1s sent. The packing information 1s passed to the input
process so that 1t can read a new word from the data fifo at
the right time and extract the correct bits from 1it.

This should not be confused with packed data which
allows 8 or 16 bit data to treated as 32 bits within the core.
Local Buffer Read Umnit Interface to Memory Unait

The table g1ves the signals that interface between the local
buffer read unit and the memory unit. All signals are active
high; the source column shows which unit generates the
signal, LBRU=local buffer read unmit, MEM=memory unit.

Name Width Source Description

LBRead Addr 22 LBRU Read address to read address
fifo.

LDReadCmd 1 LBRU Suspend reads signal in read
address fifo.

LBRead AddrStrobe 1 LBRU Ioad address and control
into fifo.

LLBRead AddrFull 1 MEM Read address fifo 1s full.

LLBReadData 32 MEM Read data from read data
fifo.

LLBReadDataValid 1 MEM Data 1s valid in read data
fifo.

LBReadDataStrobe 1 LBRU Advance read data fifo.

Addresses are al ways aligned to four bytes, so the lower
2 bits are always zero; these bits are not sent to the memory
unit, so LBReadAddress 1s bits 23 to 2 inclusive of the
address.

Accesses to the memory can be grouped and done 1n any
order so long as all writes for a particular primitive have
been completed before reads for the next are begun. This 1s
ensured by the suspend read signal which specifies that reads
should stop until all outstanding writes have completed; the
memory unit 1s responsible for implementing this:

ReadCmd Action
0 Read data
1 Suspend reads

US 6,348,919 B1

67

Address Generation 1n the Local Buffer Read Unait
Address generation 1s done by the following equation:

address=(WindowBaseAddress+=(Y*Width) +X+SourceOffset

The (Y*Width) may be added to or subtracted from the base
address depending on whether the screen origin i1s top or
bottom left. The SourceOflfset 1s optionally added to form
the source address; without this offset the calculation forms
the destination address.

All addresses are in pixels (i.e. 2 bytes), so the final
address must be scaled to form the byte address. Address
calculations are done unsigned to 24 bits. Exceeding 24 bits
causes the result to overflow and wrap around to zero.

The multiplication of Y and screen width 1s simplified by
supporting a limited number of widths and using partial
products. Three partial products are summed to produce the
final value:

Partial Product Code Add into product Shift amount

0 0 0

1 Y * 32 Y << 5
2 Y * 64 Y << 6
3 Y * 128 Y << 7
4 Y * 256 Y << 8
5 Y * 512 Y << 9

Some common screen widths and the corresponding partial
product codes are:

Screen width ~ PPO PP1 PP2 Product
640 5 3 0 Y * (512 + 128 + 0)
1024 5 5 0 Y * (512 + 512 + 0)
1152 5 5 3 Y * (512 + 512 + 128)
1280 5 5 4 Y * (512 + 512 + 256)
The screen widths supported are:
0 32 64 96 128
160 192 224 256 288
320 352 384 416 448
512 544 576 608 640
672 704 768 800 832
896 1024 1056 1088
1152 1280 1536

A shift 1s used to convert pixel addresses into byte
addresses.

Packing 1n the Local Buffer Read Unit

This unit combines accesses to minimize the number of
reads that are done from memory. The address generation
process 1nspects the addresses, and if consecutive ones are
in the same 32 bit word only the first 1s sent. The packing 1n
formation 1s passed to the mput process so that 1t can read
a new word from the data fifo at the right time and extract
the correct bits from it.

Memory Data Formats in the Local Buffer Read Unait

The local buffer data can have two formats in memory,
cither 16 1ts depth, or 15 bits depth and 1 bit stencil.

If a stencil 1s available it 1s the most significant bit of the
word (bit 15); the depth values starts at bit 0 for all formats.
If depth and stencil overlap the most significant bit of the
depth field 1s also used for the stencil.

