US006345287B1
12 United States Patent (10) Patent No.: US 6,345,287 B1
Fong et al. 45) Date of Patent: *Keb. §, 2002
(54) GANG SCHEDULING FOR RESOURCE 5,325,526 A * 6/1994 Cameron et al. 709/102
ALLOCATION IN A CLLUSTER COMPUTING 5,694,604 A * 12/1997 Retffincccevvvvennnn.n.n. 709/107
ENVIRONMENT
OTHER PUBLICATIONS
(75) Inventors: Liana Liyow Fong, Irvington, NY
(US); Ajei Sarat Gopal, Fort Lee, NJ Franke et al. “Gang Scheduling for Highly Efficient Distrib-
(US); Nayeem Islam, Thornwood, NY uted Multiprocessor Systems” pp 4-12—IEEE 1996.*
(US); Andreas Leonidas Prodromidis, _
New York, NY (US); Mark Steven I[slam et al. “Extensible Resource Management for Cluster
Squillante, Pound Ridge, NY (US) Computing” pp 561-568—IEEE May 1997.%
(73) Assignee: International Business Machines * cited by examiner
Corporation, Armonk, NY (US)
(*) Notice: This patent issued on a continued pros- Primary Examiner—Majid A. Banankhah
ecution application filed under 37 CFR (74) Attorney, Agent, or Firm—Wayne L. Ellenbogen;
1.53(d), and is subject to the twenty year ~ Anne Vachon Doughert
atent term provisions of 35 U.S.C.
Ve 402 P (57) ABSTRACT
_ L _ A system and method whereby a gang scheduling entity
Sub]ect. 1o any dlSClEllII]eI',_. the term of this assembles a schedule of application tasks to be run on a
patent 1s extended or adjusted under 35 plurality of distributed parallel processors for pre-set time
US.C. 154(b) by 0 days. intervals. The scheduling information, including an ordered
set of applications and the length of the time interval, are
(21) Appl. No.: 08/978,713 provided to each of the node level schedulers for the relevant
. processors, and the node level schedulers assure that the
(22) Filed: Nov. 26, 1997 tasks of the applications are executed, with context switch-
(51) Int. CL7 e GO6F 9/46 ing between tasks being controlled at the node level. Tasks
(52) US.Cle oo, 709/102; 709/104 trom multiple applications can be scheduled simultaneously,
(58) Field of Search 709/1, 100, 102, With time sharing and space sharing being utilized in the
709/104, 108, 106; 711/173; 707/8, 9 schedule. The inventive system 1s dynamically scalable,
with the gang scheduling enfity restructuring the matrix
(56) References Cited schedule should dynamic re-partitioning result in addition or

U.S. PATENT DOCUMENTS
5.269,020 A

* 12/1993 Kakimoto

JOB ARRIVES
AT GANG
SCHEDULER

ARE

RESOURCES AVAILAR NO

deletion of processors.

16 Claims, 4 Drawing Sheets

IN MATRIX
i’

YES

507
YES IME TO NO
RECONFIGURE
?

PLUG INTO 503 _
WATRIX GET RESOURCES | o FOR LATER
anumngum " CONSIDERATION
INFORM S04 e ——
APPLICATION
MANAGER
' 308 ARE
RESOURCES
APPLICATION 5 AVAILABLE
MANAGER ?
CONFIGURES
APPLICATION \ES
K] DECIDE WHICH
PASS. NEW 310~ cOLUMN GROUP
506 T0 RECOMFIGURE

APPLICATION AND
SCHEDULE INFORMATION
10 NODE(S)

e

1~

INFORM
APPLICATION
MANAGERS OF
JOBS AFFECTED

M2~

CONSTRUCT
NEW MATRIX

!

) .

