

(12) United States Patent Tan et al.

US 6,337,206 B1 (10) Patent No.: *Jan. 8, 2002 (45) **Date of Patent:**

- NUCLEIC ACID ENCODING MOUSE (54)GALANIN RECEPTOR (GALR2)
- Inventors: Carina Tan, Metuchen, NJ (US); Lee (75)F. Kolakowski, Jr., San Antonio, TX (US)
- Assignees: Merck & Co., Inc., Rahway, NJ (US); (73)**Board of Regents, The University of Texas System**, Austin, TX (US)

WO	WO 97/46681	12/1997
WO	WO 98/03548	1/1998

OTHER PUBLICATIONS

Habert–Ortoli, et al. 1994. Proc. Nat. Acad. Sci., USA 91: 9780–9783 Molecular cloning of a functional human galanin receptor.

O'Dowd, B. F. et al. 1995 Genomics 28:84–91. The Cloning and Chromosomal Mapping of Two Novel Human Opioid – Somatostatin–like Receptor Genes, GPR7 and GPR8, Expressed in Discrete Areas of the Brain.

This patent issued on a continued pros-(*) Notice: ecution application filed under 37 CFR 1.53(d), and is subject to the twenty year patent term provisions of 35 U.S.C. 154(a)(2).

> Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

- Appl. No.: 08/993,424 (21)
- Dec. 18, 1997 (22)Filed:

Int. Cl.⁷ C12N 5/10; C12N 15/12 (51)

- (52)
- Field of Search 536/23.5, 24.31; (58)435/320.1, 325, 69.1; 530/350

References Cited (56)U.S. PATENT DOCUMENTS

Suke Wang, et al., Federation of European Biochemical Societies Letters, 411 (1997) 225–230; Genomic organization and functional characterization of the mouse GalR1 galanin receptor.

IASP Press (Seattle) Abstracts 8th World Congress on Pain (International Assoc. for the Study of Pain) Aug. 19, 1996, ISBN: 0–931092–17–5, Lib. of Congress 96–77433.

Howard, A. D. et al., Molecular cloning and characterization of a new receptor for galanin, FEBS Letters, vol. 405, pp. 285–290, 1997.

Primary Examiner—Michael Pak

(74) Attorney, Agent, or Firm-Sheldon O. Heber; Jack L. Tribble

ABSTRACT (57)

A new galanin receptor, GALR2, is described. Also provided are nucleic acids encoding same and various assays to identify ligands particular to said receptor. Ligands so identified are useful for the treatment of obesity, treatment of pain, and treatment of cognitive disorders.

5,972,624 A 10/1999 Smith et al. 435/7.2

FOREIGN PATENT DOCUMENTS

WO WO 97/26853 7/1997 6 Claims, 26 Drawing Sheets

U.S. Patent Jan. 8, 2002 Sheet 1 of 26 US 6,337,206 B1

ACATTCCCAG GAGTGACAAT AGCCTAGCAG TGAATCCTCT 1120 CGCTTAGCTG ATGCCCCCCC ACTGTCCCCA CAGGTATCTG 1160 GCCATCCGCT ACCCGCTGCA CTCCCGAGAG TTGCGCACAC 1200

FIG. 1A

U.S. Patent Jan. 8, 2002 Sheet 2 of 26 US 6,337,206 B1

1420 1410 1430 1440 ACCTATGCGC GTACCCTGCG CTACCTCTGG CGCACAGTCG 1440 ACCCGGTGAC TGCAGGCTCA GGTTCCCAGC GCGCCAAACG 1480 CAAGGTGACA CGGATGATCA TCATCGTGGC GGTGCTTTTC 1520 TGCCTCTGTT GGATGCCCCA CCACGCGCTT ATCCTCTGCG 1560 TGTGGTTTGG TCGCTTCCCG CTCACGCGTG CCACTTACGC' 1600 1620 1610 1630 1640 GTTGCGCATC CTTTCACACC TAGTTTCCTA TGCCAACTCC 1640 TGTGTCAACC CCATCGTTTA CGCTCTGGTC TCCAAGCATT 1680 TCCGTAAAGG TTTCCGCAAA ATCTGCGCGG GCCTGCTGCG 1720 CCCTGCCCCG AGGCGAGCTT CGGGCCGAGT GAGCATCCTG 1760 GCGCCTGGGA ACCATAGTGG CAGCATGCTG GAACAGGAAT 1800

181	· · · -		184	-
				بلي المراجز بعد المان و در ندهم
CTACAGACCT	GACACAGGTG	AGCGAGGCAG	CCGGGCCCCT	1840
TGTCCCACCA	CCCGCACTTC	CCAACTGCAC	AGCCTCGAGT	1880
AGAACCCTGG	ATCCGGCTTG	TTAAAGGACC	AAAGGGCATC	1920
TAACAGCTTC	TAGACAGTGT	GGCCCGAGGA	TCCCTGGGGG	1960
TTATGCTTGA	ACGTTACAGG	GTTGAGGCTA	AAGACTGARG	2000
201	0 202	203	204	0
<u></u>			<u> </u>	
ATTGATTGTA	GGGAACCTCC	AGTTATTAAA	CGGTGCGGAT	2040
TGCTAGAGGG	TGGCATAGTC	CTTCAATCCT	GGCACCCGAA	2080
AAGCAGATGC	AGGAGCAGGA	GCAGGAGCAA	AGCCAGCCAT	2120
GGAGTTTGAG	GCCTGCTTGA	ACTACCTGAG	ATCCAATAAT	2160

FIG. 1B

U.S. Patent Jan. 8, 2002 Sheet 3 of 26 US 6,337,206 B1

10 30 20 40 <u>__________________________________</u> <u>, , , , l , , , , , l</u> ATGAATGGCT CCGGCAGCCA GGGCGCGGAG AACACGAGCC 40 AGGAAGGCGG TAGCGCGGC TGGCAGCCTG AGGCGGTCCT 80 TGTACCCTA TTTTCGCGC TCATCTCCT CGTGGCACC 120 GIGGGCAACG CGCIGGIGCT GGCGGIGCIG CIGCGCGGCG 160 GCCAGGGGT CAGCACCACC AACCIGTICA TCCICAACCT 200 210 240 220 230

GEGENERCE GACCIGIENT TEATECTERS CREEKER 240 TICCAGGCCA CCATCIACAC CCIGGACGAC IGGGIGIICG 280 GCICGCIGCT CIGCAAGGCT GTICATTICC TCATCITICT 320 CACTATICAC GCCAGCAGCT TCACGCIGC CGCCGICTCC 360 CTGGACAGGT AAAGGACCCA GAAAGAAACA TCCAGTATGC 400 410 420 430 440 CCGGAGGGAT CTIGACIGGA AAAGACIGAA ICCIGGICIG 440 GIGACCITAG TICCCIGCCC TITCACATCA CIIGGACATT 480 CCCACAGAAG AGCGGIGAAG AGGCGGIGGT CCTTATICIC 520 CICIGGITIC CACIGAGIGC AACAIGIGCG ICCIGAGIAC 560 GCIGGAGGGA CICACAAAAT TICAGCTIIC TITAGGAGIT 600 610 620 630 640 TCCTIGCTGT AGITIGACCC AAGICTICIC CAGGITICIG 640 TCAGAACCIC AGGCAIGAGG GAICIGCCIC CCCIGGIIGI 680 CACCAGAGGA TAACAATCAC TOCCCCAGA AATCCAGACA 720 GATICTACAA CITITAGICI TOGGIGITIT GGGGGGGCCC 760 CTICACGIGG AGTAGGICGG IGGCCACATT CCCAGGAGIG 800 810 820 830 840 ACAATAGCCT AGCAGIGAAT CCICICGCIT AGCIGATGCC 840 CCCCACTGT CCCCACAGGT ATCTGGCCAT CCGCTACCCG 880 CIGCACICCC GAGAGITIGCG CACACCICGA AACGCGCIGG 920 CCCCATCGG GCTATCTGG GGGCTAGCAC TGCTCTTCTC 960 CGGCCCTAC CIGAGCTACT ACCGICAGIC GCAGCIGGCC 1000

FIG. 2A

U.S. Patent US 6,337,206 B1 **Jan. 8, 2002** Sheet 4 of 26

1040 1020 1030 1010 AACCIGACAG TATGCCACC AGCATGGAGC GCACCICGAC 1040 GIGAGCAT GGACCICIGC ACCICGICT TTAGCIACCT 1080 TIGCCAGIG CTAGICCICA GICIGACCIA IGCGCGIACC 1120 IGCGCTACC TCTGGCGCAC AGTCGACCCG GTGACTGCAG 1160 CCAGCGCGCC AAACGCAAGG TGACACGGAT 1200 1240 1220 1230 1210 GATCATCATC GIGGCGGIGC TTTTCIGCCT CIGITGGAIG 1240 CCCACCACG CGCITATCCT CIGCGIGIGG TITGGICGCT 1280 TCCCGCTCAC GCGIGCCACT TACGCGTIGC GCATCCITIC 1320 ACACCTAGIT TCCTATGCCA ACTCCIGIGT CAACCCCATC 1360 GITTACGCIC TGGICICCAA GCATTICCGT AAAGGITICC 1400 1420 1430 1440 1410 GCAAAAICIG CGCGGGCCIG CIGCGCCIG CCCGAGGCG 1440 AGCTICGGGC CGAGIGAGCA TCCIGGCGCC TGGGAACCAT 1480 AGTOGCAGCA TOCTOGAACA GGAATOCACA GACOTGACAC 1520 AGGIGAGEGA GECAGEGE CECETIGIEC CAECAECECE 1560 ACTICCCAAC IGCACAGCCI CGAGIAGAAC CCIGGAICCG 1600 1610 1620 1630 1640 GCTIGITAAA GGACCAAAGG GCATCTAACA GCTICTAGAC 1640 AGIGIGGCCC GAGGATCCCT GGGGGTTATG CTIGAACGTT 1680 ACAGGGIIGA GOCTAAAGAC IGAGATIGAT IGIAGGGAAC 1720 CICCAGITAT TAAACGGIGC GGATIGCIAG AGGGIGGCAT 1760 AGTOCITICAA TOCIGGCACC CGAAAAGCAG AIGCAGGAGC 1800 1810 1820 1830 1840

AGGAGCAGGA GCAAAGCCAG CCATGGAGIT TGAGGCCTGC 1840 TIGAACTACC IGAGAICCAA TAATAAAACA TIICAIAIGC 1880 TGTGAAAAAA AAAAAAAAAA AAAA 1904

FIG. 2B

U.S. Patent Jan. 8, 2002 Sheet 5 of 26 US 6,337,206 B1

750 bp

Exon 2

296 bp

ົດ

U.S. Patent	Jan.	8, 2002		Sheet 7	of 26		US 6,337,206 B1
1231 247	1306 272	1381 297	1456 322	1531 347	1606 372	1609	
	6CG A	AAG	GTG V	БАG	Cd		
U U U U	TAC Y	TCC AAG S K	RGA	S	AGCT		
		GTC					
	AGCC	CTG	S	QGG	DAT		
		AGCT					
A G G	ACG -1AC	TAC	CGA R	СTG	ACC		
C I G	С <u>Т</u> С Г	L D	AGG	DGAC	AGA		
A T C T	5 ОС С	ATC	ЪСG	ACA	S		
L A L C		D C C	AGCC	SCC	SCG		
ΔTG ΔΤΥ	66T 6	GTC V	RGC BC	QAG	ACA		M
R GG		1 <u>6</u> 1	CTG	ЧU	C TGC		
A A A F	NGG W	SCC	CTG L	CTG	AAC		Ū
U L	10	AC	С С С	516	20		

U.S. Patent Jan. 8, 2002 Sheet 8 of 26 US 6,337,206 B1

LVLSLTYART LRYLWRIVDP VTAGSGSQRA KRKVTRMIII 240 VAVLFCLOWM PHHALILOW FGRFPLTRAT YALRILSHLV 280 SYANSOVNPI VYALVSKHFR KGFRKICAGL LRPAPRRASG 320 RVSILAPGNH SGSMLEQEST DLTQVSEAAG PLVPPPALPN 360 CTASSRTLDP AC 372

U.S. Pat	ent	Jan. 8,	2002	Sheet 9	of 26	US	6,337,206 B1
8° 33	57 56	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	132 123	4 00 7 00 00 00	198 187	231 220	
u. >	د >			Σu	<u>> </u>	Ζ0.	
Z				A –1	বিব	ЧD	
<u>u</u> u	<u>YO</u>			J	КЦ	\neg	
<u>></u> a	\Box		လလ	S A	КЦ	ドー	
GQ	0.	$[\mathbf{x}]$	\sum		ЦЦ	КЦ	
- >	Y •		বিব	বিত	•	ΞŚ	
COC	თ (ე			\mathbb{Z}	O a		

A 5 .

C

S SS S LL O -> шu Y L က က O ____ L T Ω. ω Z ZZ スス Û **_ ∑** (\mathbf{J}) S S OL **Z** ' (7) > $\pm \succ$ >>• S A N $> \square$ **0**. • LL **I** \geq \square ZZ > G G \succ **_** ╎┟──╴┠── LL_ a. a. ш \vdash > S S \geq \perp ┟──╴┠── Σ. **∢** ω $> \Box$ လ လ 2 3 67 58 100 133 166 188 199 5 57 -

ratgal p ratgal p

U.S. Patent Jan. 8, 2002 Sheet 10 of 26 US 6,337,206 B1

 \mathbf{m} S

()

ratgalp ratgalp ratgalp ratgalp ratgalp ratgalp ratgalp ratgalp ratgalp

U.S. Patent US 6,337,206 B1 **Sheet 11 of 26** Jan. 8, 2002

CCATCTGCCGCCCGCGCGCGCGCGCGCGCGTCT 270 283

TCGCTGTGCTCTG

U.S. Patent US 6,337,206 B1 Jan. 8, 2002 Sheet 12 of 26

gageteggaageaggtaeaagegeeacteteegeetgegeegtggaatgegeegggaee antccgcagcccttcccccagcgccggccgctgctggggacaacctcgccctgtn tcttgctcctcctgaccccagcgcaccccatccccgccccagatgaggcaaggctcc ctccgccttcagcccggcagagtcgcactaggagttgcagcggccgcagccccgggagctt cccgctcgcggagacccagacggctgcaggagcccgggcagcctcggggtcagcggcaccA GCACCCCGAGGCGGTCATCGTGCCCCTGCTCTTCGCGCTCATCTTCCTCGTGGGCACCGTG GGCAACACGCTGGTGCTGGCGGTGCTGCTGCGCGGCGGCCAGGCGGTCAGCACTACCAACC TGTTCATCCTTAACCTGGGCGTGGCCGACCTGTGTTTCATCCTGTGCTGCGTGCCCTTCCA GGCCACCATCTACACCCTGGACGGCTGGGTGTTCGGCTCGCTGCTGTGCAAGGCGGTGCAC TTCCTCATCTTCCTCACCATGCACGCCAGCAGCTTCACGCTGGCCGCCGTCTCCCTGGACA Ggtgagccagcgccttggcctccctgggagatgggcatccacgcggggggatggagcgggag gcgggactggggaccaagaagggacgcgcagagtgggacaggacactaagaaggcagtgga gttagatgcgtcctggggcctggaagcctggagaatgtggctctccagcgccgcccgtgcc tgacaacgcgcagcgtttcccagtacgacgcgtttgtgcgcgttcatctcgcttgagctta atgccctccgtgagggtgggataggacaaagtgcccaatatacagaagagttgagttccta gcagctggctcaggtccaggctgtggatcttgggtcctttgcaaggatccactccggagtc ccagcgagcgtgcctaaaggtccctagctcagtcccagcccactctgcctctcgcctccaa ggttcttcctcccagccagaggagagcgaagagcgcacattcgggagagccgccgggact caggtggagcttgaaaggacactgggatggtttccctggggaggaaatccgggtatttccc ctctccatcctctggaaaaacagaggggggggggggccagactgcccccacacctcctgtagcc actgagcgcgaagtgcgttggttccgagcgcgctggtgggatccacaaagctcgcattctc tcaggaatcccctgagaaattaactgtcccttgcccaacatgtcttctccaggctgtctgc tagagcctcaggcgcctccgcctccccgcggcaccgtcaccagtgggtagtcacagc ctcccggagcccatagccggttctccaacctttagtcttcagtggctttggggtgccctct cagtggagactgtggttgcagtccccgggggcagcgggagaatggcttgaaggcacacctt tcctgctgccggcccgccccatttccagcgtccgctgagtgtctgggacacgctgggaggc ccccacctccgccctcacgccgagcctcacccccacctctgtgtgcggtgtaaccatg cgctaaggaccttccttgagagcagccttgggaccgaggtgcaggggtcgcgggccctccag catgaatgtgcccgctcagccgacgtctcccttcccggtctgaccgcagGTATCTGGCCAT CCGCTACCCGCTGCACTCCCGCGAGCTGCGCACGCCTCGAAACGCGCTGGCAGCCATCGGG CTCATCTGGGGGGCTGTCGCTGCTCTTCTCCGGGCCCTACCTGAGCTACTACCGCCAGTCGC