10

15

20

25

30

35

40

45

50

55

60

65

63

When data 1s read into the chip it 1s converted mto an
internal format which has room for 16 bits of depth and 1 bat
stencil. If the data format has 15 bits of depth the internal
data 1s right justified and padded with zero in the most

significant bait.
Local Buifer Write Unait
The localbuifer write unit 1s responsible for:

calculating the localbuffer write address of the fragment,
packing the addresses to minimize the number of
MEMmMOry accesses,
sending address and data to the memory unit.
The unit 1ssues addresses to the memory unit along with data
and control signals. The address is 22 bits wide (bits 1 an 0
are implicitly zero) and the data is 32 bits. There is one
control signal:

Control Action
0 WriteData
1 ResumeReads

Local Buifer Write Unit Interface to Memory Unit

The table gives the signals that interface the localbufler
write unit to the memory unit. All signals are active high; the
source column shows which unit generates the signal,

LBWU-=localbuffer write unit, MEM=memory unit.

Name Width Source Description

LBWrite Addr 22 LBWU Write address to fifo.

LBWriteData 32 LBWU Write data to fifo.

LBWriteEnables 2 LBWU Short word enables to fifo.

LBWriteCmd] LBWU Command to fifo.

LBWriteStrobe LBWU Iload data into fifo.

LBWritesComplete MEM All outstanding writes have
completed.

LBWriteFull 1 MEM Fito 1s full.

Accesses to the memory can be grouped 1n any order so
long as all writes for a particular primitive complete before
reads begin for the next primitive. This 1s handled by the
suspend/resume read mechanism; the read unit issues a
suspend reads signal to the memory unit which will stop
reads until 1t sees a resume reads signal from the write unat.

The LBWritesComplete signal 1s passed directly from the
memory unit to the localbuffer write unit and shows when all
writes 1n the fifo have completed and been written to
memory. This 1s used 1n synchronizing the chip, and must
not be set until the final memory cycle has completed.
Because a Sync message can flush the write unit and cause
a memory write, care must be taken in 1mplementing the
Sync operation that enough time has been allowed for the
LBWritesComplete signal to reach a valid state.

The LBWritesComplete signal also flushes any outstand-
ing writes so that a Sync message does not have to be used
to guarentee data gets written to the screen.

Address Generation in the Local Buifer Write Unit

Address generation 1s done by the following equation:

address=(BaseAddress+={(Y*width)+X

The offset may be added to or subtracted from the base
address depending on whether the screen origin 1s top or
bottom left. The base address 1s supplied 1n the LBWrite-
Base message.

All addresses are 1n pixels, so the final address must be
scaled to form the byte address. Address calculations are

US 6,348,919 B1

69

done unsigned to 24 bits. Exceeding 24 bits causes the result
to overflow and wrap around to zero.

The multiplication of Y and screen width 1s simplified by
supporting a limited number of widths and using partial
products. Three partial products are summed to produce the
final value:

Partial Product Code Add 1nto product Shift amount

0 0 0

1 Y * 32 Y << 5
2 Y * 64 Y << 6
3 Y * 128 Y <</
4 Y * 256 Y << 8
5 Y * 512 Y << 9

Some common screen widths and the corresponding partial
product codes are:

Screen width PPO PP1 PP2 Product
640 5 3 0 Y * (512 + 128 + 0)
1024 5 5 0 Y * (512 + 512 + 0)
1152 5 5 3 Y * (51_2 + 512 +
128)
1280 5 5 4 Y * (512 + 512 +
256)
The screen widths supported are:
0 32 64 96 128
160 192 224 256 288
320 352 384 416 448
512 544 576 608 640
672 704 768 00 832
896 1024 1056 1088
1152 1280 1536

Shifts are used to convert pixel addresses into byte
addresses.

Packing 1in the Local Buffer Write Unit

This unit combines accesses to minimize the number of
writes that are done to memory. The unit inspects the
addresses and if consecutive ones are 1n the same 32 bait
word the write 1s not done; only when the address 1s 1 a
different 32 bit word does outstanding data get written to
memory.