PROPAGATE
NEW MATRIX
INFORMATION
T0 NODE(S)

(513

QUEUE JOB

U.S. Patent Feb. 5, 2002 Sheet 1 of 4 US 6,345,287 Bl

FIG. 1

S
ST
1.
O
—_—— “

10

U.S. Patent Feb. 5, 2002 Sheet 2 of 4 US 6,345,287 Bl

F1G.2

® O ® 6 @

22

FIG.S

Pag COLUMNS OR NODES

K SUBPARTIONS

U.S. Patent Feb. 5, 2002 Sheet 3 of 4 US 6,345,287 Bl

F1G.o

J
o grgv
Ini
-. ll V

U.S. Patent Feb. 5, 2002 Sheet 4 of 4 US 6,345,287 Bl

501. | JOB ARRIVES
AT GANG |
SCHEDULER

502

FIG.6

NO
IN MATRIX
2 507

YES YES TIME TO NO
RECONFIGURE 218
?
PLUG INTO 309 '
MATRIX

QUEUE JOB
GET RESOURCES

FOR LATER
FROM_DOMAIN CONSIDERATION
LEVEL

INFORM 504
APPLICATION

MANAGER

ARE
RESOURCES

APPLICATION AVAILABLE
?

MANAGER 903
CONFIGURES
APPLICATION YES

DECIDE WHICH
COLUMN GROUP
TO RECONFIGURE

10

PASS NEW
APPLICATION AND
SCHEDULE INFORMATION
10 NODE(S)

06

INFORM
o1 APPLICATION

MANAGERS OF
JOBS AFFECTED

N2 CONSTRUCT
NEW MATRIX

PROPAGATE
NEW MATRIX
INFORMATION
TO NODE(S)

M3

US 6,345,287 Bl

1

GANG SCHEDULING FOR RESOURCE
ALLOCATION IN A CLUSTER COMPUTING
ENVIRONMENT

FIELD OF THE INVENTION

This invention relates to scheduling of resources 1n a
cluster computing environment. More specifically, it relates
to providing a general and scalable gang scheduling meth-
odology having time-sharing and space-sharing components
integrated together to optimize system/application perfor-
mance for running reconfigurable applications across dis-
tributed systems.

BACKGROUND OF THE INVENTION

Allocation of computer resources to parallel-running
tasks 1s a challenge for systems of all sizes. In a massively
parallel processing system, as well as 1n a network of
computers, a relatively large number of separate processing
clements are interconnected to simultaneously process a
larce number of tasks at speeds far exceeding those of
conventional computers. However, to perform parallel
operations efficiently, 1t 1s necessary to have the capability of
allocating the resources among different tasks as needed.

Carving out or allocating parts of the system to run tasks
without interfering with each other 1s commonly referred to
as “space sharing” or “partitioning.” Partitioning, in general,
1s the ability to divide up system resources nto groups in
order to facilitate particular management functions. The
structure of massively distributed parallel processing sys-
tems provides the opportunity to partition the system into
groups of nodes for various purposes.

The resource requirements for each parallel scientific or
commercial application may be vastly different from each
other. Furthermore, the communication and synchronization
traits among the constituent tasks of different parallel appli-
cations can be equally diverse, from the one extreme,
consisting of fine-grained tasks that require frequent com-
munication and synchronization among tasks within an
application, to the other extreme, comprising coarse-grained
tasks which operate independently. Therefore, parallel
computers, such as the IBM RISC System/6000 Scalable
Power Parallel System family, must support a wide variety
of parallel applications, each with 1ts own unique resource
requirements. As a specilic example, the interaction,
synchronization, and communication among tasks within
fine-grained applications typically require the simultaneous
allocation of their tasks on computing nodes; whereas, the
independent tasks of coarse-grained applications do not
require simultancous resource allocation. Both types of
applications are scheduled (i.e., allocated) based upon sys-
tem status, workload characteristics, and application
characteristics, such as the number of tasks to be performed
for the application, the execution time, required disk space,
ctc.

In order to perform efficient scheduling of resources,
several scheduling methods have been devised for managing
the execution of parallel applications. The first 1s a “space
sharing” scheduling method under which the nodes are
partitioned among different parallel jobs. Several space
sharing strategies have been proposed in the past. Static
partitioning of dedicated nodes has been utilized 1n produc-
fion systems, given the low system overhead and simplicity
from both the system and application perspectives. Static
space sharing of nodes can, however, lead to low system
throughputs and poor resource utilization under nonuniform
workloads. System performance can be improved by adap-

10

15

20

25

30

35

40

45

50

55

60

65

2

tively determining the number of nodes allocated to a job
based on the system state at the time at which the job arrives,
and adaptively determining the number of nodes allocated to
a set of waiting jobs when a job departs. The performance
benelits of adaptive partitioning can be somewhat limited
and such a system generally cannot respond to subsequent
workload changes.

