(12) United States Patent
Ghatate

US006338069B1

US 6,338,069 B1
Jan. §, 2002

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND APPARATUS FOR
MANAGING FUNCTIONS
(75) Inventor: Bhalchandra Ghatate, Austin, TX
(US)
(73) Assignee: Daman, Inc., Austin, TX (US)
(*) Notice: Subject to any disclaimer, the term of this
patent 15 extended or adjusted under 35
U.S.C. 154(b) by O days.
(21) Appl. No.: 09/210,340
(22) Filed: Dec. 11, 1998
(51) Int. CL7 .o GO6F 17/30
(52) US.ClL e, 707/103
(58) Field of Searchn 707/103
(56) References Cited
U.S. PATENT DOCUMENTS
5,481,718 A * 1/1996 Ryuetal. 709/316
5,497,491 A * 3/1996 Mitchell et al. 395/700
5,668,958 A * 9/1997 Bendert et al. 710/128
5,717,925 A * 2/1998 Harper et al. 707/102
5,721,911 A * 2/1998 Haetal. 7077100
5,761,678 A * 6/1998 Bendert et al. 7077204
5091768 A * 11/1999 Sun et al.oveveen...... 707/104
6,128,621 A * 10/2000 WEISZ +ovvvevereeerrerrernnn. 707/103
6,134,559 A * 10/2000 Brumme et al. 707/103
6,195,662 B1 * 2/2001 Ellis etal. 707/103
6,226,628 Bl * 5/2001 Forbes ..oovvvevveevereveren., 707/1
6,226,788 B1 * 5/2001 Schoening et al. 717/6
6,253,239 B1 * 6/2001 Shklar et al. 709/217
6,263,313 B1 * 7/2001 Milsted et al. 705/1

OTHER PUBLICAITONS

Integration Solutions {for

the

Real-Time Enterprise:

EIT-Enterprise Integration Template, Template Software
(Table of Contents: 1 pg.; Contents: 3-28; Appendix I:
29-30; Appendix II: 31-32).

EXTERNAL FUNCTION 102

T

ACTION UNIT ACTION UNIT 105B
105A -INTERNAL FUNCTION
) 3
METADATA METADATA
QBJECT 120A OBJECT 120B ona
EXECUTION EXECUTION
OBJECT 125A-A OBJECT 1258
- A
L
EXECUTION
OBJECT 125A-i

Object Technology, A Manager’s Guide, Second Edition by
David A. Taylor, Ph.D., 2/98 (Contents:v—vii; Acknowledge-
ments: 1Xx—X; Introduction: xi1—x11; How to Read the Book;
x111—xv1, Chapter 1-9; 1-158; Appendix: 159-175; Sug-
ogested Reading: 177-182; Glossary: 183-198; Index:
199-205.

Upstream, A White Paper, Business Process Engines, A New
Catagory of Server Software, Will Burst the Barriers 1n
Distributed Application Performance by John Rymer,
Upstream Consulting (pp. 1-16; Appendix: 16—19).

ADT Mar. 1997—Viewed as an ellfective new way to
identify core business requirements, business rule thinking
A/D is taking shape, Software Engineering (http://ww.adt-
mag.com/pub/mar97/softeng. (15 pgs.).

* cited by examiner

Primary Fxaminer—Wayne Amsbury
(74) Attorney, Agent, or Firm—3Blakely, Sokoloff, Taylor &

Zatman, LLP
(57)

ABSTRACT

A method and apparatus for managing functions (e.g., that
express business rules) to allow calling functions, maintain-
ing functions, and providing of an execution framework for
functions. In one embodiment, there are a number of func-
fions to be maintained. An object technology infrastructure
1s formed to store data and metadata for the functions. For
example, metadata about a function can include data
describing what that function does, a “cost” associated with
that function, how to execute that function, the mput and
output parameters required by that function. The exposure of
the metadata regarding the functions’ mput and output
parameters allows an engine to track imput/output relation-
ships between the functions and, in essence, define the order
of execution.

46 Claims, 21 Drawing Sheets

ACTION UNIT
1051

A

METADATA OBJECT 120 METADATA

-INTERNAL FUNCTION OBJECT 120i
) 3

EXECUTION EXECUTION

OBJECT 125C OBJECT 1251

MANAGER OBJECT 130

US 6,338,069 B1

Sheet 1 of 21

Jan. 8, 2002

U.S. Patent

V1 DId

(S)¥dsn

e

ANIONH "THAQOW

s

_ (S)MOLVILSNINAY

SHO A0S
NOLLVADH.LNI

1001 HOdNOS
NOILLVIOH.LNI

dHAV’]

NOILVdDHLNI

D001 HOANOS
NOLLVYDHLNI

d001 HOdNOS
NOILLVADH.LNI

VOOT dOUNO0S
NOLLVAODALNI

US 6,338,069 B1

Sheet 2 of 21

Jan. 8, 2002

U.S. Patent

0t1 LOdId0O J4DOVNVIN

dl DIA

-VS6ZT LOATdO
NOILL{1OJdXH

. d5¢1 LOAIHO
ISCT LOHIHO J$C LOAIHO NOLLNDAXH
NOILNIDAdXA NOILLNOdXA —
10C1 LOdIdoO NOLLON(Id "TVNJH.LNI- XY d071 LOd[rdo
V.IVAVLAdAN J0CT LOHIHO VIVAVLHA VIVAV.LdAN

1SO1 NOILLON(H "TVNAH.LNI-
LIN(1 NOILLODV d501 LIN(1 NOLLOV

—

V-VSTI LOHAM4dO0
NOILLNOAXH

VOZI LOA(dO

VLVAVLIN

VSOl

LIN(1 NOLLOV

COT NOLLON(H "TVNIHLXH

US 6,338,069 B1

Sheet 3 of 21

Jan. 8, 2002

U.S. Patent

VI DId

05¢

TA4VT LNTIVd-SSVTIOe
SAOH.LHN-

SHANLONH.LSe

SSVIO AINVN S dTIHO AIVINIAd

THIVT INJIVd-SSVTOe
SAOHLHWN

SHANMLO[1I. LS
CHC SSVIO HINVN S HS[10dS

L N
@

T9GVT INTIVI-SSV 1D
SAOH.LANe
STINLONYLS
0£Z SSVID SSTAAAY LATILS

TH9VT LINJIVd-SSV IO
SAOH.LdN-
SAANLONILSe
Ov¢ SSVID HINVN LSd4d

LN
®

TAIVT LNIIVd-SSVIDe
SAOH.LdN-

SHANLOMNHLSe

$CC SSVIO dl |

L A
e

THIVT INHIVA-SSV IO
SAOHJLHIN-
SHANLONYELSe
0¢C SSVTO HNVN

THIVT LINHIVd-SSVTIOe

SAOH.LdNe-

SHALLONALSe

007 SSVID YIAIANVIVd LNHIVd

US 6,338,069 B1

Sheet 4 of 21

Jan. 8, 2002

U.S. Patent

39033

LIN NOILLOV

01¢ NOILLON(A "TVNJdd.LXH

¢ Dld

NOILLONNA TVNIHLNI- 45032
d50¢ LIN(1 NOILLOV LIN{1 NOLLOV

<f101¢ 1OAr90 ANTVA“ATI] 7 [901€ 1DArd0 AN TIVA AMI] ‘[VOo1€ 1LDArdO N TVA~ AT ONIAOVIL NOILLOVe _

00t

JC¢ Dl

LOd[d0O d4.L51Ddd

01

(KAT>) NOILLDY 1a9De

(<LINN NOLLDOV NV OL ¥Ld> ‘<AT>) NOLLDV JALSIOHY-
SAOHILINe

<SLOArdo ANTVA AT 40 NOLLDFTTIOD> ONIIOVYIL NOLLDVe.
SHANLONALSe

C SSVID dH.LSIDHA

d¢ DId

<A V OL YALNIOd JO ATN> HOVIOLS AT

S

0C SSVTIO N IVA AT \

SAOH.LANe

<dLd JO HI'TVA> HOVIOLS HNTVA-

SHANLO(A LS

¢ OId

US 6,338,069 B1

Sheet 5 of 21

100¥ LOd(4dO
VLIVAVLdN

Jan. 8, 2002

1S0¢
LIN(1 NOILLOV

00t

U.S. Patent

THIVT INFIVI-SSVTIOs

(<1DArdO NOLLNDAXA ONITIVD Ol d1d>) NOLLOV
SAOHLAN.

<LINN NOILDV OL ¥1Ld> dLd NOLLOV

HANVN NOILLDV:

<SLOAIdO AdX 40 NOILOHAT10I~> SLNdLNO-

<SLOHA[d0O A 4O NOILLOATI00> S.LI1dNIe

<LOA90 VLVAV.LIN V ONILLVIIANI THIVT> TddVT SSVIDs

TNV N

STANLONALSs
00S SSVID VLVAVIAN
v DId

VOOoy LOA[4d0

d00v LOd[dO0

VLIVAVIIN VIVAVIdN

VEOL

dS0t

LIN(1 NOLLOV LIN{1 NOLLOV

<[101€ 1DOACI0 ANTVA~ATA] * [d01€ LOArdo 3N IVA~ AT ‘IV0I1€ 1.DArd0 dNTVA ATAI> ONDIDOVYL NOILLDVe

LOAMd0O d4.LSIOHY

US 6,338,069 B1

Sheet 6 of 21

Jan. 8, 2002

U.S. Patent

J9 DId

099

(S)TIANLONYLS ONDIDVYL
LOArd0 441 OL ADNVISNI dHL aav

f

059

HONV.LSNI dH.I J0d SSVID
HdH.L 40 "THdVTHHL SSHO0OV OL AOHLAN

THEVT INTIVI-SSVIO dHL A 1ddV

1

9

d9 DId

SSVIO dH.L 404
JOd LOHAMHO SSVIO V HLVAYD

0¥9 (S)HINLONJLS
ONIAOVAL .LOAI40 dHL OL SSVID HHL AaV

1

0t9

INHdVd SSVIO dH.L ANV SSVTIO
AH.L 4O "THIVT dHL SSd00V OL AOHLAN
THEVT INFIVd-SSVIO dHL A1ddV

5CY

SSVIO HHL 04 1.0d1d0O SSVID V ALVAYD

Y9 DIH
029
SSVID dHL dO |
(SYADNVISNI ALVAID OL MOH TAVIDIA
019
AOHLANW T49VT INTIVI-SSVID
HH.L ONIANTONI ‘SSVTID dH.L 99V 1Ddd ;
009

SSVIO HHL 4O4d 'THdEV1 V Fom‘.—mm._

US 6,338,069 B1

Sheet 7 of 21

Jan. 8, 2002

U.S. Patent

SHSSV'IO
dHH.LO

3 Dld

S,

Id SSVIO HALLVAId4d

vd SSVID JALLVARIAA

SSVTD JALAANVAVd LNHYVd

~ - SSVID DNIIOVALL
T KTHINVYNS <TAIWVN> SSV1O dIHSNOLLV'THY

(SYAONV.LSNI
J0O (S)FINVN 149V SSV1D4NS

Id SSV'IOD Vd SSV'ID TN SSV'ID VIA SSVID
AAILVAIIAA FALLVAIYAA dALLVAIYHA dHAILVAIYAd
SSV'IOD SSV'ID
JALIANVIVd LNZAVd VLVAV.LAN
SSVTID dAd(1S

L DId

FASSVIO
JALLVAIAA

SSVID
dIHSNOILLV'[dd

VA SSVIOD
JALLVALIHd

US 6,338,069 B1

Sheet 8 of 21

Jan. 8, 2002

U.S. Patent

6 DId

(<GAVH> ‘<1DAr90 NOLLNDAXT> ‘<NOILLDITTOD dHHAN>) AASILVS JALdNVIVde
(<LDArd0O LXAILNOD> ‘<1DArd0 JaOVNVIN>) HLNDAXHe
(<1LDAr90 LXALNOD> ‘<AHN>) WVIVd LdDe
| (<ANTVA> <ATN>) WVIVd LASe
SAOH.LAN-
<TINN JO LDAr90 YAOVNVIA OL ¥1d> dLd JIDVNVAe
<I1DAr90 VIVAV.LIN d4LVIDOSSYV OL d1Ld> dld LOAfdO VIVAV.IdNe
<SLOArd0 INTVA AT 40 NOILLDITTOD> SNVdVde
<LDAr90 NOILLNDAXA V ONLLYDIANI T4V T> THdVT SSVTIDse

<HLIM d4L1LVIDOSSV LDHfdO VLVAVLIN SV JINVS> JINVNe
SHANLONY.LSe

006 SSVIO NOILLNDAXH

US 6,338,069 B1

Sheet 9 of 21

Jan. 8, 2002

U.S. Patent

- Ol DId
<> gOVIOLS AN TVAs
<. AYVIVS ATIVHA,> HOVIOLS AT
0€01 LOAr90 HNTVA AT R —
<Z1>IOVIOLS AN TVA- SAOHLHIAe
< JAGNNN FIAOTINE,> GOVIOLS AT _ B .
GZ01 LOArd0 dNTVA- AT dld LOFA[HO VIVAV.LANe
<.HLINS NHOf,> 4DOVIOLS dNTVA- <SLOAFO ANTYA~ AT 40 NOILLDATIOD> SNV AVds
< ANVN FHAOTINH,,> FOVIOLS ATMe STINLONYLSe
0201 LOAfd0 AN TVA~ AT S10T 1D4drd0 NOLLNDAXH

(<1OArg0o 1N SSANISNI ONITIVO OL ¥.Ld>) NOLLOV
SAOH.LHNe

<NOLLOV AYVIVS OL YLd> dLd NOILLOVe
<AYVIVS ATIVIA,> SLNdLNO*
< JIIINNN FFAOTdNL., . JINVN HHAOTdNH,> SLdNIJe
<AYVIVS,,> HIWVNe
SHANLINALSe
0101 LOHANdO VIVAV.LIN

L
&

(CdINAL S AAVIVS A TIVAA,,) WVIVd LAS'NOLLNDAXA
(€dINAL ‘ZdINAL ‘1dINAL) NOLLONNA AIdVIVS TIVD

cdNAL LNI

(AIINNN FFA0TdNE.,) WVIVd LdO'NOLLNDHAXT=CdIWAL LNI

NOLLONI1S (ANVYN FHAOTING,.) INVEVd LID NOLLNOTXH=TdWHL ONIILS
TVNASLXE | goor (<1DAr90 NOLLNDAXT ONITIVO OL ¥Ld>) NOLLOV A¥VIVS

0001 (€dINAL d ‘ZdWAL LNI ‘1dIWAL ONIYLS) NOLLONNA AYVIVS

US 6,338,069 B1

Sheet 10 of 21

Jan. 8, 2002

U.S. Patent

dil Dld

(<(40d SANTVA FAVH SYALANV IV ONINIVLINOD LOAfF0 LXAINOD “O'd)

AAVH> ‘<(SAT YALANVIVA 40 NOLLDFTTIOD “O'H) NOLLDATIOD ddaN>) 41NJAXd ANV ddaN Ad ANIA-
(<1D4rdo

LXALNOD> ‘< THEVT SSVID > '<LDAd0 VIVAVLIAN 40 FNVN>) ALNDIdXd ANV dINVN Ad dNIds

(<(JOT SANTVA HAVH SYFLANVIVI ONINIV.LNOD LJIrd0O
LXAINOD “O'F) AAVH> ‘<(SAT YALANVIVC 40 NOLLDATIOD “Od) NOLLDITIOD dAdN>) dd3IN Ad dNIde
(<IDAMgO LXAINOD> ‘< Td9VT SSVID > <LDOAfd0 VLVAV.IAN 40 FNVN>) HAVN A9 dNIde

(<LDAr90 LXALNOD> ‘<1ddVT SSVID> ‘<LOAdfd0 VLVAVLAN 40 FINVN>) NOILLNDIXd MHNe
SAOH.LHN

<SLOArd0 TdAHT 40 NOLLDITIOD dTJAAY0> NOLLOFT10D HLVd NOILNDAXHe
<IDAM9O YAOVNVIA V A9 AIOVNVIA SLOAr90 NOLLNDAXHA 40 NOLLDFTI0D> NOLLOFTI0D NOILLNDIXH.