™

er Write Unit

Memory Data Format in the Local Bu

The depth data always starts at the least significant bit; 1f
it 1s 16 bits wide 1t takes up the whole 16 bit word, 1f it 1s
15 bits the upper bit 1s undefined. If not used by the depth
data, the most significant bit 1s available for the stencil; if a
stencil 1s not defined and the depth 1s 15 bits the upper bat
should be set to zero. If the depth format 1s 15 bits, the
conversion from the internal 16 bits to the external 15 bits
1s done by taking the lower 15 bits and clamping; if the 16th
bit 1s set the value 1s clamped to Ox7FFF;

5

10

15

20

25

30

35

40

45

50

55

60

65

70

Input Messages to the Local Bu

™

er Write Unit

Localbuffer Read Register message group

Tag Mnemonic Data Field Description
LBWriteMode See below

LBWriteConfig See LLBRead unit.

LBWriteBase 24 bit unsigned base address

Depth as priority over stencil so if depth 1s set to 16 bits
and stencil 1s set to 1 bit, the localbuffer holds 16 bits of

depth.
The Framebufter Read Unait

The Framebuifer Read Unit 1s responsible for:

calculating the framebuffer read addresses of the
fragment,

packing the addresses to minimize the number of memory
aCCESSES,

sending the addresses to the memory unit,

receiving the framebuffer data.

Reads are usually done from the address that the fragment
will eventually be written to if blendign or a logic op 1s
needed. Copies can be done by generating a source address;
a destination address may also be needed if the copy
involves an operation on the destination pixels such as a
logic op or blend. Source and destination data are sent in
different messages so that can be distinguished later in the
pipeline. Data can also be sent in the FBColor message for
image upload.

The address generation process accepts messages from
the pipeline; if the message 1s an active step and reads are
enabled 1t generates an address which 1s sent to the read
address fifo. All messages are passed to the M fifo where
they are held while data 1s read from memory. All messages
are held 1n the M fifo, even if they do not need data, so that
the message ordering stays the same.

The mput process reads messages from the M fifo and 1f
it 1s a step message that needs data from memory it 1nserts
a suitable data message into the pipeline. The data always
precedes the step.

The read unit minimizes the number of memory accesses
by reading 32 bits at a time from memory and taking
consecutive reads from the same word. If the pixel size 15 &
bits, 4 pixels can be read 1n one memory access. Information
on how to unpack data is passed to the mput process from
the address generation process through the M fifo using 6
extra signals.

The extra signals are used to specily which part of the 32
bit word should be used for the message, how many bytes
should be used, whether the existing 32 bit word can be
used.

Pack2 Packl Pack(Action

0 0 0 No read

0 0 1 8 bit read from byte O

0 1 0 8 bit read from byte 1

0 1 1 8 bit read from byte 2

] 0 0 8 bit read from byte 3
0 1 16 bit read from lower 16 bits
1 0 16 bit read from upper 16 bits
1 1 32 bit read

Two signals are used to indicate the type of message that
should be used to forward data to the next unit:

US 6,348,919 B1

71

Typel TypeO Action
0 0 EFBData
0 1 EFBSourceData
1 0 FBColor

The final signal, NewWord, speciiies that a new 32 bit
word should be read from the read data fifo before the data
1s used.

Framebuifer Read Unit Interface to Memory Unait

The table gives the signals that interface between the
framebufler read unit and the memory unit. All signals are
active high; the source column shows which unit generates
the signal, FBRU=framebufler read unit, MEM=memory
unit.

Name Width Source Description

FBReadAddr 22 FBRU Read address to read address
fifo.

FBReadCmd 1 FBRU Suspend reads signal to read
address fifo.

FBReadAddrStrobe] FBRU l.oad data into read address fifo.

FBReadDataStrobe] FBRU Advance read data fifo.

FBReadAddrFull 1 MEM Read address fifo 1s full.

FBReadData 32 MEM Read data from read data fifo.

FBReadDataValid 1 MEM Data 1s valid in read data fifo.

Addresses are always aligned to four bytes, so the lower
2 bits are always zero; these bits are not sent to the memory
unit, so FBReadAddress 1s bits 23 to 2 inclusive of the
address.

