US006338133B1
a2 United States Patent (10) Patent No.: US 6,338,133 Bl
Schroter 45) Date of Patent: Jan. 8, 2002
(54) MEASURED, ALLOCATION OF 5,664,136 A 0/1997 Witt et al. 712/208
SPECULATIVE BRANCH INSTRUCTIONS 5,724,565 A 3/1998 Dubey et al. 712/245
TO PROCESSOR EXECUTION UNITS 5,729,728 A 3/1998 Colwell et al. 7127234
5,752,014 A 5/1998 Mallick et al. 712/240
_ : 5,778,245 A * 7/1998 Papworth et al. 712/23
(75) Inventor: TD?E%‘SA)MWW Schroter, Round Rock, 6,009,499 A * 12/1999 Koppalaooeorv.... 711/132
FOREIGN PATENT DOCUMENTS
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) EX 751458 AL 11997
OTHER PUBLICATTONS
(*) Notice: Sub]ect. to any d1scla1mer,i the term of this IBM Technical Disclosure Bulletin, “Cycle Steal at Rename
patent 1s extended or adjusted under 35 Register,” vol. 38, No. 9, Sep. 1995, pp. 363-364.
U.S.C. 154(b) by 0 days. IBM Technical Disclosure Bulletin, “Data Restoration of an
Addressable Array,” vol. 35, No. 1A, Jun. 1992, pp.
(21) Appl. No.: 09/267,200 1997275
1. Pradeep K. Dubey et al.,, “Single—Program Speculative
22) Filed: Mar. 12, 1999 ‘
(22) Hile Ak s Multithreading (SPSM) Architecture: Compiler—Assisted
Fine Gramned Multithreading”, Conference on Parallel
7 . . =
(51) Imt. CL% G(}O(fgfé ?3%2?(()}6561:9/ 3?254: lla&(;gﬂt;ci:tures and Compilation Techniques, 1995, pp.
(52) US.Cl o, 712/214, 712/206; 712/207; R ainer Mueller, “The MCS88110 Instruction Sequencer”,
712/239; 712/237; 712/245; 711/137; 711/144; Northcon Conference Record, Oct. 19-21, 1992, pp.
711/145; 711/123; 711/125; 710/54; 710/56; 198-201.
710/57 ¢ cited b _
(58) Field of Searchco.cccoovevvvvne... 712/231, 232, clied by examiner
712/233, 234, 236, 237, 239, 207, 206, Primary Fxaminer—Daniel H. Pan
216, 222, 245, 202, 228, 23, 215, 223, (74) Attorney, Agent, or Firm— eslie A. Van Leeuwen;
235, 126, 217, 204, 226, 214; 711/137, Bracewell & Patterson, L.L.P.
144, 145; 710/54, 56, 57 (57) ABSTRACT
(56) References Cited A method and system for branch dispatching of instructions
US PATENT DOCUMENTS n a datf?l processor. A processor having one or more b}l Ters
for storing 1nstructions and one or more execution units for
5,228,131 A 7/1993 Ueda et al. 712/240 executing 1nstructions 1s utilized. Each unit has a corre-
5,333,283 A 771994 Emma et al. 712/236 sponding queue which holds instructions pending execution.
?jﬁz?f? : gﬁ ggg]I;e"}t‘fi“ tml ------------------ 7%/2223 First, a threshold level (selected maximum number of
454, uziol et al. - - - - - -
ST A < 101095 iowanct sty nsimetions n e rction quen) is st The cuen
5,564,111 A 10/1996 Glew et al. 174/53 q : . d - d. Th 1t
5611063 A 3/1997 Toper et al. wo.ceove....... 712/205 ata proc<::-,551ng system 1S determine T ¢ current utilization
5613.083 A 3/1997 Glew et al. womeeeennson.. 711207 measure 1s compared to the predetermined threshold value;
5.613,125 A 3/1997 Nguyen et al. 713/1 and a speculative branch instruction i1s dispatched to a
5,625,787 A 4/1997 Mahin et al. 712/204 selected execution unit when the current utilization measure
5,634,103 A 5/1997 Dietz et al. 712/235 1s less than the predetermined threshold value.
5,640,526 A 6/1997 Mahin et al. 7127207
5,644,744 A 7/1997 Mahin et al. 7127207 12 Claims, 5 Drawing Sheets
At ! Branch '8 o~ P
~| Sequential | Processing IJ
to Fetcher Uit ‘4
S T 1o 5
Completion Instruction
T Unit _| Queue
+ 20 Instruction Cache and MMU
Dispatch S
Unit
i . i
1522 Y § 28 ¥ o356 jq3o
GFR 33 PR L3
FXU HB?R‘??SE LSU ET#::: FPU
GPR FPR
l [+]
] |
6. q?
Data Cache and MMU BIU

. ' ol

11

US 6,338,133 Bl

Sheet 1 of 5

Jan. 8, 2002

U.S. Patent

811}

(NVH)

AHOWIN
AHVHOdW4GL

9l }

¢C

I ‘b
Vil Vel
OISIQ 4VH)
AHOWAN S32IA3A QI JHVMINHIH

LININVIANGd

0¢}

HOSS3004d
0}
AT

US 6,338,133 Bl

Sheet 2 of 5

Jan. 8, 2002

U.S. Patent

b}

Nig

A

n
0t

NINW pue ayoe) uoIi1onJisuyj

I
: NS

Huf
buissadoid
oueig

NN Pue ayoe) eleq

yojedsiq

ananpy
LUOI}ON1SU]

JETTRIEN
|eliuanbag

91

_ NX4

Hun
uoi3ajdwo)n

z by

U.S. Patent Jan. 8, 2002 Sheet 3 of 5 US 6,338,133 Bl

s

203
Set threshold values
for execution units
205
Fetch an
instruction
207
Place instruction
In register 21 1
Hold instruction
in abeyance
209 Yes

210

Is Instruction
speculative Yes
(branch guessing
required) ?