<NOILLDITTIOD LXALNOD NI SLOAr40 LXAINOD 0 ANO SAILLNAJ> LXHLNOD LINVIdd.
<S.LOArd0 ILXALNOD 40 NOILLDITTOD> NOLLDFATTOD LXHLNOD-
SHANLONYLSe
O111 SSVIO d4DVNVIA

LI I
®

SAOHLANS
VII Dld <S1DFr90 NOLLADEXH 40 NOLLOTTION> NOLLDATIOD NOLLNDAXHs

<SLOArd0 ANTVA~ AT 40 NOLLDATTIOD> NOLLDATIOD dNTVA AT
HWV Ne

SHANLONALSe
0011 SSVTIO LXHILNOO

US 6,338,069 B1

Sheet 11 of 21

Jan. 8, 2002

U.S. Patent

LXALNOD LINVJdde

<[01Z1 1DArgo ILXA1INOD] * ds0z1 1D0drd0 LXALNOD] {[00Z1 1Ddrd0 LXFLNOID]> NOILOFTIO0D LXHLNODs

STANLONYLSs
174 1OAr90 YIOVNVIN
<> gOVIOLS AN TVAs
< AAVIVS ATIVAA,> AOVIOLS AT
0€TI 10Ar90 AN IVA- AT
<Z1> AOVIOLS AN IVA. -
< ATINNN FIAOTdNT,,> HOVIOLS AT - dLd dHOVNVINe
C7TI LOATHO AN TVA AT __ ALd LOHdO VIVAV.LdNe
<. HLIANS NHOI,> OVIOLS AN TVAe. <SLOAdO NTVA~AT 4O NOLLOATIOD> SNV IVd.
< ANVYN TIA0TdNE,,> HOVIOLS AT« SHINLONALSe
0ZC| 109090 ANTVA AT 121 LOArd0 NOLLNDAXH

\ 4

(<1490 a71NYA SSANISNG ONITTIVD OL ¥.1d>) NOLLOV
SAOHLHN

. <NOLLOV A¥VIVS OL ¥.1d> Y14 NOLLDV-
¢l DI SHUNIDNYLSs
0101 1OAr90 VIVAVIIN

NOILLONd GO0T (<LOAC9O NOLLNDAXA ONITIVO OL ¥1Ld>) NOLLOV A¥VIVS
TVNIALXA

0001 (EdNAL dd ‘TdJWHL LNI ‘- TdNFL ONIYLS) NOLLONNA AYVTIVS

US 6,338,069 B1

Sheet 12 of 21

Jan. 8, 2002

U.S. Patent

Shel

dHL OL LDArdO dNTVA A9) V AdV

VIV JHLANVIVd LNHA (1O

06l ALIAMITAO

ON SHA
¢l 'DIH

—

) 0€E] VAV

GEET JALAAVIVd LNTANND AHL SV

VY YALAANVIVd LANNIND FHL SV NOILLOATIOD SINVEVJ S.LDArdo

LDA[g0 LXALNOD SSVd GHL LOHTHS | NOILLNDAXA 9HL JDITIS

0ZE1 NOLLDV
ALVIIdO¥ddY TIV.L SCtl
(AASSVd 1DArdo
ON SHA LXAINOD ON

A4I41LNAAI HHL 40 2NLONYLS SLOdL10 d0

Clel
< LOAMd0O VIVAV.LAN

SLOAdNI AH.L NI AH
d4SSVd HH.L Sl

OItl

04 1LOd140 VIVAVIAdN dHL AJLLNAAI

LOA(dO NOILL(1OdXH dH.L

SHA

SHA

ON

GOt
(ONIADHHO ddAL
DNOYLS

00t

(<KLOHI90O LXHLNO

3> <HNTVA> <SATI YALANVIVd 40 ATN>) WVIVd LAS

US 6,338,069 B1

Sheet 13 of 21

Jan. 8, 2002

U.S. Patent

1 "DId

134 HI'IVA
dH.L NJd(1.LHd

SHA

SHA

(LOAd0 LXHLNOD L'111Vd4d dH.L
NI A3 HH.L SI

44
TINN NAdNLHYd

Gevl

SHA

SHA

¢ LdS LXALNOD

/44!
(1LOAMdO LXHINOD d455Vd HH.L
NI A HH.L Sl

Y44

LINv4dd TP

(AASSVd LOHIHO

SHA JHOVNVIA

ON ON

Olv1]
(AASSVd 104140
LXHILNOOD

SHA

ON

SOVl
(LOArdo 37109 SSANSNd
AH.L A0 FINLONYLS SWNVIVd HH.L NI
Ad dH.L SI

00v1

(<LDAr90 ILXALNOD> ‘<¥ALAINVIVd 40 AT>) NVIVd 1IdD

US 6,338,069 B1

Sheet 14 of 21

Jan. 8, 2002

U.S. Patent

SPS 1 JLOHI90

ObST

LOArd0O LX4LNOD ddSSvd

dHL OL LDArd0 NOILLNDIXHd dHL ddV

LXALNOD L 1NV4dd dHL OL LOd1dO NOLLNOHXH
JHL A4V ‘LXAINOD L'INVAdd V ST HddH.1 41

(AASSVd LOHINdO
SHA LXHILNOOD

GEST

ON

Cesl

4O NOLLDFIT10D NOILLNDAXH dHL OL LO3Ard0O NOILLNOAXH dH.L ddV

LOArd0 Y4OVNVIN HH.L

4

0S|I

JLd YAOVNVIN dHL NI LOA40 dHOVNVIA HHL OL JHLNIOd V HJdOLS

LOAT90 NOILLNDAXH dHL 40 FANLONALS

GGl

1D3(90 VLVAV.LIN ONIHOLVIN dHL OL ¥1d LOH[90 VLVAVIdIN L3S

0cCs 1

d1d 1DOAd0 VIVAVLIIW 14dS

TINN OL

3

—
(<1DAr90 LXALNOD> ‘<TAdVT SSV1D> '<IDArd0 VLVAVIIW 40 HAVN>) NOLLNDAXd MHUN _

ON

|

(HINVN dISSVd
dH.L SHHOLVIA LVHL LOA{d0 V.LVAV.LdN

SHA
GIGI

V HddH.L SI

OIGI

VFAVINOLLYVIOALNI FHL NI S1041r4d0 ddAL VLVAVLIN AJLLNIAI

HIHILNAAI AV

. S

_ GOST LOA9d0O NOILLNDAXA NV HLVILNV.LSNI

0051

US 6,338,069 B1

Sheet 15 of 21

Jan. 8, 2002

Cyo1 LOAMdO NOLLNODAXH dH.L NJ(1.LH

0T SHALANY IV ANVS FHL
N H.LIM JOHLFIN NOLLODIXT MAN A1ddV
ON
cz91 LXAINOD LNTNIND
| JH.L NI ¥AIGAVIVd JAVN
Ol DIH AASSYd THL YOd HOUVAS

{

0C91

HHLS

LINV44d dHL LOATHS

|

LXHLNOD LNFJA(1)
V 104140 LXHINOD |

0£91 NOLLOHATIOO

NOLLNOAXAd dHL NI JH 1INV IVd
JINVN ddSSVd dH.L 404 HOdVdS

0191 LXAILNOD INHHANO
HHI SV 1LDA40 LXHILNOD
AdSSVd dH.L LOATdS

%

SHA

G191
(LHS LXHINOD

SHA L111VvV4ddd

ON

G091
(AASSVd LOd[4dO
LXHINOD

0091 (<1DArd0o ILXdINOD> mﬁmm,&.mm..ﬁov
<(IDAM90 NOLLNODAXA/VIVAVLIAN J0 FINVN “O'3) ANVN>) IINVN A9 ANIA

U.S. Patent

OvLT HLVd NOILLNDAXH HH.L N¥d(1.L9d _

L1 DI Gl dIHSNOLLVTTY AASLLYS TOANI

US 6,338,069 B1

ON SdA

—————————
GZL1 NOILDATION
99N FHL OL A9

SAA LNF¥IND FHL aaV

ON

0CLI
CNAUNLHY A1 TVA

Sheet 16 of 21

STLT AT INHYIND FHL Y04 AVIVd 1dD ATddV

OILI NOILONNA DONIA TIHANI]
S . LOdrd0 NOILNDIXH dHIL 404 AddddN L1dNI HOVH 404

Jan. 8, 2002

GOLI
(AdSSVYd LOAd(d0O NOILLNDAXH

00LT (<304 SANTVA dHL FAVH LVHL SYALAINVIVd DONINIV.INOD
LOACgO LXALNOD “OH) HAVH> ‘<ILDArdo NOILLNDIAXT> ‘<(SYFLINV IV
AANDISSY SATY 4O NOLLDIATTIOD “O'd) NOLLDATIOD dddAN>) AddN Ad ANIJ

U.S. Patent

US 6,338,069 B1

Sheet 17 of 21

Jan. 8, 2002

U.S. Patent

@

GE8I NOLLOHTTOO
HLVd NOILNODAXH AdVIOdINHL

Ol dAV ANV LOA[dO THAT T ALVIYD _

08l LAS NOILLI'TOS

V81 ‘DOIH dd.10d714dS JHL NI (S)LDArdo
VILVAV.ILIN 9HL 404 AOHLINW
NOILNDAXH MAN dH.L ATddV

4 0 Z0Z0o0

¢Z81 (S)1OAfdO VIVAV.IAN 4O
SIS NOLLNTOS dHL WOdA 1LDATAS
Y
| ZZ81 (S)1DArdo V.LVAV.IIN
_ JO SI1AS NOLLNTOS ANIWYALAA

03l ALJNG LON
TINN NINLTY
;1S NOLLV4adISNOD
LN JH.L NI SLOEr90 VIVAY.LIN
ANVIN MOH
0181 TANLONALS

SLNdLNO JYIFHL NI SGH3IN HH.L 40 HH4OW d0O IANO HAVH LVHL SLOHIHO
vLivdav.l3dnW FHL SHONTONI LVHL L3S NOILLVIHAISNOD V HLVAYD

0081 (<O SANTVA dHL GAVH LVHL SYALANVIVd ONINIV.LNOD 1.0d1r40
LXAILNOD “Od) JAVH> ‘<LDAr90 NOLLNDAXT> <(SYALANVIVL OL AINDISSV
SAT HO NOLLDITIOD “O'd) NOLLDATTOD dFIN>) dHSNOILLV 1Y AASLLVS

US 6,338,069 B1

Sheet 18 of 21

Jan. 8, 2002

U.S. Patent

G381 NANLHYA

0881 HLVd NOLLNOAXH d4.LOHTIS SV
HLVd NOILNDAXd LNJJdd1D J4OLS

d31 DId

0981 NAUN.LHA

SdA 0681 NANLAYA

(HLVd NOILLNODAXH
JOIdd NVH.L d4dVdHO

0L8] LSOO

LI8] HLVd NOILLONAXH INJJUNO

HHL WO SHLVOI'Id(1d HAOWHA

SHA

ON

Ov31

AdddAN T1IV

SHA

(HTAVIIVAY SLI1dNI

GO81

d OL OVd OD
81 AD0Td OL AO - |

ON

G681
(AASSHO0 dd S.LAS
NOILNTOS T1IV

dITHSNOILVTdY ASILVS AO0ANI

P81 S.LOANI AddHAN
HLIM NOILLOATTOO dHddN HLVHdD

ON

US 6,338,069 B1

Sheet 19 of 21

Jan. 8, 2002

U.S. Patent

61 DId

061 NOLLDATTOOD ddAN HHL JyO4 103140 NOLLNDHAXH
JHL WO¥d AOHLAW AJSILVS Y4LANVIVd dHL A 1ddV SHA

Stel LOAMd0O 31Ny SSANISN T HHIL WOYH FINILONALS SWVAVd JH.L DNIS1 LOI(dO
NOILLNDAXH AHL A9 AIIINAQI LDArd0 VIVAVILIN dHL WOYd AOHLHIN NOILLOV dHL A'lddV

—

ceol (ALdINH
NOILDATIOD dddN

=

ON
SHA
ON

¢Z61 NOLLDATIOD dddN HH.L
OL A INHIdNO dHL AdV

SHA

Gl6l
(AJHSI'TAV.LSd
ON 0TV A

0161 AHY LNHHJANO
dH.L OL 4N ITVA V dLVIOOSSY OL LdINHLLY

S061 NOLLONI{1d
ONIATIIANN S.LOH[FO NOLLNOAXH dH.L JO4d A4UdHN LOdNI HOVH 404

0061 —
(<124rd0 LXALNOD> <1230 JAOVNVIN>) 4LNDdXHd

US 6,338,069 B1

Sheet 20 of 21

Jan. 8, 2002

U.S. Patent

CC0C HNIVA dINANLAY
JHL HLIM WVYVd 13S ATddV

0£0¢ DVId LHS

(020¢

CAANANLHY HIY'IVA

ON SHA

0¢ DId
G102

NOLLDATIOD dddN dH.L NI AT HOVH d0d

0107 HLVd NOILLNOAXd HH.L Wd0Odd4d

— |
$00¢ dIHSNOILVTdd AASLLVS dX4OANI |

000¢
(KAAVH> ‘<1490 NOLLNDAXT> ‘<NOLLOATIOD ddAN>) A4SILVS JHLHNVIVd

U.S. Patent Jan. 8, 2002 Sheet 21 of 21 US 6,338,069 B1

FIG. 21

US 6,333,069 Bl

1

METHOD AND APPARATUS FOR
MANAGING FUNCTIONS

CROSS-REFERENCE TO RELATED
APPLICATTONS

Not Applicable.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The mvention relates to the field of computer systems.
More specifically, the invention relates to function manage-
ment.

2. Background Information

Most corporate systems built to support certain business
practices mvolve writing application logic within the appli-
cation. The creator of the application writes the necessary
programs 1n a language of personal desire and adds business
specific rules for the application as a part of the module that
contains the application. Thus, the business rules of an
enterprise have been and are added overtime by different
programmers; at different times; using different program-
ming languages; for different applications of an enterprise;
ctc. This type of application development does not lend itself
to maintainable components. Any updates to a business rule
might 1mpact the overall application. The application logic
1s not reusable for other enterprise wide applications, as it 1s
contained within each application. This results in rewriting
the same logic for different applications.

Certain other application programmers write the logic
specific for the business as a separate module and link to 1t
the other components of the application during execution or
during compilation. Even though this allows for reuse of
code, the corporations have to maintain a repository of these
modules. There 1s rarely any documentation, much less
transfer of knowledge to other departments regarding a
module developed 1n a given department. However, an
application developer must know the existence of the mod-
ules housing the business rules, as well as how to link them
into the application. In addition, the functions in these
modules have to be called explicitly. This type of application
development does not lend 1tself to support “call on need”
type of functions.

Other applications require the functions representing
business rules to match a specified prototype. These func-
fions are accessible through a data structure such as a hash
structure (e.g., table, tree, graph, etc.) that contains function
pointers. The dynamic selection of functions 1s supported
through the use of a hash function that indexes into the hash
structure. There are numerous search types (e.g., search by
name, search by type) possible based on the native and
complex data structures. This approach has several limita-
tions. For example, additional data structures are required to
support each search type. Also, 1t 1s difficult to maintain
multiple data structures and keep them in sync for any
updates/changes. In addition, this approach does not remove
the need for extensive documentation and transfer of knowl-
cdge for the modules to be re-used.

Furthermore, there 1s no reasonable mechanism to search
a business rule on the basis of 1ts” output. Particularly, each
business rule requires mputs and outputs. Before executing,
a g1ven business rule, a programmer must provide the mnputs
for that business rule. It can be the case that one or more
inputs of a given business rule 1s an output of a different
business rule. Thus, in collecting the mputs for a given
business rule, a user may be required to manually identify

10

15

20

25

30

35

40

45

50

55

60

65

2

the collection of business rules whose outputs will provide
the mputs for that given business rule. Particularly, a string
of business rules, each of whose i1nput 1s the output of
another, may need to be executed to acquire the input needed
for the business rule of interest. However, as these business
rules are being added to the system, there 1s no good
mechanism or infrastructure to track the input/output rela-
tionships between these business rules.

The lack of ability to track the input/output relationships
between these business rules makes them difficult, if not
impossible, to maintain and/or reuse. Thus, there 1s no
reasonable mechanism by which a user can locate, much less
execute, the business rules across the enterprise required to
provide the 1nputs for a given business rule of interest. For
example, a user interested 1n a particular mput that is
provided by a business rule would need know of that
business rule, be able to locate that business rule, and know
the format to call that business rule.

Additionally, since the business rules interface with the
integration sources and/or other business rules of the
enterprise, changing a given integration source and/or busi-
ness rule can affect any number of other integration sources
and/or business rules. However, it often cannot be deter-
mined what business rules and/or other integration sources
will be affected by such changes. For example, although
input/output relationships exists between the business rules,
there 1s no mechanism for readily exposing these relation-
ships. As a result, programmers are reluctant to make any
changes, but instead attempt to extend integration sources
and/or write new business rules.