FIG.7A

U.S. Patent Jan. 8, 2002 Sheet 13 of 26 US 6,337,206 B1

AGCTGGCCAACCTGACCGTGTGCCATCCCGCGTGGAGCGCCCCTCGCCGCCGCGCCATGGA

CATCTGCACCTTCGTCTTCAGCTACCTGCTTCCTGTGCTGGTTCTCGGCCTGACCTACGCG CGCACCTTGCGCTACCTCTGGCGCGCGCCGTCGACCCGGTGGCCGCGGGGCTCGGGTGCCCGGC GCGCCAAGCGCAAGGTGACACGCATGATCCTCATCGTGGCCGCGCTCTTCTGCCTCTGCTG GATGCCCCACCACGCGCTCATCCTCTGCGTGTGGTTCGGCCAGTTCCCGCTCACGCGCGCC ACTTATGCGCTTCGCATCCTCGCACCTGGTCTCCTACGCCAACTCCTGCGTCAACCCCA TCGTTTACGCGCTGGTCTCCAAGCACTTCCGCAAAGGCTTCCGCACGATCTGCGCGGGCCT GCTGGGCCGTGCCCCAGGCCGAGCCTCGGGCCGTGTGTGCGCTGCCGCGCGGGGGCACCCAC CCCTTCGTCCCTGCCCCGGCGCTTCCCAGCCATGCATCCTCGAGCCCTGTCCTGGCCCGTC CTGGCAGGGCCCAAAGGCAGGCGACAGCATCCTGACGGTTGATGTGGCCTGAaagcactta gcgggcgcgctgggatgtcacagagttggagtcattgttggggggaccgtgggggagagcttt gcctgttaataaaacgcacaaaccatttcacacacagtgacagcgctgtttcgcgtttctc attgtcttgagattctgggaggaagcctctggggcttcacagaggggctccctaggggtaagtgcaggaccctttgcagagctaccaggaaagagggctgatcacacctcaggcagccgggt ggcgttcgataaagtcggttgatgacagacacagatgtgtgttcccagccgcatttgtgct ctggtgtgtgacaggtctgtccttgcctgctttcagctcccagggcccctttgagtctggg ccaggatcaagtctccagcagctgtttcactcccc

FIG.7B

U.S. Patent Jan. 8, 2002 Sheet 14 of 26 US 6,337,206 B1

GGCACCCCGAGGCGGTCATCGTGCCCCTGCTCTTCGCGCTCATCTTCCTCGTGGGCACCGT GGGCAACACGCTGGTGCTGGCGGTGCTGCTGCGCGGCGGCCAGGCGGTCAGCACTACCAAC CTGTTCATCCTTAACCTGGGCGTGGCCGACCTGTGTTTCATCCTGTGCTGCGTGCCCTTCC AGGCCACCATCTACACCCTGGACGGCTGGGTGTTCGGCTCGCTGCTGTGCAAGGCGGTGCA CTTCCTCATCTTCCTCACCATGCACGCCAGCAGCTTCACGCTGGCCGCCGTCTCCCTGGAC AGGTATCTGGCCATCCGCTACCCGCTGCACTCCCGCGAGCTGCGCACGCCTCGAAACGCGC TGGCAGCCATCGGGCTCATCTGGGGGGCTGTCGCTGCTCTTCTCCGGGCCCTACCTGAGCTA CTACCGCCAGTCGCAGCTGGCCAACCTGACCGTGTGCCATCCCGCGTGGAGCGCCCCTCGC CGCCGCGCCATGGACATCTGCACCTTCGTCTTCAGCTACCTGCTTCCTGTGCTGGTTCTCG CTCGGGTGCCCGGCGCGCGCCAAGCGCAAGGTGACACGCATGATCCTCATCGTGGCCGCGCGCTC TTCTGCCTCTGCTGGATGCCCCACCACGCGCTCATCCTCTGCGTGTGGTTCGGCCAGTTCC CGCTCACGCGCGCCACTTATGCGCTTCGCATCCTCGCACCTGGTCTCCTACGCCAACTC CTGCGTCAACCCCATCGTTTACGCGCTGGTCTCCAAGCACTTCCGCAAAGGCTTCCGCACG ATCTGCGCGGGCCTGCTGGGCCGTGCCCCAGGCCGAGCCTCGGGCCGTGTGTGCGCTGCCG CGCGGGGGCACCCACAGTGGCAGCGTGTTGGAGCGCGAGTCCAGCGACCTGTTGCACATGAG CGAGGCGGCGGGGGGCCCTTCGTCCCTGCCCCGGCGCTTCCCAGCCATGCATCCTCGAGCCC TGTCCTGGCCCGTCCTGGCAGGGCCCAAAGGCAGGCGACAGCATCCTGACGGTTGATGTGG CCTGA

U.S. Patent Jan. 8, 2002 Sheet 15 of 26 US 6,337,206 B1

8 # uug Leu(L) 3 # uaa Ter(.)gca Ala(A) 2 # cag Gln(Q) gcc Ala(A) 23 # --- Gln(Q) 8 # --- Leu(L) 56 # uag Ter(.) 0 gcg Ala(A) 19 # gaa Glu(E) 0 # aaa Lys(K) 1 # uga Ter(.) 1 gcu Ala(A) 2 # gag Glu(E) 6 # aag Lys(K) 5 # --- Ter(.) 1 --- Ala(A) 46 # --- Glu(E) 6 # --- Lys(K) 6 # aca Thr(T) 1 aga Arg(R) 0 # gga Gly(G) 1 # aug Met(M) 6 # acc Thr(T) 10 agg Arg(R) 1 # ggc Gly(G) 25 # --- Met(M) 6 # acg Thr(T) 6 cga Arg(R) 2 # ggg Gly(G) 7 # uuc Phe(F) 17 # acu Thr(T) 2 cga Arg(R) 19 # ggu Gly(G) 1 # uuu Phe(F) 0 # --- Thr(T) 19 cgg Arg(R) 2 # --- Gly(G) 34 # --- Phe(F) 17 # ugg Trp(W) 8 cgu Arg(R) 3 # cac His(H) 10 # cca Pro(P) 4 # --- Trp(W) 8 --- Arg(R) 27 # cau His(H) 1 # ccc Pro(P) 10 # uac Tyr(Y) 10 aac Asn(N) 9 # --- His(H) 11 # ccg Pro(P) 4 # uau Tyr(Y) 2 aau Asn(N) 0 # aua Ile(I) 0 # ccu Pro(P) 4 # --- Tyr(Y) 12 --- Asn(N) 9 # auc Ile(I) 18 # --- Pro)P) 22 # gau Val(V) 0 gac Asp(D) 7 # auu Ile(I) 0 # agc Ser(S) 11 # guc Val(V) 9 gau Asp(D) 1 # --- Ile(I) 18 # agu Ser(S) 1 # gug Val(V) 18 --- Asp(D) 8 # cua Leu(L) 0 # uca Ser(S) 0 # guu Val(V) 3 ugc Cys(C) 14 # cuc Leu(L) 17 # ucc Ser(S) 9 # --- Val(V) 30 ugu Cys(C) 2 # cug Leu(L) 32 # ucg Ser(S) 7 # nnn ???(X) 0 --- Cys(C) 16 # cuu Leu(L) 4 # ucu Ser(S) 0 # TOTAL 388

FIG.9A

U.S. Patent Jan. 8, 2002 Sheet 16 of 26 US 6,337,206 B1

MNVSGCPGAGNASQAGGGGGWHPEAVIVPLLFALIFLVGTVGNTL VLAVLLRGGQAVSTTNLFILNLGVADLCFILCCVPFQATIYTLDGWV FGSLLCKAVHFLIFLTMHASSFTLAAVSLDRYLAIRYPLHSRELRTPR NALAAIGLIWGLSLLFSGPYLSYYRQSQLANLTVCHPAWSAPRRA MDICTFVFSYLLPVLVLGLTYARTLRYLWRAVDPVAAGSGARRAK RKVTRMILIVAALFCLCWMPHHALILCVWFGQFPLTRATYALRILS HLVSYANSCVNPIVYALVSKHFRKGFRTICAGLLGRAPGRASGRVC AAARGTHSGSVLERESSDLLHMSEAAGALRPCPGASQPCILEPCPGP

FIG.9B

U.S. Patent Jan. 8, 2002 Sheet 17 of 26 US 6,337,206 B1

Pharmacology of Human and Rat GALR2 IC_{50} (nM)				
PEPTIDE	<u>hGALR2</u>	<u>rat GALR2</u>	hGALR1*	
human galanin	3.8 ± 0.28	1.5 ± 0.45	0.13 ± 0.04	
porcine galanin	1.5 ± 0.03	0.83 ± 0.5	0.14 ± 0.04	
rat galanin	1.6 ± 0.42	0.9	0.1	
rat Gal (2-29)	15.4 ± 7.9	2.9 ± 0.9	17 ± 7.5	
rat Gal (3-29)	>1000	>1000	>1000	
M40	9.5 ± 0.7	1.8 ± 1.8	0.48 ± 0.2	
M35	5.6 ± 0.2	0.43 ± 0.18	0.04 ± 0.02	
C7	40.5 ± 19	13.5 ± 0.7	6.3 ± 6.7	
Kd	5 nM	0.19 nM	0.07 nM	

U.S. Patent US 6,337,206 B1 Jan. 8, 2002 Sheet 18 of 26

FIG.11A

0.1 100 1000 10000 10 0.001 0.01 GALANIN [nM]

FIG.11B

U.S. Patent Jan. 8, 2002 Sheet 19 of 26 US 6,337,206 B1

gccctttccacttggtgataccATGAATGGCTCGGACAGCCAGGGGGGGGGA GGACTCGAGCCAGGAAGGTGGCGGCGGCGGCTGGCAGCCCGAGGCG GTCCTCGTACCCCCTATTTTCGCGCGCTCATCTTCCTCGTGGGCGCGCTG TGGGCAACGCGCTGGTGCTGGCGGGCGGCGGCGGCGGCGGCCAG GCGGTCAGCACCACGAACCTATTCATCCTCAACCTGGGTGTGGC CGACCTGTGTTTCATCCTGTGCTGCGTGCCTTTCCAGGCCACCATC TATACCCTGGACGATTGGGTGTTTGGCTCACTGCTGCTGCAAGGCC **GTTCATTTCCTCATCTTCCTCACTATGCACGCCAGCAGCTTCACGC** TGGCCGCTGTCTCGCTGGACAGgtgagtgaacattctgtggtgtctgagaactgggtacccaggtaggagcttgcactggagtcgccacgcaaggatccagaagggatgcgtagtcggggag aacactaaaattacaaagtggcccgaggccgtgaaacgcaaggggaaaaggggactaagactccg tgactaagagtgtcccttgattaagtcggtcctcagacctcgaaggctggagaaatcggatttctgggg tctttacgttattgttgcttgagctaaaagtctctcagaaacattgcagtactcagaccagagttggcttg caaagtaacttgccagtattcaaatgctaattgagagctgcagagggcatttgcttcttggccccaag ctcagcacctggagcgttgtccggctttaggcttaggactgagctgtactttggatagacccatgctga cccggagacgcctgcggtttgatgttccttccctagctaaaggacccagaaagagaaacttccagaat gctctgaaggactcgtgactggaaaagacactagaaacaggtcctgggaaggatgtcattagttccc ctttccactgagtgcaacatgtgggttctgagtccgctggtgggacgcacaaaacttcagctttcttcag cctcggttgtcacaagaggataataatcactgcccccagaagtcctggcatattctacaacttttagtttt cggtggtttgggggggggggggtgccctttcgcgtggtaggtcagtggccacattctcagggttggtaatggtctagc agtgaattagtgaatcctttcgcttacctgtcgtcgtcgtccccccgccccactgtccactcagGTATCTGGCCATCCGCTACCCGATGCACTCCCGAGAGTTGCGCACACCT CGAAACGCGCTGGCGGCCATCGGGCTCATCTGGGGGCTAGCACT GGCCAATCTGACGGTGTGCCACCCAGCGTGGAGCGCACCACGAC GTCGCGCCATGGACCTCTGCACTTTGTCTTTAGCTACCTGTTGCC AGTGCTGGTGGTGCTCAGCCTGACCTATGCGCGCGCCCCTGCACTACCT CTGGCGCACAGTTGACCCAGTAGCTGCAGGCTCAGGTTCCCAGC GCGCCAAGCGCAAGGTGACACGGATGATCGTCATCGTGGCGGTA CTCTTCTGCCTCTGTTGGATGCCCCACCACGCGCTTATCCTCTGCG TGTGGTTTGGTCGCTTTCCGCTCACGCGTGCCACTTACGCCCTGC GCATCCTTTCACATCTAGTATCTTATGCCAACTCGTGTGTCAACCC CATCGTTTATGCTCTGGTCTCCAAGCATTTCCGCAAAGGTTTCCG CAAAATCTGCGCGGGCCTGCTACGCCGTGCCCCGAGGAGAGCTT CAGGCCGAGTGTGCATCCTGGCGCCTGGAAACCATAGTGGTGGC ATGCTGGAACCTGAGTCCACAGACCTGACACAGGTGAGCGAGG CAGCCGGGCCCCTCGTCCCCGCACCCGCACTTCCCCAACTGCACA ACCTTGAGTAGAACCCTCGATCCAGCCTGTTAAaggaccaaagggcatct

aacagettetaagggega

U.S. Patent Jan. 8, 2002 Sheet 20 of 26 US 6,337,206 B1

MNGSDSQGAEDSSQEGGGGWQPEAVLVPLFFALIFLVGAVGNALVL AVLLRGGQAVSTTNLFILNLGVADLCFILCCVPFQATIYTLDDWVFG SLLCKAVHFLIFLTMHASSFTLAAVSLDRYLAIRYPMHSRELRTPRN ALAAIGLIWGLALLFSGPYLSYYSQSQLANLTVCHPAWSAPRRAM DLCTFVFSYLLP VLVLSLTYARTLHYLWRTVDPVAAGSGSQRAKRK VTRMIVIVAVLF CLCWMPHHALILCVWFGRFPLTRATYALRILSHL VSYANSCVNPIVYALVSKHFRKGFRKICAGLLRRAPRRASGRVCIL APGNHSGGMLEPESTDLTQVSEAAGPLVPAPALPNCTTLSRTLDPAC

N40N44 თთთთთთ $N \cup N \cup A \cup O$ ര്ഗനന്ന ろうろうろ $\Sigma\Sigma\Sigma>>>$ アイトイト ZZZAA スススー **>>>** السا ليدا ليدا ليدا ليا ┝--- ┝--- ┝--- ┝---0001 $>>> \neg \neg \neg \neg \neg$ SOSOAT agagaa メメメ 1 つつ ┝─── ┝── ┝── ┝── ┝── **┝**── 000000 المنب المتنا المتنا المتنا المتنا

Sheet 21 of 26

Jan. 8, 2002

ZZZOOL	$\triangleleft \triangleleft \neg \neg$		000000
ပပပပပ			
பபபுபுபுப			
လလလလလ			AAANNN
	$\nabla O O \nabla A A$	ZZZZZ	000000
ZZZZZ		┝──┝──┝──┝── ┝──┝──	لیے لیے لیے
$\overline{>> \odot }$		<u>}</u> } } } } }	>>>>>>
\ge a > $ $ $ $	$>> \square \square$	လလလလလ	33333
$\triangleleft \triangleleft \triangleleft \mid \mid \mid$			000
	\vdash \vdash \vdash $>$ $>$ $>$	aaa>>>	
	$\neg \neg \neg \rightarrow \neg \neg \neg \neg \neg$	$ \triangleleft \triangleleft \triangleleft$	
Σ Σ Σ Σ Σ	$L_L L_L > > >$		
		00000000 000400	66666666
ALRJALR1 ALR2 ALR2 ALR2 ALR2 ALR2 ALR2 ALR1 ALR2 ALR1 ALR2 ALR1 ALR2 ALR1 ALR2 ALR1 ALR2 ALR1 ALR2 ALR1 ALR2 ALR1 ALR1 ALR1 ALR1 ALR1 ALR1 ALR1 ALR1	ALRJ ALRJ ALRJ ALRJ ALRZ ALRZ ALRZ ALRZ ALRZ ALRZ ALRZ ALRZ	ALRJALR1 ALR2 ALR2 ALR2 ALR2 ALR3	ALRJ ALR2 ALR2 ALR2 ALR2 ALR2 ALR2 ALR2 ALR2