Is system at
its threshold ?

213

Send instruction to

appropriate execution
unit queue

Execute instruction

T1g. 3

Additional
instructions to

execute ?

Yes

No

GE"ED A

U.S. Patent

401A

of o II INSN 6
ol |gO0sA ol
of [_[lof |05B IIEEIE 409
ol 0f [Tl | |[1]NSNT
IIIREII 08 IIIE@! +03 NSN

Jan. 8, 2002 Sheet 4 of 5 US 6,338,133 Bl
20
Dispatch
Unit
407A 4018 4078 401C 107C
405C

409

403 403 403 20

Count
#1's

THFXU

413

Count Count
#1's #1's

THLsu THFPU

Count #1's
Output = 1
413 413

n -

0 O, False if all Counts < TH
1, True if 1 or more Counts > TH

TFig. 44

U.S. Patent Jan. 8, 2002 Sheet 5 of 5 US 6,338,133 Bl

US 6,338,133 B1

1

MEASURED, ALLOCATION OF
SPECULATIVE BRANCH INSTRUCTIONS
TO PROCESSOR EXECUTION UNITS

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates 1n general to a method and
system for data processing and 1n particular to a method and
system for executing instructions within a data processor.
Still more particularly, the present invention relates to a
method and system for executing instructions within a data
processor such that speculative branch instructions are con-
trolled to provide more efficient execution.

2. Description of the Related Art

A conventional high performance superscalar processor
typically includes an instruction cache for storing
instructions, an instruction buffer for temporarily storing
instructions fetched from the instruction cache {for
execution, a number of execution units for executing
sequential instructions, a branch processing unit (BPU) for
executing branch instructions, a dispatch unit for dispatch-
ing sequential instructions from the instruction buffer to
particular execution units, and a completion buffer for
temporarily storing instructions that have finished execution,
but have not been completed.

As 1s well known 1n the art, sequential instructions fetched
from the instruction queue are stored within the 1nstruction
buffer pending dispatch to the execution units. In contrast,
branch mstructions fetched from the instruction cache are
typically forwarded directly to the branch processing unit for
execution. In some cases, the condition register value upon
which a conditional branch depends can be ascertained prior
to executing the branch mstruction, that is, the branch can be
resolved prior to execution. If a branch 1s resolved prior to
execution, instructions at the target address of the branch
instruction are fetched and executed by the processor. In
addition, any sequential instructions following the branch
that have been pre-fetched are discarded. However, the
outcome of a branch instruction often cannot be determined
prior to executing the branch instruction due to a condition
register dependency. When a branch instruction remains
unresolved at execution, the branch processing unit utilizes
a prediction mechanism, such as a branch history table, to
predict which execution path should be taken. In conven-
fional processors, the dispatch of sequential instructions
following a branch predicted as taken 1s halted and instruc-
fions within the speculative target instruction stream are
fetched during the next processor cycle. If the branch that
was predicted as taken 1s resolved as mispredicted, a mispre-
dict penalty 1s incurred by the processor due to the cycle
fime required to restore the sequential execution stream
following the branch instructions.

A high performance processor achieves high instruction
throughput by fetching and dispatching instructions under
the assumption that branches are correctly predicted and
allows 1nstructions to execute without waiting for the
completion of previous instructions. This 1s commonly
known as speculative execution, 1.¢., eXecuting instructions
that may or may not have to be executed. The CPU guesses
which path the branch was going to take. This guess may be
a very intelligent guess (as in a branch history table) or very
simple (as in always guess path not taken). Once the guess
1s made, the CPU starts executing that path. Typically, the
processor executes instructions speculatively when 1t has
resources that would otherwise be 1dle, so that the operation
may be done at minimum or no cost. Therefore, 1n order to

10

15

20

25

30

35

40

45

50

55

60

65

2

enhance performance, some processors speculatively
execute unresolved branch instructions by predicting
whether or not the indicated branch will be taken. Utilizing
the result of the prediction, the fetcher 1s then able to fetch
instructions within the speculative execution path prior to
the resolution of the branch, thereby avoiding a stall in the
execution pipeline 1f the branch i1s resolved as correctly
predicted. If the guess 1s correct, and there are no holes or
delays 1n the pipeline, execution continues at full speed. If,
however, subsequent events indicate that the speculative
mnstruction should not have been executed, the processor has
to abandon any result that the speculative instruction pro-
duced and begin executing the path that should have been
taken. The processor “flushes” or throws away the istruc-
tion results, backs itself up to get a new address and executes
the correct instruction.