Another scheme, so-called dynamic space sharing, parti-
tions and re-partitions resources upon all entries and exits of
applications, as well as throughout their execution. Such a
scheme can maintain very efficient resource utilizations.
However, 1if the frequency of re-partitioning 1s not
controlled, the associated overhead can limit, and even
climinate, the potential benefits.

Another scheduling scheme 1s “time sharing” wherein the
nodes are rotated among a set of jobs, each executing for a
specifled amount of time, thereby ensuring that all jobs gain
access to the system resources within a relatively short
period of time. Time sharing can be effective for tasks with

mixed processing requirements, but may not be particularly
suitable for applications with large data sets if the frequency
of rotation 1s high.

What 1s desirable 1s a system and method for providing
cgang scheduling which realizes the benefits of both dynamic
space sharing and time sharing across distributed computer
systems.

The article “Scheduling Techniques for Concurrent Sys-
tems” by John Ousterhout, Proceedings of the Third Inter-
national Conference on Distributed Computing Systems, pp.
22-30 (October 1982), details one gang scheduling
approach wherein slots of time on all available processors
are arranged 1n a matrix as illustrated 1in FIG. 1. An incoming
job, such as 11, 1s plugeed into the matrix/schedule, 10,
wherever sufficient time was available, slot 12. Under the
Ousterhout scheduling scheme, there 1s no subpartition of
the matrix such that additions and deletions of processors to
the matrix, or additions or terminations of jobs, may atfect
every node column in the matrix. In addition, central control
and requisite global transmission of changes are utilized;
and cancellation of a job may result in fragmentation (i.e.,
open time slots) with underutilized processor time (e.g.,
cancellation of job, 14, will leave the time slot empty and the
processor(s) underutilized).

It 1s therefore an objective of the present invention to
provide a general and scalable gang scheduling methodol-
ogy with a decentralized approach for implementation on
distributed computer systems.

It 1s yet another objective of the present mvention to
provide a gang scheduling methodology which adaptively
allocates resources to tasks, or gang members, in the manner
of dynamic space sharing.

It 1s also an objective of the present invention to provide
a decentralized method to perform coordinated context
switching of gang members using local logical clock mecha-
nismes.

In addition to providing a gang scheduling mechanism for
a distributed system, 1t 1s an objective of the present mnven-
tion to provide gang scheduling in partitions which can
undergo dynamic re-partitioning 1in accordance with the FDP
mechanism set forth 1n the present authors co-pending
application entitled “Flexible Dynamic Partitioning of
Resources 1n a Cluster Computing Environment,” Ser. No.
08/862,454, filed May 27, 1997, and assigned to the present
assignee, the teachings of which are hereby expressly incor-
porated by reference.

It 1s additionally an objective that the scheduling method
be applicable to all computer environments, including

US 6,345,287 Bl

3

shared-memory and distributed-memory systems, scientific
and commercial workload environments, and loosely-
coupled and tightly-coupled parallel architectures.

SUMMARY OF THE INVENTION

The invention provides a general and flexible system and
method whereby a gang scheduling enfity assembles a
schedule for application tasks to be run on a plurality of
distributed parallel processors. The scheduling information,
including at least a mapping of applications to processors,
and potentially an ordered set or sub-schedule of tasks to be
run and the length of the time slices for context switching,
are provided to each of the lower level schedulers for the
relevant processors by a higher level scheduler, and the
lower level schedulers assure that the tasks are executed.
When a detailed sub-schedule of tasks 1s provided by the
higher level scheduler, the lower level schedulers assure that
the tasks execute in the preset order in accordance with the
subschedule, with context switching between tasks being
controlled at the decentralized node level. When only a
mapping of applications to processors 1s provided by the
higher level scheduler, there 1s additional flexibility and
generality by allowing the lower level schedulers to make all
or any subset of the scheduling decisions. Tasks from
multiple applications can be scheduled simultaneously, inte-
orating both time sharing and space sharing schemes 1n the
schedule. The 1nventive system 1s dynamically reconiig-
urable 1n the event of addition or deletion of processors in
the gang scheduling partition. It 1s also dynamically recon-
figurable into subpartitions in response to changing appli-
cation requirements which may result in reassignment of
processors among groups of applications.