4A С. С

US 6,337,206 B1

U.S. Patent

 $\sigma \sigma \sigma \sigma \omega \omega \omega$

ろろろろろ

130 120 120 120 120 120 120 120 120 120 12	102 102 102 102 102 103 103 103 103 103 103 103 103 103 103	195 195 195 195 195 195 195 195
nGALR1 GALR1 GALR1 GALR2 GALR1 CALR2 GALR2 GALR2 GALR1 GALR2 GALR1 GALR2 GALR1	nGALR1 nGALR1 nGALR2 hGALR2 hCALR2 hCALR2	hGALR1 hGALR1 hGALR2 hGALR2 hGALR2

			$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \bigcirc \bigcirc$
	ᄕᄕᄮ		
	ᄕᄕᄕ≻≻≻		
	$\square \circ \circ \circ \vdash \vdash \vdash$		$\Sigma \mapsto \supseteq \Sigma >$
	$\boxed{\triangleleft \triangleleft \triangleleft \triangleleft \triangleleft \triangleleft }$		
$\blacktriangleleft \prec \prec \vdash \vdash \vdash$		$\left \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \right $	
\vdash \vdash \vdash $>$ $>$ $>$			
$\mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X}$			
XXXXXX		ZZZIII	$ Z Z \vdash$
$\mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X}$		шшшХХХ	
	$\overline{\langle \langle \rangle \rangle } $	$ \circ \circ \circ \circ \circ \circ $	
	000000	$\Box \square \square > > >$	$ \triangleleft \triangleleft \triangleleft$
IIOOR			
NNNNA	$\Box \Box \Box \Xi \ge \ge$		$\alpha \alpha \alpha <$
	$\triangleleft \triangleleft \triangleleft > > >$	$\succ \succ \succ \succ \succ \succ$	NZNONO
шшилол	$\ge \ge \ge \bigcirc \bigcirc$	$\neg \neg \neg > > >$	$ \times \times \times > > >$
တတတတတ			ZIZZZ
$\mathbf{X} \mathbf{X} \mathbf{X} \mathbf{A} \mathbf{A} \mathbf{A}$			и ш ш с с с
$\mathbf{X} \mathbf{X} \mathbf{X} \mathbf{A} \mathbf{H} \mathbf{A}$	>	ZZZZZ	$X \times X \circ \circ \circ$
\circ	$> > \neg < < <$	>>>>>>	-
		\overline{S}	
$\Sigma \Sigma \Sigma > > >$		[N N N N N N]	
ZZZQQ		zzzzz	
$\mathbf{X} \mathbf{X} \mathbf{X} \mathbf{O} \mathbf{O} \mathbf{O}$		S N N A A	
	\leq \leq \leq \leq	$[\succ \succ \succ \succ \succ)$	v v v x a x
$X X Y \vdash \vdash A$	$\begin{bmatrix} \sigma & \sigma & \sigma & \sigma \\ \sigma & \sigma & \sigma & \sigma \end{bmatrix}$	AAANNN	$ \mathbf{u} \mathbf{u} \mathbf{o} \mathbf{v} \mathbf{v} \mathbf{o} $
10 12 23 23	5000000000000000000000000000000000000	686668	1124223
てててててて	でででででで	でほんでで	
N N N N N N N N N N N N N N N N N N N	원원원정	的対対なな	L
			ALARA
الاستان المحمد المسلم المسلم	المراجع المستحد المستحد المراجع	bay bay share have bay alway	ana ang akan bas bas adari

FG.140

U.S. Patent Jan. 8, 2002 Sheet 24 of 26 US 6,337,206 B1

 $| | | \vdash \vdash \bigcirc \bigcirc$

l

- 1 1 1 1 0

343 343 345 345 345 442 443 45 443	00000000000000000000000000000000000000
hGALR1 hGALR1 hGALR2 hGALR2 hGALR2 hGALR2	nGALR1 nGALR1 nGALR2 hGALR2 hGALR2

U.S. Patent Jan. 8, 2002 Sheet 25 of 26 US 6,337,206 B1

Tissue	Expression Level	Tissue	Expression Level
Total Brain	+	Prostate	+ + +
Cerebellum	+	Thymus	++
Cerebral Cortex	+	Spleen	+
Medulla.	+	Pancreas	+
Occipital Pole	+	Placenta	+ +
Frontal Pole	+	Heart	-
Temporal Lobe	+	Lung	_
Putamen		Liver	-
Spinal Cord	+	Skeletal muscle	_
Amygdala	+	Kidney	
Caudate Nucleus	+	Testis	_
Corpus Callosum	+	Ovary	_
Hippocampus	+	Small intestine	
Substantia Nigra	+	Colon	_
Subthalamic n.	+	Blood Leukocyte	_
Thalamus	+		

U.S. Patent Jan. 8, 2002 Sheet 26 of 26 US 6,337,206 B1

20

NUCLEIC ACID ENCODING MOUSE GALANIN RECEPTOR (GALR2)

CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority to application Ser. No. 60/033,851, filed Dec. 27, 1996.

STATEMENT REGARDING FEDERALLY-SPONSORED R&D

Not applicable

REFERENCE TO MICROFICHE APPENDIX

increases plasma growth hormone. Infusion of human galanin into healthy subjects also increases plasma growth hormone and potently enhances the growth hormone response to GHRH.

5 Galanin levels are particularly high in dorsal root ganglia. Sciatic nerve resection dramatically up-regulates galanin peptide and mRNA levels. Chronic administration of galanin receptor antagonists (M35, M15) after axotomy results in a marked increase in self mutilation behavior in rats, generally considered to be a response to pain. Application of antisense 10oligonucleotides specific for galanin to the proximal end of a transected sciatic nerve suppressed the increase in galanin peptide levels with a parallel increase in autotomy. Galanin

Not applicable

FIELD OF THE INVENTION

This invention relates to a novel galanin receptor, designated GALR2, to nucleotides encoding it, and to assays which use it.

BACKGROUND OF THE INVENTION

Although first isolated from porcine intestine, galanin is widely distributed in the central and peripheral nervous system. Galanin in most species is a 29 amino acid peptide with an amidated carboxyl terminus. Human galanin is unique in that it is longer, 30 amino acids, and is not amidated. There is strong conservation of the galanin sequence with the amino terminal fifteen residues being $_{30}$ absolutely conserved in all species. Galanin immunoreactivity and binding is abundant in the hypothalamus, the locus coeruleus, the hippocampus and the anterior pituitary, as well as regions of the spinal cord, the pancreas and the gastrointestinal tract.

injected intrathecally acts synergistically with morphine to ¹⁵ produce analgesia, this antinociceptive effect of morphine is blocked by galanin receptor antagonists. Thus, galanin agonists may have some utility in relieving neural pain.

The actions of galanin are mediated by high affinity galanin receptors that are coupled by pertussis toxin sensitive G_i/G_o proteins to inhibition of adenylate cyclase activity, closure of L-type Ca⁺⁺ channels and opening of ATP-sensitive K⁺ channels. Specific binding of ¹²⁵I-galanin (Kd approximately 1 nM) has been demonstrated in areas paralleling localization of galanin immunoreactivity: hypothalamus, ventral hippocampus, basal forebrain, spinal cord, pancreas and pituitary. In most tissues the amino terminus (GAL 1–15) is sufficient for high affinity binding and agonist activity.

Recently, a galanin receptor cDNA was isolated by expression cloning from a human Bowes melanoma cell line. (Habert-Ortoli, et al. 1994. Proc. Nat. Acad. Sci, USA 91: 9780–9783). This receptor, GALR1, is expressed in human fetal brain and small intestine, but little else is known of its distribution. Gal(1–16) is at least 1000 times more active than pGAL(3–29) as an inhibitor of ¹²⁵I-porcine galanin binding to this receptor transiently expressed in COS cells. It remains to be determined whether this receptor subtype represents the hypothalamic receptor that mediates the galanin specific feeding behavior.

Like neuropeptide Y (NPY), injection of galanin into the paraventricular nucleus (PVN) of the hypothalamus produces a dose-dependent increase in feeding in satiated rats. While galanin, like norepinephrine, enhances carbohydrate ingestion, some studies have shown that it profoundly $_{40}$ increases fat intake. It has been suggested that galanin shifts macronutrient preference from carbohydrate to fat. The same injections that increase feeding reduce energy expenditure and inhibit insulin secretion. There is enhanced galanin expression in the hypothalamus of genetically obese rats $_{45}$ compared with their lean littermate controls. Injection of peptide receptor antagonists into the PVN blocks the galanin-specific induction of increased fat intake. Specific galanin antisense oligonucleotides when injected into the PVN produce a specific decrease in galanin expression associated with a decrease in fat ingestion and total caloric intake while hardly affecting either protein or carbohydrate intake. Thus galanin appears to be one potential neurochemical marker related to the behavior of fat ingestion.

Galanin inhibits cholinergic function and impairs working 55 memory in rats. Lesions that destroy cholinergic neurons result in deficits in spatial learning tasks. While locally administered acetylcholine (ACh) reverses some of this deficit, galanin blocks this ACh-mediated improvement. Evidence from autopsy samples from Alzheimer's disease- 60 afflicted brains suggests an increased galinergic innervation of the nucleus basilis. Thus, if galinergic overactivity contributes to the decline in cognitive performance in Alzheimer's disease, galanin antagonists may be therapeutically useful in alleviating cognitive impairment.

It would be desirable to identify further galanin receptors so that they can be used to further characterize this biological system and to identify galanin receptor subtype selective agonists and antagonists.

SUMMARY OF THE INVENTION

This invention relates to a novel galanin receptor, designated GALR2, substantially free from associated proteins, and to GALR2-like receptors which are at least about 40% homologous and which have substantially the same biologi-50 cal activity. In preferred embodiments of this invention, the GALR2-like receptors are at least about 60%, and more preferably at least about 75%, and even more preferably at least about 85% homologous to a GALR2 receptor. This invention also relates specifically to rat, human and mouse GALR2, substantially free from associated proteins, and to receptors which are at least about 50% homologous and which have substantially the same biological activity. Another aspect of this invention are primate and nonprimate GALR2 proteins which are encoded by substantially the same nucleic acid sequences, but which have undergone changes in splicing or other RNA processing-derived modifications or mutagenesis-induced changes, so that the expressed protein has a homologous, but different amino 65 acid sequence from the native forms. These variant forms may have different and/or additional functions in human and animal physiology or in vitro in cell based assays.

In the rat, administration of galanin intracerebroventricularly, subcutaneously or intravenously

3

A further aspect of this invention are nucleic acids which encode a galanin receptor or a functional equivalent from rat, human, mouse, swine, or other species. These nucleic acids may be free from associated nucleic acids, or they may be isolated or purified. The nucleic acids which encode a 5 receptor of this invention may be any type of nucleic acid. Preferred forms are DNAs, including genomic and cDNA, although this invention specifically includes RNAs as well. Nucleic acid constructs may also contain regions which control transcription and translation such as one or more 10 promoter regions, termination regions, and if desired enhancer regions. The nucleic acids may be inserted into any known vector including plasmids, and used to transfect suitable host cells using techniques generally available to one of ordinary skill in the art. 15

4

FIG. 15 is the RNA expression profile of human GALR2. FIG. 16 illustrates the expression of rat GALR2 in the brain.

DETAILED DESCRIPTION OF THE INVENTION

As used throughout the specification and claims, the following definitions apply:

"Substantially free from associated proteins" means that the receptor is at least about 90%, and preferably at least about 95% free from other cell membrane proteins which are normally found in a living mammalian cell which expresses a galanin receptor.

"Substantially free from associated nucleic acids" means

Another aspect of this invention are vectors comprising nucleic acids which encode GALR2, and host cells which contain these vectors. Still another aspect of this invention is a method of making GALR2 comprising introducing a vector comprising nucleic acids encoding GALR2 into a ²⁰ host cell under culturing conditions.

Yet another aspect of this invention are assays for GALR2 ligands which utilize the receptors and/or nucleic acids of this invention. Preferred assays of this embodiment compare the binding of the putative GALR2 ligand to the binding of galanin to GALR2.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B provide is the nucleic acid sequence of ₃₀ rat GALR2 (clone 27A) containing 5' and 3' untranslated regions (SEQ ID NO:1).

FIGS. 2A and 2B provide is the nucleic acid sequence of GALR2 (clone 27A) from initiator Met to polyadenylation (positions 296–2,200 of SEQ ID NO: 1).

that the nucleic acid is at least about 90%, and preferably at least about 95%, free from other nucleic acids which are normally found in a living mammalian cell which naturally expresses a galanin receptor gene.

"Substantially the same biological activity" means that the receptor-galanin binding constant is within 5-fold of the binding constant of GALR2 and galanin, and preferably within 2-fold of the binding constant of GALR2 and galanin.

"Stringent post-hybridizational washing conditions" means 0.1×standard saline citrate (SSC) at 65° C.

"Standard post-hybridizational washing conditions" means 6×SSC at 55° C.

"Relaxed post-hybridizational washing conditions" means 6×SSC at 30° C., or 1 to 2×SSC at 55° C.

"Functional equivalent" means that a receptor which does not have the exact same amino acid sequence of a naturally occurring GALR2 protein due to alternative splicing, deletions, mutations, or additions, but retains at least 1%, preferably 10%, and more preferably 25% of the biological activity of the naturally occurring receptor. Such derivatives 35 will have a significant homology with a natural GALR2 and can be detected by reduced stringency hybridization with a DNA sequence obtained from a GALR2. The nucleic acid encoding a functional equivalent has at least about 60% homology at the nucleotide level to a naturally occurring receptor nucleic acid. 40 It has been found, in accordance with this invention, that there is a second galanin receptor, which is designated GALR2. The rat, human and mouse GALR2 sequences are given in FIGS. 4, 9 and 13, respectively, and are referenced 45 in the Examples; however it is to be understood that this invention specifically includes GALR2 without regard to the species and, in particular, specifically includes rodent (including rat and mouse), rhesus, swine, chicken, cow and human. The galanin 2 receptors are highly conserved throughout species, and one of ordinary skill in the art, given the rat, human and/or mouse sequences presented herein, can easily design probes to obtain the GALR2 from other species.

FIGS. **3**A and **3**B provide a schematic representation of GALR2 (clone 27A) and the nucleic acid (positions 296–1, 904 of SEQ ID NO: 1) and deduced amino acid sequence of GALR2 (clone 27A).

FIG. 4 is the deduced amino acid sequence of GALR2 (clone 27A) (SEQ ID NO: 2).

FIGS. **5**A and **5**B provide a comparison (PileUp alignment) of amino acid sequences for rat GALR1 (SEQ ID NO: 3) and rat GALR2 (SEQ ID NO:2).

FIG. 6 is the nucleic acid sequence of the cDNA probe used to isolate GALR2 (SEQ ID NO:8).

FIGS. 7A and 7B provide is the DNA sequence of human GALR2 gene (SEQ ID NO:5).

FIG. 8 is the DNA sequence (open reading frame only) of 50 human GALR2 gene (SEQ ID NO:6).

FIGS. 9A and 9B provide the deduced amino acid sequence of human GALR2 (SEQ ID NO:7).

FIG. 10 demonstrates the pharmacology of human and rat GALR2.

FIGS. 11A and 11B illustrate G_q or G_s coupled response (pigment dispersion) as well as G_i -coupled response (pigment aggregation).

GALR2 proteins contain various functional domains,
including one or more domains which anchor the receptor in the cell membrane, and at least one ligand binding domain. As with many receptor proteins, it is possible to modify many of the amino acids, particularly those which are not found in the ligand binding domain, and still retain at least
a percentage of the biological activity of the original receptor. Thus this invention specifically includes modified functionally equivalent GALR2s which have deleted, truncated, or mutated N-terminal portions. This invention also specifically includes modified functionally includes modified functionally equivalent GALR2s
which contain modifications and/or deletions in other domains, which are not accompanied by a loss of functional activity.

FIG. 12 is the DNA sequence of mouse GALR2 gene (SEQ ID NO:8).

FIG. 13 is the amino acid sequence for mouse GALR2 gene (SEQ ID NO:9).

FIGS. 14A, 14B, 14C, and 14D provide a comparison of human, rat and mouse GALR1 and GALR2 protein 65 sequences showing strong sequence conversation among members of the GALR gene family.

5

Additionally, it is possible to modify other functional domains such as those that interact with second messenger effector systems, by altering binding specificity and/or selectivity. Such functionally equivalent mutant receptors are also within the scope of this invention.