BRIEF SUMMARY OF THE INVENTION

A method and apparatus for managing functions (e.g., that
express business rules) to allow calling functions, maintain-
ing functions, and providing of an execution framework for
functions 1s described. According to one embodiment of the
invention, a machine readable medium 1s provided having
stored thereon a function, a first object, a second object, and
an action unit. The function requires a set of one or more
input parameters. The first object includes a structure storing
a key for each of the input parameters to the function. In
addition, the first object includes an action method, which
when applied by a processor, causes that processor to 1nvoke
the action unit. The second object includes: 1) a first
structure to store data for identifying, for one or more of the
input parameters, the corresponding key and a value for that
input parameter; and 2) a second structure identifying the
first object. In addition, the second object includes an
execute method, which when applied by a processor, causes
that processor to apply the action method. The action unit
includes 1nstructions, which when executed by a processor,
cause that processor to, access the values in the second
object and invoke the function using those values as input
parameters.

BRIEF DESCRIPTION OF THE DRAWINGS

The mvention may best be understood by referring to the

following description and accompanying drawings which
are used to illustrate embodiments of the invention. In the

drawings:
FIG. 1A 1s a block diagram 1illustrating a system according,
to one embodiment of the 1nvention.

FIG. 1B 1s a block diagram 1illustrating the relationship
between the functions being tracked, metadata objects,
execution objects, and manager objects according to one
embodiment of the invention.

US 6,333,069 Bl

3

FIG. 2A 1s a block diagram illustrating an exemplary
parameter kind class hierarchy according to one embodi-
ment of the invention.

FIG. 2B 1s a block diagram 1llustrating a KEY__ VALUE
class 205 according to one embodiment of the invention.

FIG. 2C 1s a block diagram 1llustrating a REGISTER class
210 according to one embodiment of the invention.

FIG. 3 1s a block diagram 1llustrating the manner 1n which
a register object 1s used according to one embodiment of the
invention.

FIG. 4 1s a block diagram illustrating the relationship of
metadata objects to the action units of FIG. 3 according to
one embodiment of the invention.

FIG. 5 1s a block diagram 1llustrating a metadata class
according to one embodiment of the invention.

FIG. 6A 1s a flow diagram 1illustrating the definition of a
class and instances of that class according to one embodi-
ment of the invention.

FIG. 6B 1s a flow diagram illustrating certain aspects of
the 1nitialization of a class according to one embodiment of
the 1nvention.

FIG. 6C 1s a flow diagram 1illustrating the initialization of
an 1nstance of a class according to one embodiment of the
invention.

FIG. 7 1s a conceptual diagram 1llustrating an exemplary
class hierarchy structure according to one embodiment of
the 1nvention.

FIG. 8 1s a conceptual diagram 1illustrating the instances
structure according to one embodiment of the invention.

FIG. 9 1s a block diagram 1illustrating an execution class
according to one embodiment of the invention.

FIG. 10 1s an exemplary block diagram 1illustrating the
relationship between an execution object and its” underlying
function.

FIG. 11A 1s a block diagram illustrating a context class
1100 according to one embodiment of the ivention.

FIG. 11B 1s a block diagram 1llustrating a MANAGER
class according to one embodiment of the mmvention.

FIG. 12 1s a block diagram illustrating an example in
which the parameters for the underlying function are con-
tained within a manager object according to one embodi-
ment of the invention.

FIG. 13 1s a flow diagram 1llustrating the operation of the
SET_PARAM method of an execution object according to
one embodiment of the invention.

FIG. 14 1s a flow diagram 1llustrating the operation of the
GET__PARAM method according to one embodiment of the
invention.

FIG. 15 1s a flow diagram 1llustrating the operation of the
NEW__EXECUTION method according to one embodiment
of the ivention.

FIG. 16 1s a flow diagram 1llustrating the operation of the
FIND__BY_NAME method according to one embodiment
of the nvention.

FIG. 17 1s a flow diagram 1llustrating the operation of the
FIND__BY_NEED method according to one embodiment
of the invention.

FIG. 18A 1s a part of a flow diagram illustrating the
operation of the SATISFY_RELATIONSHIP routine

according to one embodiment of the 1nvention.

FIG. 18b 1s the remainder of a flow diagram 1llustrating
the operation of the SATISFY__RELATIONSHIP routine
according to one embodiment of the 1nvention.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 19 1s a flow diagram 1illustrating the operation of the
EXECUTE method according to one embodiment of the
ivention.

FIG. 20 1s a block diagram 1llustrating the
PARAMETER__SATISFY method according to one

embodiment of the invention.

FIG. 21 1s a conceptual diagram illustrating exemplary
execution paths according to one embodiment of the inven-
tion.

DETAILED DESCRIPTION OF THE
INVENTION

In the following description, numerous specific details are
set forth to provide a thorough understanding of the 1nven-
tion. However, 1t 1s understood that the mnvention may be
practiced without these specific details. In other instances,
well-known circuits, structures and techniques have not
been shown 1n detail in order not to obscure the invention.

Overview

A method and apparatus for managing functions (e.g., that
express business rules) to allow calling functions, maintain-
ing functions, and providing of an execution framework for
functions 18 described. In one embodiment, there are a
number of functions (e.g., C++ code, set of SQL statements,
etc.) to be maintained. An object technology infrastructure is
formed to store data and metadata for the functions. The
term metadata 1s used herein to refer to data that describes
other data. For example, metadata about a function can
include data describing what that function does, a “cost”
assoclated with that function, how to execute that function,
the 1mput and output parameters required by that function.
The exposure of the metadata regarding the functions’ input
and output parameters allows an engine to track input/output
relationships between the functions and, 1n essence, define
the order of execution. For example, assume there i1s a
function A that requires a Name as the input and that
provides an Id as the output, and a function B that requires
an Id as the mput and that provides a street address as the
output. Since the output of function A can satisly the input
of function B, function B depends on function A and
function A 1mpacts function B. A relationship 1s defined
within the engine between functions A and B when these
functions are added to the system.

This storing of “function metadata™ allows the dynamic
execution of the function (also referred to as execute on
demand). If the engine receives a request (e.g., a request for
a set of fields), an execution plan can be created by deter-
mining the functions to be processed based on their inputs
and outputs identified by the function metadata. Multiple
execution trees, plus multiple execution paths within the
same tree can be identified to satisly the request. Based on
various parameters, one of the execution paths can be
picked.

For example, assume the functions 1n Table 1 are avail-
able. In addition, assume that a user has available a particu-
lar name for which that user wants to acquire the associated
primary child’s name. Accordingly, the functions of Table 1
form a tree (A to B, C and F; from both B and C to D; from
D to E; and from F to E) and three execution paths
(A—-B—D—E, A—=C—=D—E, and A—=F—E) (See FIG.
21). Note that function G is not included in the trees as it 1s
not required to satisty the request. Thus, function G signifies
that the rules are executed only on demand.

US 6,333,069 Bl

TABLE 1
Function Input Output
A Name Id, Best Name
B Id Street Address
C Best Name Street Address
D Street Address Spouse’s Name
E Best Name, Spouse’s Name Primary Child’s Name
F Id Spouse’s Name
G Best Name Best Date of Birth

The above example 1s a simple query. As queries get more
complicated and the number of outputs increase, more and
longer trees can be created.

This storing of function metadata also enables 1mpact
analysis and maintenance of the functions thereby satisfying
the need to consider both (one shot) development and
(continual) evolution; that is, integration of functions with
adaptiveness during application development and mainte-

nance.

While the concepts described below regarding the man-
aging of functions can be applied to any situation where
functions are to be managed, the invention will be described
with reference to the management of functions that represent
business rules for an enterprise. However, 1t should be
understood that the mvention 1s not limited to the manage-
ment of functions that represent business rules.

FIG. 1A is a block diagram illustrating a system (e.g., a
transactional system, a data warehouse system, etc.) accord-
ing to one embodiment of the invention. FIG. 1A represents
a set of one or more disparate integration sources 100A-1
(¢.g., relational databases, CORBA, conversion
applications, etc.) being used by an exemplary enterprise. In
addition, FIG. 1A shows an integration layer formed with
object technology providing an integrated view of the enter-
prise.

FIG. 1A also shows a model engine through which
administrator(s) and user(s) can access the integration layer.
The model engine 1s a library of functions that allows for
interfacing (e.g., creating, searching, navigating, browsing,
manipulating, etc.) with the objects in the integration layer.
For example, the administrator(s) can develop and maintain
the 1ntegration layer, as well as define security access. The
user(s), for example, can navigate and/or query the model
provided by the integration layer. Thus, the model engine
can include various administrator and user interfaces (e.g.,
business tools, custom front-end tools, custom back-end
tools, etc.). Of course, the integration layer and model
engine are stored and executed on a computer system (either
a single computer or a computer network). Such a computer
system stores and communicates (e.g., the model engine
and/or integration layer) using machine readable media,
such a magnetic disks, optical disks, random access memory,
read only memory, carrier waves, signals, etc. As with any
method in an object, the code for a given method can be: 1)
in the object itself; or 2) stored as part of the model engine
and referenced by the object.

As described later herein, the integration layer provides an
adaptive 1ntegrated view of the enterprise by allowing
related items (e.g., functions representing business rules)
across the enterprise to be located and applied. Through
these 1nterrelationships the result of changing an 1ntegration
source and/or part of the integration layer can be determined.
This ability provides for reusability of existing items and for
maintenance of the system.

The integration layer incorporates certain naming stan-
dards and procedures. While the integration layer can

10

15

20

25

30

35

40

45

50

55

60

65

6

include various objects (e.g., relationship objects as
described later herein), in one embodiment of the invention
the 1ntegration layer includes action units, metadata objects,
execution objects, and one or more manager objects.

FIG. 1B 1s a block diagram 1illustrating the relationship
between the functions being tracked, metadata objects,
execution objects, and manager objects according to one
embodiment of the invention. In one embodiment of the
imvention, there are a number of different functions to be
tracked and used. Each of these functions has a set of one or
more 1nput parameters and a set of one or more output
parameters. The set of objects (metadata, execution, and
manager objects) is formed for tracking, as well as providing
other functionality, for the number of functions.

For each function, at least one metadata object 1s formed
to store metadata regarding the underlying function. A given
metadata object can be associated with an underlying func-
tion a number of different ways (e.g., through a reference
directly to the function, through a reference to an action unit
that provides an interface between the metadata object and
its’ underlying function, through storage of the function as
a method 1n the metadata object, etc). Any such action units
can be implemented in any programming language (e.g., C,
C++, JAVA, etc.), and can be used to allow a common
signature to be used for all functions.

By way of example, FIG. 1B shows action units 105A-1.
Each of the action units 105A-11s associated with a function.
For example, the action unit 105A i1dentifies an external
function 102 (e.g., legacy code and/or new code from one of
the disparate integration sources in FIG. 1A), whereas the
action unit 105B contains a function referred to as an
internal function.

In addition, FIG. 1B shows metadata objects 120A-1
assoclated with underlying functions. Particularly, metadata
objects 120A and B respectiully identify action units 105A
and B. Additionally, FIG. 1B shows metadata object 120C
directly stores one of the functions (also referred to as an
internal function), and therefore does not need an action
unit. Among other things, a metadata object can store
information describing the input and output “parameter
kinds” to 1t’s underlying function. It 1s worthwhile to note
that the term parameter kind 1s not used herein as synony-
mous with data type. Rather, the phrase parameter kind
refers to a type of information (e.g., name, street address,
Id). Thus, two different parameter kinds (e.g., name and
street address) may share the same data type (e.g., string).

A metadata object typically does not contain the values to
be used as mput parameters to the underlying function.
Rather, an execution object 1s formed to maintain a context
(e.g., input parameter values and resulting output parameter
values) for an underlying function. As such, one or more
execution objects may be associated with each METADATA
object. FIG. 1B shows EXECUTION objects 125A-x—1251-
Xx. Particularly, FIG. 1B shows EXECUTION objects
125A-A through 125A-1 identifying METADATA object
120A, EXECUTION object 125B 1dentitying METADATA
object 120B, EXECUTION object 125C 1dentitying META-
DATA object 120C, and EXECUTION object 125: 1denti-
fying METADATA object 120i.

FIG. 1B also shows a manager object 130 identifying each
of the execution objects. As described later herein, a man-
ager object can be used, among other things, to track
execution objects and store contexts for execution of the
underlying functions.

According to this structure, an execution object will
maintain a set of input parameter values to be used during
execution of an underlying function which 1s identified

US 6,333,069 Bl

7

through a metadata object. For example, 1n one embodiment
of the invention, an execution object includes a method
which, when applied, causes the application of a method in
the associlated metadata object. The method 1n the associated
metadata object causes the execution of the instructions in
the corresponding action unit. Execution of the instructions
in the corresponding action unit cause the values for the
input/output parameters maintained by the calling execution
object to be used during the execution of that action unit’s
assoclated function.

The indirection provided by the metadata objects 1s used
to expose metadata regarding the underlying functions. The
exposed metadata can include data describing the mput and
output parameter kinds of the underlying function. As
described later herein, the exposed metadata regarding 1input
parameter Kinds can be used to i1dentily whether a calling
execution object has values for each of the imnput parameters
of the underlying function. Furthermore, if the calling
execution object does not have values for the mnput param-
cters of the underlyimng function, the metadata in other
metadata objects describing the output kinds of their under-
lying functions can be used to identify functions that would
supply values for the missing input parameters.

While certain aspects of the invention have been
described 1n this overview, the mvention 1s not limited to
these aspects and various other aspects of the invention are
described later herein. Furthermore, while one embodiment
1s described with reference to object oriented technology, it
1s understood that relational table based technology could be
used.

Registering Functions with the Integration Layer

FIGS. 2A-C are block diagrams illustrating part of an
exemplary object oriented infrastructure for the integration
layer of FIGS. 1A-B according to one embodiment of the
invention. In one embodiment of the invention, keys are
used to distinguish amongst the various functions being,
tracked by the integration layer, as well as providing a
naming convention for the nput and output parameter kinds
of those functions. Thus, a first set of keys 1s used to
distinguish functions being tracked by the integration layer,
while a second set of keys 1s used to distinguish parameter
kinds to those functions. Since keys are used for distinguish-
ing both the functions and parameters, the same object
oriented classes can be used for both sets of keys.

With regard to the set of keys used to distinguish the
parameter kinds, each function being tracked by the inte-
oration layer can have one or more input parameters and one
or more output parameters. A naming convention 1s used for
the different parameter kinds used by the functions. Different
functions may share one or more of the same parameter
kinds. To 1llustrate, consider the previous example where
function A has as parameters an Id and a street address, while
function B has as parameters an name and a street address.
In this example, functions A and B share the street address
parameter (they share the same parameter kind). In addition,
this example has three parameter kinds (Id, street address,
and name).

To provide a conceptual description, assume a mathemati-
cal set (a set not containing duplications) containing the
parameter kinds of all the functions being tracked by the
integration layer. Each of the now unique parameter kinds in
the mathematical set 1s assigned a unique key. As such, there
1s now a set of unique keys, one key for each parameter kind
used by the functions being tracked by the integration layer.

In one embodiment of the invention, a class 1s formed for
cach parameter kind and the class name operates as the key
for that parameter kind. Furthermore, these parameter kind

10

15

20

25

30

35

40

45

50

55

60

65

3

classes can form a parameter kind class hierarchy. FIG. 2A
1s a block diagram illustrating an exemplary parameter kind
class hierarchy according to one embodiment of the inven-
tion. As 1s well known 1n the art, classes can be made up of
structures and/or methods. The structures can take any form
(e.g., link list, array, tree, etc.).

FIG. 2A shows a PARENT__PARAMETER class 200
from which parameter kind classes 220, 225, and 230 are
derived. In addition, FIG. 2A shows that parameter kind
classes 240, 245, and 250 are derived from parameter kind
class 220. Each of the parameter kind classes in FIG. 2A 1s
orven a name that operates as the key for that parameter
kind. To continue the example from above, the keys assigned
the parameter kind classes of FIG. 2A are show in Table 2
(note that the Best Date of Birth is not shown in FIG. 2A for
lack of space in the Figure). In other words, the parameter
kind class names are used as global labels for 1dentifying the
parameter kinds of the functions being tracked by the

integration layer.

TABLE 2
Parameter Kind Class Name/Key
220 Name
240 Best_ Name
245 Spouse’s_ Name
250 Primary__ Child’s_ Name
225 Id
230 Street_ Address

Best Date of Birth

Each of the parameter kind classes includes a CLASS-
PARENT__LABEL method. The CLASS-PARENT__
LABEL method is used for associating labels with instances
of different classes (similar to the ISA method commonly
found in object oriented programming). In one embodiment,
the CLASS-PARENT__LLABEL method aids in the creation
of a set of object tracking structure(s) that provide, among
other things, the ability to distinguish which objects 1n the
integration layer are METADATA objects. The operation of
the CLASS-PARENT_[LABEL method will be described
later herein.

FIG. 2B 1s a block diagram 1llustrating a KEY_ VALUE
class 205 according to one embodiment of the invention. In
the embodiment shown 1n FIG. 2A, the KEY VALUE class
includes a KEY__STORAGE structure and a VALUE__
STORAGE structure. The KEY__STORAGE structure 1s
used to store a key or a pointer to key (e.g., an instance of
a parameter kind class), while the VALUE STORAGE
structure 1s used to store a current value corresponding to the
key stored in the KEY_STORAGE structure. Key value
objects are know in the art (e.g., they are used in data
structures known as dictionaries).