BRIEF DESCRIPTION OF THE DRAWINGS

The mvention will now be described 1n further detail with
specific reference to the accompanying figures wherein:

FIG. 1 1llustrates the Ousterhout time sharing scheduling
matrix of the prior art.

FIG. 2 schematically 1llustrates a hierarchical relation of
subpartitions S, through S,-1n partition GS, having nodes N,
through N, associated therewith.

FIG. 3 provides a general global scheduling matrix uti-
lized 1n the present invention.

FIG. 4 provides a specific implementation of a gang
scheduling matrix in accordance with the present invention.

FIG. 5 illustrates an alternative matrix implementation in
accordance with the present invention.

FIG. 6 provides a process flow illustrative of the methods
implemented 1n accordance with the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

Under the inventive gang scheduling, components or
tasks of parallel jobs (collectively referred to as a “gang”)
execute at the same time, with each of the tasks (or gang
members) executing on different processors. All of the gang
members are scheduled at the same time and execute 1n
parallel for a pre-set time 1nterval, also known as the time
slice. Upon expiration of the pre-set time slice scheduled for
a given gang, a gang switch occurs during which all of the
tasks/gang members that were executing are suspended, or
de-scheduled, and waiting tasks for another gang are sched-
uled. While all tasks of a single gang are scheduled and
de-scheduled at the same time, 1t 1s also possible to have
more than one gang simultaneously scheduled and executing

10

15

20

25

30

35

40

45

50

55

60

65

4

side-by-side 1n a space sharing manner, 1f the tasks of each
of the scheduled gangs do not require usage of all of the
available processors 1n a partition.

Under the inventive gang scheduling method, the resource
management system at the partition level dictates the degree
of space-sharing (i.e., the number of subpartitions), the
degree of time-sharing for each subpartition (i.e., the number
of jobs to be executed on the subpartition 1n a time-sharing
manner), and the set of tasks to be executed on the nodes of
cach subpartition. This division of the available resources 1n
space and time, and the mapping of jobs to these resources,
is defined by a generalized gang scheduling matrix (further
discussed below). All of the tasks, or gang members, in a
ogrven set of columns of the matrix share the subpartition of
nodes represented by the columns. For each subpartition, all
of the tasks, or gang members, 1n a given row of the matrix
are scheduled to share the available space for the designated
time slice; after which time, the nodes 1n the subpartition
will context switch simultaneously to another gang of tasks
or other gangs of tasks. When re-partitioning 1s required, 1t
can be conducted simultaneously with the context switch in
order to allow the system to accommodate varying work-
loads.

FIG. 2 provides a schematic illustration of a partition,
under domain 20 having partitions 21 and 22, which could
utilize the gang scheduling of the present invention. The
partition 22 may be divided into a plurality of K
subpartitions, S, through S,, which are in turn comprised of
a plurality of nodes, N, through N . Although the illustrated

system provides for two nodes per subpartition, clearly any
supportable number of nodes may comprise a subpartition,
and that number may change due to the dynamic
re-partitioning taught by the aforementioned co-pending
application. In addition, above the partition level, there
would be one or more control levels, for example having a
oglobal scheduling entity. However, under the present
invention, any global scheduling entity would simply pass
applications to the partition level scheduler and would not be
instrumental 1n the implementation of scheduling. Where
prior art gang scheduling systems and methods provided
centralized scheduling and control, requiring centralized
hardware-based control, and/or tightly-coupled partitions,
under the gang scheduling of the present invention, local
partition-level scheduling 1s implemented across nodes of
loosely-coupled subpartitions, which may be dynamically
re-defined under the FDP mechanism.