Most operations can be performed speculatively, as long
as the processor appears to follow a simple sequential
method such as those 1n a scalar processor. For some
applications, however, speculative operations can be a
severe detriment to the performance of the processor. For
example, 1n the case of executing a load instruction after a
branch instruction (known as speculative load because the
load 1nstruction 1s executed speculatively without knowing
exactly which path of the branch would be taken), if the
predicted execution path 1s 1ncorrect, there 1s a high delay
penalty 1s incurred when the pending speculative load 1n the
instruction stream requests the required data from the system
bus. In many applications, the rate of mis-predicted branches
1s high enough that the cost of speculatively accessing the
system bus 1s prohibitively expensive. Furthermore, essen-
tial data stored 1n a data cache may be displaced by some
irrelevant data obtained from the system bus because of a
wrongtul execution of a speculative load instruction caused
by misprediction.

Prior art handling of this speculative execution of instruc-
tions 1ncludes U.S. Pat. No. 5,454,117 which discloses a
branch prediction hardware mechanism. The mechanism
performs speculative execution based on the branch history
information 1n a table. However, 1t does not provide a means
for prediction based on the current status of the branch
execution unit. Stmilarly, U.S. Pat. No. 5,611,063 discloses
a method for tracking allocation of resources within a
processor utilizing a resource counter which has two bits set
in two possible states corresponding to whether or not the
instruction is speculative or when dispatched to an execution
unit respectively.

U.S. Pat. No. 5,752,014 discloses a selection from among
a plurality of branch prediction methodologies, namely
dynamic prediction and static prediction, in speculative
execution of conditional branch instructions. It discusses the
execution of the instructions based on the prediction and
subsequent conditional branch instruction.

No prior art discloses a method or system for determining
whether to dispatch a speculative instruction based on
current loading conditions. Consequently, a processor and
method for speculatively executing conditional branch
instructions are needed which intelligently determines when
it 1s necessary to utilize speculative prediction.

In modern microprocessors, there are many mechanisms
known to speculatively execute instructions. Speculative
execution can 1mprove performance significantly if the
speculation 1s correct. In speculatively executing branch
instructions, prediction means improve the likelihood of
ouessing the correct path. However, if the guess 1s wrong
recovery means must be utilized to cancel the effect of

US 6,338,133 B1

3

instructions that should not be completed. In actual practice,
it 1s sometimes difficult and expensive to selectively cancel
instructions as a result of a bad branch speculation. This 1s
especially true 1n superscalar systems where instructions are
executed out-of-order. A new method 1s needed to better
determine when speculative branch instructions are to be
dispatched.

It would therefore be desirable to provide a method and
system for selectively executing speculative branch instruc-
fions 1n a high performance processor by utilizing a better
prediction scheme. It 1s further desirable to provide a method
and system which dispatch speculative instructions only
when the system 1s below a predefined load capacity to
prevent unfettered dispatching of speculative instructions.

SUMMARY OF THE INVENTION

It 1s therefore one object of the present invention to
provide an improved data processor.

It 1s another object of the present invention to provide a
method and system for executing instructions within a data
ProCeSSOr.

It 1s yet another object of the present invention to provide
a method and system for executing instructions within a data
processor such that speculative branch instructions are con-
trolled to provide more efficient execution.

The foregoing objects are achieved as 1s now described.
A method and system 1s disclosed for speculative branch
dispatching of instructions in a data processor. A processor
having one or more buffers for storing instructions and one
Oor more execution units for executing instructions 1s utilized.
Each execution unit has a corresponding queue which holds
instructions pending execution. First, a threshold level
(selected maximum number of instructions in the instruction
queue) 1s set. The current utilization measure for one or more
execution units 1n the data processing system 1s then deter-
mined. The current utilization measure 1s compared to the
predetermined threshold value; and a speculative branch
instruction 1s dispatched to a selected execution unit when
the current utilization measure 1s less than the predetermined
threshold value.

In one embodiment of the invention, the branch dispatch-
ing check occurs at each unit individually. A comparison 1s
made of the number of 1nstructions queued to the execution
unit with its threshold value. The dispatching step dispatches
the branch instructions to that execution unit only when the
number of 1nstructions queued at the execution unit 1s lower
than the threshold value for that umnit.

The above as well as additional objects, features, and
advantages of the present invention will become apparent 1n
the following detailed written description.

DESCRIPTTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth m the appended claims. The invention itself
however, as well as a preferred mode of use, further objects
and advantages thereof, will best be understood by reference
to the following detailed description of an illustrative
embodiment when read 1n conjunction with the accompa-
nying drawings, wherein:

FIG. 1 1s a block diagram of a data processing system
utilized 1n one embodiment of the present invention;

FIG. 2 1s a block diagram of a preferred embodiment of
a processor which utilizes the method and system of the
present mvention;

FIG. 3 1s a flow chart depicting the process of 1nstruction
execution according to one implementation of the present
mvention;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 4A 1s a block diagram of the circuit components
utilized within one embodiment of the present invention;
and

FIG. 4B 1s a block diagram depicting an instruction queue
and register 1 accordance with one embodiment of the
present 1vention.