As stated above, a first set of keys 1s used to distinguish
functions. During operation, certain embodiments use key

value objects to track functions. Particularly, a KEY__
VALUE object can store the key assigned a function (KEY__

STORAGE) and a pointer to that function (VALUE__
STORAGE).

As also stated above, a second set of keys 1s used to
distinguish parameter kinds. The KEY__ VALUE objects are
used to store parameter values for the different parameter

kinds. Particularly, if 1t 1s desired to store a parameter value,
a KEY_OBIJECT 1s formed in which the parameter kind 1s

stored 1n the KEY__ STORAGE structure and the parameter

value 1s stored 1in the VALUE__STORAGE structure.
FIG. 2C 1s a block diagram illustrating a REGISTER class

210 according to one embodiment of the invention. The

US 6,333,069 Bl

9

REGISTER class 210 includes an ACTTON__TRACKING
structure. The ACTION__ TRACKING structure 1s a collec-
fion of KEY__ VALUE objects. In addition, the REGISTER
class 1ncludes a REGISTER__ACTION method and a
GET ACTION method. As described below, an instance of
the REGISTER class 210 1s used for initially tracking the
functions.

FIG. 3 1s a block diagram 1llustrating the manner 1n which
a register object 1s used according to one embodiment of the
invention. FIG. 3 shows the action units 305a—i. In
operation, a given function (whether new or existing) is
assigned a key. Next, the REGISTER__ ACTION method 1s
applied using as input parameters the function’s unique key
and a pointer to that function’s action unit. Application of
the REGISTER__ACTION method causes the creation of a
KEY_VALUE object for the function, and storage of that
KEY__VALUE object in the ACTION_ TRACKING struc-
ture of the REGISTER object. By way of example, FIG. 3
illustrates that each of the action units 3054a— has a corre-
sponding KEY__ VALUE object 310a—i stored in the
ACTION_ TRACKING structure of a register object 300. In
this manner, any function (whether internal or external) can
be registered with the REGISTER object of the integration
layer.

The GET__ACTION method receives as an mput param-
cter the unique key for one of the tunctions. Application of
the GET__ACTION method returns a pointer to the action
unit (or metadata object containing an internal function) for
the function assigned the mput key.

While FIGS. 2A—-B and 3 are used herein to describe one
mechanism for registering functions with the integration
layer, it 1s understood that various mechanisms can be used
for this purpose. In addition, certain figures contained herein
illustrate one or more objects stored in a collection (e.g.,
KEY_VALUE objects 310A-310; 1n the ACTION__
TRACKING structure). It 1s understood that most collec-
fions actually store references to the items 1n the collection,
not the 1item themselves. Thus, the storing of an object 1n a
collection can refer to the storing of a reference to that object
in the collection.

Metadata Class

FIG. 4 1s a block diagram 1illustrating the relationship of
metadata objects to the action units of FIG. 3 according to
one embodiment of the invention. As previously described,
action units can be created for functions tracked by the
integration layer, and the functions can be internal or exter-
nal to the action units. At least one METADATA object 1s
formed for each function, and therefore at least one META-
DATA object 1s formed for each action unit. Each META-
DATA object 1s used to store metadata regarding the under-
lying function. In addition, each METADATA object
includes one or more methods used to execute the underly-
ing function as described later herein. As such, FIG. 4 shows
a number of metadata objects 400A-1. Each of the META-
DATA objects 400A-1 1s associated with the one of the action
units 305A-1 having the matching letter.

FIG. 5 1s a block diagram 1illustrating a metadata class

according to one embodiment of the invention. In particular,
FIG. 5 shows a METADATA class 500. As with all classes

described herein, the METADATA class may include more,
less, and/or different structures and/or methods depending

on the functionality desired.
The METADATA class 500 includes the following struc-

tures: NAME; CLASS__LABEL; INPUTS; OUTPUTS;
ACTION__NAME; and ACTION__POINTER. The NAME
structure of a metadata object has stored therein the unique
key of the function for which that metadata object was

5

10

15

20

25

30

35

40

45

50

55

60

65

10

created. The CLASS_ LABEL structure of all metadata
objects stores a label indicating that they are metadata
objects. As described later herein, these labels are used by
certain embodiments for locating those objects 1n the inte-
gration layer that are metadata objects (and derivatives
thereof).

As previously described, each function being tracked by
the 1ntegration layer can have one or more 1nput parameters
and one or more output parameters. The INPUTS structure
of a metadata object stores a set of keys 1dentifying the input
parameter kinds of the function for which that rule metadata
was created. Similarly, the OUTPUTS structure of a meta-
data object has stored therein a set of keys 1dentifying the
output parameter kinds of the function for which that
metadata object was created. In this manner, a metadata
object contains metadata describing the mput and output
parameter kinds of the underlying function for which that
metadata object was created. As described later herein, this
metadata 1s used to provide different aspects of the inven-
tion.

The ACTION__NAME structure 1s used during creation
of a metadata object to store the name of the action unit to
which 1t will eventually be associated. The ACTION__
POINTER of a metadata object stores a pointer to the action
unit (if any) associated with the function for which that
metadata object was created.

The METADATA class also includes an ACTION and a
CLASS-PARENT__LABEL methods. When an action unit
1s used, the ACTION method of a metadata object, when
applied, causes the execution of the instructions in the
corresponding one of the action units (the action unit iden-
tified by the ACTION__PTR structure). However, when a
metadata object directly stores an internal function as a
method, the action method 1s overridden with the internal
function. The ACTION method receives as an input param-
eter a pointer to an execution object. The operation of the
ACTION method will be described later herein.

As stated above, other types of function metadata can be
stored 1n the metadata object. For example, the storage of
metadata describing what a function does can be searched to
allow users to interact more easily with the system. The
storage of metadata describing a cost of a function 1s used 1n
certain embodiments as described later herein to select
between execution paths described above and later herein.
The storage of metadata describing how to execute the
underlying function can be used to provide the user with
information needed to set up an execution environment for
that function. In certain embodiments, metadata (e.g., text)
describing what each parameter is used for (what that
parameter means) i1s stored (e.g., the key stored 1s Best
Name, while the description of what that parameter 1s used
for might be “A parameter used to store the spelling that
occurs most often for an input name.”) The storage of this
text description regarding the parameters can be searched
and/or read to allow users to interact more easily with the
system.

As stated above, certain embodiments use a set of object
tracking structure(s) to track certain of the classes of objects
(including the METADATA objects) in the integration layer.
The object tracking structure(s) can take a variety of forms
and be created 1n a variety of different ways. FIGS. 6 A—8 are
used herein to describe one such mechanism. However, it 1s
understood that the invention 1s not limited to the mecha-
nisms described with reference to FIGS. 6 A—8. Particularly,
alternative embodiments could use indexes.

FIG. 6A 1s a flow diagram 1llustrating the definition of a
class and instances of that class according to one embodi-

US 6,333,069 Bl

11

ment of the invention. In one embodiment of the 1nvention,
it 1s contemplated that different programmers will be creat-
ing functions and objects at different times and/or for
different integration sources. As a result, different program-
mers that are not in direct communication (e.g. they are
working at different times, they are working on different
projects, etc.) will be adding functions and classes. For this
and other reasons, 1t 1s desirable to have a set of central
structure(s) for tracking the objects of the integration layer.
To this end, one or more object tracking structures are
created. While any number of different object tracking
structures could be used, a few examples of object tracking
structures are given herein. For example, 1n one embodiment
of the imvention a class label structure, a class hierarchy
structure, and an 1nstances structure are used. These exem-
plary structures will be described 1n more detail below.

In block 600, a unique label for the class 1s created and
control passes to block 610. When a programmer wishes to
create a class, the programmer first creates a label that 1s not
being used. With reference to the exemplary object tracking,
structures mentioned above, the class label structure 1s a
centralized repository for the programmers to store labels
currently being used to distinguish the different classes. In
block 600, a given programmer and/or programming tool
accesses the class label structure to select a class label that
1s not already being used. When the programmer 1dentifies
a label that 1s not currently being used, the programmer adds
this label to the class label structure.

As shown 1n block 610, the class 1s declared and control
passes to block 620. Since the general manner of defining a
class 1s well known, only those parts relevant to this dis-
cussion will be described. In particular, assuming that the
class of FIG. 5 1s used, the programmer and/or programming

tool will need to specily an overriding CLASS-PARENT __
LABEL method. The CLASS-PARENT L ABEL method is
written to output the label for the class (selected in block
600) and the label of the parent class of that class (if any).
Since the class is being defined, the parent for the class (if
any) will be readily identifiable. As such, the label for the
parent of the class can so be 1dentified and incorporated in
the CLASS-PARENT__LABEL method. As described later
herein, the CLASS-PARENT L ABEL method will be used
during class 1nitialization and instances initialization to
update the object tracking structures.

As shown 1n block 620, the manner of creating instance(s)
of the class 1s declared. In one embodiment of the invention,
the objects 1n the integration layer include INIT and
INITIALIZE INSTANCES methods. The INIT methods
for the classes are all applied at runtime to perform class
mitialization as described with reference to FIG. 6B, while
the INITIALIZE_INSTANCES methods are applied during
instance 1nitialization as described with reference to FIG.
6C.

FIG. 6B 1s a flow diagram illustrating certain aspects of
the 1nitialization of a class according to one embodiment of
the mvention. In block 625, an instance of the class 1s
created (referred to herein as the class object) and control
passes to block 630.

In block 630, the CLASS-PARENT [ABEL method of
the class object 1s applied to 1dentity the label of the class
and the label of its’ parent (if any). From block 630, control
passes to block 640.

As shown 1n block 640 of FIG. 6B, the class being
initialized 1s added to the object tracking structure(s). To
continue the description of the exemplary object tracking
structure(s), FIG. 7 1s a conceptual diagram illustrating an
exemplary class hierarchy structure according to one

10

15

20

25

30

35

40

45

50

55

60

65

12

embodiment of the invention. As shown 1n FIG. 7, the class
hierarchy structure expresses 1n some form a top-down

representation of the hierarchy of the classes with reference
to the class labels. During block 630 of FIG. 6B, the parent

label identified by the CLASS-PARENT__LABEL method
1s used to 1dentity the position of the parent class 1n the class
hierarchy structure. Subsequently, the class label 1s added to
the class hierarchy structure i1n the appropriate manner to
identity its relationship to the parent.

In addition to adding the class to the class hierarchy
structure, the class label 1s also added to the instances
structure. FIG. 8 1s a conceptual diagram 1illustrating the
instances structure according to one embodiment of the
invention. The instances structure i1s a central repository
used to record all of the instances by class. As shown 1n FIG.
8, each class label and the instances of that class are stored
in the 1nstances structure. While any number of well known
techniques can be used for implementing the instances
structure, one embodiment of the invention uses a hash
dictionary. In addition, one embodiment of the invention
uses numbers as the labels for the classes, but associates
more descriptive labels with these number labels using
features of a programming language.

The combination of the class hierarchy structure and the
instances structure provides a mechamism by which all
instances of a class (e.g., the metadata class, the parent
parameter class, etc.) and its derivatives (if any) can be
1dentified. As previously described, alternative embodiments
can use different structures. For example, rather than using
the CLASS-PARENT__LABEL method, data identifying the
labels of a class and of its’ parent could be expressed as data
in a structure of the class. As another example, rather than
ogenerating the class hierarchy and/or instances structure
during class and instance initialization, alternative embodi-
ments require the class hierarchy and/or instances structures
be maintained by the programmers during the definition of
the class(es) and instance(s). As another example, rather
than having a class label structure, a class hierarchy
structure, and an 1nstances structure, an alternative embodi-
ment could combine one or more of these 1nto one structure.
As another example, rather than using structure(s) that track
all class and 1nstances of the integration layer, an alternative
embodiment could implement structures that track only
certain classes and/or instances. As another example, rather
than implementing a class hierarchy structure, an exhaustive
scarch using the bottom-up view of the class hierarchy
provided by the CLASS-PARENT__[LABEL methods can be
used to locate class(es) and any derivatives thereof.

FIG. 6C 15 a flow diagram 1llustrating the mnitialization of
an 1nstance of a class according to one embodiment of the
invention. For example, 1n the embodiment described above
the INI'TTALIZE__INSTANCES method 1s applied to create
the 1nstance. In block 645, an instance of the class 1s created
and control passes to block 650.

With reference to block 650 of FIG. 6C, the CLASS-
PARENT_LABEL method of the instance 1s applied to
identify the label of the class. Block 650 1s performed 1 the
same manner as block 625. From block 650, control passes
to block 660.

In block 660, the instance 1s added to the object tracking
structure(s). To continue the description of the exemplary
object tracking structure(s), the label identified in block 650
1s used to locate the instance’s class 1n the instances struc-
ture. The name of the new instance 1s then added to the
instances structure under that class label.

Execution Class

FIG. 9 1s a block diagram 1illustrating an execution class

according to one embodiment of the invention. As previ-

US 6,333,069 Bl

13

ously described, an execution object 1s used to maintain a
context for executing the underlying function.

The EXECUTION class 900 of FIG. 9 includes the
following structures: NAME; CLASS LABEL; PARAMS;
METADATA__OBJECT__PTR; and MANAGER__ PTR. As
previously described, each execution object 1s associated
with a metadata object. In one embodiment, the NAME
structure of an execution object contains the same data as the
name structure of the METADATA object to which 1t 1s
associated. In alternative embodiments, the NAME structure

need not store the same data, but rather a name to name
look-up structure 1s used. The CLASS_ LABEL structure of

the EXECUTION class 900 is used for the same purpose as
the CLASS__LLABEL structure of the METADATA class.
The PARAMS structure of an execution object 1s used to
store a context for executing that execution object’s under-
lying function. The PARAMS structure of a given execution
object 1s used to store a KEY__ VALUE object associated
with each mnput and output parameter of the underlying
function. A KEY__VALUE object associated with a given
parameter stores the key for that parameter kind and the
value to be used as previously described. An example of the
PARAMS structure 1s later described herein with reference

to FIG. 10.

The METADATA _OBIECT__PTR structure 1s used for
storing a pointer to the METADATA object for which that
EXECUTION object was created. The MANAGER__PTR
structure of an execution object 1s used to store a pointer to
a MANAGER object (if any).

The EXECUTION class 900 also includes the following
methods: SET_PARAM; GET PARAM; EXECUTE; and
PARAMETER _SATISFY. While each of these methods 1s
further described later herein, a brief description of each 1s
provided here. Application of the SET_PARAM method
sets the value of a KEY__ VALUE object associated with that
execution object. As later described herein with reference to
one embodiment of the invention, this KEY__ VALUE object
may be stored as part of the PARAMS structure or as a part
of a context provided by a MANAGER object.

Application of the GET PARAM method returns a value
associated with a parameter kind whose key 1s supplied as an
input (e.g., from the PARAMS structure). Application of the
EXECUTE method causes the application of the action
method from the metadata object 1dentified by the
METADATA__OBIJECT_PTR. The PARAMETER__
SATISFY method returns values for parameter kinds whose
keys are supplied as inputs.

FIG. 10 1s an exemplary block diagram illustrating the
relationship between an execution object and 1ts’ underlying

function. FIG. 10 shows an external function SALARY__
FUNCTION 1000, an action unit SALARY ACTION
1005, a METADATA object 1010, and an execution object
1015.

The SALARY_FUNCTION 1s written to receive an
employee’s name and an employee’s number, and to pro-
duce that employee’s yearly salary. As such, the SALARY__
FUNCTION has for inputs: 1) a string labeled TEMP1 for
the employee’s name; and 2) an integer labeled TEMP2 for
the employee’s employee number. In addition, the salary
function provides a floating point output in TEMP3 for the
yearly salary. As previously described, the input and output
parameter kinds of every function (including the SALARY
FUNCTION) are assigned a unique key. In the example of

FIG. 10, the umique keys are “EMPLOYEE__NAME,”
“EMPLOYEE__NUMBER,” and “YEARLY__SAILLARY.”
As also previously described, a METADATA object stores

metadata regarding the underlying function. As such, the

10

15

20

25

30

35

40

45

50

55

60

65

14

METADATA object 1010: 1) stores 1n its INPUTS structure
the keys “EMPLOYEE_ NAME” and “EMPLOYEE__

NUMBER” (e.g., pointers to the class objects for the param-
eter kind classes with these names); 2) stores in its OUT-
PUTS structure the key “YEARLY_ SALARY;” and 3)

stores 1n the ACTION__PTR structure a pointer to the
SALARY__ACTION 1005.