The proteins of this invention were found to have structural features which are typical of the 7-transmembrane domain (TM) containing G-protein linked receptor superfamily (GPC-R's or 7-TM receptors). Thus GALR2 proteins make up new members of the GPC-R family of receptors. ¹⁰ The intact GALR2 of this invention was found to have the general features of GPC-R's, including seven transmembrane regions, three intra- and extracellular loops, and the GPC-R protein signature sequence. The TM domains and GPC-R protein signature sequence are noted in the protein ¹⁵ sequences of the GALR2. Not all regions are required for functioning, and therefore this invention also comprises functional receptors which lack one or more non-essential domains. Determination of the nucleotide sequence indicated that the GALR2 belongs to the intron-containing class of GPC-R's. Clone 27A, a precursor mRNA terminating in a poly (A) tract, encodes a 1119 bp open reading frame divided into two exons by a single intron of approximately 500 bp (FIG. 4). Exon 1 encodes the N-terminal extracellular domain through predicted TM-3, while exon 2 encodes the second predicted extracellular loop through the C-terminal intracellular domain. A perfectly conserved splice donor site (G/gt) is found at nucleotide 368 which coincides with the second residue of the G protein-coupled receptor signature aromatic triplet, (D,E) RY.

b

of an additional 15 amino acids in the C-terminal intracellular domain of human GALR2. The mouse protein sequence, as well, bears very strong identity and similarity with the GALR gene family.

5 This invention also relates to truncated forms of GALR2, particularly those which encompass the extracellular portion of the receptor, but lack the intracellular signaling portion of the receptor, and to nucleic acids encoding these truncated forms. Such truncated receptors are useful in various binding assays. Thus this invention specifically includes modified functionally equivalent GALR2s which have deleted, truncated, or mutated N-terminal positions. This invention also specifically includes modified functionally equivalent GALR2s including receptor chimeras which contain modifications and/or deletions in other domains, which are not accompanied by a loss of functional activity.

Removal of the intron indicates that clone 27A encodes a full-length rat galanin receptor polypeptide of 372-amino acids with 7 predicted TM domains, as underlined in FIG. 4. 35 Searches of nucleic acid and protein sequence databases revealed that the open reading frame sequence is unique and most closely related to rat galanin 1 receptor (GALR1) with 55% nucleic acid and 38% protein sequence identity. An alignment of the protein sequences for rat GALR1 and $_{40}$ GALR2 is given in FIG. 5. Several conserved features ascribed to GPC-R's were also identified in the rat GALR2: the signature aromatic triplet sequence (Glu-Arg-Tyr) adjacent to TM-3, Cys-98 and Cys-153 in the first two extracellular loops capable of disulfide bonding, putative amino- 45 malian species which are suitable and which are commerterminal N-glycosylation sites (Asn-Xaa-Ser/Thr), phosphorylation sites in the carboxyl-terminus and the third cytoplasmic loop, and conserved proline residues in TM-4, 5, 6 and 7. A second cDNA clone was isolated, termed clone 16.6, 50 which does not contain an intron and is therefore a contiguous cDNA containing the complete open reading frame of GALR2. Like clone 27A, Clone 16.6 contains a 5' untranslated region of approximately 500 bp, a contiguous GALR2 open reading frame encoding 7-TM domains (1119 bp), a 3' untranslated region of about 320 bp, and a poly (A) tract. The open reading frame sequence is identical for clones 27A (SEQ ID NO: 18) and 16.6 except for nucleotide 109 of the open reading frame (located in predicted TM-1). Clone 27A contains a T while Clone16.6 contains a C in position 109. 60 Thus, amino acid 37 of the GALR2 protein is phenylalanine in Clone 16.6 and isoleucine in Clone 27A. Both the DNAs of clones 27A and Clone 16.6 form aspects of this invention, as do their respective proteins.

Additionally, it is possible to modify other functional domains such as those that interact with second messenger effector systems, by altering binding specificity and/or selectivity. Such functionally equivalent mutant receptors are also within the scope of this invention.

Assays which make up further aspects of this invention include binding assays (competition for ¹²⁵I-galanin binding), coupling assays (including galanin-mediated inhibition of forskolin-stimulated adenylate cyclase in cells expressing galanin receptors), measurement of galaninstimulated calcium release in cells expressing galanin receptors (such as aequorin assays), stimulation of inward rectifying potassium channels (GIRK channels, measured by voltage changes) in cells expressing galanin receptors, and measurement of pH changes upon galanin stimulation of cells expressing galanin receptors as measured with a microphysiometer.

Host cells may be cultured under suitable conditions to produce GALR2. An expression vector containing DNA encoding the receptor may be used for expression of receptor in a recombinant host cell. Recombinant host cells may be prokaryotic or eukaryotic, including but not limited to bacteria such as E. coli, fungal cells such as yeast, mammalian cells including but not limited to cell lines of human, bovine, porcine, monkey and rodent origin, and insect cells including but not limited to Drosophila, Spodoptera, and silkworm derived cell lines. Cell lines derived from mamcially available include, but are not limited to, L cells $L-M(TK^{-})$ (ATCC CCL 1.3), L cells L-M (ATCC CCL 1.2), 293 (ATCC CRL 1573), Raji (ATCC CCL 86), CV-1 (ATCC CCL 70), COS-1 (ATCC CRL 1650), COS-7 (ATCC CRL 1651), CHO-K1 (ATCC CCL 61),3T3 (ATCC CCL 92), NIH/3T3 (ATCC CRL 1658), HeLa (ATCC CCL 2), C127I (ATCC CRL 1616), BS-C-1 (ATCC CCL 26) and MRC-5 (ATCC CCL 171). The specificity of binding of compounds showing affinity for the receptor is shown by measuring the affinity of the 55 compounds for cells transfected with the cloned receptor or for membranes from these cells. Expression of the cloned receptor and screening for compounds that inhibit the binding of radiolabeled ligand to these cells provides a rational way for rapid selection of compounds with high affinity for the receptor. These compounds identified by the above assays may be agonists or antagonists of the receptor and may be peptides, proteins, or non-proteinaceous organic molecules. Alternatively, functional assays of the receptor may be used to screen for compounds which affect the activity of the receptor. Such functional assays range from ex vivo muscle contraction assays to assays which determine

The human GALR2 protein bears strong sequence iden- 65 tity and similarity to the rat GALR2 ortholog. One notable difference between the human and rat forms is the presence

7

second messenger levels in cells expressing the receptor. The second messenger assays include, but are not limited to, assays to measure cyclic AMP or calcium levels or assays to measure adenyl cyclase activity. These compounds identified by the above assays may be agonists, antagonists, suppressors, or inducers of the receptor. The functional activity of these compounds is best assessed by using the receptor either natively expressed in tissues or cloned and exogenously expressed.

Using the assays of this invention, galanin agonists and ¹⁰ antagonists may be identified. A galanin agonist is a compound which binds to the GALR2, such as a galanin mimetic, and produces a cellular response which is at least about equivalent to that of galanin, and which may be greater than that of galanin. Such compounds would be ¹⁵ useful in situations where galanin insufficiency causes anorexia, or for treatment of pain.

8

Hybridization was conducted at 32° C. for 18 hrs. in 5×SSPE buffer containing 50% formamide, 4×Denhardt's solution, 0.1% SDS, 10% dextran sulfate, 30 µg/ml sheared salmonsperm DNA with 2×10⁶ cpm/ml of ³²P-labeled probe. The probe was radiolabeled by random-priming with $[\alpha]^{32}$ PdCTP to a specific activity of greater than 10⁹ dpm/µg. The filters were then washed in 1×SSC, 0.1% SDS at 55° C. and exposed to film (Kodak X-omat) for 48 hrs. Two independent positive clones were identified (clones 27A and 16.6) and subjected to further analysis.

EXAMPLE 2

Sequence Analysis of GALR2

DNA was prepared from overnight cultures using the Wizard DNA Purification System (Promega Corp., Madison, Wis.) and subjected to automated sequence analysis using the PRISM Dye Deoxy terminator cycle sequencing kit (Applied Biosystems, Foster City, Calif.) on an ABI 377 instrument. Initial sequencing primers were complementary to the T7 and SP6 promoter sites in pcDNA-3, additional primers were made complementary to the insert DNA. Database searches (Genbank, EMBL, Swiss-Prot, PIR, dEST, Prosite, dbGPCR), sequence alignments, and analysis of the galanin receptor nucleotide and protein sequences were carried out using the GCG Sequence Analysis Software Package (Madison, Wis.; pileup, peptide structure and motif programs), FASTA and BLAST search programs, and the PC/Gene software suite from Intelligenetics (San Francisco, Calif.; protein analysis programs).

Also using this embodiment of the assay, galanin antagonists may be identified. A galanin antagonist is a compound which can bind to the GALR2, but produces a lesser response than that of native galanin. Such compounds would be useful in the treatment of obesity.

One assay of this invention is a method of identifying a compound which modulates GALR2 receptor comprising: ²⁵ a) culturing cells expressing the GALR2 receptor in the presence of the compound and b) measuring GALR2 receptor activity or second messenger activity. If desired, the determined activity can be compared to a standard, such as that measured using galanin as the compound. In preferred ³⁰ GALR2 receptor.

The consultant cDNA clone (or shorter portions of, for instance, only 15 nucleotides long) may be used to probe libraries under hybridization conditions to find other recep- 35 tors which are similar enough so that the nucleic acids can hybridize, and is particularly useful for screening libraries from other species. In this step, one of ordinary skill in the art will appreciate that the hybridization conditions can vary from very stringent to relaxed. Proper temperature, salt 40 concentrations, and buffers are well known.

EXAMPLE 3

Construction of a Vector for Expression of GALR2

Five μg of the mammalian expression vector pCI.neo (Promega Biotech, Madison Wis.) was digested with 20 units of EcoRI for 2 hours at 37° C. The digest was then treated with calf intestinal phosphatase and then electrophoresed on 1% Seaplaque gel in 1×TAE buffer and the band corresponding to linearized vector was cut out. DNA was recovered from the slice after melting at 65° C. using the Promega Wizard PCR system (Promega Biotech). DNA was quantitated by electrophoresis with standards on a 1% TBE gel. 100 ng of the 2200 bp EcoRI insert (including the intron) from pCDNA-3/27A was ligated to 50 ng of the vector pCI.neo in a 10 ml reaction at room temperature for 1 hour. 1 μ l of this ligation mixture was used to transform 50 45 μ l competent DH5a cells (Life Technologies). Clones in the correct orientation were selected following a digest with BamHI. Transfection-quality DNA was then prepared using the Qiagen Maxi protocol (Qiagen, Chatsworth, Calif.). Mammalian COS-7 cells were transfected by electroporation. COS-7 cells (1×10^7) were suspended in 0.85 ml of Ringers' buffer and 15 mg of the pCI.neo/27A clone was added to a 0.4 mm electroporation cuvette (Bio-Rad, Hercules, Calif.). Current was applied (960 µF, 260 V) using a Bio-Rad Electroporator device and the cells were transferred to a T-180 flask (Corning). Expression was allowed to proceed for 72 hrs.

The following non-limiting Examples are presented to better illustrate the invention.

EXAMPLE 1

A cDNA library from rat hypothalamus was constructed in the plasmid-based mammalian vector pcDNA-3 (InVitrogen, San Diego, Calif.). Total RNA was isolated from freshly-dissected rat hypothalami (flash-frozen in liquid nitrogen) using the RNagents total RNA isolation kit 50 (Promega Biotech, Madison, Wis.) with a yield of approximately 0.5 mg from 1 g (wet weight) of hypothalamic tissue. Poly $(A)^+$ mRNA was selected using the Poly A tract mRNA Isolation System III (Promega Biotech) with a yield of approximately 6 μ g from 0.5 μ g total RNA. 3 μ g of poly (A)⁺ 55 was then utilized as a template for cDNA synthesis using a kit (Choice Superscript, Life Technologies, Gaithersberg, Md.) with both random hexamer and oligo (dT)-Not I priming. The double-stranded cDNA was adapted for insertion into the BstXI site of pCDNA-3 using EcoRI/BstXI 60 adapters and transformed by electroporation into the E.coli strain HB101. The resulting library contained approximately 750,000 primary transformants with 90% of the clones containing inserts (average size 1-2 kb). The library (approximately 700,000 cfu) was plated onto LB plates 65 containing ampicillin and chloramphenicol and probed with a approximately 280 bp PCR fragment (SEQ ID NO:8).

EXAMPLE 4

Pharmacology of GALR2

Membranes were prepared from transfected cells following dissociation in enzyme-free dissociation solution (Specialty Media, Lavallette, N.J.) by disruption in a Dounce homogenizer in ice-cold membrane buffer (10 mM Tris, pH 7.4, 10 mM PMSF, 10 μ M phosphoramidon, and 40 μ g/ml bacitracin). After a low speed (1100×g for 10 min. at 4° C.) and a high speed centrifugation (38,700×g for 15 min. at 4° C.), membranes were resuspended in buffer and protein

9

concentration determined (Bio-Rad assay kit). Binding of ¹²⁵I-human galanin (specific activity of 2200 Ci/mmol, DuPont NEN) was measured in membranes using a buffer of 25 mM Tris pH 7.4, 0.5% BSA, 2 mM MgCl₂, 40 μ g/ml bacitracin, $4 \mu g/ml$ phosphoramidon, and $10 \mu M$ leupeptin in a total volume of 250 μ l. 70 pM ¹²⁵I-human galanin was used. Reactions were initiated by the addition of membranes and the incubation was allowed to proceed at room temperature for 1 hour. Non-specific binding was defined as the amount of radioactivity remaining bound in the presence of 10 $1 \,\mu M$ cold galanin. In competition studies various concentrations of peptides (hGal, pGal, hGal(1–16), rGAL(2–29), rGAL(3–29), hGal (1–19) or chimeric peptides (C7, M15, M40, M35) were included along with ¹²⁵I-hGal (70 pmol). Incubations were terminated by rapid filtration through 15 GF/C filters which had been presoaked with 0.1% polyethylamine using a TOMTEC (Orange, Conn.) cell harvester. The results were analyzed using the Prism software package (GraphPad, San Diego, Calif.). Shown in the table below is the ligand binding profiles of both rat GALR1 and rat 20 GALR2 proteins (clone 27A shown; clone 16.6 gave similar results). The K_D for binding of ¹²⁵I-labeled human galanin against rat GALR2 was 0.2 nM.

10

and blunt-ended with Klenow enzyme. Subsequently, they were electrophoresed on a 0.5% low-melting point agarose and a fragment of the expected size was subcloned into the EcoRV site of pBluescript SK(-) (Stratagene, La Jolla, Calif.). Colonies were selected, plasmid DNA was purified, and the inserts sequenced.

EXAMPLE 6

Gene Sequence and Structure; Cloning and Sequencing of Human GalR2 Genomic DNA.

DNA fragments radiolabelled with [32P]dCTP by nick translation (Amersham) were used as a probe to screen a EMBL3 SP6/T7 human genomic library (Clontech, Palo Alto, Calif.). Positive phage clones were plaque purified, DNA was prepared, restriction enzyme digested, electrophoresed on an agarose gel, transferred to nylon membrane, and hybridized with the same probe used to screen the library, as described by Marchese et al, 1994 [Genomics 23, 609–618]. Positive phage were subcloned by digesting phage DNA, and subcloning the resultant fragment into the pBluescript vector. The DNA sequence of the clone was determined using standard methods on an ABI 372 automated sequencer (Perkin-Elmer-Applied Biosystems, Foster City, Calif.). As shown in FIG. 7, the sequence determined ₂₅ shows a gene with a total of two exons interrupted by an 1800 bp intron. The deduced amino acid sequence (FIG. 9) of the complete open reading frame (FIG. 8) gives a protein of 387 amino acids with features typical of G proteincoupled receptors including 7 transmembrane alpha helical 30 domains. FIG. 14 shows an alignment of GALR1 and GALR2 protein sequences with the seven transmenbrane domains underlined. The human GALR2 protein bears strong sequence identity and similarity to the rat GALR2 ortholog. One notable difference between the human and rat forms is the presence of an additional 15 amino acids in the

	IC ₅₀ (nM)	
	rat GALR1	rat GALR2 (clone 27A)
pig Galanin	0.06	0.46
human Galanin	0.07 ± 0.01	1.3 ± 0.5
rat Gal (2–29)	7.2	2.9 ± 1.3
rat Gal (3–29)	>1000	>1000
human Gal (1–19)	0.86	
pig Gal (1–16)	0.27 ± 0.18	3.0
galantide(M15)	1.0 ± 1.1	28 ± 3.5
Č7	4.9 ± 3	23 ± 13
M 40	0.01	1.9 ± 0.14
M35	0.9 ± 0.6	0.43 ± 0.18

EXAMPLE 5

Expression of rat GALR2

In situ hybidization was conducted to map the distribution of GALR2 mRNA in rat brain using a ³²P-labeled GALR2 ORF fragment as a hybridization probe; see O'Dowd, B. F. et al. 1995 Genomics 28:84–91. Specific hybridization was 45 detected in a number of brain nuclei and regions, most notably supra-, pre-(PMD/ PMV), med- and lateral mammillary nuclei, the dendate gyrus (DG), cingulate gyrus (CG), posterior hypothalamic (PH), supraoptic and arcuate nuclei (Arc) as shown in FIG. **16**. Both frontal and parietal 50 cortical regions were also labeled.