DETAILED DESCRIPTION OF ILLUSTRAIITVE
EMBODIMENT

With reference now to the figures and 1n particular with
reference to FI1G. 1, there 1s illustrated a block diagram of the
basic structure of a data processing system 100 utilized 1n
the preferred embodiment of the invention. Data processing
system 100 has at least one central processing unit (CPU) or
processor 10 which 1s connected to several peripheral
devices, including input/output devices 114 (such as a dis-
play monitor, keyboard, and graphical pointing device) for
user interface, a permanent memory device 116 (such as a
hard disk) for storing the data processing system’s operating
system and user programs/applications, and a temporary
memory device 118 (such as random access memory or
RAM) that is utilized by processor 10 to implement program
instructions. Processor 10 communicates with the peripheral
devices by various means, including a bus 120 or a direct
channel 122 (more than one bus may be provided utilizing
a bus bridge).

Those skilled 1n the art will further appreciate that there
are other components that might be utilized 1n conjunction
with those shown 1n the block diagram of FIG. 1; for
example, a display adapter connected to processor 10 might
be utilized to control a video display monitor, and a memory
controller may be utilized as an interface between temporary
memory device 118 and processor 10. Data processing
system 100 also includes firmware 124 whose primary
purpose 15 to seek out and load an operating system from one
of the peripherals (usually permanent memory device 116)
whenever the data processing system 1s first turned on. In the
preferred embodiment, data processing system contains a
relatively fast CPU or processor 10 along with sufficient
temporary memory device 118 and space on permanent
memory device 116, and other required hardware compo-
nents necessary for providing efficient execution of instruc-
fions.

FIG. 2 1s a block diagram of processor 10, for processing
information according to a preferred embodiment of the
present invention. Processor 10 may be located within data
processing system 100 as depicted in FIG. 1. In the depicted
embodiment, processor 10 comprises a single integrated
circuit superscalar microprocessor. Accordingly, as dis-
cussed further below, processor 10 includes various execu-
tion units, registers, butlers, memories, and other functional
units, which are all formed by mtegrated circuitry. In a
preferred embodiment of the present invention, processor 10
comprises one of the PowerPc™ line of microprocessors,
which operates according to reduced instruction set com-
puting (RISC) techniques. As depicted in FIG. 1, processor
10 1s coupled to system bus 11 via a bus mterface unit BIU
12 within processor 10. BIU 12 controls the transfer of
information between processor 10 and other devices coupled
to system bus 11 such as a main memory (not illustrated).
Processor 10, system bus 11, and the other devices coupled
to system bus 11 together form a data processing system.

BIU 12 1s connected to instruction cache 14 and data
cache 16 within processor 10. High speech caches, such as
instruction cache 14 and data cache 16, enable processor 10
to achieve relatively fast access time to a subset of data or

US 6,338,133 B1

S

instructions previously transferred from main memory to
instruction cache 14 and data cache 16, thus improving the
speech of operation of the data processing system. Instruc-
fion cache 14 1s further coupled to sequential fetcher 17,
which fetches instructions from instruction cache 14 during,
cach cycle for execution. Sequential fetcher 17 transmits
branch instructions fetched from instruction cache 14 to

branch processing unit BPU 18 for execution, but stores
sequential 1nstructions within instruction queue 19 for
execution by other execution circuitry within processor 10.

In the depicted embodiment, in addition to BPU 18, the
execution circuitry of processor 10 comprises multiple
execution units, including fixed-point unit (FXU) 22, load/
store unit (LSU) 28, and floating-point unit (FPU) 30. As is
well known by those skilled in the art, each of execution
units FXU 22, L.SU 28, and FPU 30 executes one or more
instructions within a particular class of sequential 1nstruc-
tions during each processor cycle. For example, FXU 22
performs fixed-point mathematical operations such as
addition, subtraction, ANDing, ORing, and XORing utiliz-
ing source operands received from specified general purpose
registers (GPRs) 32. Following the execution of a fixed point
instruction, FXU 22 outputs the data results of the instruc-
fion to GPR rename buifers 33, which provide temporary
storage for the result data until the 1nstruction 1s completed
by transferring the result data from GPR rename buflfers 33
to one or more of GPRs 32. Conversely, FPU 30 performs
floating-point operations, such as floating-point multiplica-
fion and division, on source operands received from
floating-point registers FPRs 36. FPU 30 outputs data result-
ing from the execution of floating-point instructions to
selected FPR rename buffers 37, which temporarily store the
result data until the instructions are completed by transfer-
ring the result data from FPR rename buffers 37 to selected
FPRs 36. As its name implies, LSU 28 executes floating-
pomt and fixed-point instructions which either load data
from memory (i.e., either data cache 16 or main memory)

into selected GPRs 32 or FPRs 36 or which store data from
a selected GPRs 32 or FPRs 36 to memory.

Processor 10 employs both pipelining and out-of-order
execution of mstructions to further improve the performance
of 1ts superscalar architecture. Accordingly, instructions can
by executed by FXU 22, LSU 28, and FPU 30 1n any order
as long as data dependencies are observed. In addition,
instructions are processed by each of FXU 22, LSU 28 and
FPU 30 at a sequence of pipeline stages. As 1s typical of high
performance processors, each mstruction 1s processed at five
distinct pipeline stages, namely, fetch, decode/dispatch,
execute, finish and completion.