The resource management control system, or partition
level gang scheduler, determines which nodes will be
executing tasks of which waiting applications and commu-
nicates that information to each node. In the most general
case, the gang scheduler defines a matrix which 1s a mapping
of sets of applications to sets of processors. Once that
mapping information 1s communicated to the nodes of the
subpartition, the order and time slicing (including the sub-
schedule details described below) are performed by the
subpartition level scheduler. In an alternative embodiment,
the gang scheduler will predetermine not only the general
schedule comprising the application-to-processor mapping,
but also the so-called sub-schedule information including,
but not limited to, the order in which jobs are executed, the
time slice length for each application on each partition, and
the scheduling of some jobs multiple times for alternate
execution with other jobs, if necessary. Clearly, various
intermediate levels of sub-scheduling, having some but not
all of the aforementioned information, may be provided by
the gang scheduler.

In accordance with the invention, each node has its own
node level scheduling function for managing its own single-

US 6,345,287 Bl

S

node subpartition and for implementing the information
assigned to it by the partition level gang scheduler. The node
level scheduler implements the scheduling policy and sys-
tem attributes set by its gang scheduler. For example, the
node level scheduler inserts tasks into 1ts local dispatcher
queue 1n coordination with the other node level schedulers
in the subpartition. Each node independently time slices
among jobs allocated to 1t according to its local logical time,
for the time interval dictated by the aforementioned sub-
schedule information defined by higher levels of the gang
scheduler. Rather than centrally-orchestrated simultaneous
multi-node context switching, each node switches indepen-
dently based upon its local logical clock, which 1s synchro-
nized to maintain consistent time across the nodes. Synchro-
nized local logical clocks are 1implemented in accordance
with known methods (see: e.g., “Network Time Protocol
(v.3) Specification, Implementation and Analysis,” by D.
Mills, University of Delaware technical report RFC 1305,
March 1992).

FIG. 3 illustrates a general gang scheduling matrix com-
piled by the gang scheduler and provided to the local
scheduling entities of the present invention. As 1llustrated,
cach column in the matrix represents one node and each row
of the matrix represents the degree of time-sharing. P, 18
the number of nodes that are available for gang scheduling.
The P, columns are divided mnto K disjoint subpartitions or
oroups. The number of columns in the k™ subpartition
represents the number of nodes allocated to the parallel
applications assigned to that subpartition, and the number of
rows for the k™ partition represents its degree of time-
sharing A,, where 1=k=K. Each row 1n the global matrix
represents the mapping of a set of applications to a set of
subpartitions, wherein each application 1s mapped to only
one subpartition. The number and sizes of time slices for
cach subpartition can be different and independent of those
in the other subpartitions (i.e., for different applications
being mapped and scheduled), which provides additional
flexibility to optimize various performance objectives. The
system administrator establishes the time slice or can set
minimum and maximum time slice lengths, thereby allow-
ing the gang scheduler to dynamaically adjust within the time
boundaries. Moreover, for each time slice allocated to larger
job classes or gangs, the present inventive method, as
discussed above, supports the allocation of multiple time
slices to smaller job classes, such that smaller jobs can be
placed 1n multiple rows of a subpartition of the matrix, to
reduce overall mean response times.

FIG. 4 provides a more detailed 1llustration of one form
of the gang scheduling matrix, wherein the gang scheduler
determines not only the assignment of applications to pro-
cessors but also pre-determines the actual sub-schedule
(including job ordering, time slicing, etc.) for execution at
the subpartitions 1n accordance with the present mnvention.
In the 1llustrated example, a plurality of processors are
scheduled to execute jobs A—F 1in accordance with the matrix
schedule. Each set of one or more nodes i1s assigned a
sub-schedule including at least one set of tasks, comprising
tasks of one or more applications, and the time slice length
for running each task. The time slice for each row of the k™
subpartition 1s denoted by T, ;, where 1=i1=A,, 1=k=K.
Looking across the rows of the matrix, one sees that at time
slice 1, tasks of applications A, C and F are executing on
different processors. At the end of time slice 1, each node
automatically performs a local context switch and tasks of
applications B, D and F begin executing for the duration of
fime slice 2.