Accordingly, the EXECUTION object 1015 stores 1n 1ts
PARAMS structure a key value object for the
EMPLOYEE_ NAME and EMPLOYER_NUMBER
parameter kinds (KEY_VALUE objects 1020 and 1025).
The KEY_ VALUE objects 1020 and 1025 respectively
have stored 1n their KEY__ STORAGE structures the unique
keys EMPLOYEE NAME and EMPLOYEE_NUMBER.
The METADATA__OBIJECT_PTR of the EXECUTION
object 10135 stores a pointer to the METADATA object 1010.

By way of example, assume the EXECUTE method of the
EXECUTION object 1015 1s applied. Responsive to appli-
cation of this execute method, the METADATA
OBJECT__PTR of the EXECUTION object 1015 1s used to
apply the ACTION method of the METADATA object 1010.
The ACTION method has as an input parameter a pointer to
the calling execution object (EXECUTION object 1015).
Application of the ACTION method causes the execution of
the instructions 1n the SALARY ACTION 1005. Thus, the
SALARY__ACTION 1005 receives the pointer to the calling
execution object (in this example, the EXECUTION object
1015).

Execution of the SALARY__ACTION unit 1005 causes
the following: 1) a variable TEMP1 to be declared and set
to the value stored in the VALUE__STORAGE structure of
the KEY_ VALUE object 1020; 2) a variable TEMP2 be
declared and set to the value contained in the VALUE_ _
STORAGE structure of the KEY_ VALUE object 1025; and
3) declaration of a variable TEMP3. In addition, the instruc-
tions of the SALARY_ACTION unit 1005 cause the
SALARY_FUNCTION 1000 to be called using: 1) TEMP1
and TEMP2 as input parameters; and 2) TEMP3 as a storage
arca for the output parameter. As such, the values for the
input parameters for the SALARY__FUNCTION 1000 have
been read from the EXECUTION object 1015.

Additionally, execution of the instructions in the
SALARY__ACTION unit 1005 result 1n storing the value
assoclated with TEMP3 1n the VALUE__STORAGE struc-
ture of the KEY__ VALUE object 1030. As such, the outputs
of the SALARY__FUNCTION are stored m the EXECU-
TION object.

Manager Class

FIGS. 11A-B are block diagrams illustrating two addi-
tional classes of the mtegration layer of FIG. 1A according
to one embodiment of the mvention. FIG. 11A 1s a block
diagram 1llustrating a context class 1100 according to one
embodiment of the invention. The context class includes the
following structures: NAME; KEY__ VALUE__
COLLECTION; and EXECUTION__COLLECTION.

The NAME structure of a context object 1s used to store
a name or label for that context object. The KEY_VALUE
COLLECTION of the context class 1100 1s used to store a
collection of KEY__ VALUE objects. In particular, the
KEY_VALUE_COLLECTION 1is used to store KEY_ _
VALUE objects that associate values with parameter kinds
of functions (similar to the PARAMS structure). The
EXECUTION__COLLECTION structure of the context
class 1100 1s used to store a collection of EXECUTION
objects. Each context object can be used for storing a
different context for executing and searching functions being
tracked by the integration layer. The manner of using the
context objects will be further described later herein.

US 6,333,069 Bl

15

In one embodiment, the KEY VALUE COLLECTION
structure 1s formed for efficiency purposes. Particularly, the
EXECUTION__COLLECTION structure stores the execu-
tion object(s) for the context. The KEY VALUE objects for
that context are therefore stored in the PARAMS structure of
those EXECUTION objects. The system stores the KEY__
VALUE objects from those PARAMS structures in the
KEY_ VALUE_ COLLECTION structure to provide for
more elficient processing. In an alternative embodiment, the
KEY_VALUE_ COLLECTION structure 1s not imple-
mented.

FIG. 11B 1s a block diagram 1llustrating a MANAGER
class according to one embodiment of the invention. A
manager object can be used for managing the execution
objects. The MANAGER class 1110 includes the following
structures: CONTEXT COLLECTION; DEFAULT
CONTEXT; EXECUTION_COLLECTION; and
EXECUTION__PATH__COLLECTION.

The CONTEXT_COLLECTION structure 1s used for
storing a collection of context objects. Thus, the
CONTEXT__COLLECTION structure can be used for stor-
ing various contexts to be used when executing and search-
ing different functions being tracked by the integration layer.
The DEFAULT__CONTEXT structure 1s used to store data
identifying one of the context objects stored in the
CONTEXT__COLLECTION structure as the default con-
text. The EXECUTION__COLLECTION 1s used to store a
collection of execution objects managed by a MANAGER
object.

In one embodiment, the EXECUTION COLLECTION
structure 1n the manager class 1s provided for efficiency
purposes. Particularly, the execution objects for the manger
object are stored in the context objects of the CONTEXT
COLLECTION structure. The system associates those
execution objects with the EXECUTION__COLLECTION
structure to provide for more efficient processing. In an
alternative embodiment, the EXECUTION
COLLECTION structure 1s not implemented as part of the
manager class.

The MANAGER class 1110 includes the following meth-
ods: NEW__EXECUTION; FIND_ ;- NAME; FIND__
sy. NEED; FIND_BY_ NAME_ AND_ EXECUTE; and
FIND_ ;- NEED AND_EXECUTE. Although each of
the methods 1s described 1n further detail later herein, a
quick overview 1s provided here.

The NEW__ EXECUTION method 1s used to create a new
execution object. The FIND__ .., NAME method 1s used to
locate or create an execution object for a given function
tracked by the 1integration layer. The FIND_ .., NEED
method requires as an input parameter a collection of
parameter kinds for which output values are requested
(referred to herein as needs). The FIND__ 5, NEED method
returns a collection of EXECUTION objects whose under-
lying functions return as outputs the specified needs. The
FIND_ ,,- NAME_AND_EXECUTE and the FIND__
sy. NEED__AND_EXECUTE methods add the additional
steps of applymng the EXECUTE method from the returned
EXECUTION objects.

FIG. 12 1s a block diagram illustrating an example in
which the parameters for the underlying function are con-
tained within a manager object according to one embodi-
ment of the invention. FIG. 12 contains the SALARY_
FUNCTION 1000, the SALARY__ACTION 1005, and the
METADATA object 1010 from FIG. 10. In contrast to FIG.
10, FIG. 12 shows an execution object 1215. The
METADATA__OBJECT__PTR of the EXECUTION object
1215 stores a pointer to the METADATA object 1010. The

10

15

20

25

30

35

40

45

50

55

60

65

16

MANAGER pointer of the EXECUTION object 1213 stores
a pointer to a MANAGER object 1240.

The CONTEXT __COLLECTION structure of the MAN-
AGER object 1240 includes context objects 1200, 1205, and
1210. The context object 1205 includes KEY_VALUE
objects 1220, 1225, and 1230. As previously mentioned and
as later described herein, application of the EXECUTE
method of the EXECUTION object 1215 causes the execu-
tion of the instructions 1n the SALARY_ ACTION unit
1005. In contrast to FIG. 10, execution of the instructions in
the SALARY__ACTION unit 1005 results in the TEMP1
and TEMP2 variables being set to the values stored 1n the
VALUE_ STORAGE structures of the KEY_ VALUE
objects 1220 and 1225. Furthermore, the return output from
the SALARY__FUNCTION 1000 1s stored back into the
VALUE__STORAGE structure of the KEY_VAILUE object
1230.

SET_PARAM Method

FIG. 13 1s a flow diagram illustrating the operation of the
SET__PARAM method of an execution object according to
one embodiment of the invention. The SET_PARAM
method receives as input parameters: 1) the unique key for
the parameter kind to be set; 2) the value to store for that
parameter; 3) and optionally a context object (see block
1300). From block 1300 control passes to block 1305.

In block 1305, 1t 1s determined if strong type checking 1s
enabled. If strong type checking 1s enabled, control passes to
block 1310. Otherwise, control passes to block 1325. While
one embodiment described 1n which strong type checking
can be enabled, alternative embodiments do not support the
enabling/disabling of strong type checking or do not support
strong type checking at all.

In block 1310, the underlying METADATA object for the
EXECUTION object 1s determined. To provide an example,
the objects shown i FIG. 10 will be used. Particularly,
assume the SET_PARAM method of the EXECUTION
object 1015 1s being applied. Using the METADATA _
OBJECT__PTR structure of the EXECUTION object 10135,
the METADATA object 1010 1s identified. From block 1310,
control passes to block 1315.

As shown 1n block 1315, 1t 1s determined 1f the passed key
1s stored 1 the INPUTS or OUTPUTS structure of the
identiied METADATA object. To continue the above
example, assume that: 1) “EMPLOYEE NAME” is the
passed key; and 2) “John Smith” is the passed value. With
reference to FIG. 10, 1n block 1315 it would be determined
if the passed key (“EMPLOYEE_NAME”) is stored in
cither the INPUTS or OUTPUTS structures of the META-
DATA object 1010. If so, control passes to block 13285.
Otherwise, control passes to block 1320. While one embodi-
ment 15 described 1n which both the INPUTS and OUTPUTS
structures are searched, alternative embodiments search only
one (e.g., the INPUTS structure).

In block 1320, the appropriate action 1s taken and the flow
diagram ends. Of course, any number of different actions
could be taken m block 1320, including the setting of a flag
to 1ndicate an error and the passing of control on to block
1325.

In block 13285, 1t 1s determined 1f a context object was
passed to the SET__ PARAM method. If so, control passes to
block 1335 where the passed context object 1s selected as the
current parameter area. Otherwise, control passes to block
1330 where the EXECUTION object’s PARAMS collection
1s selected as the current parameter area. In the example of
FIG. 10, block 1330 would result in the selection of the
PARAMS structure of the EXECUTION object 1015. Con-
trol passes from both of blocks 1330 and 1335 to block 1340.

US 6,333,069 Bl

17

In block 1340, it 1s determined 1f a matching key value
object 1s already stored in the current parameter area. In
other words, 1t 1s determined 1if there 1s a KEY VALUE
object 1 the current parameter area which has stored 1 1t’s
KEY_STORAGE structure the passed key. If so, control
passes to block 1350 where the VALUE_ STORAGE struc-
ture of the identified KEY_VALUE object 1s overwritten
with the passed value (in this example, overridden with
“John Smith”). Otherwise, control passes to block 1345
where a KEY__ VALUE object 1s added to the current
parameter area. The added KEY__ VALUE object has stored
in 1t’s KEY__STORAGE and VALUE__STORAGE struc-
tures the passed key and value, respectively. In this manner,
the values to be used as the input parameters to the under-
lying function can be set.

GET_PARAM Method

FIG. 14 1s a flow diagram 1llustrating the operation of the
GET__ PARAM method according to one embodiment of the
invention. The GET_PARAM method receives as input
parameters: 1 the unique key of the parameter kind for which
a value 1s desired; and 2) optionally a context object (see
block 1400). From block 1400, control passes to 140S5.

In block 1405, it 1s determined 1f the current key 1s 1n the
PARAMS structure of the EXECUTION object. It so, con-
trol passes to block 1430 where the corresponding value 1s
returned. Otherwise, control passes to block 1410. To per-
form block 1405, the KEY__VALUE objects 1n the
PARAMS structure are searched to see if they contain 1n
their KEY_STORAGE structure the passed key. If so, 1n
block 1430 the value contained in the VALUE__ STORAGE
structure of the located KEY__ VALUE object 1s returned. To
provide an example, assume the key “EMPLOYEE__
NAME” from FIG. 10 1s passed. In this case, “John Smith”
from the KEY__ VALUE object 1020 would be returned.

In block 1410, it 1s determined if a context object was
passed. If a context object was passed, control passes to
block 1420. Otherwise, control passes to block 1413.

In block 1420 1t 1s determined if the passed key 1s stored
in the passed context object. If so, control passes to block
1430 where the associated value 1s returned. Otherwise,
control passes to block 1415. To perform block 1420, the
KEY_VALUE objects associated with the passed context
object are searched to see if they contain in their KEY_
STORAGE structure the passed key. If so, 1n block 1430 the
value contained 1n the VALUE_ STORAGE structure of the
located KEY__VALUE object 1s returned. To provide an
example, assume the key “EMPLOYEE_NAME” and the
context object 1205 of FIG. 12 1s passed. In this case, “John
Smith” from the KEY_VALUE object 1220 would be
returned.

As shown 1n block 14185, 1t 1s determined 1f a MANAGER
object was passed. If a MANAGER object was passed,
control passes to block 1425. Otherwise, control passes to
block 1440 where NULL 1s returned.

In block 1425, 1t 1s determined if the MANAGER__PTR
structure of the EXECUTION object 1s set. If so, control
passes to block 1435. Otherwise, control passes to block
1440. Particularly, a given EXECUTION object may or may
not be associated with a MANAGER object. If a given
EXECUTION object 1s associated with a MANAGER
object, the MANAGER _PTR structure of that EXECU-
TION object will store a pointer to that MANAGER object.
Otherwise, the MANAGER PTR structure of that EXECU-
TION object will store null.

In block 1425, it 1s determined 1f the default context
structure of the identified MANAGER object 1s set. If so,

control passes to block 1435. Otherwise, control passes to

10

15

20

25

30

35

40

45

50

55

60

65

138

block 14440. To provide an example, the objects illustrated in
FIG. 12 will be used. In FIG. 12, the MANAGER__PTR
structure of the EXECUTION object 1215 contains a pointer
to the MANAGER object 1240. In addition, the
DEFAULT_CONTEXT structure of the manager object

1240 can store a pointer to one of the context objects 1n the
context collection.

In block 14335, 1t 1s determined 1f the passed key 1s stored
in the default context object. If so, control again passes to
block 1430 where the value from the default context 1s
returned. Otherwise, control passes to block 1440. Block
1435 1s performed 1n a similar manner to block 1420.

In block 1440, null 1s returned to indicate that a value for
the passed key 1s not currently associated with the EXECU-
TION object or the passed context object.

In summary, the PARAMS structure has priority over a
passed context object, and a passed context object has
priority over the default context (if any). As such, the default
context can be used to store global/shared parameter values,
whereas the passed context objects can be used to store
specific parameter values. Furthermore, 1t 1s understood that
in one embodiment the steps of FIG. 14 are performed
individually for each key. As a result, the values for different
keys can be acquired from different contexts (PARAMS, a
passed context, the default context).

By way of example, assume that there are a number of
contexts to be processed. Particularly, assume certain pro-
cessing must be done for each of employees Jack and Jane.
While certain information will be specific to Jack and Jane
(e.g., name), assume that certain information i1s shared by
Jack and Jane (e.g., they both work for department K). In the
described embodiment, the global values (e.g., department
K) can be stored in the default context of a manager object,
while the inquiry specific values (e.g., information specific
to Jack and Jane) can be stored in separate “inquiry specific”
context objects (e.g., in the context collection structure of
the manager object. As described later herein, applying the
EXECUTE method for a given inquiry, the manager object
and the appropriate mquiry specific context object can be
passed as 1nput parameters to the EXECUTE method.
Assuming the execution object’s PARAMS structure 1s
empty, the global values and inquiry specific values can be
acquired as described above. In this manner, the default
context provides a global context feature, while the other
contexts 1n the context collection structure provide speciiic
context capabilities.

While one embodiment of the invention 1s described with
reference to a particular priority structure, alternative
embodiments of the invention can have a different priority
scheme. Furthermore, while one embodiment allows for the
selection from multiple contexts, alternative embodiments
can provide more or less contexts to select from. For
example, one embodiment of the invention provides for only
the PARAMS structure. Furthermore, embodiments of the
invention can implement the context objects to be hierar-
chical using well known techniques. In other words, a
context object can have a parent context object. In this case,
if a key 1s not found 1n a given context object, the system
would recursively work its way up the hierarchy looking for
the key.

In addition, while one embodiment 1s described in which
the passed key 1s used to search through the various contexts
provided (e.g., the PARAMS structure, the context objects),
alternative embodiments of the invention also search keys
for derivatives of the parameter kind class of the passed key
when no match 1s found for the passed key. For example,
with reference to FIG. 2A, assume that the passed key 1s the

US 6,333,069 Bl

19

NAME key for NAME class 220. In one embodiment,
assuming not match 1f found in the process, the searching
described above with reference to FIG. 14 would be per-
formed for each of the provided contexts. As a result of
finding not match, a derivative of the parameter kind class
NAME would be selected and the search would again be
performed. Thus, the BEST_NAME key from FIG. 2A
could be selected and the contexts would be searched.
Assuming that multiple matches are found in a context, a
technique 1s used to select one (e.g., the first one found is
chosen).

While one embodiment 1s described 1n which each of the
contexts 1s searched before moving on to derivatives, alter-
native embodiments also search for derivative before mov-
ing on to the next context. For example, the PARAMS
structure would be searched for the passed key, as well as
derivatives parameter kind classes thereof, before moving
on to a passed context object and/or default context.