During the fetch stage, sequential fetcher 17 retrieves one
or more 1nstructions associated with one or more memory
addresses from instruction cache 14. Sequential instructions
fetched from instruction cache 14 are stored by sequential
fetcher 17 within registers such as instruction queue 19. In
contrast, sequential fetcher 17 removes branch instructions
from the 1nstruction stream and forwards them to BPU 18 for
execution. BPU 18 includes a branch prediction mechanism,
which 1n one embodiment comprises a dynamic prediction
mechanism such as a branch history table, that enables BPU
18 to speculatively execute unresolved conditional branch
instructions by predicting whether the branch will be taken.
Alternatively, 1n other embodiments of the present
invention, a static, compiler-based prediction mechanism 1s
implemented. As will be described 1n greater detail below,
the present invention minimizes branch misprediction and
subsequent penalties incurred by processor 10 when specu-
lative instruction branch prediction 1s desired.

10

15

20

25

30

35

40

45

50

55

60

65

6

During the decode/dispatch stage, dispatch unit 20
decodes and dispatches one or more instructions from
instruction queue 19 to the appropriate ones of execution
units FXU 22, LSU 28 and FPU 30. Decoding involves
determining the type of instruction mncluding its character-
istics and the execution unit to which 1t should be dis-
patched. In the preferred embodiment, it also involves
determining whether or not the instruction 1s speculative.
Also during the decode/dispatch stage, dispatch unit 20
allocates a rename buffer within GPR rename buflfers 33 or
FPR rename buffers 37 for each dispatched instructions’
result data. According to a preferred embodiment of the
present invention, dispatch unit 20 1s connected to execution

units FXU 22, LSU 28 and FPU 30 by a set of registers
described below with reference to FIGS. 4A and 4B.

FIG. 4A depicts the execution units FXU 22, LSU 28 and
FPU 30 and their corresponding register 401A, 401B, and
401C and queue 407A, 407B, and 407C. Typically, each
register 401A, 401B, and 401C allocates a valid bit 403
associated with each entry/instruction queued to the execu-
tion unit FXU 22, LSU 28, and FPU 30 1n its respective
queue 407A, 407B, and 407C. This bit 403 when “on” (set
to “1”) indicates that an instruction is present and is tradi-

tionally utilized to give prominence to that instruction within
queue 401A, 401B, and 401C. Threshold value 405A, 4058,

and 405C for execution unit FXU 22, LSU 28, and FPU 30
1s also 1illustrated 1n FIG. 4A. As illustrated each unit may
have a unique threshold value 405A, 405B, and 405C. In the
preferred embodiment, the tracking of the number of instruc-
tions 1n each queue 1s implemented by counting the number
of bits 403 1 register 401A, 401B, and 401C. Bits 401 are
counted by counter 411 which 1s connected to register 401A,
401B, and 401C. After an 1nstruction has been executed the
corresponding bit is reset (set to ‘0’) reducing the number
count for that queue 1n the preferred embodiment. Thus
registers 401 A, 401B, and 401C are utilized to keep track of
the number of instructions in each queue 407A, 407B, and
407C of each execution unit FXU 22, LSU 28, and FPU 30
respectively. For the purposes of this illustrative
embodiment, 1t 1s assumed that instructions are loaded
sequentially mnto the queue of the execution units. Those
skilled 1n the art understand that this representation does not
preclude other representations and further that the instruc-
tions are not limited to being executed 1n the sequential
manner as 1llustrated. It 1s further understood by those
skilled 1n the art that alternative ways of tracking the number
of mstructions 1n an execution unit’s queue are contemplated
as falling within the scope of the present 1nvention. Utili-
zation of the registers as presented here 1s solely for 1llus-
frative purposes, and 1s not exclusive.

Dispatch unit 20 1s also programmed to dispatch specu-
lative 1nstructions based on given conditions supplied to 1t
from OR circuit 415 which i1s connected to comparator 413.
Comparator 413 1s provided with the threshold values for
cach execution unit FXU 22, LSU 28 and FPU 30. In the
preferred embodiment, when dispatch unit 20 receives a
speculative branch instruction (determined during the
decoding stage), it first checks the system load to determine
whether or not to send the branch instruction. In the pre-
ferred embodiment, comparator 413 compares each execu-
tion unit load level (number of instructions awaiting
execution) to its threshold value. The results of these com-
parisons are then ORed together by OR circuit 415 to yield
a “false,” output when all of the units are below their
threshold. If any one or more unit 1s above 1ts threshold, then
a “true” output 1s yielded. In the preferred embodiment,
dispatch unit 20 will only dispatch a speculative branch

US 6,338,133 B1

7

instruction when the results of the OR function 1s false.
Comparisons are made at the beginning of each cycle, while
a speculative branch instruction i1s present. When the result
1s true, the speculative branch instruction 1s held until a false
result 1s obtained. A false result may thus be obtained 1n the
next cycle or 1 subsequent cycles. Those skilled 1n the art
are Tamiliar with the functioning of an OR circuit.