The one or more nodes represented in Column 1 effec-
fively time share between jobs of applications A and B,

10

15

20

25

30

35

40

45

50

55

60

65

6

wherein A executes for a first time slice followed by B
executing for a next time slice, with the time cycle repeating
between tasks of the two applications (i.e., a time-sharing
degree of two). Simultaneously, the one or more processors
represented 1n Column II are time-sharing jobs of applica-
tions C, D and E, switching among tasks at the expiration of
the time slice according to the time-sharing degree of three.
Lastly, the one or more processors represented i Column 111
switch at the end of each time slice among tasks of single
application F, effectively providing space sharing with
respect to the other subpartitions. The matrix allows the
cgang scheduler to combine both time sharing and space
sharing across the available processors. Moreover, the
matrix 1s readily restructured to add or release nodes as
needed for re-partitioning.

Changes to the schedule are localized under the present
invention so that addition or subtraction of applications can
be readily implemented without affecting all of the distrib-
uted system’s processors. For example, if application D 1n
FIG. 4 terminates (due to completion or cancellation), the
cgang scheduler can rearrange the sub-schedule for the nodes
in Column II without altering the sub-schedules for any of
the nodes represented in Columns I and III. All nodes inform
the gang scheduler upon completion of tasks of an applica-
tion so that the gang scheduler can insert new or waiting
tasks into the sub-schedule for the available processor(s), if
the tasks are appropriate 1n terms of “size” and node
requirements.

The 1nventive gang scheduling method also supports
applications that require all of the nodes available 1n the
partition, as well as applications that require a partition
much larger than the existing subpartitions, while other
applications execute 1n subpartitions of various sizes. FIG. 5
illustrates the general approach to handling the foregoing
combination of applications with the structure of the gang
scheduling matrix. The application J runs on all nodes
during a particular time slice, and other applications (G-I,
P—R and V) run on the nodes in their respective subpartitions
during other time slices. In such a scheme, the degree of
time-sharing will be more restrictive. However, the flexibil-
ity and independence of the subpartitions continue, with the
exception that all subpartitions must switch to job I at the
same time. For example, jobs G-H-I and P-Q-R can be
executed multiple times 1n between executions of job J.

Beyond rescheduling by insertion of jobs anywhere 1n the
existing matrix, the gang scheduler can completely restruc-
ture the matrix should addition or release of nodes be
warranted based upon re-partitioning (cf: the aforemen-
tioned co-pending application). If, for example, more nodes
from other partitions become available for the gang
partition, the gang scheduler will inform the managers of the
alfected reconfigurable applications of the potential change
to a subpartition. A reconfigurable application can, within its
own defined limaits, tailor 1ts tasks to the number of available
processors and will notify the gang scheduler of 1its task
reconflguration. If the available nodes can be utilized based
upon reconfiguration of the application(s), then the nodes
will be added and a new matrix created. Siumilarly, if another
partition requests nodes, and the reconfigurable application
informs the gang scheduler that i1t can run on fewer nodes,
then nodes may be released to a requesting partition, and a
new matrix created.

For addition or deletion of nodes, the selection of sub-
partitions 1s evaluated according to criteria defined by the
system administrator, as described 1n the aforementioned
co-pending patent application. For example, the controlling
criterion may be: to affect the least number of applications

US 6,345,287 Bl

7

(e.g., Column III); to affect the column/matrix areas having
the most nodes allocated to it (e.g., Column I), a consider-
ation which 1s particularly relevant for release of nodes to
other subpartitions; or, to affect the column in which the
processors are least utilized (e.g., the space sharing nodes of

Column III).

Additional parameters may influence gang scheduling as
conducted by the partition level scheduler. To determine
resource availability, the scheduler will, at least, check for
subpartitions having sizes that match the requirements of the
new job and the degree or level of time-sharing. In addition,
the scheduler will consider the smoothing interval (i.e.,
minimum interval for invoking dynamic re-partitioning in a
gang scheduling system), the time interval between resource
monitoring updates, and the minimum and maximum par-
fition or subpartition sizes.