Clone Isolation of Human GALR2; Cloning of Partial GalR2 Gene by Degenerate PCR.

Human genomic DNA was amplified by PCR using degenerate oligonucleotides designed based on the 55 sequences encoding transmembranes (TM) regions TM3 (P1: 5' CTG ACC GYC ATG RSC ATT GAC SGC TAC, SEQ ID NO:16, wherein Y=C or T, R=A or G, S=C or G) and TM7 (P2: 5'-GGG GTT GRS GCA GCT GTT GGC RTA, SEQ ID NO: 17) of somatostatin receptors and the 60 receptor encoded by the somatostatin-related gene, SLC-1. The PCR conditions were as follows: denaturation at 95° C. for 1 min, annealing at either 55° C., 45° C., or 38° C. for 1 min and extension at 72° C. for 2.5 min for 30 cycles, followed by a 7 min extension at 72° C. The resultant PCR 65 products were phenol/chloroform extracted, precipitated with ethanol, phosphorylated with T4 polynucleotide kinase,

C-terminal intracellular domain of human GALR2.

EXAMPLE 7

Receptor Expression: Human and Rat GALR2; Construction of Human GalR2 Expression Plasmid

The human GalR2 expression construct was assembled from the human genomic clone by PCR. Each exon was PCR amplified using standard conditions. The primers for exon I were: Forward, Exon I (5'-CCG GAATTC GGTACC) ATG AAC GTC TCG GGC TGC CC-3'; SEQ ID NO:14) and Reverse, Exon I (5'-GGT AGC GGA TGG CCA GAT ACC TGT CTA GAG AGA CGG CGG CC-3'; SEQ ID NO:13). The primers for exon II were: Forward, Exon II (5'-GGC CGC CGT CTC TCT AGA CAG GTA TCT GGC CAT CCG CTA CC-3'; SEQ ID NO:14) and Reverse, Exon II (5'-GGC CGC CGT CTC TCT AGA CAG GTA TCT GGC CAT CCG CTA CC-3'; SEQ ID NO:15). PCR products were subcloned in to pBluescript and sequenced. Exon I product was subcloned into the EcoRI and XbaI sites of plasmid pCINeo (Promega, Madison, Wis.). Exon II was then cloned into the XbaI site and the orientation determined by appropriate restriction digests and DNA sequencing.

EXAMPLE 8

Radioligand Binding Assay

Plasmid DNA was prepared using the Qiagen Maxi protocol (Qiagen, Chatsworth, Calif.) and transfected into COS-7 cells by electroporation. Briefly, $0.85 \,\mu$ l COS-7 cells in Ringers' buffer (1.2×10^7 /ml) and 20 μ g of DNA were mixed in a 0.4 mm electroporation cuvette (Bio-Rad, Hercules, Calif.) and current (960 μ F, 260 V) was applied using a Bio-Rad Electroporator device. Cells were transferred to a T-180 flask (Corning) with fresh media and

11

expression was allowed to proceed for 72 hrs. Membranes were prepared from transfected cells following disruption in enzyme-free dissociation solution (Specialty Media, Lavallette, N.J.) in a Dounce homogenizer in ice-cold membrane buffer (10 mM Tris, pH 7.4, 10 mM PMSF, 10 μ M phosphoramidon, and 40 μ g/ml bacitracin). After a low speed (1100×g, 10 min. at 4° C.) and a high speed centrifugation (38,700×g for 15 min. at 4° C.), membranes were suspended in buffer and the protein concentration determined (Bio-Rad assay kit). Binding of ¹²⁵I-human galanin (sp. act=2200 Ci/mmol, DuPont NEN) was measured in membranes using a buffer of 25 mM Tris pH 7.4, 0.5% BSA, 2 mM MgCl₂, 40 μ g/ml bacitracin, 4 μ g/ml phosphoramidon, and 10 μ M leupeptin in a total volume of 0.25 ml. 70 pm ¹²⁵1-human galanin was used. Reactions were initiated by the addition of membranes and the incubation was allowed to proceed at room temperature for 1 hour. Non-specific binding was defined as the amount of membrane bound radioactivity remaining in the presence of $1 \,\mu M$ cold galanin. In competition studies various concentrations of peptides (hGal, pGal, hGal(1-16), rGAL(2-29), rGAL(3–29), hGal (1–19) or chimeric peptides (C7, M15, M40, M35) were included along with ¹²⁵I-hGal (70 pmol). Incubations were terminated by rapid filtration through GF/C filters which had been presoaked with 0.1% polyethylamine using a TOMTEC (Orange, Conn.) cell harvester. The results were analyzed using the Prism software package (GraphPad, San Diego, Calif.). Recombinant expression of human GALR2 binding sites in transiently transfected COS-7 permitted the determation of pharmacology of the cloned receptor. ¹²⁵I-human galanin bound to the cloned GALR2 receptor with high affinity in a saturable and specific manner with a K_{D} of 5 nM. As summarized in FIG. 10, competition of ¹²⁵I-human galanin with a variety of galanin-derived peptides and chimeric peptide antagonist/partial agonists showed that the human GALR2 receptor has a similar pharmacology of binding to that of the rat GALR2.

12

receptor plasmid DNA mixed with control receptor cDNA and naked vector DNA for a total of 20 μ g DNA (2 μ g each of pcDNAlamp:cannabinoid 2 and pcDNA3: thromboxane A2 receptor plasmid DNA, and 18 μ g of pcDNA3.1 plasmid DNA in 40 μ l total volume, or 2 μ g each of pcDNA1amp: 5 cannabinoid 2 and pcDNA3:thromboxane A2 receptor plasmid DNA, and 20 μ g of pcDNA3.1 plasmid DNA in 40 μ l total volume, as a control). Samples were incubated on ice for 20 min, and mixed every 7 minutes. Cell and DNA mixes 10 were transferred to prechilled 2 mM gap electroporation cuvettes (BTX) and electroporated with the following settings: capacitance of 325 microfarad, voltage of 450 volts and resistance of 720 ohms. Immediately following electroporation, cells were mixed with fibroblastconditioned frog medium (7.85 mls per cuvette) and plated 15 onto flat bottom 96 well microtiter plates (NUNC). Electroporations from multiple cuvettes were pooled together prior to plating to ensure homogenous transfection efficiency. On the day following transfection, medium was removed and fresh fibroblast-conditioned frog medium was added to the melanophore monolayer and cell were incubated at 27° C. Cells were assayed for receptor expression 2 days following transfection in 96-well plate format. On the day of ligand stimulation, medium was removed by aspiration and 25 cells were washed with 70% L-15 containing 15 mM HEPES pH 7.3 (Sigma). Assays were dividing into two separate parts in order to examine Gs/Gq functional coupling which results in pigment dispersion in melanophores, or Gi functional coupling which results in pigment aggre-30 gation. For Gs/Gq functional coupling responses, assays were performed as follows. Cells were incubated in 100 μ l of 70% L-15 containing 15 mM HEPES for 1 hour in the dark at room temperature, and then incubated in the presence of melatonin (2 nM final concentration) for 1 hour in the dark at room temperature to induce pigment aggregation. Initial absorbance at 600 nM was measured using a Bio-Tek Elx800 Microplate reader (ESBE Scientific) prior to addition of ligand. Human galanin (Peninsula) was added in duplicate wells, samples were mixed and incubated in the dark at room temperature for 1 hour, after which the final absorbance at 600 nm was determined. For Gi coupled responses, cell monolayers were incubated in the presence of 100 μ l of 70% L-15 containing 2% fibroblast-conditioned growth medium, 2 mM glutamine, 100 ug/ml streptomycin, 100 units/ml penicillin and 15 mM HEPES for 15 minutes in the dark at room temperature to preset the cells to dispersion. After initial absorbance at 600 nM was determined, human galanin was added to cell monolayers, samples were mixed, incubated in the dark for 1.5 hour at room temperature and then final absorbances were determined. Absorbance readings were converted to transmission values in order to quantitate pigment dispersion using the following formula: 1–Tf/Ti, where Ti=the initial transmission at 600 nm and Tf=the final transmission at 600 nm. Pigment aggregation was quantitated using the following formula: Af/Ai–1, where Af=final absorbance at 600 nm and

EXAMPLE 9

Functional Characterization; Post-receptor signalling 40 mechanism Frog Melanophore Assay

Growth of *Xenopus laevis* melanophores and fibroblasts was performed as described previously (Potenza, M. N. et al, 1992, *Pigment Cell* Res. 3:38–43). Briefly, melanophores were grown in fibroblast-conditioned growth medium. The 45 fibroblast-conditioned growth medium was prepared by growing fibroblasts in 70% L-15 medium (Sigma), pH 7.3, supplemented with 20% heat-inactivated fetal bovine serum (Gibco), 100 μ g/ml streptomycin, 100 units/ml penicillin and 2 mM glutamine at 27.5° C. The medium from growing 50 fibroblasts was collected, passed through a 0.2 μ m filter (fibroblast-conditioned growth medium) and used to culture melanophores at 27.5° C.

Plasmid DNA was transiently transfected into melanophores by electroporation using a BTX ECM600 electropo-55 rator (Genetronics, Inc. San Diego, Calif.). Melanophores were incubated in the presence of fresh fibroblastconditioned frog medium for 1 hour prior to harvesting of cells. Melanophore monolayers were detached by trypsinization (0.25% trypsin, JHR Biosciences), followed 60 by inactivation of the trypsin with fibroblast-conditioned frog medium. The cells were collected by centrifugation at 200×g for 5 minutes at 4° C. Cells were washed once in fibroblast conditioned frog medium, centrifuged again and resuspended at 5×10^6 cells per ml in ice cold 70% PBS pH 65 7.0. 400 µl aliquots of cells in PBS were added to prechilled eppendorf tubes containing 2 µg of pcIneo:human Galanin 2

Ai is initial absorbance at 600 nm.

To determine whether the human GALR2 could be functionally expressed in melanophores, the expression plasmid pcIneo:hGALR2 was transiently transfected by electroporation into melanophores followed by stimulation of the transfected cells with human galanin. Increasing doses of galanin resulted in a dose-dependent dispersion of pigment in human GALR2-transfected melanophores, in contrast to control vector-transfected cells (FIG. 11). The apparent EC_{50} for human galanin in pcIneo:hGALR2-transfected

13

melanophores was 20 nM, in general agreement with specific ¹²⁵human galanin binding in pcIneo:hGALR2transfected COS-7 cells (IC₅₀~4 nM). The dispersion of pigment in the melanophore has been previously shown to occur either through Gas coupling and stimulation of ade-5nylyl cyclase or through $G\alpha q$ coupling and mobilization of calcium.

There was no detectable aggregation of the pigment in either the pcIneo:hGALR2- or mock-transfected melanophores following incubation in the presence of $0.001-1000_{10}$ nM human galanin. This result suggests that the hGALR2 does not couple to $G\alpha$ i-mediated signaling pathways.

EXAMPLE 10

14

thought by some to be pure antagonists on the GALR1 receptor, appear to be partial agonists on the GALR2 receptor. These data indicate that the primary signaling mechanism for GALR2 is through the phopholipase C/protein kinase C pathway, in contrast to GALR1, which communicates its intracellular signal by inhibition of adenylyl cyclase through Gi. In addition, while binding and activation of the rat and human GALR2 receptor by galanin is of high affinity and potency, rat or human GALR1 binds and is activated by galanin at a 10-30 fold lower concentration. This observation points to the existence of other undiscovered naturallyoccurring ligand systems that may be agonists at the GALR2 receptor.

Aequorin Bioluminescence Assay

Measurement of GALR2 expression in the aequorin- 15 expressing stable reporter cell line 293-AEQ17 (Button, D et al, 1993 "Aequorin-expressing mammalian cell lines used to report Ca²⁺ mobilization" Cell Calcium 14:663–671) was performed using a Luminoskan RT luminometer (Labsystems Inc., Gaithersburg, Md.) controlled by custom 20 software written for a Macintosh PowerPC 6100. 293-AEQ17 cells (8×10⁵ cells plated 18 hrs. before transfection in a T75 flask) were transfected with 22 μ g of rat or human GALR2 plasmid DNA: 264 μ g lipofectamine. Following approximately 40 hours of expression the apo-aequorin in 25 the cells was charged for 4 hours with coelenterazine (10) μ M) under reducing conditions (300 μ M reduced) glutathione) in ECB buffer (140 mM NaCl, 20 mM KCl 20 mM HEPES-NaOH [pH=7.4], 5 mM glucose, 1 mM MgCl₂, 1 mM CaCl₂, 0.1 mg/ml bovine serum albumin). The cells 30 were harvested, washed once in ECB medium and resuspended to 500,000 cells/ml. 100 μ l of cell suspension (corresponding to 5×10^4 cells) was then injected into the test plate, and the integrated light emission was recorded over 30 seconds, in 0.5 second units. 20 mL of lysis buffer (0.1% 35

EXAMPLE 11

RNA Expression Profile of Human GalR2

Northern blotting analysis was utilized to assess the tissue specificity of human GALR2 mRNA expression. As shown in FIG. 15, modest expression (indicated by one "+") is seen in a variey of brain regions and peripheral tissues, as observed for the rat ortholog of GALR2. The most prevalent transcript size is ~2.2 kb with a band of ~1.5 kb observed in spleen, thymus and prostate. Tissues with significantly higher expression levels (indicated by two or three "+") were placenta, thymus and prostate.

EXAMPLE 12

Chromosome Localization of Human GalR2 Gene

Fluorescence in situ hybridization (FISH) of metaphase spread chromosomes derived from human lymphocytes together with DAPI banding patterns was used to map hGalR2 to its chromosome, as described (Heng, H. H. Q. and Tsui, L.-C. Modes of DAPI banding and simultaneous in situ hybridization. Chromosoma 102:325–332). FISH data localize the receptor gene to human chromosome 17q25.

final Triton X-100 concentration) was then injected and the integrated light emission recorded over 10 seconds, in 0.5 second units. The "fractional response" values for each well were calculated by taking the ratio of the integrated response to the initial challenge to the total integrated luminescence 40 including the Triton-X100 lysis response.

The aequorin bioluminescence assay is a reliable test for identifying G protein-coupled receptors which couple through the Ga protein subunit family consisting of Gq and G11 which leads to the activation of phospholipase C, 45 mobilization of intracellular calcium and activation of protein kinase C. Based on the above melanophore data for GALR2, utilization of the aequorin bioluminescence assay permitted the discrimination between the two possibilities for the primary intracellular signaling mechanism for 50 GALR2, namely G α s coupling and stimulation of adenylyl cyclase or $G\alpha q$ coupling and mobilization of calcium. Expression of human or rat GALR2 in the aequorinexpressing 293 cell line (293-AEQ17) gave a dosedependant increase in aequorin bioluminescence in response 55 to challenge by galanin and several related peptides. Transfection of human GALR1, which signals through Gi and the inhibition of adenylyl cyclase, gave no galanin-dependant increase in aequorin bioluminescence. Responses observed for human or rat GALR2 activation were saturable and the 60 rank order of potency was similar to that observed for competition studies for ¹²⁵I-human galanin binding. EC_{50} 's, given in nM for the human GALR2 (results were similar for the rat GALR2 ortholog) were: human galanin, 32; rat galanin,12; rat galanin (2–29), 31; rat galanin (3–29)>10, 65 000; M35, 44; M40, 8.8. Of interest to note is that the galanin chimeric peptide antagonists (M35 and M40),

EXAMPLE 13

Mouse GALR2; Clone Isolation; Cloning of Mouse GalR2 Genomic Clone

DNA fragments from the Human GalR2 gene were radiolabelled with [32P]dCTP by random octomer labeling (Gibco BRL) and used as a probe to screen a mouse 129sv genomic library (Stratagene). Positive phage clones were plaque purified, DNA was prepared, restriction enzyme digested, electrophoresed on an agarose gel, transferred to nylon membrane, and hybridized with the same probe used to screen the library. A positive NotI fragment was subcloned into pBluescript (Stratagene).

EXAMPLE 14

Gene Sequence and Structure

DNA sequence encoding the complete ORF for mouse GALR2 (SEQ ID NO:8) is shown in FIG. 12. A single intron of 1060 bp divides the ORF into two exons. Removal of the intron allows for conceptual translation to give the predicted GALR2 polypeptide of 371 amino acids (SEQ ID NO:9) as shown in FIG. 13. Compared to both the human and rat orthologs, the mouse protein sequence bears strong identity (85% and 96% respectively).