Accesses to the memory can be grouped and done 1n any
order so long as all writes for a particular primitive have
been completed before reads for the next are begun. This 1s
ensured by the suspend read signal which specifies that reads
should stop until all outstanding writes have completed; the
memory unit 1s responsible for implementing this:

ReadCmd Action
0 Read data
1 Suspend reads

Address Generation 1n the Framebufier Read Unat
Address generation 1s done by the following equation:

address=(Base Address+(Y*Width))+X+SourceOffset

The (Y*Width) may be added to or subtracted from the base
address depending on whether the screen origin 1s top or
bottom left. The SourceOfllset 1s optionally added to form
the source address; without this offset the calculation forms
the destination address. An extra offset, PixelOffset, 1s used
to move between buflers. This 1s included 1n the base address
by adding the WindowBaseAddress to the PixelOffset.

All addresses are in pixels, so the final address must be
scaled to form the byte address. Address calculations are
done unsigned to 24 bits. Exceeding 24 bits causes the result
to overflow and wrap around to zero.

The multiplication of Y and screen width 1s simplified by
supporting a limited number of widths and using partial
products. Three partial products are summed to produce the
final value:

10

15

20

25

30

35

40

45

50

55

60

65

72

Partial Product Code Add into product Shift amount

0 0 0

1 Y * 32 Y << 5
2 Y * 64 Y << 6
3 Y * 128 Y << 7
4 Y * 256 Y << 8
5 Y * 512 Y << 9

Some common screen widths and the corresponding partial
product codes are:

Screen width PPO PP1 PP2 Product
640 5 3 0 Y * (512 + 128 + 0)
1024 5 5 0 Y * (512 +512 + 0)
1152 5 5 3 Y * (512 + 512 + 128)
1280 5 5 4 Y * (512 + 512 + 256)
The screen widths supported are:
0 32 64 96 128
160 192 224 256 288
320 352 384 416 448
512 544 576 608 640
672 704 768 800 832
896 1024 1056 1088
1152 1280 1536

Within the address calculation chain, the shifts are used to
convert pixel addresses into byte addresses; the X shift may
different to the Y shift in PackedData mode. The BaseAd-
dress 1s formed by adding the PixelOflset and the Window-
Base Address values; this 1s only done when a register is
updated.

Packing in the Framebuffer Read Unait

This unit combines accesses to bytes and 16 bit words to
minimize the number of accesses that are done to memory.
The address generation process inspects the addresses, and
if consecutive ones are 1n the same 32 bit word only the first
1s sent. The packing 1n formation i1s passed to the input
process so that 1t can read a new word form the data fifo at
the right time and extract the correct bits from 1it.

This should not be confused with the PackedData mode
which 1s used to copy 8 or 16 bit pixels 1n blocks of 32 bits.

Input Messages to the Framebufifer Read Unait
External Messages

Framebuffer Read Register message group

Tag Mnemonic Data Field Description

FBPixel Offset 24 bit unsigned base offset
FBWindowBase 24 bit unsigned base address
FBSourceOflset 24 bit unsigned offset

The FBReadMode message controls he operation of the
unit. The Message Type field determines the message type
the read data is sent in. Normally this 1s default (i.e. FBData
for destination reads or FBSourceData for source reads), but
for image uploads 1t 1s FBColor.

US 6,348,919 B1

73

Output Messages from the Framebuifer Read Unait

Framebuffer General message group

Tag Mnemonic Data Field Description

FBColor Framebuffer data Used for Image upload.

FBData Framebuffer data Used for normal framebuffer reads
FBSourceData Framebufter data Used for source reads
FBWritePixel As FBReadPixel

The format o FBColor, FBData and FBSourceData 1s the
same; the pixel data 1s held 1n the appropriate number of
lower bits with the remaining bits set to zero.

Internal Messages

Framebuffer General
message group

Tag Mnemonic Data Field Description

FBReadPad All zeros.