In summary, the partition level scheduler can increase the
value of A,, which 1s the level or degree of time-sharing, 1n
response to rising load conditions. The degree of time-
sharing 1s subject, of course, to memory constraints, work-
load efficiency, the variability of workload service demands,
and the current load/utilization of the system. When a job 1n
the k™ subpartition departs, the partition level gang sched-
uler assigns a waiting job to that subpartition and the level
of A, remains the same. If, however, there are no waiting
jobs, the value of A, will be decremented. It 1s to be noted
that where A =1, the gang scheduling is effectively reduced
to a space sharing scheduling scheme. Where A, >1, time
sharing 1s in effect. Furthermore, when K=1, clearly the gang
scheduling partition reduces to a pure time sharing partition.

By utilizing gang scheduling at the partition level, not
only does one realize the benefits of the hybrid space and
fime sharing scheduling schemes, but also the additional
advantage that re-partitioning 1s not required as often as
would otherwise have been expected when using pure time
sharing or pure space sharing scheduling. The “natural”
draining of the columns due to departures of jobs and the
consequence that re-partitioning i1s conducted for each sub-
partition in parallel, together contribute to a streamlining of
the re-partitioning process when the iventive gang sched-
uling 1s 1mplemented. Since re-partitioning will require
recomputation, or restructuring, of the gang scheduling
matrix, it 1s advantageous to provide a smoothing interval
between re-partitioning steps, as 1s taught in the prior
application.

FIG. 6 details a representative process flow followed in
accordance with the present invention. Upon arrival of a job
at the gang scheduler, step 501, it 1s first determined 1f
resources are presently available m the matrix schedule to
accommodate the new job, at step S502. As noted above,
determination of resource availability involves checking for
subpartitions of sizes that match the requirements of the new
job, analyzing the degree of time-sharing, and considering
re-partitioning of the subpartitions. If resources are
available, the job 1s plugged 1nto the matrix, at 503, and the
application manager 1s imnformed of the column group to
which the job has been assigned, at 504. In response, the
application manager configures the application accordingly,
at 505, and the new application and sub-schedule 1nforma-
tion are provided to the node level scheduler of the assigned
subpartition at 506.

If insufficient resources exist in the present matrix (i.e., a
“no” determination at box 502), then the system asks, at 507,
whether 1t 1s time to reconfigure, 1n accordance with the
smoothing mterval and possibly other event triggers, 1ncor-
porated 1nto the flexible dynamic partitioning. If 1t 1s not

10

15

20

25

30

35

40

45

50

55

60

65

3

time, the work would be queued, at 518, for later consider-
ation. If 1t 1s time, the gang scheduler will go to the domain
level scheduler, at 509, to request more resources. If no
resources are made available by the domain level scheduler,
again the job 1s queued for later consideration. When the
domain level scheduler does provide available resources, the
system administrator-defined criteria are invoked, at step
510, to decide how to restructure the matrix to include the
added resources. The affected application managers will be
notified about the changes. Once the application managers
respond back to the gang scheduler, the new matrix 1s placed
in effect and the new job 1s 1nserted 1nto the matrix, at 512,
and propagated to the node level schedulers of the affected
partition(s), at 513. Clearly one with skill in the art will
recognize that the process flow could be modified without
departing from the necessary functionality which comprises
the subject inventive method.

The mmvention has been described with reference to sev-
eral specific embodiments. One having skill in the relevant
art will recognize that modifications may be made without
departing from the spirit and scope of the mmvention as set
forth 1n the appended claims.

Having thus described our invention, what we claim as
new and desire to secure by Letters Patent 1s:

1. In a computer environment comprising a plurality of
nodes, each of said nodes having at least one processor and
a local logical clock, a resource scheduling system for
allocation of processor resources among parallel applica-
fions comprising:

a gang scheduler for tlexibly establishing a schedule
comprising a plurality of sub-schedules of node-
specific tasks of said parallel applications to be per-
formed at each of said plurality of nodes, for commu-
nicating only node-specific task information derived
from one of said plurality of sub-schedules to each of
said plurality of nodes and for dynamically altering the
schedule to optimize task performance at run time; and

a plurality of node level schedulers each adapted to
receive the node-specific task information from one of
said plurality of sub-schedules and to implement said
node-speciiic tasks of the sub-schedule at said node
using said local logical clock.