In order to locate derivatives of a parameter kind class, the
CLASS-PARENT_LABEL method and object tracking
structure(s) can be used. Particularly, the CLASS-
PARENT__LLABEL method from the passed key 1s applied
to 1dentify the class label. This class label 1s then applied to
the class hierarchy structure of the exemplary object track-
ing structure to i1dentily the class labels for the derivative
classes. Using the derivative class label(s), the keys/class
names for the derivative parameter kind classes can be
determined from the class object placed 1n the instances
tracking structure during class 1nitialization. As previously
described, alternative embodiments of the invention can use
other mechanisms for tracking objects 1n the integration
layer. Of course, embodiments of the invention which use
different mechanisms for tracking objects in the integration
layer would use their mechanism(s) accordingly to identify
derivative parameter kind classes.

NEW__BUSINESS Rule Method

FIG. 15 1s a flow diagram 1llustrating the operation of the
NEW__EXECUTION method according to one embodiment
of the mvention. As previously described, the operation of
the NEW__ EXECUTION method causes the creation of an
execution object. The NEW__EXECUTION method
receives as input parameters: 1) the name assigned a META-
DATA object; 2) optionally a value identifying one or more
CLASS_LLABELs according to the CLASS-PARENT__
LLABEL method; and 3) optionally a context object (see
block 1500). Control passes from block 1500 to block 1505.

FIG. 15 actually 1illustrates two separate flows. In

particular, one embodiment of the invention provides a
NEW__EXECUTION routine outside of a manger object

and a NEW__ EXECUTION method inside a MANAGER
object. As such, FIG. 15 contains dashed lines between
blocks 1520/1525 and block 1530. The NEW__
EXECUTION routine that resides outside a manager object
ends at block 1520 or block 1525. In contrast, the NEW __
EXECUTION method within a manager object continues on
to perform blocks 1530 through 15485.

In block 1505, an execution object 1s i1nstantiated and
control passes to block 1510. In block 1510, metadata type
objects 1n the integration layer are identified and control
passes to block 1515. Block 1510 can be performed using a
variety of different methods. For example, mnstances of the
METADATA class (and derivatives thereof) can be stored in
index structures. In an alternative embodiment, the object
fracking structures previously described with reference to
FIGS. 6 A-8 arc used. In particular, the label associated with
the METADATA class can be found in the class hierarchy
illustrated 1n FIG. 7. From the class hierarchy, the labels

10

15

20

25

30

35

40

45

50

55

60

65

20

assigned the derivatives of the METADATA class (if any)
can be 1dentified. The identified labels can then be used to
access the instance tracking structure 1llustrated 1in FIG. 8 to
identify instances of the METADATA class (and derivatives
thereof). Furthermore, the optionally passed CLASS
LABEL can be used to store the class label of a particular
class to be used. When a CLASS_LABEL 1s passed, only
the class with that class label (and derivatives thereof) are
located 1in the 1nstances tracking structure of FIG. 8.

As shown 1n block 1515, 1t 1s determined if one of the
METADATA objects 1dentified 1 block 1510 matches the
passed name. Block 1515 1s performed by comparing the
passed name to the value stored 1in the NAME structure of
the METADATA type objects 1dentified 1n block 1510. If a
match 1s found, control passes to block 1525 where a pointer
to the matching METADATA object 1s stored in the
METADATA__OBIJECT__PTR structure of the newly
instantiated EXECUTION object (the EXECUTION object
instantiated in block 1505). Otherwise, control passes to
block 1520 where the METADATA _OBIJECT__PTR of the
newly instantiated EXECUTION object 15 set to null.

During operation of the NEW__ EXECUTION method
within a MANAGER object, control passes from both of
blocks 1520 and 1525 to block 1530.

In block 1530, a pomter to the MANAGER object 1s
stored 1n the MANAGER__PTR structure of the newly
instantiated EXECUTION object. In this manner, the
EXECUTION object 1s associated with the MANAGER
object as 1illustrated 1n FIG. 1B. From block 1530, control
passes to block 1532.

In block 1532, the newly instantiated EXECUTION
object 1s added to the EXECUTION__COLLECTION of the
MANAGER object. Control passes from block 1532 to
block 1535.

In block 15385, 1t 1s determined 1f a context object was
passed. If so, control passes to block 1540 where the newly
instantiated EXECUTION object 1s added to the passed
context object. Otherwise, control passes to block 1545
where the newly instantiated EXECUTION object 1s added
to the default context object in the MANAGER object if one
1s 1dentified by the DEFAULT__ CONTEXT structure of that
MANAGER object.

FIND_ ., NAME Method

FIG. 16 1s a flow diagram 1illustrating the operation of the
FIND_ ... NAME method according to one embodiment of
the invention. The name assigned a METADATA object (and
therefore assigned one or more execution objects) 1s passed
as an 1nput to the FIND_ ;. NAME method. As previously
described the FIND_ .., NAME method returns an execu-
tion object associated with the METADATA object having
the passed name. In addition to the name, the FIND__ ..,
NAME method can have the following optional inputs: 1) a
class label; and 2) a context object (see block 1600). Control
passes from block 1600 to block 1605.

In block 1605 1t 1s determined 1f a context object 1s passed.
If so, control passes to block 1610. Otherwise, control passes
to block 1615.

In block 1610, the passed context object 1s selected as the
current context and control passes to block 1625.

In block 1615, 1t 1s determined 1f the DEFAULT
CONTEXT structure of the MANAGER object 1s set. If so,

control passes to block 1620. Otherwise, control passes to
block 1630.

In block 1620, the default context object 1s selected as the
current context and control passes to block 1625.

In block 1625, the current context 1s searched for the
passed name and control passes to block 1635. In other

US 6,333,069 Bl

21

words, the system attempts to determine if an execution
object matching the passed name 1s contained 1n the current
context.

In block 1630, the EXECUTION__ COLLECTION of the
MANAGER object 1s searched for the passed name and
control passes to block 1635.

If a matching execution object 1s found, control passes
from block 1635 to block 1645 where that execution object
1s returned. Otherwise, control passes from block 1635 to

block 1640.

In block 1640, the NEW EXECUTION method of the
MANAGER object 1s applied with the same parameters used
in block 1600. As a result, a new execution object 1s
instantiated. From block 1640 control again passes to block

1645.
FIND_ ..., NEED Method

FIG. 17 1s a flow diagram 1llustrating the operation of the
FIND_ ... NEED method according to one embodiment of
the invention. As previously described, the FIND_ ..,
NEED method 1s part of the MANAGER class. One of the
input parameters to the FIND_ ., NEED method is a
NEED__COLLECTION structure. The keys assigned the
parameter kinds for which values are desired are stored 1n a
NEED__COLLECTION. Application of the FIND_ ..
NEED method returns a set of EXECUTION objects that
can be used to identify values for the needs. Particularly, the
EXECUTION objects 1n the returned set of EXECUTION
objects have underlying functions with output parameters
matching the keys 1n the NEED__COLLECTION.

By way of example, the objects of FIG. 10 will be used.
With reference to FIG. 10, assume that the NEED
COLLECTION contains the unique key “YEARLY__
SALARY.” As previously described, since the output param-
cter TEMP3 of the SALARY__FUNCTION 1000 has been
assigned the unique key “YEARLY__SALARY,” the unique
key YEARLY__SALARY is stored 1n the OUTPUTS struc-
ture of the METADATA object 1010. As a result, application
of the FIND_ ... NEED method would 1dentify the under-
lying function for the METADATA object 1010 provides an
output parameter matching the unique key contained 1n the
NEED COLLECTION, and therefore return an execution
object associated with the METADATA object 1010.

The FIND_ .. NEED method additionally has the fol-
lowing optional inputs: 1) an execution object; and 2) a
HAVE structure (e.g., a context object containing param-
eters for which there are currently values assigned). From
block 1700 control passes to block 1705.

In block 1705, 1t 1s determined if an execution object 1s
passed. If so, control passes to block 1710. Otherwise,
control passes to block 17385.

With reference to block 1710, blocks 1710-1730 1n FIG.
17 are performed for each input needed for the execution

object’s underlying function. By way of example, the
objects of FIG. 10 will be used. Particularly, the EXECU-

TION object 1015 1dentifies the METADATA object 1010.
The METADATA object 1010 1s associated with the under-
lying SALARY__FUNCTION 1000. The SALARY__
FUNCTION 1000 requires the input parameter Kinds
assigned the unique keys “EMPLOYEE_NAME” and
“EMPLOYEE__NUMBER.” As a result, the METADATA
object 1010 has stored 1n 1t’s INPUTS structure the keys
“EMPLOYEE__NAME” and “EMPLOYEE_NUMBER.”
Thus, blocks 17101730 of FIG. 17 are performed for both
the unique keys “EMPLOYEE__NAME” and
“EMPLOYEE__NUMBER.”

For certain functions, certain inputs will be required
inputs, while other are optional inputs. In one embodiment

10

15

20

25

30

35

40

45

50

55

60

65

22

of the invention, the input(s) “needed” for the execution
object’s underlying function are all inputs (regardless of
whether they are optional). In such an embodiment, the key
for every mput to a function 1s stored in the INPUTS
structure of the metadata object, and the inputs needed
includes the parameter for each key in the INPUTS struc-
ture. In an alternative embodiment, the input(s) “needed”
include those that are required, not those that are optional. In
particular, in one such embodiment, data 1s stored as part of
the INPUTS structure to indicate which (if any) of the
parameters are optional. Parameters which are marked as
optional are not considered “needed” as defined with refer-
ence to block 1705.

In block 1715, the GET_PARAM method 1s applied for
the current key and control passes to block 1720. As
previously described, the GET_PARAM method returns a
value 1f the execution object has a value associated with the
current key (or in certain embodiments, a value associated
with a derivative parameter kind class if not match 1s found

for the current key). Otherwise, the GET_PARAM method
returns null.

In block 1720, 1t 1s determined 1f a value was returned. If
so, control passes to block 1725. Otherwise, null was
returned and control passes to block 1730.

In block 1725, the current key 1s added to the passed
NEED collection and control passes to block 1730. In this
manner, keys without associated values 1n the passed execu-
tion object are added to the NEED collection.

As shown 1n block 1730, it 1s determined 1if the last key
has been processed. If not, control passes back to block
1710. Otherwise, control 1s passed to block 1735.

In block 1735, a SATISFY_RELATIONSHIP routine 1s
invoked and control passes to block 1740. Invoking the
SATISFY__ RELATIONSHIP routine generates an execution
path of EXECUTION objects.

There are a number of different ways to implement the
SATISFY__ RELATIONSHIP routine. For example, in one
embodiment of the 1nvention, the SATISFY
RELATTIONSHIP routine 1s actually code contained in the
FIND_ ,,, NEED method. In an alternative embodiment,
the SATISFY__ RELATIONSHIP routine has been removed
from the FIND__ .., NEED method and placed in a separate
location. For example, the concept of relationship objects
later described herein can be used for this purpose. In one
embodiment of the mnvention, a relationship object 1s formed
for storing a method to 1mplement the SATISFY_
RELATIONSHIP routine. The operation of the SATISFY__
RELATIONSHIP routine will be further described herein
with reference to FIG. 18.

As shown 1n block 1740, an execution path 1s returned.
SATISFY__RELATIONSHIP Routine

FIGS. 18A—B are a flow diagram 1llustrating the operation
of the SATISFY__ RELATIONSHIP routine according to one
embodiment of the invention. The SATISFY_
RELATTONSHIP routine attempts to return an execution
path whose underlying functions will result 1n providing the
output parameter kinds assigned the keys contained in the
passed NEED__COLLECTION. The SATISFY__
RELATIONSHIP routine 1s called with the same 1nputs as
the FIND 5. NEED method (see block 1800). From block
1800, control passes to block 1810.

In block 1810, a consideration set that includes the
METADATA objects that have one or more of the needs in
therr OUTPUTS structure 1s created. By way of example, the
objects of FIG. 10 will be used. Assume that the key
“EMPLOYEE__NAME” 1s contained within the passed
NEED__COLLECTION. Since the OUTPUTS structure of

US 6,333,069 Bl

23

the METADATA object 1010 contains the “EMPLOYEE__
NAME” key, the METADATA object 1010 would be added
to the consideration set. In one embodiment, the previously
described manners of identifying METADATA type objects
(and derivatives thereof) are used (e.g., a CLASS [LABEL
parameter could optionally be passed). From the identified
metadata type objects, metadata type objects having one or

more needs 1n their OUTPUTS structure are selected. From
block 1810, control passes to block 1815.

In this manner, the exposed metadata in the METADATA
objects (the unique keys contained in the outputs structure)
are used to identity underlying functions in the integration

layer that provide as output parameters those parameter keys
identified in the NEED COLLECTION. In other words, the

exposed metadata 1n the METADATA objects allows for a
search for the underlying functions whose output(s) will
satisfy a particular need(s) of interest.

In block 1815, it 1s determined how many METADATA
objects are 1n the consideration set. If the consideration set
1s empty, control passes to block 1820. However, 1if the
consideration set 1s not empty, control passes block 1822.

In block 1820, there are no metadata objects with under-
lying functions that will provide the desired output param-

eter kind. As such, in block 1820 null 1s returned.

In block 1822, one or more solution sets of METADATA
object(s) from the consideration set are determined and
control passes to block 1825. In particular, the system
determines from the consideration set one or more solution
sets of metadata objects whose underlying functions will
collectively provide values for the needs in the passed
NEED_COLLECTION structure.

Many different techniques can be used for determining the
solution sets. For example, 1n one embodiment block 1822
is performed by selecting the first metadata object(s) in the
consideration set that satisty the needs. In another alternative
embodiment of the invention, block 1822 1s performed by
first extracting 1nto a solution set the metadata objects from
the consideration set that must be used. In particular, 1f only
one of the METADATA object’s underlying function pro-
vides one or more of the needs in the NEED__
COLLECTION, then that metadata object must be used.
Next, 1t 1s determined how many metadata objects are left 1n
the consideration set. If no METADATA objects are left 1n
the consideration set (all of the metadata object(s) in the
consideration set must be used), then only one solution set
exists and control passes to block 1830. However, 1f there
are still multiple metadata objects in the consideration set
(i.e., multiple ones of the underlying functions can be used
to satisfy the same need i1dentified 1n the NEED__
COLLECTION), there are multiple execution paths (e.g.,
see FIG. 21) and multiple solution sets are possible
(however, certain embodiments only determine one). Again,
a number of different techniques can be used to form
solution sets from the metadata objects left 1n the consider-
ation set after necessary metadata objects are removed (note,
cach solution set will include the metadata objects that must
be used). For example, the first metadata objects that satisfy
the needs could be selected. As another example, all of the
solution sets are determined (e.g., certain embodiments
index all the output parameters, and use the indexes to
determine the solution sets). As another example, a costing
technique could be used.

In block 1825, one of the solution set(s) is selected and
control passes to block 1830. Again, any number of tech-
niques could be used to perform this selection. For example,
in one embodiment block 1825 1s performed by selecting the
first solution set. In an another embodiment of the invention,

10

15

20

25

30

35

40

45

50

55

60

65

24

the well known technique of costing 1s used to select from
the solution sets. When using costing, the solution set whose
metadata object(s)’ underlying functions would cost the
least to produce the needs identified by the NEED__
COLLECTION 1s selected. The optional HAVE structure
can be used during this costing process to determine which
of the functions for the metadata objects 1n a solution set will
be cheapest. Particularly, the HAVE structure 1dentifies the
values that are already established. As such, 1f two metadata
objects will satisly a need, but the first requires an input that
1s not 1n the HAVE structure and the second does not, then
the second will likely cost less than the first.

As shown 1n block 1830, the NEW__EXECUTION
method for the METADATA object(s) in the selected solu-
tion set 1s applied. For example, 1f the above consideration/
solution set technique 1s used, the NEW__EXECUTION
method is applied for each of the metadata object(s) in the
solution set. As a result, block 1830 provides an execution
object for each metadata object 1n the solution set. Control
passes from block 1830 to block 1835. With reference to the
example of FIG. 21, assume that function E was selected. As
such, an execution object for the metadata object identifying
the function E would be created.

In block 1835, a level object 1s created and added to the
beginning position of ordered execution in a temporary
execution path collection. In other words, by block 1835 the
functions for one level of an execution path have been
identified and execution objects have been formed for each
function. These execution objects are then placed 1n a level
object which 1s placed 1n the ordered collection of a tem-
porary execution path. With reference to the above example
where function E of FIG. 21 was selected, a level N object
would be created for the execution object from block 1830.

As shown 1n block 1840, 1t 1s determined 1if all of the
needed imputs to the functions represented by the level
object of block 1835 are available (in the HAVE structure).
If so, control passes to block 1867 because an end of an
execution path has been reached. Otherwise, control passes
to block 1845. With reference to the above example where
function E of FIG. 21 was selected, control would pass to
block 1845.