The Framebuiter Write Unait
The framebufler write unit 1s responsible for:

calculating the framebutfer write address of the fragment,

packing the addresses to minimize the number of memory

aCCESSES,

sending address and data to the memory unit.

The unit 1ssues address to the memory unit along with
data and control signals. The address 1s 22 bits wide (bits 1
an 0 are implicitly zero) and the data is 32 bits. There are 3
control signals:

Control2 Controll ControlO Action
0 0 0 WriteData
0 0 1 BlockColor
0 1 0 WriteMask
0 1 1 ResumeReads
1 0 0 BlockWrite

The controls specily the action the memory unit should
take for each entry in the fifo. A block fill uses the VRAM
special write mode to fill several pixels at a time; the number
depends on the type and organization of the memory.
Framebuifer Write Unit Interface to Memory Unit

The table gives the signals that interface the framebufler
write unit to the memory unit. All signals are active high; the
source column shows which unit generates the signal,
FBWU=framebulifer write unit, MEM=memory unit.

Name Width Source Description

FBWrite Addr 22 FBWU Address to fifo.
FBWriteData 32 FBWU Data to fifo.
FBWriteEnables 4 FBWU Byte enables to fifo.
FBWriteCmd 3 FBWU Command data to fifo.
FBWriteStrobe] FBWU Load fifo.

FBWriteFull MEM Write fifo full.
FBWritesComplete MEM All outstanding writes have

completed.

Accesses to the memory can be grouped in any order so
long as all writes for a particular primitive complete before

10

15

20

25

30

35

40

45

50

55

60

65

74

reads begin for the next primitive. This 1s handled by the
suspend/resume read mechanism; the read unit 1ssues a
suspend reads signal to the memory unit which will stop
reads until it sees a resume reads signal from the write unait.

The FBWritesComplete signal 1s passed directly from the

memory unit to the framebuifer write unit and shows when
all writes 1n the fifo have completed and been written to
memory. This 1s used 1n synchronizing the chip, and must
not be set unftil the final memory cycle has completed.
Because a Sync message can flush the write unit and cause
a memory write, care must be taken in 1mplementing the
Sync operation that enough time has been allowed for the
FBWritesComplete signal to reach a valid state.

The FBWritesComplete signal also flushes any outstand-
ing writes so that data 1s guarenteed to be written to the
screen without a Sync message.

Address Generation 1n the Framebuffer Write Unit

Address generation 1s done by the following equation:

address=(AddressOffset+(Y*width))+X

The offset may be added to or subtracted from the
AddressOffset depending on whether the screen origin 1s top
or bottom left. Address offset 1s sent to the unit in the
FBWriteBase message and 1s a combination of the Window-
Base Address and the PixelOfilset.

All addresses are 1n pixels, so the final address must be
scaled to form the byte address. Address calculations are
done unsigned to 24 bits. Exceeding 24 bits causes the result
to overtlow and wrap around to zero.

The multiplication of Y and screen width 1s simplified by
supporting a limited number of widths and using partial
products. Three partial products are summed to produce the
final value:

Partial Product Code Add into product Shift amount

0 0 0

1 Y * 32 Y << 5
2 Y * 64 Y << 6
3 Y * 128 Y << 7
4 Y * 256 Y << 8
5 Y * 512 Y << 9

Some common screen widths and the corresponding partial
product codes are:

Screen width PPO PP1 PP2 Product
640 5 3 0 Y * (512 + 128 + 0)
1024 5 5 0 Y * (512 + 512 + Q)
1152 5 5 3 Y * (512 + 512 + 128)
1280 5 5 4 Y * (512 + 512 + 256)

The screen widths supported are:

0 32 04 96 128
160 192 224 256 288
320 352 384 416 448
512 544 576 608 640
672 704 768 800 832
896 1024 1056 1088

1152 1280 1536

Within the address calculation chain, the shift 1s used to
convert pixel addresses into byte addresses.