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(iii) NUMBER OF SEQUENCES: 18

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2200 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CGCTCCCTCC	ACACCTCCAG	GGGCAGTGAG	CCACTCAAGT	CTAAAGCAGA	GCGAGTCCCA	60
GGACTTGAGC	GCGGGAAGCG	AATGGAGTCA	GGGTCATTCG	ATTGCACCTC	TCTCGGCTGC	120
GGGCCGGAGC	GGGGTACCAT	CCTACACTCT	GGGTGCTCCC	TCCTCCTCCC	GTCCCCCGCG	180
CACCCCTGCC	CTGGCTCCTG	GAGCTCGGCA	GTCTCGCTGG	GGCGCTGCAG	CGAGGGAGCA	240
GCGTGCTCAC	CAAGACCCGG	ACAGCTGCGG	GAGCGGCGTC	CACTTTGGTG	ATACCATGAA	300
TGGCTCCGGC	AGCCAGGGCG	CGGAGAACAC	GAGCCAGGAA	GGCGGTAGCG	GCGGCTGGCA	360
GCCTGAGGCG	GTCCTTGTAC	CCCTATTTTT	CGCGCTCATC	TTCCTCGTGG	GCACCGTGGG	420
CAACGCGCTG	GTGCTGGCGG	TGCTGCTGCG	CGGCGGCCAG	GCGGTCAGCA	CCACCAACCT	480
GTTCATCCTC	AACCTGGGCG	TGGCCGACCT	GTGTTTCATC	CTGTGCTGCG	TGCCTTTCCA	540
GGCCACCATC	TACACCCTGG	ACGACTGGGT	GTTCGGCTCG	CTGCTCTGCA	AGGCTGTTCA	600

TITCCICATC	TITCICACIA	IGCACGCCAG	CAGCIICACG	CIGGCCGCCG	ICICCCIGGA	000
CAGGTAAAGG	ACCCAGAAAG	AAACATCCAG	TATGCCCGGA	GGGATCTTGA	CTGGAAAAGA	720
CTGAATCCTG	GTCTGGTGAC	CTTAGTTCCC	TGCCCTTTCA	CATCACTTGG	ACATTCCCAC	780
AGAAGAGCGG	TGAAGAGGCG	GTGGTCCTTA	TTCTCCTCTG	GTTTCCACTG	AGTGCAACAT	840
GTGCGTCCTG	AGTACGCTGG	AGGGACTCAC	AAAATTTCAG	CTTTCTTTAG	GAGTTTCCTT	900
GCTGTAGTTT	GACCCAAGTC	TTCTCCAGGT	TTCTGTCAGA	ACCTCAGGCA	TGAGGGATCT	960
GCCTCCCCTG	GTTGTCACCA	GAGGATAACA	ATCACTGCCC	CCAGAAATCC	AGACAGATTC	1020
TACAACTTTT	AGTCTTCGGT	GTTTTGGGGG	TGCCCCTTCA	CGTGGAGTAG	GTCGGTGGCC	1080
ACATTCCCAG	GAGTGACAAT	AGCCTAGCAG	TGAATCCTCT	CGCTTAGCTG	ATGCCCCCC	1140
ACTGTCCCCA	CAGGTATCTG	GCCATCCGCT	ACCCGCTGCA	CTCCCGAGAG	TTGCGCACAC	1200
CTCGAAACGC	GCTGGCCGCC	ATCGGGCTCA	TCTGGGGGCT	AGCACTGCTC	TTCTCCGGGC	1260
CCTACCTGAG	CTACTACCGT	CAGTCGCAGC	TGGCCAACCT	GACAGTATGC	CACCCAGCAT	1320
GGAGCGCACC	TCGACGTCGA	GCCATGGACC	TCTGCACCTT	CGTCTTTAGC	TACCTGCTGC	1380
CAGTGCTAGT	CCTCAGTCTG	ACCTATGCGC	GTACCCTGCG	CTACCTCTGG	CGCACAGTCG	1440

ACCCGGTGAC TGCAGGCTCA GGTTCCCAGC GCGCCAAACG CAAGGTGACA CGGATGATCA 1500

TCATCGTGGC GGTGCTTTTC TGCCTCTGTT GGATGCCCCA CCACGCGCTT ATCCTCTGCG 1560

1620 TGTGGTTTGG TCGCTTCCCG CTCACGCGTG CCACTTACGC GTTGCGCATC CTTTCACACC

TAGTTTCCTA TGCCAACTCC TGTGTCAACC CCATCGTTTA CGCTCTGGTC TCCAAGCATT 1680

1740 TCCGTAAAGG TTTCCGCAAA ATCTGCGCGG GCCTGCTGCG CCCTGCCCCG AGGCGAGCTT

CGGGCCGAGT GAGCATCCTG GCGCCTGGGA ACCATAGTGG CAGCATGCTG GAACAGGAAT 1800

-continued

CCACAGACCT GACACAGGTG	AGCGAGGCAG	CCGGGCCCCT	TGTCCCACCA	CCCGCACTTC	1860
CCAACTGCAC AGCCTCGAGT	AGAACCCTGG	ATCCGGCTTG	TTAAAGGACC	AAAGGGCATC	1920
TAACAGCTTC TAGACAGTGT	GGCCCGAGGA	TCCCTGGGGG	TTATGCTTGA	ACGTTACAGG	1980
GTTGAGGCTA AAGACTGARG	ATTGATTGTA	GGGAACCTCC	AGTTATTAAA	CGGTGCGGAT	2040
TGCTAGAGGG TGGCATAGTC	CTTCAATCCT	GGCACCCGAA	AAGCAGATGC	AGGAGCAGGA	2100
GCAGGAGCAA AGCCAGCCAT	GGAGTTTGAG	GCCTGCTTGA	ACTACCTGAG	ATCCAATAAT	2160

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 372 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Asn Gly Ser Gly Ser Gln Gly Ala Glu Asn Thr Ser Gln Glu Gly Gly Ser Gly Gly Trp Gln Pro Glu Ala Val Leu Val Pro Leu Phe Phe Ala Leu Ile Phe Leu Val Gly Thr Val Gly Asn Ala Leu Val Leu Ala Val Leu Leu Arg Gly Gly Gln Ala Val Ser Thr Thr Asn Leu Phe Ile

Leu 65	Asn	Leu	Gly	Val	Ala 70	Asp	Leu	Cys	Phe	Ile 75	Leu	Cys	Cys	Val	Pro 80
Phe	Gln	Ala	Thr	Ile 85	Tyr	Thr	Leu	Asp	Asp 90	Trp	Val	Phe	Gly	Ser 95	Leu
Leu	Cys	Lys	Ala 100	Val	His	Phe	Leu	Ile 105	Phe	Leu	Thr	Met	His 110	Ala	Ser
Ser	Phe	Thr 115	Leu	Ala	Ala	Val	Ser 120	Leu	Asp	Arg	Tyr	Leu 125	Ala	Ile	Arg
Tyr		Leu			-			-			_		Ala	Leu	Ala
Ala 145	Ile	Gly	Leu	Ile	Trp 150	Gly	Leu	Ala	Leu	Leu 155	Phe	Ser	Gly	Pro	Ty r 160
Leu	Ser	Tyr	Tyr	Arg 165	Gln	Ser	Gln	Leu	Ala 170	Asn	Leu	Thr	Val	C ys 175	His
Pro	Ala	Trp	Ser 180	Ala	Pro	Arg	Arg	Arg 185	Ala	Met	Asp	Leu	C y s 190	Thr	Phe
Val	Phe	Ser 195	Tyr	Leu	Leu	Pro	Val 200	Leu	Val	Leu	Ser	Leu 205	Thr	Tyr	Ala

Arg Thr Leu Arg Tyr Leu Trp Arg Thr Val Asp Pro Val Thr Ala Gly

Ser Gly Ser Gln Arg Ala Lys Arg Lys Val Thr Arg Met Ile Ile Ile

Val Ala Val Leu Phe Cys Leu Cys Trp Met Pro His His Ala Leu Ile

Leu Cys Val Trp Phe Gly Arg Phe Pro Leu Thr Arg Ala Thr Tyr Ala
19

20

-continued

Leu	Arg	Ile 275	Leu	Ser	His	Leu	Val 280	Ser	Tyr	Ala	Asn	Ser 285	Суз	Val	Asn
Pro	Ile 290	Val	Tyr	Ala	Leu	Val 295	Ser	Lys	His	Phe	Arg 300	Lys	Gly	Phe	Arg
L y s 305	Ile	Cys	Ala	Gly	Leu 310	Leu	Arg	Pro	Ala	Pro 315	Arg	Arg	Ala	Ser	Gl y 320
Arg	Val	Ser	Ile	Leu 325	Ala	Pro	Gly	Asn	His 330	Ser	Gly	Ser	Met	Leu 335	Glu
a 1	a 1	0	m l	D	T	m 1	a 1	TT_]	0	a1	. .	N]_	a1	D	T

Gln Glu Ser Thr Asp Leu Thr Gln Val Ser Glu Ala Ala Gly Pro Leu 340 345 350

Val Pro Pro Pro Ala Leu Pro Asn Cys Thr Ala Ser Ser Arg Thr Leu 355 360 365

Asp Pro Ala Cys

370

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 346 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Met Glu Leu Ala Pro Val Asn Leu Ser Glu Gly Asn Gly Ser Asp Pro 10 15 5 1 Glu Pro Pro Ala Glu Pro Arg Pro Leu Phe Gly Ile Gly Val Glu Asn 20 25 30

Dhe Tle Thr Iou Val Val Dhe Cly Iou Ile Dhe Ala Met Cly Val Iou

Phe	Ile	Thr 35	Leu	Val	Val	Phe	Gly 40	Leu	Ile	Phe	Ala	Met 45	Gly	Val	Leu
Gly	Asn 50	Ser	Leu	Val	Ile	Thr 55	Val	Leu	Ala	Arg	Ser 60	Lys	Pro	Gly	Lys
Pro 65	Arg	Ser	Thr	Thr	Asn 70	Leu	Phe	Ile	Leu	Asn 75	Leu	Ser	Ile	Ala	Asp 80
Leu	Ala	Tyr	Leu	Leu 85	Phe	Cys	Ile	Pro	Phe 90	Gln	Ala	Thr	Val	T y r 95	Ala
Leu	Pro				Leu	_				_	_			His	Tyr
Phe	Phe	Thr 115	Val	Ser	Met	Leu	Val 120	Ser	Ile	Phe	Thr	Leu 125	Ala	Ala	Met
Ser	Val 130	Asp	Arg	Tyr	Val	Ala 135		Val	His	Ser	Arg 140	Arg	Ser	Ser	Ser
Leu 145	Arg	Val	Ser	Arg	Asn 150	Ala	Leu	Leu	Gly	Val 155	_	Phe	Ile	Trp	Ala 160
Leu	Ser	Ile	Ala	Met 165	Ala	Ser	Pro	Val	Ala 170	Tyr	Tyr	Gln	Arg	Leu 175	Phe

His Arg Asp Ser Asn Gln Thr Phe Cys Trp Glu His Trp Pro Asn Gln 190 180 185

Leu His Lys Lys Ala Tyr Val Val Cys Thr Phe Val Phe Gly Tyr Leu 195 205 200

Leu Pro Leu Leu Leu Ile Cys Phe Cys Tyr Ala Lys Val Leu Asn His 210 215 220

Leu His Lys Lys Leu Lys Asn Met Ser Lys Lys Ser Glu Ala Ser Lys 225 230 235 240

21

22

-continued

Lys Lys Thr Ala Gln Thr Val Leu Val Val Val Val Val Phe Gly Ile 245 255 250 Ser Trp Leu Pro His His Val Ile His Leu Trp Ala Glu Phe Gly Ala 260 265 270 Phe Pro Leu Thr Pro Ala Ser Phe Phe Phe Arg Ile Thr Ala His Cys 275 285 280 Leu Ala Tyr Ser Asn Ser Ser Val Asn Pro Ile Ile Tyr Ala Phe Leu 290 295 300 Ser Glu Asn Phe Arg Lys Ala Tyr Lys Gln Val Phe Lys Cys Arg Val

305 310 315 320

Cys Asn Glu Ser Pro His Gly Asp Ala Lys Glu Lys Asn Arg Ile Asp 325 330 335

Thr Pro Pro Ser Thr Asn Cys Thr His Val 340 345

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 283 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Other

(ix) FEATURE:

(A) NAME/KEY: Other

(B) LOCATION: 1...283

(D) OTHER INFORMATION: cDNA probe

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

TGCGGACCAC CACCAACTTG TACCTGGGCA GCATGGCCGT GTCCGACCTA CTCATCCTGC 60

TCGGGCTGCC	GTTCGACCTG	TACCGCCTCT	GGCGCTCGCG	GCCCTGGGTG	TTCGGGCCGC	120
TGCTCTGCCG	CCTGTCCCTC	TACGTGGGCG	AGGGCTGCAC	CTACGCCACG	CTGCTGCACA	180
TGACCGCGCT	CAGCGTCGAG	CGCTACCTGG	CCATCTGCCG	CCCGCTCCGC	GCCCGCGTCT	240
TGGTCACCCG	GCGCCGCGTC	CGCGCGCTCA	TCGCTGTGCT	CTG		283

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3390 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

- (A) NAME/KEY: Other
- (B) LOCATION: 63...63
- (D) OTHER INFORMATION: N = A, C, T or G
- (A) NAME/KEY: Other
- (B) LOCATION: 122...122
- (D) OTHER INFORMATION: N = A, C, T or G

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GAGCTCGGAA GCAGGTACAA GCGCCACTCT CCGCCTGCGC CGTGGAATGC GCGCCGGGAC 60

CANTCCGCAG CCCTTCCCCC AGCGCCGCCG GCCGCTGCTG GGGACAACCT CGCCCTCCTG 120

- TNTCTTGCTC CTCCTCCTGA CCCCAGCGCA CCCCCATCCC CGCCCCAGAT GAGGCAAGGC 180
- TCCCTCCGCC TTCAGCCCGG CAGAGTCGCA CTAGGAGTTG CAGCGGCCGC AGCCCCGGGA 240
- GCTTCCCGCT CGCGGAGACC CAGACGGCTG CAGGAGCCCG GGCAGCCTCG GGGTCAGCGG 300

23

24

-continued

CACCATGAAC GTCTCGGGCT GCCCAGGGGC CGGGAACGCG AGCCAGGCGG GCGGGGGGG	360
AGGCTGGCAC CCCGAGGCGG TCATCGTGCC CCTGCTCTTC GCGCTCATCT TCCTCGTGGG	420
CACCGTGGGC AACACGCTGG TGCTGGCGGT GCTGCTGCGC GGCGGCCAGG CGGTCAGCAC	480
TACCAACCTG TTCATCCTTA ACCTGGGCGT GGCCGACCTG TGTTTCATCC TGTGCTGCGT	540
GCCCTTCCAG GCCACCATCT ACACCCTGGA CGGCTGGGTG TTCGGCTCGC TGCTGTGCAA	600
GGCGGTGCAC TTCCTCATCT TCCTCACCAT GCACGCCAGC AGCTTCACGC TGGCCGCCGT	660