In an alternative embodiment, an optimization 1s made 1n
which a block 1s performed between blocks 1835 and 1840.
In particular, 1t 1s determined, for each execution object on
the current level, whether all of the mputs for that execution
object’s underlying function are 1n the HAVE structure. In
other words, 1t 1s determined whether an execution object’s
underlying function could have been executed on the early
level. For each such execution object, the output(s) of that
execution object are added to the HAVE structure.

In block 1845, a need collection 1s created for the needed
inputs and control passes to block 1850. As shown 1n block
1850, the satisty relationship routine i1s invoked and control
passes to block 1855. As such, a reiterative process 1s begun
to work up the execution path through the outputs of the
function. With reference to the example of FIG. 21, the
needs for E will identify the functions A, D and F.

As shown 1n block 18585, 1t 1s determined 1f all of the
solution sets have all been processed. If not, control passes
to block 1865 from which control i1s passed back to block
1825 for selection of another solution set. To continue the
above example, assume that the consideration set A, D, and
F 1s being processed. The consideration set A, D, and F
results in two solution sets: (A, D) and (A, F). In addition,
on the imitial pass through block 1825, assume that the
solution set (A, D) was selected. As a result, when block
1855 is reached, the solution set (A, F) will not yet have been

US 6,333,069 Bl

25

processed and control will pass back to block 1825 where
solution set (A, F) will be selected. Whereas, if it was
determined that all the solution sets have been processed,
control passes to block 1860 where a return 1s performed. It
should be noted that one embodiment only completes one
solution set, and therefore does not perform blocks 1855 and
1865 when an execution path has been established (e.g.,
control passes from block 1850 to block 1860).

As shown 1n block 1867, the end of an execution path has
been reached and duplicate execution objects are removed.
From block 1867, control passes to block 1870. This concept
1s further described later herein. While one embodiment 1s
described 1 which duplicates are removed, alternative
embodiments need not remove duplicates.

In block 1870, the path 1s costed and control passes to
block 1875. For example, when function A of FIG. 21 1s
reached. Any number of different costing mechanisms could
be used. In one embodiment of the invention, each metadata
object has stored therein a value indicating the cost of the
metadata object. The values from each of the metadata
objects 1n the execution path are summed to determine the
cost of the execution path. In alternative embodiments of the
invention, other costing mechanisms can be used (e.g., a
method could be used to determine cost).

As shown 1n block 1875, 1t 1s determined 1if the current
execution path 1s cheaper than a previously selected execu-
tion path (if any). If the current execution path is cheaper,
control passes to block 1880. Otherwise, control passes to
block 1890.

In block 1880, the current execution path 1s stored as the
selected execution path and control passes to block 1885
where a return 1s performed. In this manner, the cheapest of
the execution paths 1s selected.

As shown 1n block 1890, a previously selected execution
path 1s cheaper and the current temporary execution path 1s
discarded as a return 1s performed.

With reference to FIG. 21, the flow of FIG. 18 will now
be described. Assume that the initial consideration set
includes function E, and that E 1s selected in block 1825.
Processing for E will reach block 1850 where a recursive
call 1s made based on the input needs of function E (Best
Name and Spouse’s Name). On this first recursive call, the
consideration set will include A, D, and F; and the solution
sets will be (A, D) and (A, F). Assume that solution set (A,
D) is selected (in block 1825). Processing for (A, D) will
reach block 1850 where a recursive call 1s made based on the
input needs of function D (the input of function A 1is
available in the HAVE structure). On this second recursive
call, the consideration set will include B and C; and the
solution sets will be (B) and (C). Assume that function B is
selected. Processing for B will reach block 1850 where a
recursive call 1s made based on the mput needs of function
B (Id). On this third recursive call, the consideration set will
include function A, and thus there 1s one solution set. Since
the 1nputs from the solution set of A are available m the
HAVE structure, processing for A will reach block 1870
where duplicates are removed. Particularly, the execution
path 1s now A to B, B to D, and both A and D to E. Since
function A 1s duplicated, one 1s removed to create the
execution path A to B, B to D, and D to E. This execution
path 1s then costed. In addition, since this 1s the first
execution path, this path will be stored as the selected
execution path and block 1885 will be reached.

As a result of the return 1n block 1885, processing will
return to block 1855 of the second recursive call. On this
call, control will pass through block 1865 to block 1825

because the solution set (C) remains (the path from D to A

10

15

20

25

30

35

40

45

50

55

60

65

26

through C remains). This return to block 1825 will result in
the solution set (C) being selected (instead of the already
processed solution set that contained B). Processing for the
solution set (C) will reach block 1850 where a fourth
recursive call 1s made based on the mput needs of function
C. On this fourth recursive call, the solution set containing
A will again be determined and selected. Processing for A
will again reach block 1870 where this second execution
path 1s costed. Assuming this second execution path 1s not
cheaper than the first, block 1885 is reached and processing
returns to block 1855 of the second recursive call. This time,
all solution sets have been processed (both B and C of the
left side tree) for the second recursive call and processing
returns to block 1855 of the first recursive call. Processing
continues as such.

While one embodiment 1s described 1n which each execu-
fion path 1s processed to completion, alternative embodi-
ments of the invention attempt to improve performance by
restricting execution path processing. For example, one such
alternative embodiment calculates costing on the fly and
terminates processing of an execution path that exceeds a
previous best execution path. As another example, alterna-
tive embodiments can restrict the number of recursive levels
processed (e.g., execution paths over a certain number of
levels are aborted).

In addition, while one embodiment 1s described in which
costing 1s used, alternative embodiments do not use costing.
For example, one such alternative embodiment just picks the
first metadata objects 1n block 1825 to create a first execu-
tion path, and never determines other execution paths (e.g.,
does not perform blocks 1855, 1865, 1875, 1890).

The FIND_ ;- NEED__AND_ EXECUTE method 1s the
same as the FIND__ ,,, NEED method, with the exception
that the FIND__ ..., NEED AND__EXECUTE causes the
EXECUTE methods on the execution path to be applied.
Application of the EXECUTE methods on the execution
path results in values being provided for the keys contained
in the NEED__ COLLECTION.

EXECUTE Method

FIG. 19 1s a flow diagram 1illustrating the operation of the
EXECUTE method according to one embodiment of the
invention. As previously described, a given EXECUTION 1s
associlated with a METADATA object, which 1n turn 1s
assoclated with an action unit, which 1n turn 1s associated
with a function being tracked by the integration layer.
Application of the EXECUTE method from an execution
object causes the execution of the underlying function using
the values associated with that EXECUTION object, as well
as causes the associating of the outputs from the underlying
function with that EXECUTION object. It 1s worthwhile to
point out that the phrase “the values associated with an
execution object” can refer to either the KEY_ VALUE
objects stored 1n the PARAMS structure of that EXECU-
TION object or a context object in a MANAGER object. In
addition, certain embodiments of the invention optionally
allow a context object be passed as an 1input parameter to the
EXECUTE method. In this situation, one or more of the
KEY__VALUE objects 1n the passed context object may be
used.

As described later herein, there are times when values for
the required 1nputs to the underlying functions are not yet
associated with the EXECUTION object (or contained in the
passed context object, if present). In this situation, the
previously described satisty-relationship routine can be used
in a recursive fashion to generate EXECUTION objects
whose underlying functions are applied to provide the
missing values.

US 6,333,069 Bl

27

The inputs to the EXECUTE method are optionally: 1) a
MANAGER object; and 2) a context object (see block
1900). Control passes from block 1900 to block 1905.

With reference to block 1905, blocks 1910-1930 1n FIG.
19 are performed for each input needed for the execution
object’s underlying function. Block 1905 can be performed
in a similar manner to block 1710. Control passes from
block 1910 to block 1915.

As shown 1n block 1910, an attempt 1s made to associate
a value with the key currently being processed. From block
1910, control passes to block 1913.

In one embodiment, block 1910 1s performed by applying,
the GET__PARAM method for the current key and then
applying the SET_PARAM method for the current key with
the value from the GET__PARAM method. In an alternative
embodiment, block 1910 is performed with a modified
version of the flow shown in FIG. 14. Particularly, the
SET__PARAM method need not be applied after the GET__
PARAM 1f the value i1s already stored in the PARAMS
structure. As such, this modified version of the flow 1n FIG.
14 does not apply the SET__ PARAM method 1if the matching
KEY__VALUE object 1s found 1in the PARAMS structure. In
addition, as stmilarly described with reference to the GET__
PARAM method, certain embodiments of the invention may
allow the searching for matches to be performed using
derivatives of the parameter kind class assigned the passed
key. Furthermore, certain embodiments of the nvention may
provide searching for matches using derivatives of the
parameter kind class for only one of the GET_PARAM
method and the technique used for block 1910.

In the embodiment previously described, the PARAMS
structure has priority over a passed context object, and a
passed context object has priority over the default context (if
any). As such, the default context can be used to store
oglobal/shared parameter values, whereas the passed context
objects can be used to store specific parameter values.
Furthermore, 1t 1s understood that in one embodiment that
blocks 1910-1930 are performed individually for each key.
As a result, the values for different keys can be acquired
from different contexts (PARAMS, a passed context, the
default context).

By way of example, assume that there are a number of
contexts to be processed. Particularly, assume certain pro-
cessing must be done for each of employees Jack and Jane.
While certain information will be specific to Jack and Jane
(c.g., name), assume that certain information is shared by
Jack and Jane (e.g., they both work for department K). In the
described embodiment, the global values (e.g., department
K) can be stored in the default context of a manager object,
while the inquiry specific values (e.g., information specific
to Jack and Jane) can be stored in separate “inquiry specific”
context objects (e.g., in the context collection structure of
the manager object. When applying the EXECUTE method
for a given 1inquiry, the manager object and the appropriate
Inquiry specific context object can be passed as input
parameters to the EXECUTE method. Assuming the execu-
tion object’s PARAMS structure 1s empty, the global values
and 1nquiry speciiic values will be associated with the
execution object as described above. In this manner, the
default context provides a global context feature, while the
other contexts 1n the context collection structure provide
specific context capabilities.

While one embodiment of the mnvention 1s described with
reference to a particular priority structure, alternative
embodiments of the invention can have a different priority
scheme. Furthermore, while one embodiment allows for the
selection from multiple contexts, alternative embodiments

5

10

15

20

25

30

35

40

45

50

55

60

65

23

can provide more or less contexts to select from. For
example, one embodiment of the invention provides for only
the PARAMS structure. In addition, while certain embodi-
ments allow values for different keys to be provided from
different contexts, alternative embodiments select one con-
text from which all values must come. Furthermore, embodi-
ments of the invention can implement the context objects to
be hierarchical using well known techniques. In other words,
a context object can have a parent context object. In this
case, 1f a key 1s not found in a given context object, the
system would recursively work 1ts way up the hierarchy
looking for the key.

As shown 1n block 1915, it 1s determined 1f a value was
associated with the current key. It so, control passes to block
1930. Otherwise, control passes to block 19285.

In block 1925, since there 1s no value associated with the
key, a need has been identified (i.e., one of the required input

parameters for the underlying function has no value). As
such, 1n block 19235, the current key 1s stored 1n a NEED__

COLLECTION. As previously described, the NEED__
COLLECTION 1s used by the SATISFY__ RELATIONSHIP
routine to locate other execution objects with underlying
functions that can provide values for missing mput param-
cters. The manner in which this 1s performed during the
EXECUTE method is further described later herein. Control
passes from block 19235 to block 1930.

In block 1930, 1t 1s determined 1f all of the keys from the
INPUTS structure of the metadata object have been pro-
cessed. If not, control passes back to block 1905. Otherwise,
control passes to block 1935.

In block 1935, 1t 1s determined 1f the NEED
COLLECTION 1s empty. If the NEED__ COLLECTION 1s
empty, then there are values established for each of the
required input parameters to the underlying function and
control passes to block 1945. However, 1f there are keys in

the NEED__COLLECTION, control passes to block 1940.

In block 1940, the PARAMETER SATISFY method
from the EXECUTION object 1s applied for the NEED__
COLLECTION. The PARAMETER__SATISFY method
will be described later herein with reference to FIG. 20.
However, 1t 1s worthwhile to note that the PARAMETER_
SATISFY method 1s designed to use the basic techniques of
the SATISFY__RELATIONSHIP routine to locate and
execute other functions (via EXECUTION objects and
METADATA objects) that will provide the missing input
parameter values. From block 1940, control passes to block
1945.

As shown 1n block 1945, the action method from the
metadata object 1dentified by the execution object 1s caused
to be executed using the established parameter values.

Thus, the mnvention provides for an execution framework
for functions that allows execution plans to be determined
and performed.

PARAMETER__SATISFY Method

FIG. 20 1s a block diagram 1llustrating the
PARAMETER__SATISFY method according to one
embodiment of the invention. The PARAMETER__
SATISFY method receives the same inputs as the FIND__
sy NEED method previously described (see block 1700).
From block 2000, control passes to block 20035.

In block 2005, the SATISFY RELATIONSHIP routine 1s

invoked and control passes to block 2010. As previously
described, mvoking the SATISFY_RELATIONSHIP rou-

tine will attempt to return an execution path for the NEED

COLLECTION parameter.
In block 2010, the execution path 1s performed and
control passes to block 2015. In one embodiment, the

US 6,333,069 Bl

29

execute methods of the execution objects 1n the level objects
of the EXECUTION__PATH_COLLECTION structure are
applied 1n level order.

It should be noted that application of each EXECUTE

method requires the operations illustrated 1n FIG. 19 to be
performed. It should be understood that application of one or
more of these EXECUTE methods could also result mn a
determination that the values for one or more required inputs
of an underlying function 1s missing. In other words, this
operation can be recursive 1n nature.

According to the embodiment shown 1n FIG. 20, for each
key in the NEED__COLLECTION (see block 2015) it is
verifled that a value was acquired. In particular, block 2020
determines 1f a value was returned. If a value was not
returned, control passes to block 2030 1n which a flag 1s set
for debugging purposes. However, 1f a value was returned,
then the SET__ PARAM method 1s applied with the returned
value to associate the value with the EXECUTION object.
While one embodiment 1s described 1n which verification
that a value was returned for each key 1n the need collection
1s performed, alternative embodiments can avoid this veri-
fication and/or provide for this verification in other areas.

In this manner, values for any of the missing input
parameters to the underlying function are located as part of

applying the EXECUTE method from the EXECUTION
object.

Relationship Objects

In one embodiment, the mtegration layer also includes
two types of objects, base objects and relationship objects.
The base objects describe the disparate integration sources
A-1. The relationship objects describe relationships between
the base objects, as well as relationships between the rela-
tionship objects themselves.

Specifically, the common concept of encapsulation in
object technology 1s to place data with its’ associated
methods together 1n a single object. In contrast, the integra-
tion layer 1s developed such that those methods that express
a relationship (referred to herein as “relationship methods™)
are placed 1n separate objects—the relationship objects. In
this manner, a higher degree of encapsulation 1s provided.
While relationship methods within relationship objects are
similar to methods commonly found 1n object technology in
that they can be applied to the objects that contain them,
relationship methods within relationship objects are ditfer-
ent 1n that they often are applied to other objects, including
base objects and other relationship objects. For a further
description of relationship objects, sece “A Method and
Apparatus for Providing Relationship Objects and Various
Features to Relationship and Other Objects,” filed Sep. 30,
1998, by Bhalchandra Ghatate, which 1s herein incorporated
by reference.

As previously indicated, in one embodiment of the
invention, relationship object(s) are used to provide for one
or more SATISFY_RELATIONSHIP routines. In this
manner, different types of satisty relationship routines can
be provided and selected from using the relationship object
techniques.

Alternative Embodiments

While the mnvention has been described 1n terms of several
embodiments, those skilled 1n the art will recognize that the
invention 1s not limited to the embodiments described. The
method and apparatus of the invention can be practiced with
modification and alteration within the spirit and scope of the
appended claims. The description 1s thus to be regarded as
illustrative instead of limiting on the mvention.

10

15

20

25

30

35

40

45

50

55

60

65

30

What 1s claimed 1s:
1. A machine readable medium having stored thereon:

a Tunction requiring a set of one or more 1put parameters;

a first object mcluding,
a first structure storing a key for each of said set of input
parameters, and
an action method, which when applied by a processor,
causes that processor to 1nvoke an action unit; and

a second object including,

a first structure to store data for identifying, for each of
said set of input parameters, the corresponding key
and a value for that mnput parameter,

a second structure identifying said first object, and

an execute method, which when applied by a processor,
causes that processor to apply said action method;

said action unit including instructions, which when
executed by a processor, cause that processor to,
access said values, and
invoke said function using said values as mput param-
cters.

2. The machine readable medium of claim 1, wherein said
function 1s contained within said action unit.

3. The machine readable medium of claim 1, wherein said
first structure 1n said second object has stored therein, for at
least one of said set of input parameters, the corresponding
key and a value for that input parameter.