US 6,348,919 B1

75

Packing, Copymg and Block Fill in the Framebuffer Write
Unait

This unit combines accesses to bytes and 16 bit words to
minimize the number of accesses that are done to memory.
The unit inspects the addresses and 1f consecutive ones are
in the same 32 bit word the write 1s not done; only when the
address 1s 1n a different 32 bit word does outstanding data get
written to memory.

The fast block fill mechanism makes use of parallelism in
the memory design and special features 1n the memory
devices. Each VRAM memory part can write to 4 consecu-
five locations with one operation; the total number of
memory locations filled depends on the number of memory
parts fitted. A mask 1s generated and sent to the memory
along with a block aligned address. The mask shows which
pixels 1n the block should be written. A maximum of 32
pixels can be filled with one write, but the actual number will
depend on the organization of the memory.

Packed copies move 32 bits at a time even though the real
pixel size may be 8 or 16 bits. When packed copies are
enabled the X values and count fed to the rasterizer should
be divided by 2 or 4 (depending on the real pixel size); the
Y values should stay as they are and the partial products kept
the same. The address calculation scales the X value back to
the correct pixel size before using it.

The PackedDatalLimits message holds the left and right X
values for the destination area of the screen 1n the native
pixel format. The actual area rasterized by exceed this
depending on the relative position of the source of the copy.
Any pixels falling outside these limits are not plotted. The
relative offset field gives the number of pixels that the source
data has to be adjusted by to align with the destination data.
Input Messages

Framebuifer Data Write message group

Tag Mnemonic Data Field Description

FBHardwareWriteMask Raw framebuffer format
FBBlockColour Raw framebuffer format
FBWriteBase 24 bit unsigned base address
FBWriteConfig See FBRead unit
FastBlockl.imits See Rasterizer unit
FastBlockFill See Rasterizer unit

The UpLoadData bit causes the FBWriteData for each
step message to be forwarded to the next unit in FBColor.
This allows data read from the framebufler to be formatted
before being uploaded.

According to one disclosed class of preferred
embodiments, there 1s provided: a rendering system com-
prising: means for decomposing primitives 1nto fragments to
be rendered; a processor for computing depth values, and
color values mcluding a blending parameter, for individual
ones of said fragments; means for reading a local buifer
memory 1n which depth and/or color values are stored, and
for comparing the computed depth and/or color values for
individual ones of said fragments against values retrieved
from said local buffer, and conditionally storing the com-
puted depth and/or color values depending on the results of
the comparison; and circuitry for forcing the blend param-
cter to a predetermined value; whereby said means for
forcing can assure that no color value will ever be equal to
a depth value, even when color and depth values are
overwritten into the same set of address locations.

According to another disclosed class of preferred
embodiments, there 1s provided: a method for rendering,

10

15

20

25

30

35

40

45

50

55

60

65

76

comprising the steps of: a) decomposing primitives into
fragments to be rendered; b) computing depth values for
individual ones of said fragments; ¢) reading a local buffer
memory 1n which depth and/or color values are stored, and
comparing the computed depth values for individual ones of
said fragments against depth and/or color values retrieved
from said local buffer, and conditionally storing the com-
puted depth values depending on the results of the compari-
son; d) computing color values including a blending param-
eter for individual ones of said fragments; and e) reading
said local buffer memory 1n which depth and/or color values
are stored, and comparing the computed depth values for
individual ones of said fragments against depth and/or color
values retrieved from said local buffer, and conditionally
storing the computed color values depending on the results
of the comparison; wherein said blend parameter 1s forced to
a predetermined value, which 1s independent of the 1nitially
computed blend parameter, before computed color values
are stored; whereby said forcing step assures that no color
value will ever be equal to a depth value, even when color
and depth values are overwritten into the same set of address
locations.