CTCCCTGGAC	AGGTGAGCCA	GCGCCTTGGC	CTCCCTGGGA	GATGGGCATC	CACGCGGGGG	720
ATGGAGCGGG	AGGCGGGACT	GGGGACCAAG	AAGGGACGCG	CAGAGTGGGA	CAGGACACTA	780
AGAAGGCAGT	GGAAGACAAG	CGGGCGCGGA	GGAGGAAAAA	GAGGAATAAG	AATGGGGGAC	840
CGTGGTGTCC	CTCGGTTAGA	TGCGTCCTGG	GGCCTGGAAG	CCTGGAGAAT	GTGGCTCTCC	900
AGCGCCGCCC	GTGCCTGACA	ACGCGCAGCG	TTTCCCAGTA	CGACGCGTTT	GTGCGCGTTC	960
ATCTCGCTTG	AGCTTAATGC	CCTCCGTGAG	GGTGGGATAG	GACAAAGTGC	CCAATATACA	1020
GAAGAGTTGA	GTTCCTAAGT	AACTCGCTCA	GAGTCGCCAG	CCAAGGGATC	GGGTGCGTTG	1080
AAGTGACCGT	CTGTCTCCTG	CAGCCAACTT	CAGGCGCCTC	CACTGCGCTC	GCCTCCAAGC	1140
CACGGTTTGG	TTGGTTGGTG	CAGCTGGCTC	AGGTCCAGGC	TGTGGATCTT	GGGTCCTTTG	1200
CAAGGATCCA	CTCCGGAGTC	CCAGCGAGCG	TGCCTAAAGG	TCCCTAGCTC	AGTCCCAGCC	1260
CACTCTGCCT	CTCGCCTCCA	ААСААААСАА	АААСААААТА	АААТССАААА	CAAGTGGGGC	1320
GGGAGAGGAA	GCGTTGCCCT	GGGGTTCTTC	CTCCCAGCCA	GAGGAGAGCG	AAGAGACGCA	1380
CATTCGGGAG	AGCCGCCGGG	ACTCAGGTGG	AGCTTGAAAG	GACACTGGGA	TGGTTTCCCT	1440
GGGGAGGAAA	TCCGGGTATT	TCCCCTCTCC	ATCCTCTGGA	AAAACAGAGA	GGCGAGGCCA	1500
GACTGCCCCC	ACACCTCCTG	TAGCCACTGA	GCGCGAAGTG	CGTTGGTTCC	GAGCGCGCTG	1560
GTGGGATCCA	CAAAGCTCGC	ATTCTCTCAG	GAATCCCCTG	AGAAATTAAC	TGTCCCTTGC	1620
CCAACATGTC	TTCTCCAGGC	TGTCTGCTAG	AGCCTCAGGC	GCCTCCGCCC	TCCCTCCCGC	1680
GGCACCGTCA	CCAGTGGGTA	GTCACAGCCT	CCCGGAGCCC	ATAGCCGGTT	CTCCAACCTT	1740
TAGTCTTCAG	TGGCTTTGGG	GTGCCCTCTC	AGTGGAGACT	GTGGTTGCAG	TCCCCGGGGG	1800
CAGCGGGAGA	ATGGCTTGAA	GGCACACCTT	TCCTGCTGCC	GGCCCGCCCC	ATTTCCAGCG	1860
TCCGCTGAGT	GTCTGGGACA	CGCTGGGAGG	CCCCCACCTC	CGCCCTCACG	CCGAGCCTCA	1920
CCCCCACCTC	CTCTGTGTGC	GGTGTAACCA	TGCGCTAAGG	ACCTTCCTTG	AGAGCAGCCT	1980
TGGGACCGAG	GTGCAGGGGT	CGCGGCCCTC	CAGCATGAAT	GTGCCCGCTC	AGCCGACGTC	2040
TCCCTTCCCG	GTCTGACCGC	AGGTATCTGG	CCATCCGCTA	CCCGCTGCAC	TCCCGCGAGC	2100
TGCGCACGCC	TCGAAACGCG	CTGGCAGCCA	TCGGGCTCAT	CTGGGGGCTG	TCGCTGCTCT	2160
TCTCCGGGCC	CTACCTGAGC	TACTACCGCC	AGTCGCAGCT	GGCCAACCTG	ACCGTGTGCC	2220
ATCCCGCGTG	GAGCGCCCCT	CGCCGCCGCG	CCATGGACAT	CTGCACCTTC	GTCTTCAGCT	2280
						~ ~ / ~

ACCTGCTTCC TGTG	CTGGTT CTCGGCCTGA	CCTACGCGCG	CACCTTGCGC	TACCTCTGGC	2340
-----------------	-------------------	------------	------------	------------	------

GCGCCGTCGA	CCCGGTGGCC	GCGGGCTCGG	GTGCCCGGCG	CGCCAAGCGC	AAGGTGACAC	2400
GCATGATCCT	CATCGTGGCC	GCGCTCTTCT	GCCTCTGCTG	GATGCCCCAC	CACGCGCTCA	2460
TCCTCTGCGT	GTGGTTCGGC	CAGTTCCCGC	TCACGCGCGC	CACTTATGCG	CTTCGCATCC	2520
TCTCGCACCT	GGTCTCCTAC	GCCAACTCCT	GCGTCAACCC	CATCGTTTAC	GCGCTGGTCT	2580

CCAAGCACTT CCGCAAAGGC TTCCGCACGA TCTGCGCGGG CCTGCTGGGC CGTGCCCCAG 2640

26

25

-continued

GCCGAGCCTC	GGGCCGTGTG	TGCGCTGCCG	CGCGGGGCAC	CCACAGTGGC	AGCGTGTTGG	2700
AGCGCGAGTC	CAGCGACCTG	TTGCACATGA	GCGAGGCGGC	GGGGGCCCTT	CGTCCCTGCC	2760
CCGGCGCTTC	CCAGCCATGC	ATCCTCGAGC	CCTGTCCTGG	CCCGTCCTGG	CAGGGCCCAA	2820
AGGCAGGCGA	CAGCATCCTG	ACGGTTGATG	TGGCCTGAAA	GCACTTAGCG	GGCGCGCTGG	2880
GATGTCACAG	AGTTGGAGTC	ATTGTTGGGG	GACCGTGGGG	AGAGCTTTGC	CTGTTAATAA	2940
AACGCACAAA	CCATTTCACA	CACAGTGACA	GCGCTGTTTC	GCGTTTCTCA	TTGTCTTGAG	3000
ATTCTGGGAG	GAAGCCTCTG	GGGCTTCACA	GAGGGGCTCC	CTAGGGGTAA	GTGCAGGACC	3060

CTTTGCAGAG	CTACCAGGAA	AGAGGGCTGA	TCACACCTCA	GGCAGCCGGG	TTACAATCCG	3120
CATAAAAATC	TGAGTCTGGG	GAGCGTGCGA	CAGAGGCAGG	CAGATTGTTT	AAGGCGTTCG	3180
ATAAAGTCGG	TTGATGACAG	ACACAGATGT	GTGTTCCCAG	CCGCATTTGT	GCTCTGGTGT	3240
GTGACAGGTC	TGTCCTTGCC	TGCTTTCAGC	TCCCAGGGCC	CCTTTGAGTC	TGGGCAGCCC	3300
AGTCAGTCCC	CGTCCATTTT	TGGCCTTAGC	TTTTCCTTCC	CTGGCTACAT	CTGGGCCAGG	3360
ATCAAGTCTC	CAGCAGCTGT	TTCACTCCCC				3390

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1164 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

60

TGGCACCCCG	AGGCGGTCAT	CGTGCCCTG	CTCTTCGCGC	TCATCTTCCT	CGTGGGCACC	120
GTGGGCAACA	CGCTGGTGCT	GGCGGTGCTG	CTGCGCGGCG	GCCAGGCGGT	CAGCACTACC	180
AACCTGTTCA	TCCTTAACCT	GGGCGTGGCC	GACCTGTGTT	TCATCCTGTG	CTGCGTGCCC	240
TTCCAGGCCA	CCATCTACAC	CCTGGACGGC	TGGGTGTTCG	GCTCGCTGCT	GTGCAAGGCG	300
GTGCACTTCC	TCATCTTCCT	CACCATGCAC	GCCAGCAGCT	TCACGCTGGC	CGCCGTCTCC	360
CTGGACAGGT	ATCTGGCCAT	CCGCTACCCG	CTGCACTCCC	GCGAGCTGCG	CACGCCTCGA	420
AACGCGCTGG	CAGCCATCGG	GCTCATCTGG	GGGCTGTCGC	TGCTCTTCTC	CGGGCCCTAC	480
CTGAGCTACT	ACCGCCAGTC	GCAGCTGGCC	AACCTGACCG	TGTGCCATCC	CGCGTGGAGC	540
GCCCCTCGCC	GCCGCGCCAT	GGACATCTGC	ACCTTCGTCT	TCAGCTACCT	GCTTCCTGTG	600
CTGGTTCTCG	GCCTGACCTA	CGCGCGCACC	TTGCGCTACC	TCTGGCGCGC	CGTCGACCCG	660
GTGGCCGCGG	GCTCGGGTGC	CCGGCGCGCC	AAGCGCAAGG	TGACACGCAT	GATCCTCATC	720
GTGGCCGCGC	TCTTCTGCCT	CTGCTGGATG	CCCCACCACG	CGCTCATCCT	CTGCGTGTGG	780
TTCGGCCAGT	TCCCGCTCAC	GCGCGCCACT	TATGCGCTTC	GCATCCTCTC	GCACCTGGTC	840

TCCTACGCCA	ACTCCTGCGT	CAACCCCATC	GTTTACGCGC	TGGTCTCCAA	GCACTTCCGC	900
AAAGGCTTCC	GCACGATCTG	CGCGGGCCTG	CTGGGCCGTG	CCCCAGGCCG	AGCCTCGGGC	960
CGTGTGTGCG	CTGCCGCGCG	GGGCACCCAC	AGTGGCAGCG	TGTTGGAGCG	CGAGTCCAGC	1020
GACCTGTTGC	ACATGAGCGA	GGCGGCGGGG	GCCCTTCGTC	CCTGCCCCGG	CGCTTCCCAG	1080
CCATGCATCC	TCGAGCCCTG	TCCTGGCCCG	TCCTGGCAGG	GCCCAAAGGC	AGGCGACAGC	1140
ATCCTGACGG	TTGATGTGGC	CTGA				1164

28

-continued

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 387 amino acids

27

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

1	n Val	Ser	Gly 5	Cys	Pro	Gly	Ala	Gl y 10	Asn	Ala	Ser	Gln	Ala 15	Gly
Gly Gl	y Gly	Gly 20	Trp	His	Pro	Glu	Ala 25	Val	Ile	Val	Pro	Leu 30	Leu	Phe
Ala Le	ı Ile 35	Phe	Leu	Val	Gly	Thr 40	Val	Gly	Asn	Thr	Leu 45	Val	Leu	Ala
Val Le 50	ı Leu	Arg	Gly	Gly	Gln 55	Ala	Val	Ser	Thr	Thr 60	Asn	Leu	Phe	Ile
Leu As 65	n Leu	Gly	Val	Ala 70	Asp	Leu	Cys	Phe	Ile 75	Leu	Cys	Cys	Val	Pro 80
Phe Gl	n Ala	Thr	Ile 85	Tyr	Thr	Leu	Asp	Gly 90	Trp	Val	Phe	Gly	Ser 95	Leu
Leu Cy	s Lys	Ala 100	Val	His	Phe	Leu	Ile 105	Phe	Leu	Thr	Met	His 110	Ala	Ser
Ser Ph	∋ Thr 115	Leu	Ala	Ala	Val	Ser 120	Leu	Asp	Arg	Tyr	Leu 125	Ala	Ile	Arg
Tyr Pr 13		His	Ser	Arg	Glu 135	Leu	Arg	Thr	Pro	Arg 140	Asn	Ala	Leu	Ala
Ala Il 145	e Gly	Leu	Ile	Trp 150	Gly	Leu	Ser	Leu	Leu 155	Phe	Ser	Gly	Pro	T y r 160
Leu Se	r Tyr	Tyr	Arg 165	Gln	Ser	Gln	Leu	Ala 170	Asn	Leu	Thr	Val	C y s 175	His
Pro Al	a Trp													
		Ser 180	Ala	Pro	Arg	Arg	Arg 185	Ala	Met	Asp	Ile	C y s 190	Thr	Phe
Val Ph	e Ser 195	180				_	185			_		190		
Val Ph Arg Th 21	195 r Leu	180 Tyr	Leu	Leu	Pro	Val 200	185 Leu	Val	Leu	Gly	Leu 205	190 Thr	Tyr	Ala
Arg Th	195 r Leu)	180 Tyr Arg	Leu Tyr	Leu Leu	Pro Trp 215	Val 200 Arg	185 Leu Ala	Val Val	Leu Asp	Gl y Pro 220	Leu 205 Val	190 Thr Ala	Tyr Ala	Ala Gly
Arg Th 21 Ser Gl	195 r Leu y Ala	180 Tyr Arg	Leu Tyr Arg	Leu Leu Ala 230	Pro Trp 215 Lys	Val 200 Arg	185 Leu Ala Lys	Val Val	Leu Asp Thr 235	Gly Pro 220 Arg	Leu 205 Val Met	190 Thr Ala Ile	Tyr Ala Leu	Ala Gly Ile 240
Arg Th 21 Ser Gl 225	195 r Leu y Ala	180 Tyr Arg Arg Leu	Leu Tyr Arg Phe 245	Leu Leu Ala 230 Cys	Pro Trp 215 Lys Leu	Val 200 Arg Arg Cys	185 Leu Ala Lys Trp	Val Val Val Met 250	Leu Asp Thr 235 Pro	Gly Pro 220 Arg His	Leu 205 Val Met His	190 Thr Ala Ile Ala	Tyr Ala Leu 255	Ala Gly Ile 240 Ile

Pro Ile Val Tyr Ala Leu Val Ser Lys His Phe Arg Lys Gly Phe Arg 290 295 300

Thr Ile Cys Ala Gly Leu Leu Gly Arg Ala Pro Gly Arg Ala Ser Gly 305 315 310 320

Arg Val Cys Ala Ala Ala Arg Gly Thr His Ser Gly Ser Val Leu Glu 325 335 330

Arg Glu Ser Ser Asp Leu Leu His Met Ser Glu Ala Ala Gly Ala Leu 340 345 350

29

30

-continued

Arg Pro Cys Pro Gly Ala Ser Gln Pro Cys Ile Leu Glu Pro Cys Pro 355 360 365

Gly Pro Ser Trp Gln Gly Pro Lys Ala Gly Asp Ser Ile Leu Thr Val 370 375 380

Asp Val Ala 385

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2234 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

60	GAGGACTCGA	CCAGGGGGCG	GCTCGGACAG	ACCATGAATG	CTTTGGTGAT	GCCCTTTCCA
120	TTTTTCGCGC	CGTACCCCTA	AGGCGGTCCT	TGGCAGCCCG	TGGCGGCGGC	GCCAGGAAGG
180	CTGCGCGGCG	GGCGGTGCTG	CGCTGGTGCT	GTGGGCAACG	CGTGGGCGCT	TCATCTTCCT
240	GACCTGTGTT	GGGTGTGGCC	TCCTCAACCT	AACCTATTCA	CAGCACCACG	GCCAGGCGGT
300	TGGGTGTTTG	CCTGGACGAT	CCATCTATAC	TTCCAGGCCA	CTGCGTGCCT	TCATCCTGTG
360	GCCAGCAGCT	CACTATGCAC	TCATCTTCCT	GTTCATTTCC	CTGCAAGGCC	GCTCACTGCT
420	CTGAGAACTG	TCTGTGGTGT	GAGTGAACAT	CTGGACAGGT	CGCTGTCTCG	TCACGCTGGC
480	GGATGCGTAG	GATCCAGAAG	GCCACGCAAG	CACTGGAGTC	TAGGAGCTTG	GGTACCCAGG
540	GGGAAAGGGG	GAAACGCAAG	CCGAGGCCGT	ACAAAGTGGC	CACTAAAATT	TCGGGGAGAA
600	CTCGAAGGCT	GTCCTCAGAC	GATTAAGTCG	AGTGTCCCTT	CGTGACTAAG	ACTAAGACTC
660	GTCTCTCAGA	TGAGCTAAAA	TATTGTTGCT	GTCTTTACGT	GATTTCTGGG	GGAGAAATCG
720	TTCAAATGCT	CTTGCCAGTA	TGCAAAGTAA	AGAGTTGGCT	TACTCAGACC	AACATTGCAG
780	TGGAGCGTTG	GCTCAGCACC	TTGGCCCCAA	CATTTGCTTC	TGCAGAGAGG	AATTGAGAGC
840	AGTCCAAGGC	CCCATGCTGA	TTTGGATAGA	TGAGCTGTAC	GGCTTAGGAC	TCCGGCTTTA
900	TCCCCGCCCG	AGGCCAAGGC	AAAGCCTTCC	GCGGACGTCT	AGGGCTCCTA	AGCGGGAGTG
960	GAAACTTCCA	CCCAGAAAGA	AGCTAAAGGA	TTCCTTCCCT	CGGTTTGATG	GAGACGCCTG
1020	GGAAGGATGT	ACAGGTCCTG	GACACTAGAA	GACTGGAAAA	AAGGACTCGT	GAATGCTCTG
1080	GTGAAGAGAG	CAGTAGAGCG	GCCCTTCCCA	GCATCACTTG	CTGCCCCTTC	CATTAGTTCC
1140	AGTCCGCTGG	GTGGGTTCTG	AGTGCAACAT	CTTTCCACTG	TCATTCTCTG	GCGGAGATCC
1200	AGTCTTCTCC	GCTCTACCCA	GGATTTCCTT	CTTTCTTCAG	AAAACTTCAG	TGGGACGCAC
1260	GTCACAAGAG	TCCCTCGGTT	GAGATTTGTC	TCAGGCATTA	TCAGAGAGCC	GGGTTGTCTG
1320	TTTCGGTGGT	AACTTTTAGT	CATATTCTAC	GAAGTCCTGG	ACTGCCCCCA	GATAATAATC
1380	GTAATGGTCT	CTCAGGGTTG	TGGCCACATT	GGTAGGTCAG	CCTTTCGCGT	TTGGGGATGC