FIG. 4A illustrates one embodiment of how the checking,
stage of the invention 1s 1mplemented. Threshold value
405A, 405B, and 405C for each unit FXU 22, L.SU 28 and
FPU 30, 1s represented on its corresponding queue 407A,
4078 and 407C. The number of mstructions in a given queue

1s determined by checking bits 403 of register 401A, 401B,
and 401C. In the 1llustrative embodiment, FXU 22 has less
instructions in 1ts queue 407A than its threshold value 405A.
Load/Store Unit 28 also has less instructions 1n its queue
407B than 1ts threshold value 405B. A comparison by
comparator 413 yields a false result for both units. FPU 30
has more instructions than its threshold value 405C and
yields a true result when a comparison 1s done by compara-
tor 413. ORing these results together thus yields a true result
and the speculative branch instruction is not dispatched.

In another embodiment of the 1nvention, only the number
of speculative 1nstructions found within any one queue 1is
tracked. This yields a more realistic picture of how specu-
lative the branch instruction may be. Further, the threshold
value 1s set as a predetermined number of such speculative
instructions found 1n the queue. When a speculative branch
instruction 1s presented, the comparison 1s made based on
these two values. Thus 1n FIG. 4B, although FPU 30 has
more total mnstructions 409 than the threshold value, only the
instructions which are themselves speculative are counted.
Instruction 1 409A and Instruction 3 409B are speculative.
Comparator 413 checks this number of speculative instruc-
tions (2) against threshold value 405C. Identifying specula-
five 1nstructions 1n this embodiment entails keeping track of
the 1nstruction when 1t 1s dispatched from dispatch unit. In
this embodiment, register 401C 1s provided with an addi-
tional bit 404 for tracking whether or not an instruction 1s
speculative.

The preferred embodiment of the invention 1s 1mple-
mented on a general system level and determines the dis-
patching of speculative branches. Another embodiment of
the mvention 1s implemented on an individual execution unit
level and determines the dispatching of a speculative
instruction which targets a specific execution unit. Dispatch
unit 20 checks the target execution unit’s register to deter-
mine the number of instructions present in the unit’s queue.
Comparator 413 then compares this value with the corre-
sponding threshold value. As 1n the preferred embodiment of
the invention, when the threshold value 1s equal to or below
the number of instructions 1n the unit’s queue, dispatch unit
20 holds the speculative instruction until the next cycle or
subsequent cycles. If the number of mstructions 1n the unit’s
queue falls below the threshold value, dispatch unit 20
dispatches the speculative instruction to the execution units
to await execution.

Those skilled 1n the art understand that although specific
methods have been disclosed of determining the threshold
value of an execution unit, the threshold value 1s 1 fact an
arbitrary value which may be selected 1n a variety of ways.
The mnvention as described contemplates all such selection
methods.

During the execution stage, execution units FXU 22, LSU
28 and FPU 30 execute instructions received from dispatch
unit 20 as soon as the source operands for the indicated

10

15

20

25

30

35

40

45

50

55

60

65

3

operations are available. After execution has terminated,
execution units FXU 22, LSU 28, and FPU 30 store data
results within either GPR rename buifers 33 or FPR rename
buffers 37, depending upon the instruction type. Then,
execution units FXU 22, LSU 28, and FPU 30 signal
completion unit 40 that the execution unit has finished an
instruction. Finally, instructions are completed 1n program
order by transferring result data from GPR rename buifers
33 or FPR rename buffers 37 to GPRs 32 or FPRs 36,

respectively.

The execution of 1nstructions prior to the final possible
definition of all conditions effecting execution 1s called
speculative execution. To wait for the outcome of condi-
tional branches, or the arrival of all possible interrupts,
would make full concurrent processing 1impossible.

The present invention provides a novel method to disable
speculative execution when resources are busy. In the pre-
ferred embodiment, this 1s achieved by allowing branch
cuessing only when 1t 1s likely that processor units will
benelit from the speculation. More specifically, 1n the pre-
ferred embodiment, the dispatch of a speculative branch path
1s dependant on a measure of current utilization of the
execution units. In general, 1f there are instructions execut-
ing and 1mstructions queued up to be executed, then the need
for additional mstructions to be dispatched 1s less than 1f the
execution units were waiting for work (i.e., new instructions
to execute). Therefore, in the preferred embodiment of this
invention, a decision to dispatch speculative instructions 1s
based on the current utilization of the execution units. In one
illustrative embodiment of the invention, the logic tracks
how many instructions are queued up for each of the
execution units and, based on a threshold for each execution
unit, decides whether or not to dispatch speculative paths.

In the preferred embodiment of the invention, different
units are assigned different threshold settings. Threshold
levels are based on the unit’s individual characteristics, such
as, the type of instructions executed on the unit. For the
purposes of this invention, a unit’s threshold refers specifi-
cally to a number of instructions which are located within
the unit’s instruction queue awaiting execution. This number
1s variable depending on the system loading and the devel-
oper’s choice. In the preferred embodiment, the threshold 1s
typically a number less than the maximum number of
instructions which can be stored in the unit’s instruction
queue. For 1nstance, 1n the case of mstructions which could
be executed 1n Memory Load/Store execution units, the
latency of these instructions may be large due to the nature
of memory and cache management, and therefore, the
threshold level for the Load/Store units 1s lower than for a
unit that didn’t have a memory latency involved in its
operation.

In another embodiment of the invention, the number of
instructions which had been dispatched (but not yet
completed) is tracked as an indication of current execution
unit utilization or as an 1ndication of the amount of work
(i.c., instructions) that was already assigned to the execution
unit.