According to another disclosed class of preferred
embodiments, there 1s provided: a method for rendering,
comprising the steps of: decomposing primitives into frag-
ments to be rendered; computing depth values for individual
ones of said fragments; a) reading a local buffer memory at
an address assigned to said fragment, and comparing the
computed depth values for individual ones of said fragments
against the values read from said local buffer, and condi-
tionally storing the computed depth values depending on the
results of the comparison; b) again computing depth values,
and also color values which include a multi-bit blending
value, for individual ones of said fragments; and c) reading
said local buffer memory at the address assigned to said
fragment, and comparing the computed depth value for said
fragment against the value read from said local buffer, and
conditionally storing the computed color values, with one bit
of said blending parameter which has been forced to a
predetermined value, depending on the results of the com-
parison; whereby said predetermined value of said one bit of
said blending parameter assures that no color value will ever
be equal to a depth value, even when color and depth values
are overwritten into the same set of address locations.

According to another disclosed class of preferred
embodiments, there i1s provided: a graphics processing
subsystem, comprising: at least four functionally distinct
processing units, each including hardware elements which
are customized to perform a rendering operation which 1s
not performed by at least some others of said processing
units; at least some ones of said processing units being
connected to operate asynchronously to one another; at least
one of said processors connected and configured to compute
depth values, and color values including a blending
parameter, for graphics data; a memory 1n which depth
and/or color values are stored, connected to be accessed by
at least one of said processing units; reading circuitry
connected to said memory, connected and configured to
reads said memory 1in which depth and/or color values are
stored, and to compare the computed depth and/or color
values for graphics data against values retrieved from said
memory, and to conditionally store the computed depth
and/or color values depending on the results of the com-
parison; said processing units being mutually interconnected
in a pipeline relationship, such that said processing units
jointly provide a pipelined multiple-mnstruction-multiple-
device (MIMD) graphics processing architecture.

US 6,348,919 B1

77

Modifications and Variations

As will be recognized by those skilled 1n the art, the
innovative concepts described 1n the present application can
be modified and varied over a tremendous range of
applications, and accordingly the scope of patented subject
matter 1s not limited by any of the specific exemplary
teachings given.

The foregomng text has indicated a large number of
alternative implementations, particularly at the higher
levels, but these are merely a few examples of the huge
range ol possible variations.

For example, the preferred chip context can be combined
with other functions, or distributed among other chips, as
will be apparent to those of ordinary skill 1n the art.

For another example, the described graphics systems and
subsystems can be used, 1n various adaptations, not only 1n
high-end PC’s, but also 1n workstations, arcade games, and
high-end simulators.

For another example, the described graphics systems and
subsystems are not necessarily limited to color displays, but
can be used with monochrome systems.

For another example, the described graphics systems and
subsystems are not necessarily limited to displays, but also
can be used 1n printer drivers.

What 1s claimed 1s:

1. A rendering system comprising;:

means for decomposing primitives into fragments to be
rendered;

a processor for computing depth values, and color values
including a blending parameter, for individual ones of
said fragments;

means for reading a local buffer memory 1n which depth
and/or color values are stored, and for comparing the
computed depth values for individual ones of said
fragments against values retrieved from said local
bufler, and conditionally storing the computed depth or
color values depending on the results of the compari-
son; and

circuitry for forcing the blend parameter to a predeter-
mined value;

whereby said circuitry for forcing can assure that no color
value will ever be equal to a depth value, even when
color and depth values are overwritten into the same set
of address locations.
2. The rendering system of claim 1, further comprising a
texturing unit.
3. The rendering system of claim 1, further comprising a
SC1ssoring unit.
4. The rendering system of claim 1, further comprising a
memory access unit which reads and writes said memory.
5. A method for rendering, comprising the steps of:

(a.) decomposing primitives into fragments to be ren-

dered,;

(b.) computing depth values for individual ones of said
fragments;

(c.) reading a local buffer memory in which depth and/or
color values are stored, and comparing the computed
depth values for individual ones of said fragments
against depth or color values retrieved from said local

buffer, and conditionally storing the computed depth

values depending on the results of the comparison;

(d.) computing color values including a blending param-
eter for individual ones of said fragments; and

(e.) reading said local buffer memory in which depth
and/or color values are stored, and comparing the

10

15

20

25

30

35

40

45

50

55

60

65

78

computed depth values for individual ones of said
fragments against depth or color values retrieved from
said local buffer, and conditionally storing the com-
puted color values depending on the results of the
comparison; wherein said blend parameter 1s forced to
a predetermined value, which 1s independent of the
initially computed blend parameter, before computed
color values are stored;

whereby said forcing step assures that no color value will
ever be equal to a depth value, even when color and
depth values are overwritten into the same set of
address locations.