2. In a computer environment comprising a plurality of
nodes, each of said nodes having at least one processor and
a local logical clock, a resource scheduling system for
allocation of processor resources among parallel applica-
fions comprising;

a gang scheduler for flexibly establishing a schedule
comprising a mapping of said applications to said
plurality of nodes, for communicating only node-
specific mapping information to each of said plurality
of nodes and for dynamically altering the schedule to
optimize task performance at run time; and

a plurality of node level schedulers each adapted to
receive sald node-specific mapping information and to
execute a schedule of applications at said node using
said local logical clock.

3. A method for providing processor resource allocation
among tasks of parallel applications 1n a computer environ-
ment having a gang scheduler and a plurality of nodes each
having at least one processor, a local logical clock, and a
node level scheduler comprising the steps of:

receiving application requirement information at said
gang scheduler;

utilizing said application requirement information for
flexibly creating a schedule at said gang scheduler, said

US 6,345,287 Bl

9

schedule comprising a plurality of sub-schedules of
node-specific task information for each of said plurality
of nodes;

transmitting only said node-specific task mmformation to
cach of said plurality of sub-schedules, one to each of
said plurality of nodes; and

implementing said sub-schedules at said plurality of

nodes.

4. The method of claim 3 wherein said schedule includes
at least one time slice for performing each task of said
schedule; and wherein each node level scheduler switches to
other tasks on said sub-schedule at the end of said time slice.

5. The method of claim 4 wherein each of said plurality
of node level schedulers monitors its own local logical clock
to determine the end of said time slice.

6. The method of claim 3 further comprising dynamically
updating said schedule 1in response to a request for release of
rESOUrces.

7. The method of claim 3 further comprising dynamically
updating said schedule when more resources become avail-
able.

8. The method of claim 3 further comprising dynamically
updating at least one of said plurality of sub-schedules when
tasks are completed.

9. The method of claim 3 further comprising dynamically
updating at least one of said plurality of sub-schedules when
scheduling of more application tasks 1s needed.

10. A method for providing processor resource allocation
among tasks of parallel applications in a computer environ-
ment having a gang scheduler and a plurality of nodes each
having at least one processor, a local logical clock, and a
node level scheduler comprising the steps of:

receiving application information at said gang scheduler;

flexibly creating a schedule at said gang scheduler, said
schedule comprising a mapping of node-specific tasks
of said applications to said plurality of nodes and for
communicating only node-specific task information of
said mapping to each of said plurality of nodes;

receiving said node-specific task information of said
mapping at each of said plurality of nodes;

establishing, at each of said plurality of nodes, a sub-
schedule for executing said node-specific tasks of said
mapped applications; and

10

15

20

25

30

35

40

10

executing said sub-schedule at each of said plurality of

nodes.

11. The method of claim 10 further comprising dynami-
cally updating said mapping 1n response to a request for
release of resources.

12. The method of claim 10 further comprising dynami-
cally updating said mapping when more resources become
available.

13. The method of claim 10 further comprising dynami-
cally updating at least part of saxd mapping when tasks are
completed.

14. The method of claim 10 further comprising dynami-
cally updating at least part of said mapping when scheduling
of more application tasks i1s needed.

15. The method of claim 10, wherein said schedule further
comprises time slice information, and wherein said execut-
ing further comprising utilizing said time slice information
for switching between tasks of said sub-schedule according
to said local logical clock.

16. A program storage device readable by machine, tan-
o1bly embodying a program of instructions executable by the
machine to perform method steps for providing processor
resource allocation among tasks of parallel applications 1n a
computer environment having a gang scheduler and a plu-
rality of nodes each having at least one processor, a local
logical clock, and a node level scheduler, said method steps
comprising;:

receving application requirement information at said

gang scheduler;

utilizing said application requirement information for
flexibly creating a schedule at said gang scheduler, said
schedule comprising a plurality of sub-schedules of
node-specific tasks for each of said plurality of nodes;

transmitting node-specific task immformation of said plu-
rality of sub-schedules, one to each of said plurality of
nodes; and

wherein said sub-schedules are implemented at said plu-
rality of nodes.

	Front Page
	Drawings
	Specification
	Claims