In one embodiment, the invention 1s implemented without
pre-set threshold levels. The instructions are fetched and
examined 1n the predicted path to identify which execution
unit(s) would be the target for execution of these instructions
and then, based on how many instructions were queued up
(to these units). When the target unit had instructions queued
up, then speculative instructions wouldn’t be dispatched to
this unit. When the unit 1s 1dle, however, speculative mstruc-
tions would be dispatched to it. Those skilled in the art

US 6,338,133 B1

9

understand that the setting of a threshold value, though
disclosed as the preferred embodiment, 1s not essential to the
working of the present mvention when implemented as
described above.

The 1nvention 1s preferably implemented 1in hardware and
may be 1llustrated 1n terms of internal circuitry of a proces-
sor for enabling speculative branch dispatching as 1in FIG.
4A. In this embodiment, counter 411 tracks the number of
Instructions waiting to be executed in each execution unait.

Comparator 413 indicates when the number of instructions
waiting to be executed exceeds a predetermined threshold.
Also, OR circuit 415 then compares a plurality of compari-
son results to determine system loading. These circuit com-
ponents are additional components coupled to each other
and the existing components of a processor, namely dispatch
unit 20, mstruction queue 407, and register 401 to enable
speculative dispatching only when a number of instructions
waiting for execution 1s less than a 1s predetermined thresh-

old.

The above embodiment consists of new circuitry compo-
nents. Another embodiment of the mnvention utilizes current
hardware components. The dispatching circuitry for
example, currently has a laree list of conditions which are
checked prior to dispatching of an instruction. Adding
additional conditions to implement the 1nvention requires
very little effort and may be preferred 1n certain circum-
stances. Additionally, the physical components described
above, namely a comparator, a counter and an OR circuit
may be implemented as software blocks within the data
processing system. The invention 1s capable of being 1imple-
mented 1n any system/processor. In the preferred
embodiment, a superscalar processor with multiple execu-
fion units capable of handling multiple numbers of mnstruc-
fion simultaneously, 1s desired.

It 1s understood by those skilled 1n the art that instructions
may e€xist in more than one state. An instruction may be
waiting to be executed or 1t may have already been executed
and 1s 1n some stage of completeness. The present invention
contemplates setting threshold values and counting the num-
ber of instructions in the queue based on predetermined
factors which the developer may implement. For instance, 1t
an 1nstruction will take a large number of cycles before 1t 1s
completed, then it would be preferred to count that mstruc-
tion. If, however, that same 1nstruction has been executed
and will be completed 1n the current or next cycle, then 1t
would be preferred to not count the istruction.

FIG. 3 depicts a flow chart of the process mnvolved 1n the
implementation of the preferred embodiment of the present
invention. The process begins (step 201) with the system
developer setting threshold values for each execution unit
(step 203). During running of an application, an instruction
is fetched (step 205) by the sequential fetcher and placed
into a register (step 207). The system then checks to see if
the 1nstruction 1s speculative, 1.e. 1f 1t 1s a branch 1nstruction
and 1f branch guessing 1s required (step 209). When the
instruction 1s speculative, a further check 1s made to deter-
mine if the execution unit queue is at its threshold level (step
210). As discussed above, there are several ways to make
this determination. For example, a register attached to each
execution unit 1s utilized to track the number of 1nstructions
queued and this number 1s compared against the threshold
value by a comparator. If the queue 1s at its threshold value,
the instruction 1s held in abeyance until some of the prior
instructions in the queues are executed (step 211). This may
take several cycles; however, the instruction i1s presented
again to determine whether or not it is still speculative (step
209). If, however, the instruction queue is not at its threshold

10

15

20

25

30

35

40

45

50

55

60

65

10

level, or when the instruction 1s not speculative, then it 1s
sent to the execution unit’s instruction queue (step 213) and
ultimately executed (step 215). The process then checks
memory for additional instructions to execute (step 217). If
more 1nstructions are available then the process returns to
fetch the next instruction (step 205). Otherwise, the process
ends (step 219). It is understood by those skilled in the art
that although the above example has been shown with
reference to single individual instructions, any number of
instructions may be fetched from memory and processed
simultaneously depending on hardware capabilities.

While the invention has been particularly shown and
described with reference to a preferred embodiment, 1t will
be understood by those skilled 1n the art that various changes
in form and detail may be made therein without departing
from the spirit and scope of the mvention.

What 1s claimed 1s:

1. A method for dispatching of instructions 1mn a data
processing system comprising the steps of:

determining a current utilization measure for one or more
execution units 1n said data processing system, wherein
said current utilization measure 1s a number of 1nstruc-
tions queued at said one or more execution units;

setting a threshold value for each execution unit, wherein
an mdividual threshold 1s established for each execu-
tion unit, wherein said threshold value 1s selected based
on characteristics of each of said plurality of execution
units, and said threshold value 1s a number correspond-
ing to the maximum desired number of instructions
queued at said execution unit above which no specu-
lative dispatch occurs;

comparing said number of mstructions queued at each of
said execution units with said threshold value of each
of said execution units, respectively, to produce a series
of results, and ORing said series of results, wherein
said ORing yields a false output when no execution unit
1s at 1ts threshold, and a true output when any one of
said plurality of execution units 1s at 1its threshold; and

dispatching a speculative branch instruction to a selected
execution unit only when said ORing step yields said
false output indicating that said current utilization
measure 15 less than said predetermined threshold
value.