6. The method of claim 5, wherein steps (a.)—(c.) are first
performed for each of said primitives, then steps (d.)—(e.) are
performed for each of said primitives.

7. The method of claim §, wherein when all said primi-
fives are processed, said memory contains only said color
values.

8. A method for rendering, comprising the steps of:

decomposing primitives 1nto fragments to be rendered;

computing depth values for individual ones of said frag-
ments,

(a.) reading a local buffer memory at an address assigned
to said fragment, and comparing the computed depth
values for individual ones of said fragments against the
values read from said local buffer, and conditionally
storing the computed depth values depending on the
results of the comparison;

(b.) again computing depth values, and also color values
which include a multi-bit blending value, for individual
ones of said fragments; and

(c.) reading said local buffer memory at the address
assigned to said fragment, and comparing the computed
depth value for said fragment against the value read
from said local buffer, and conditionally storing the
computed color values, with one bit of said blending,
parameter which has been forced to a predetermined
value, depending on the results of the comparison;

whereby said predetermined value of said one bit of said
blending parameter assures that no color value will ever
be equal to a depth value, even when color and depth
values are overwritten 1nto the same set of address
locations.

9. The method of claim 8, wherein when all said primi-
fives are processed, said memory contains only said color
values.

10. A graphics processing subsystem, comprising:

at least four functionally distinct processing units, each

including hardware elements which are customized to
perform a rendering operation which 1s not performed
by at least some others of said processing units; at least
some ones of said processing units being connected to
operate asynchronously to one another;

at least one of said processors connected and configured
to compute depth values, and color values including a
blending parameter, for graphics data;

a memory 1n which depth and/or color values are stored,
connected to be accessed by at least one of said
processing units;

reading circuitry connected to said memory, connected
and configured to read said memory in which depth
and/or color values are stored, and to compare the
computed depth values for graphics data against values
retrieved from said memory, and to conditionally store
the computed depth or color values depending on the
results of the comparison;

US 6,348,919 B1

79

said processing units being mutually interconnected 1n a
pipeline relationship, such that said processing units
jointly provide a pipelined multiple-instruction-
multiple-device (MIMD) graphics processing architec-
ture.

11. The graphics processing subsystem of claim 10,

wherein said processing units include a texturing unit.

12. The graphics processing subsystem of claim 10,
wherein said processing units include a scissoring unit.

13. The graphics processing subsystem of claim 10,
wherein said processing units include a memory access unit
which reads and writes said memory.

14. The graphics processing subsystem of claim 10,
wherein at least some ones of said processing units include
internally paralleled data paths.

15. The graphics processing subsystem of claim 10,
wherein all of said processing units are integrated into a
single mtegrated circuit.

16. The graphics processing subsystem of claim 10,
wherein all of said processing units, but not said memory,
are integrated into a single mtegrated circuit.

10

15

20

30

17. The graphics processing subsystem of claim 10,
further comprising a color lookup-table and analog conver-
sion circuit which 1s connected to receive data from said
memory and to provide corresponding analog color outputs.

18. The system of claim 10, wherein at least one of said
processors decomposes primitive data into multiple frag-
ments.

19. The system of claim 10, wherein said at least some
portion of said graphics data comprises multiple fragments
from decomposed primitive data.

20. The system of claim 10, wherein said graphics pro-
cessing subsystem processes 3-dimensional data.

21. The system of claim 10, further comprising flagging
circuitry for forcing the blend parameter to a predetermined
value, wherein said flagging circuitry can assure that no
color value will ever be equal to a depth value, even when
color and depth values are overwritten 1nto the same set of
address locations.

	Front Page
	Drawings
	Specification
	Claims