1440 AGCAGTGAAT TAGTGAATCC TTTCGCTTAC CTGTCGTCGT CGTCCCCCCC GCCCCACTGT

CCACTCAGGT ATCTGGCCAT CCGCTACCCG ATGCACTCCC GAGAGTTGCG CACACCTCGA 1500

AACGCGCTGG CGGCCATCGG GCTCATCTGG GGGCTAGCAC TGCTCTTCTC CGGGCCCTAC 1560

CTGAGCTACT ACAGTCAGTC GCAGCTGGCC AATCTGACGG TGTGCCACCC AGCGTGGAGC 1620

1680 GCACCACGAC GTCGCGCCAT GGACCTCTGC ACTTTTGTCT TTAGCTACCT GTTGCCAGTG

CTGGTGCTCA GCCTGACCTA TGCGCGCACC CTGCACTACC TCTGGCGCAC AGTTGACCCA 1740

32

-continued

GTAGCTGCAG GCTCAGGTTC	CCAGCGCGCC	AAGCGCAAGG	TGACACGGAT	GATCGTCATC	1800
GTGGCGGTAC TCTTCTGCCT	CTGTTGGATG	CCCCACCACG	CGCTTATCCT	CTGCGTGTGG	1860
TTTGGTCGCT TTCCGCTCAC	GCGTGCCACT	TACGCCCTGC	GCATCCTTTC	ACATCTAGTA	1920
TCTTATGCCA ACTCGTGTGT	CAACCCCATC	GTTTATGCTC	TGGTCTCCAA	GCATTTCCGC	1980
AAAGGTTTCC GCAAAATCTG	CGCGGGCCTG	CTACGCCGTG	CCCCGAGGAG	AGCTTCAGGC	2040
CGAGTGTGCA TCCTGGCGCC	TGGAAACCAT	AGTGGTGGCA	TGCTGGAACC	TGAGTCCACA	2100

GACCTGACAC AGGTGAGCGA GGCAGCCGGG CCCCTCGTCC CCGCACCCGC ACTTCCCAAC 2160 TGCACAACCT TGAGTAGAAC CCTCGATCCA GCCTGTTAAA GGACCAAAGG GCATCTAACA 2220 GCTTCTAAGG GCGA 2234

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 371 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

31

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Met Asn Gly Ser Asp Ser Gln Gly Ala Glu Asp Ser Ser Gln Glu Gly 1 Gly Gly Gly Trp Gln Pro Glu Ala Val Leu Val Pro Leu Phe Phe Ala 20 Leu Ile Phe Leu Val Gly Ala Val Gly Asn Ala Leu Val Leu Ala Val 40 45

Leu	Leu 50	Arg	Gly	Gly	Gln	Ala 55	Val	Ser	Thr	Thr	Asn 60	Leu	Phe	Ile	Leu
Asn 65	Leu	Gly	Val	Ala	Asp 70	Leu	Cys	Phe	Ile	Leu 75	Cys	Cys	Val	Pro	Phe 80
Gln	Ala	Thr	Ile	T y r 85	Thr	Leu	Asp	Asp	Trp 90	Val	Phe	Gly	Ser	Leu 95	Leu
Cys	Lys	Ala	Val 100	His	Phe	Leu	Ile	Phe 105	Leu	Thr	Met	His	Ala 110	Ser	Ser
Phe	Thr	Leu 115	Ala	Ala	Val	Ser	Leu 120	Asp	Arg	Tyr	Leu	Ala 125	Ile	Arg	Tyr
Pro	Met 130	His	Ser	Arg	Glu	Leu 135	Arg	Thr	Pro	Arg	Asn 140	Ala	Leu	Ala	Ala
Ile 145	Gly	Leu	Ile	Trp	Gl y 150	Leu	Ala	Leu	Leu	Phe 155	Ser	Gly	Pro	Tyr	Leu 160
Ser	Tyr	Tyr	Ser	Gln 165	Ser	Gln	Leu	Ala	Asn 170	Leu	Thr	Val	Cys	His 175	Pro
Ala	Trp	Ser	Ala 180	Pro	Arg	Arg	Arg	Ala 185	Met	Asp	Leu	Cys	Thr 190	Phe	Val

Phe Ser Tyr Leu Leu Pro Val Leu Val Leu Ser Leu Thr Tyr Ala Arg 195 200 205

Thr Leu His Tyr Leu Trp Arg Thr Val Asp Pro Val Ala Ala Gly Ser 210 215 220

Gly Ser Gln Arg Ala Lys Arg Lys Val Thr Arg Met Ile Val Ile Val 230 235 240

Ala Val Leu Phe Cys Leu Cys Trp Met Pro His His Ala Leu Ile Leu 245 250 255

-continued

Cys Val Trp Phe Gly Arg Phe Pro Leu Thr Arg Ala Thr Tyr Ala Leu Arg Ile Leu Ser His Leu Val Ser Tyr Ala Asn Ser Cys Val Asn Pro Ile Val Tyr Ala Leu Val Ser Lys His Phe Arg Lys Gly Phe Arg Lys Ile Cys Ala Gly Leu Leu Arg Arg Ala Pro Arg Arg Ala Ser Gly Arg

Val Cys Ile Leu Ala Pro Gly Asn His Ser Gly Gly Met Leu Glu Pro Glu Ser Thr Asp Leu Thr Gln Val Ser Glu Ala Ala Gly Pro Leu Val Pro Ala Pro Ala Leu Pro Asn Cys Thr Thr Leu Ser Arg Thr Leu Asp Pro Ala Cys

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 348 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Met Glu Leu Ala Met Val Asn Leu Ser Glu Gly Asn Gly Ser Asp Pro

Glu Pro I	Pro Ala 20	Pro Glu	Ser	Arg	Pro 25	Leu	Phe	Gly	Ile	Gly 30	Val	Glu
Asn Phe I	Ile Thr 35	Leu Val	Val	Phe 40	Gly	Leu	Ile	Phe	Ala 45	Met	Gly	Val
Leu Gly A 50	Asn Ser	Leu Val	Ile 55	Thr	Val	Leu	Ala	Arg 60	Ser	Lys	Pro	Gly
L y s Pro <i>P</i> 65	Arg Ser	Thr Thr 70	Asn	Leu	Phe	Ile	Leu 75	Asn	Leu	Ser	Ile	Ala 80
Asp Leu A	Ala Tyr	Leu Leu 85	Phe	Cys	Ile	Pro 90	Phe	Gln	Ala	Thr	Val 95	Tyr
Ala Leu I	Pro Thr 100	Trp Val	Leu	Gly	Ala 105	Phe	Ile	Cys	Lys	Phe 110	Ile	His
Tyr Phe I	Phe Thr 115	Val Ser	Met	Leu 120	Val	Ser	Ile	Phe	Thr 125	Leu	Ala	Ala
Met Ser V 130	Val Asp	Arg Tyr	Val 135	Ala	Ile	Val	His	Ser 140	Arg	Arg	Ser	Ser
Ser Leu A 145	Arg Val	Ser Arg 150		Ala	Leu	Leu	Gl y 155	Val	Gly	Phe	Ile	Trp 160

Ala Leu Ser Ile Ala Met Ala Ser Pro Val Ala Tyr His Gln Arg Leu

Phe His Arg Asp Ser Asn Gln Thr Phe Cys Trp Glu Gln Trp Pro Asn

Lys Leu His Lys Lys Ala Tyr Val Val Cys Thr Phe Val Phe Gly Tyr

Leu Leu Pro Leu Leu Leu Ile Cys Phe Cys Tyr Ala Lys Val Leu Asn

-continued

His Leu 225	His Lys	Lys Lo 2	_	Asn	Met	Ser	L y s 235	Lys	Ser	Glu	Ala	Ser 240
Lys Lys	Lys Thr	Ala G 245	n Thr	Val	Leu	Val 250	Val	Val	Val	Val	Phe 255	Gly
Ile Ser	Trp Leu 260		s His	Val	Val 265	His	Leu	Trp	Ala	Glu 270	Phe	Gly
Ala Phe	Pro Leu 275	Thr P	o Ala	Ser 280	Phe	Phe	Phe	Arg	Ile 285	Thr	Ala	His

Cys Leu Ala Tyr Ser Asn Ser Ser Val Asn Pro Ile Ile Tyr Ala Phe

Leu Ser Glu Asn Phe Arg Lys Ala Tyr Lys Gln Val Phe Lys Cys His

Val Cys Asp Glu Ser Pro Arg Ser Glu Thr Lys Glu Asn Lys Ser Arg

Met Asp Thr Pro Pro Ser Thr Asn Cys Thr His Val

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 349 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Met Glu Leu Ala Val Gly Asn Leu Ser Glu Gly Asn Ala Ser Cys Pro

Glu Pro Pro	Ala Pro 20	Glu Pro	—	Pro 25	Leu	Phe	Gly	Ile	Gly 30	Val	Glu
Asn Phe Val 35	Thr Leu	Val Val	Phe 40	Gly	Leu	Ile	Phe	Ala 45	Leu	Gly	Val
Leu Gly Asn 50	Ser Leu	Val Ile 55	Thr	Val	Leu	Ala	Arg 60	Ser	Lys	Pro	Gly
L y s Pro Arg 65	Ser Thr	Thr Asn 70	Leu (Phe	Ile	Leu 75	Asn	Leu	Ser	Ile	Ala 80
Asp Leu Ala	T y r Leu 85	Leu Phe	Cys	Ile	Pro 90	Phe	Gln	Ala	Thr	Val 95	Tyr
Ala Leu Pro	Thr Trp 100	Val Leu	-	Ala 105	Phe	Ile	Cys	Lys	Phe 110	Ile	His
T y r Phe Phe 115	Thr Val	Ser Met	Leu 120	Val	Ser	Ile	Phe	Thr 125	Leu	Ala	Ala
Met Ser Val 130	Asp Arg	Tyr Val 135		Ile	Val	His	Ser 140	Arg	Arg	Ser	Ser
Ser Leu Arg 145	Val Ser	Arg Asn 150	Ala	Leu	Leu	Gly 155	Val	Gly	Cys	Ile	Trp 160

Ala Leu Ser Ile Ala Met Ala Ser Pro Val Ala Tyr His Gln Gly Leu

Phe His Pro Arg Ala Ser Asn Gln Thr Phe Cys Trp Glu Gln Trp Pro

Asp Pro Arg His Lys Lys Ala Tyr Val Val Cys Thr Phe Val Phe Gly

Tyr Leu Leu Pro Leu Leu Leu Ile Cys Phe Cys Tyr Ala Lys Val Leu

38

-continued

Asn His 225	Leu	His	Lys	L y s 230	Leu	Lys	Asn	Met	Ser 235	Lys	Lys	Ser	Glu	Ala 240
Ser Lys	Lys	Lys	Thr 245	Ala	Gln	Thr	Val	Leu 250	Val	Val	Val	Val	Val 255	Phe
Gly Ile		Trp 260	Leu	Pro	His	His	Ile 265	Ile	His	Leu	Trp	Ala 270	Glu	Phe
Gly Val	Phe 275	Pro	Leu	Thr	Pro	Ala 280	Ser	Phe	Leu	Phe	A rg 285	Ile	Thr	Ala

37

His Cys Leu Ala Tyr Ser Asn Ser Ser Val Asn Pro Ile Ile Tyr Ala 290 295 300 Phe Leu Ser Glu Asn Phe Arg Lys Ala Tyr Lys Gln Val Phe Lys Cys 305 310 315 320 His Ile Arg Lys Asp Ser His Leu Ser Asp Thr Lys Glu Asn Lys Ser 325 330 335 Arg Ile Asp Thr Pro Pro Ser Thr Asn Cys Thr His Val 340 345

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 35 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Other

- (ix) FEATURE:
 - (A) NAME/KEY: Other
 - (B) LOCATION: 1...35
 - (D) OTHER INFORMATION: PCR primer

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

CCGGAATTCG GTACCATGAA CGTCTCGGGC TGCCC

35

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 41 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Other

(ix) FEATURE:

(A) NAME/KEY: Other

(B) LOCATION: 1...41

(D) OTHER INFORMATION: PCR primer

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GGTAGCGGAT GGCCAGATAC CTGTCTAGAG AGACGGCGGC C

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 41 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Other

(ix) FEATURE:

(A) NAME/KEY: Other

(B) LOCATION: 1...41

39

-continued

(D) OTHER INFORMATION: PCR primer

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

GGCCGCCGTC TCTCTAGACA GGTATCTGGC CATCCGCTAC C

41

40

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 41 base pairs
 - (B) TYPE: nucleic acid
 - STRANDEDNESS: single (C)

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Other
- (ix) FEATURE:
 - (A) NAME/KEY: Other
 - (B) LOCATION: 1...41
 - (D) OTHER INFORMATION: PCR primer
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GGCCGCCGTC TCTCTAGACA GGTATCTGGC CATCCGCTAC C

 $4\,1$

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Other
- (ix) FEATURE:
 - (A) NAME/KEY: Other
 - (B) LOCATION: 1...27
 - (D) OTHER INFORMATION: PCR primer
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
- CTGACCGYCA TGRSCATTGA CSGCTAC

27

- (2) INFORMATION FOR SEQ ID NO:17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Other
 - (ix) FEATURE:
 - (A) NAME/KEY: Other
 - (B) LOCATION: 1...24
 - (D) OTHER INFORMATION: PCR primer
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GGGGTTGRSG CAGCTGTTGG CRTA

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1116 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: CDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

41

42

-continued

ATGAATGGCT	CCGGCAGCCA	GGGCGCGGAG	AACACGAGCC	AGGAAGGCGG	TAGCGGCGGC	60	
TGGCAGCCTG	AGGCGGTCCT	TGTACCCCTA	TTTTTCGCGC	TCATCTTCCT	CGTGGGCACC	120	
GTGGGCAACG	CGCTGGTGCT	GGCGGTGCTG	CTGCGCGGCG	GCCAGGCGGT	CAGCACCACC	180	
AACCTGTTCA	TCCTCAACCT	GGGCGTGGCC	GACCTGTGTT	TCATCCTGTG	CTGCGTGCCT	240	
TTCCAGGCCA	CCATCTACAC	CCTGGACGAC	TGGGTGTTCG	GCTCGCTGCT	CTGCAAGGCT	300	
GTTCATTTCC	TCATCTTTCT	CACTATGCAC	GCCAGCAGCT	TCACGCTGGC	CGCCGTCTCC	360	
CTGGACAGGT	ATCTGGCCAT	CCGCTACCCG	CTGCACTCCC	GAGAGTTGCG	CACACCTCGA	420	

AACGCGCTGG CCGCCATCGG GCTCATCTGG GGGCTAGCAC TGCTCTTCTC CGGGCCCTAC	480
CTGAGCTACT ACCGTCAGTC GCAGCTGGCC AACCTGACAG TATGCCACCC AGCATGGAGC	540
GCACCTCGAC GTCGAGCCAT GGACCTCTGC ACCTTCGTCT TTAGCTACCT GCTGCCAGTG	600
CTAGTCCTCA GTCTGACCTA TGCGCGTACC CTGCGCTACC TCTGGCGCAC AGTCGACCCG	660
GTGACTGCAG GCTCAGGTTC CCAGCGCGCC AAACGCAAGG TGACACGGAT GATCATCATC	720
GTGGCGGTGC TTTTCTGCCT CTGTTGGATG CCCCACCACG CGCTTATCCT CTGCGTGTGG	780
TTTGGTCGCT TCCCGCTCAC GCGTGCCACT TACGCGTTGC GCATCCTTTC ACACCTAGTT	840
TCCTATGCCA ACTCCTGTGT CAACCCCATC GTTTACGCTC TGGTCTCCAA GCATTTCCGT	900
AAAGGTTTCC GCAAAATCTG CGCGGGCCTG CTGCGCCCTG CCCCGAGGCG AGCTTCGGGC	960
CGAGTGAGCA TCCTGGCGCC TGGGAACCAT AGTGGCAGCA TGCTGGAACA GGAATCCACA	1020
GACCTGACAC AGGTGAGCGA GGCAGCCGGG CCCCTTGTCC CACCACCCGC ACTTCCCAAC	1080
TGCACAGCCT CGAGTAGAAC CCTGGATCCG GCTTGT	1116

What is claimed:

1. A nucleic acid, substantially free from associated nucleic acids, which encodes mouse GALR2 comprising the nucleotide sequence of SEQ ID NO: 8.

2. A vector comprising the nucleic acid of claim 1.

3. A host cell comprising the vector of claim 2.

4. A nucleic acid encoding mouse GALR2, substantially 45 free from associated nucleic acids, comprising a nucleotide

sequence encoding for the amino acid sequence of SEQ ID NO 9.

5. A vector comprising a nucleotide sequence encoding 40 for the amino acid sequence of SEQ ID NO 9.

6. A cell comprising the vector of claim 5.

* * * * *

35