2. The method of claim 1, wherein said determining step
1s 1mplemented by tracking said number of instructions
which have been dispatched, but not yet completed, as an
indication of current execution utilization.

3. The method of claim 1, wherein said determining step
1s 1mplemented by tracking said number of instructions
which have been dispatched, but not yet executed, as an
indication of the amount of work that has already been
assigned to said execution unit.

4. The method of claim 1, wherein said dispatching step
further includes:

first fetching an instruction;

examining said instruction 1n a predicted path to 1dentify
which execution unit 1s a target for execution of said
mstruction;

examining said instruction unit to determine the number
ol 1nstructions queued up to said unait;

when said instruction unit has mstructions queued up,
disabling speculative 1nstruction dispatching to said
unit; and

when said 1nstruction unit 1s 1dle, enabling the dispatch of
speculative instructions to said unit.

US 6,338,133 B1

11

5. A data processing system for dispatching of instructions
comprising:

means for determining a current utilization measure for
one or more execution units in said data processing
system determining a current utilization measure for
one or more execution units in said data processing
system, wherein said current utilization measure 1s a
number of istructions queued at said one or more
execution units;

means for setting a threshold value for each execution
unit, wherein an individual threshold 1s established for
cach execution unit, wherein said threshold value 1s
selected based on characteristics of each of said plu-
rality of execution units, and said threshold value 1s a
number corresponding to the maximum desired number
of 1nstructions queued at said execution unit above
which no speculative dispatch occurs;

means for comparing said number of 1nstructions queued
at each of said execution units with said threshold value
of each of said execution units, respectively, to produce
a series of results, and ORing said series of results,
wherein said ORing yields a false output when no
execution unit 1s at its threshold, and a true output when
any one of said plurality of execution units 1s at 1ifs

threshold; and

means for dispatching a speculative branch instruction to
a selected execution unit only when said ORing step
yields said false output indicating that said current
utilization measure 1s less than said predetermined
threshold value.

6. The data processing system of claim 5, wherein said
determining means includes means for tracking said number
of 1nstructions which have been dispatched, but not yet
completed, as an indication of current execution utilization.

7. The data processing system of claim 5, wherem said
determining means includes means for tracking said number
of 1nstructions which have been dispatched, but not yet
executed, as an indication of the amount of work that has
already been assigned to said execution unit.

8. The data processing system of claim 5§, wherein said
dispatching means further includes:

means for first fetching an instruction;

means for examining said instruction in a predicted path
to 1dentily which execution unit 1s a target for execution
of said 1nstruction;

means for examining said instruction unit to determine the
number of instructions queued up to said unit;

when said instruction unit has instructions queued up,
means for disabling speculative instruction dispatching
to said unit; and

when said 1nstruction unit 1s 1dle, means for enabling the
dispatch of speculative instructions to said unit.
9. The data processing system of claim 5, wherein:

said determining means includes a register coupled to an
instruction queue of said execution unit, said 1nstruc-

5

10

15

20

25

30

35

40

45

50

12

tion queue holding instructions awaiting execution by
said execution unit, and said register storing said pre-
determined threshold value and tracking the number of
instructions 1n said instruction queue;

said comparing means includes a comparator connected to
said register via a counter, said counter for counting the
number of instructions in said instruction queue, and
comparator for comparing said number of instructions
with said predetermined threshold value to yield a
result, and further wherein when more than one execu-
tion unit 1s checked, said comparing means further
includes a comparator for ORing said result of a first
comparison with said result of a second comparison;
and

said dispatching means includes a dispatch unit coupled to
said comparator and said instruction queue, wherein
said dispatch unit receives instructions form said
instruction fetcher, and when said instruction is
speculative, said dispatch unit dispatches said instruc-
fion to said instruction queue of said execution unit
only when said comparator yields a “false” output to
said dispatch unait.

10. A data processor comprising:

one or more execution units, wherein an execution unit
has an mstruction queue for holding instructions await-
Ing execution in said execution unit;

a register coupled to said 1nstruction queue of said execu-
fion unit, wherein said register stores a predetermined
threshold value for said instruction queue and further
wherein said register tracks a number of 1nstructions in
said 1nstruction queue;

a counter connected to said register, said counter for
counting a number of instructions in said instruction
queue;

a comparator connected to said counter for comparing
said number of instructions 1n said instruction queue
with said predetermined threshold value to yield a
result, wherein said comparator performs a comparison
on more than one execution unit to yield a plurality of
results, wherein further said comparator 1s coupled to
an OR circuit which performs an ORing function on
said plurality of results to yield a second result; and

a dispatch unit coupled to an mstruction fetcher, said
comparator and said instruction queue, wherein said
dispatch unit receives instructions from said instruction
fetcher, and when said instruction is speculative, said
dispatch unit dispatches said 1nstruction to said instruc-
tion queue of said execution unit only when said
comparator yields a particular result.

11. The data processor of claim 10, wherein said second

result 1s either said particular result or a different result, and
wherein said second result 1s provided to said comparator.

12. The data processor of claim 10, wherein further said

55 register stores said predetermined threshold value.

	Front Page
	Drawings
	Specification
	Claims