4. The machine readable medium of claim 1, wherein:

the data in said first structure of said second object
1dentifies a third object; and

said third object includes a structure to store, for one or
more of said set of input parameters, the corresponding,
key and value for that mput parameter.

5. The machine readable medium of claim 1, wherein:

the data in said first structure of said second object
identifies a third object; and

said third object includes,

a first structure to store a plurality of context objects,
cach of said plurality of context objects to store, for
one or more of said set of mput parameters, the
corresponding key and a value for that input
parameter, and

a second structure to store data identifying one of said
plurality of context objects as a default context
object.

6. The machine readable medium of claim 1, wherein:

said function provides a set of one or more output
parameters,

said first structure 1n said first object also storing a key for
cach of said set of output parameters.
7. A machine readable medium having stored thereon:

a function requiring a set of one or more 1put parameters;

a first object including,
a first structure storing a key for each of said set of 1nput
parameters, and
an action method, which when applied by a processor,
causes that processor to 1nvoke said function; and

a second object including,
a first structure 1dentifying a third object,
a second structure 1dentifying said first object, and
an execute method, which when applied by a processor,
causes that processor to apply said action method;
and

said third object including,
a first structure to store a plurality of context objects,
cach of said plurality of context objects to store, for

US 6,333,069 Bl

31

one or more of said set of mput parameters, the

corresponding key and a value for that input
parameter, and

a second structure to store data identifying one of said

plurality of context objects as a default context

object.

8. The machine readable medium of claam 7 further

having stored thereon:

an action unit including said function as a method.
9. The machine readable medium of claim 7 further

having stored thereon:

an action unit including instructions, which when
executed by a processor, cause that processor to 1nvoke
said function; and

wherein said action method, when applied, causes the
execution of the mstructions 1n said action unit.
10. The machine readable medium of claim 7 further
having stored thereon:

an action unit including instructions, which when
executed by a processor, cause that processor to,
access values for one or more of said set of input
parameters from a selected one of said plurality of
context objects that 1s passed to said action unit, and
invoke said function using said values as mput param-
eters; and

wherein said action method, when applied, causes said
function to be imnvoked through the instructions in said
action umnit.

11. The machine readable medium of claim 10, wherein:

said second object also includes a first structure storing,
data 1dentifying, for one or more of said set of 1nput
parameters, the corresponding key and a value for that
input parameter; and

said instructions of said action unit, when executed by a
processor, also cause that processor to access values for
one or more of said set of 1input parameters from said
first structure.

12. The machine readable medium of claim 11, wherein:

said 1nstructions of said action unit, when executed by a
processor, also cause that processor to access values for
one or more of said set of 1nput parameters from said
default context object.

13. The machine readable medium of claim 11, wherein:

said instructions of said action unit, when executed by a
processor, also cause that processor to access values for
one or more of said set of 1nput parameters from said
default context object.

14. The machine readable medium of claim 7 further

having stored thereon:

said second object also includes a first structure to store
data 1dentifying, for one or more of said set of input
parameters, the corresponding key and a value for that
input parameter; and

an action unit i1ncluding instructions, which when
executed by a processor, cause that processor to,
access values for said set of input parameters from said
first structure of said second object, a selected one of
said plurality of context objects that 1s passed to said
action unit, and said default context object, and
invoke said function using said values as mput param-
cters.
15. A machine readable medium having stored thereon:

a plurality of functions for one or more applications, each
of said plurality of functions requiring one or more
input parameters, the input parameters required by said

10

15

20

25

30

35

40

45

50

55

60

65

32

plurality of functions collectively defining a set of
parameter kinds irrespective of data type, each param-
cter kind 1n said set being assigned a unique key;

a metadata object corresponding to each of said plurality
of functions, each said metadata object storing data to
locate the corresponding one of said plurality of
functions, each said metadata object also storing the
unique key for each input parameter required by the
corresponding one of said plurality of functions; and

cach metadata object having one or more corresponding,
execution objects, each execution object including a
structure storing data to 1dentily a value for each input
parameter of the one of said plurality of functions
identified by the corresponding metadata object.

16. The machine readable medium of claim 15, wherein
cach parameter of said plurality of functions 1s of one of a
plurality of data types each supporting a range of values,
wherein different data i1s categorized irrespective of data
type, and wherein each category of data defines one of the
parameter kinds.

17. The machine readable medium of claim 15 further
having stored thereon:

an action unit for each of said plurality of functions, each
of said action units including instructions, which when
executed by a processor, cause that processor to 1nvoke
the corresponding one of said plurality of functions;
and

wherein the data 1n each of said metadata objects for
locating the corresponding one of said plurality of
functions 1dentifies the corresponding one of said
action units; and

wherein each of said metadata objects mncludes an action
method, which when applied, causes the execution of
the 1nstructions 1n the corresponding one of said action
units.

18. The machine readable medium of claim 17, wherein:

cach execution object includes a method, which when
applied, causes said action method of the correspond-
ing metadata object to be applied for that business rule;

cach action method, when applied responsive to the
method of an execution object, causes the nstructions
in the corresponding action unit to be executed for that
business rule; and

the 1nstructions 1n each action unit, when applied respon-
sive to an action method responsive to the method of an
execution object, causes the values of that business rule
to be accessed and said function of that action unit to
be mvoked with said values as input parameters.

19. The machine readable medium of claim 18§, wherein
at least one of said execution objects stores the key and a
corresponding value for at least one input parameter of the
corresponding one of said plurality of functions.

20. The machine readable medium of claim 15, wherein:

at least one of said execution objects 1ncludes a structure
identifying a manager object; and

said manager object 1includes a structure to store the key
and a corresponding value for at least on 1nput param-
cter of the one of said plurality of functions correspond-

ing to the at least one of said execution objects.
21. The machine readable medium of claim 15, wherein:

at least one of said execution objects includes a structure
identifying a manager object; and
said manager object includes,

a first structure to store a plurality of context objects,
cach of said plurality of context objects to store the

US 6,333,069 Bl

33

key and a corresponding value for one or more 1nput
parameters to at least certain of the plurality of
functions, and
a second structure to store data identifying one of said
plurality of context objects as a default context
object.
22. The machine readable medium of claim 15, wherein:

cach of said plurality of functions provides one or more
output parameters, the mput and output parameters of
said plurality of functions collectively defining said set
of parameter kinds 1rrespective of data type;

cach said metadata object also storing the unique key for
cach mput and output parameter of the corresponding
one of said plurality of functions.

23. A machine readable medium having stored thereon
sequences of mstructions, which when executed by a set of
one or more processors, cause said set of one or more
processors to perform the acts of:

applying a first method from a first execution object, said
first execution object identifying a first metadata object
corresponding to a first function, said first function
requiring one or more Input parameters, said {first
metadata object storing data describing each input
parameter of said first function, said first method caus-
ing the acts of,
accessing the data describing each input parameter of
said first function from said first metadata object;
attempting to match values associated with said first
execution object to each mput parameter of said first
function as described by the data; and
determining a value 1s missing for at least a first input
parameter to said first function.
24. The machine readable medium of claim 23, wherein
said first method further causes the acts of:

locating a second metadata object corresponding to a
second function having one or more output parameters,
said second metadata object storing data describing
cach output parameter of said second function;

determining the missing first input parameter 1s an output
parameter of said second function; and

executing said second function to acquire the missing,
value.
25. The machine readable medium of claim 24, wherein
said first method further causes the act of:

assoclating the acquired value with said first execution
object; and
executing said first function using the acquired value now
assoclated with said first execution object as the first
input parameter.
26. The machine readable medium of claim 23, wherein
said first method further causes the acts of:

determining a set of metadata objects that each have
stored therein data describing an output parameter that
matches one or more of the missing mput parameters,
wherein each metadata object 1n said set corresponds to
a different function having a set of one or more output
parameters, each metadata object 1n said set storing
data describing said set of output parameters for the
corresponding function; and

executing the functions corresponding to the set of meta-
data objects to acquire said set of missing values;

assoclating the acquired values with the first execution
object; and executing said first function using the
values associated with the first execution object as
Input parameters.

10

15

20

25

30

35

40

45

50

55

60

65

34

27. The machine readable medium of claim 23, wherein
said attempting further includes:

accessing a structure 1n said first execution object, said
structure 1n said first execution object to store values
for one or more said set of mput parameters to said first
function.

28. The machine readable medium of claim 23, wherein
said attempting further includes:

accessing a structure 1n a manager object 1dentified by a

structure 1n said first execution object, said structure in
saidd manager object identifying a default one of a
plurality of context objects, each of said plurality of
context objects to store values for one or more of the
input parameters to said first function; and

accessing said values from said default context object.

29. The machine readable medium of claim 23, wherein
said sequences of instructions, when executed, cause said set
of processors to further perform the acts of:

applying a first method from a second execution object,

said second execution object also 1dentifying said first

metadata object, said first method of said second execu-

tion object causing the acts of,

accessing the data describing each input parameter of
said first function from said first metadata object;

attempting to match values associated with said second
execution object to each input parameter of said first
function as described by the data 1n said first meta-
data object; and

determining one or more values are missing for at least
certain input parameters of said first function.

30. A machine readable medium having stored thereon
sequences of 1nstructions, which when executed by a set of
one or more processors, cause said set of one or more
processors to perform the acts of:

applying a first method from a first execution object, said

first execution object 1dentifying a first of a plurality of
metadata objects, each of said plurality of metadata
objects 1dentifying a different function, each of said
functions having input and output parameters, wherein
one or more parameters for different functions are the
same, the parameters for the different functions collec-
tively defining a set of parameter kinds, each parameter
kind 1n said set of parameter kinds being assigned a
unique key, each of said plurality of metadata objects
storing the unique keys assigned the mput and output
parameters of the function they identily, said first
method causing the acts of,
accessing the key for each mput parameter stored in
said first metadata object;
attempting to match parameter values associated with
said first execution object to each of the accessed
keys; and
determining parameter values are missing for a set
including at least one of the accessed keys.

31. The machine readable medium of claim 30, wherein
cach parameter of said functions 1s of one of a plurality of
data types each supporting a range of values, wherein
different data 1s categorized irrespective of data type, and
wherein each category of data defines one of the set of
parameter kinds.

32. The machine readable medium of claim 30, wherein
said first method further causes the acts of:

locating a set of one or more of said plurality of metadata
objects that collectively store each of the set of keys;
and

executing the functions corresponding to the set of meta-
data objects to acquire said set of missing parameter
values as outputs of the functions;

US 6,333,069 Bl

35

associating the acquired parameter values with the first
execution object; and

executing the function identified by the first metadata
object using the parameter values associated with the
first execution object as mput parameters.
33. The machine readable medium of claim 30, wherein
said attempting further includes:

accessing a structure in said first execution object, said
structure 1n said first execution object to store values
for one or more said set of mput parameters to the
function 1dentified by the first metadata object.
34. The machine readable medium of claim 30, wherein
said attempting further includes:

accessing a structure 1 a manager object 1dentified by a
structure 1n said first execution object, said structure 1n
saidd manager object identifying a default one of a
plurality of context objects, each of said plurality of
context objects to store values for one or more of the
input parameters to said first function; and

accessing one or more of said values from said default
context object.

35. The machine readable medium of claim 30, wherein

said sequences of 1nstructions, when executed, cause said set

of processors to further perform the acts of:

applying a first method from a second execution object,
said second execution object also 1dentifying said first
metadata object, said first method of said second execu-
fion object causing the acts of,
accessing the key for each mput parameter stored 1n
said first metadata object;
attempting to match values associated with said second
execution object to each of the accessed keys; and
determining parameter values are missing for a set
including at least one of the accessed keys.
36. The machine readable medium of claim 30, wherein
said attempting further includes:

accessing from a first structure in said first execution
object a value for a first input parameter to said function
identified by said first metadata object;

accessing, from a first of a set of context objects that was
passed, a value for a second 1nput parameter to said first
function, said set of context objects being stored in a
first structure of a manager object, each of said set of
context objects to store values for one or more of the
input parameters to said first function, said manager
object 1dentifying one of said set of context objects as
a default context object; and

accessing from said default context object a value for a

third input parameter to said first function.

37. A machine readable medium having stored thereon
sequences of mstructions, which when executed by a set of
one or more processors, cause said set of one or more
processors to perform the acts of:

receiving a request to locate a function that provides a
particular parameter kind as an output;

locating a metadata object having stored therein data
identifying said particular parameter kind, said meta-
data object 1dentifying a function and storing said data
to 1ndicate the particular parameter kind 1s an output
parameter of said function; and

providing an execution object that identifies said metadata
object, wherein said execution object includes,
structure to 1dentily values for a set of one or more
input parameters to said function, and
a method, which when applied, causes said function to
be invoked using the values identified by said struc-
ture as mput parameters.

5

10

15

20

25

30

35

40

45

50

55

60

65

36

38. The machine readable medium of claim 37, wherein:

said function has a plurality of parameters, said metadata
object stores data 1dentifying each kind of said plurality
ol parameters.

39. The machine readable medium of claim 38, wherein
cach parameter of said function 1s of one of a plurality of
data types each supporting a range of values, wherein
different data 1s categorized irrespective of data type, and
wherein each category of data defines one of the parameter
kinds.

40. The machine readable medium of claim 37, wherein:

said metadata object mncludes an action method, which
when applied by a processor, causes said processor to
mmvoke said function; and

saild method 1n said execution object, when applied,

causes said action method to be applied.

41. A machine readable medium having stored thereon
sequences of instructions, which when executed by a set of
one or more processors, cause said set of one or more
processors to perform the acts of:

receiving a request to locate a function that provides a
particular output parameter, wherein each of a plurality
of metadata objects identily a different function having
one or more output parameters, said output parameters
for the different functions collectively defining a set of
parameter kinds, each parameter kind in said set being
assigned a unique key, each of said plurality of meta-
data objects storing the unique keys assigned the output
parameters of the function they identify;

locating a first of said plurality of metadata objects that
stores the unique key for the particular output param-
eter; and

creating an execution object that identifies said first

metadata object, wherein said execution object

mncludes,

a structure to i1dentify values for a set of one or more
input parameters to said function i1dentified by said
first metadata object, and

a method, which when applied, causes said function
1dentified by said first metadata object to be mvoked
using the values 1dentified by said structure as input
parameters.

42. The machine readable medium of claim 41, wherein
cach parameter of said functions 1s of one of a plurality of
data types each supporting a range of values, wherein
different data 1s categorized irrespective of data type, and
wherein each category of data defines one of the parameter
kinds.

43. The machine readable medium of claim 41, wherein
said sequences of 1nstructions, when executed, cause said set
of processors to further perform the acts of:

applying said method from said execution object, wherein
both said 1nput and output parameters for the different

functions collectively define said set of parameter

kinds, each of said plurality of metadata objects storing

the unique keys assigned the mput and output param-

cters of the function they identity, said method from

said execution object causing the acts of,

accessing the key for each mput parameter stored 1n
said first metadata object;

attempting to match parameter values associated with
sald execution object to each of the accessed keys;
and

executing the function identified by said first metadata
object using the parameter values associated with the
execution object as input parameters.

US 6,333,069 Bl

37

44. The machine readable medium of claim 41, wherein
said attempting further causes the acts of:

determining parameter values are missing for a set includ-
ing at least one of the accessed keys.

locating a set of one or more of said plurality of metadata
objects that collectively store each of the set of keys for
output parameters; and

executing the functions corresponding to the plurality of
metadata objects to acquire said set of missing param-
cter values as outputs of the functions; and

associating the acquired parameter values with first

execution object.

45. A machine readable medium having stored thereon
sequences of mstructions, which when executed by a set of
one or more processors, cause said set of one or more
processors to perform the acts of:

applying a first method from a first execution object, said
first execution object 1dentifying a first of a plurality of
metadata objects, each of said plurality of metadata
objects 1dentifying a different function, each of said
functions having mput and output parameters, wherein
one or more parameters for different functions are the
same, sald parameters for the different functions col-
lectively defining a set of parameter kinds, each param-
eter kind 1n said set of parameter kinds being assigned

10

15

20

25

33

a unique key, each of said plurality of metadata objects

storing the unique keys assigned the mput and output

parameters of the function they identily, said first

method causing the acts of,

accessing the key for each mput parameter stored 1n
said first metadata object;

assoclating with said first execution object a value
stored as part of a first of a set of context objects that
was passed, said value stored for use as a first input
parameter, said set of context objects being stored in
a first structure of a manager object, each of said set
of context objects to store values for one or more of
the 1nput parameters to said first function; and

executing said first function using the parameter values
assoclated with the first execution object as input
parameters.

46. The machine readable medium of claim 45, wherein
said first method further causes the acts of:

assoclating with said first execution object a value stored
as part of one of said set of context objects 1dentified by
said manager object as a default context object, said
value stored for a second mput parameter to said first
function.

	Front Page
	Drawings
	Specification
	Claims

