(12) United States Patent

Blomgren et al.

US006334136B1

(10) Patent No.:
45) Date of Patent: Dec. 25, 2001

US 6,334,136 Bl

(54)

(75)

(73)

(21)
(22)

(60)

(51)
(52)
(58)

(56)

SUM 1 HPG
BYPASS LOGIC - 10T ADD/SUB/PASSHIGH
LOGIC
216 CHIGH.TOP
ADD/SUB/PASS TOP ... DT e ALHIGH.OUT
roa Ve b4
reT
- 3 ,f::_t"' RESULT
315:14:?1 Bt \95‘” LOGIC
A15:14 g 900/ i Efﬂi{g‘ggd

DYNAMIC 3-LEVEL PARTIAL RESULT
MERGE ADDER

Inventors: James S. Blomgren; Anthony M.
Petro, both of Austin, TX (US)

Assignee: Intrinsity, Inc., Austin, TX (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by O days.

Appl. No.: 09/209,935
Filed: Dec. 11, 1998

Related U.S. Application Data

Provisional application No. 60/069,250, filed on Dec. 11,
1997.

Int. CL7 e, GO6F 7/50

US.CL . 708/710;5 7708/6770

Field of Searchoovvvvvvvnnnenn. 708/670, 700,
708/702-704, 706, 710-713

References Cited

U.S. PATENT DOCUMENTS

5,299,145 * 3/1994 Yoshidacccoevvvvniiivnnnennnnnnn.. 708/670

B13:12 -
. - = |
HIGH A13H2 —Lg™ “00K _#-1<Tg304 15:14
B11:10 — N | T 719d
A11:10 1F_____sgqu_____jr-tgg‘gmf--------i;i\ 13:12
B9:8 — ™ ~ | 7190
498 020 900N 11:10
ADD8/ADD16/32 i1 i 719b
SUBB/SUB1632/PASS HIGH ~ - CMIXH | < g
i e ST -
[T4 D =719
B15:14 — — T~
R i
A8 o0 Hyl-Tgane
B13:12 —{ T~ — D |
MXH AS4 (—-900n: ___ ! 932¢;} E
B11:10 — '\ ; ;

+.
A32 L x<900g: <9310

Bo:8 —{ L ,
a0 —L<omc {>‘95”°'1 J'
ADD/SUBIPASS MIXH ——+i-nnd 718
@

5,463,571 * 10/1995
5,463,572 * 10/1995
5,463,573 * 10/1995
5,467,298 * 11/1995
5499203 * 3/1996

* cited by examiner

Kim oo, 708/670
Kim e, 708/670
Yoshida ...ooovvvevnviniiiiiniinn, 708/670
Yoshida ...ooovvvevnviniiiine, 708/670
Grundlandcccooveveneenn... 708/710

Primary Examiner—Ian V. Mai
(74) Attorney, Agent, or Firm—Booth & Wright, L.L.P;
Matthew J. Booth; Karen S. Wright

(57)

ABSTRACT

The present invention comprises a method and apparatus
that selectably performs either addition or subtraction on
two N-nary operands to generate an intermediate, then final,
N-nary final result. If the intermediate result of the operation
contains less bits than a full register, the intermediate result
1s “merged” with the second operand in that unaltered bits

from the second operand are bypassed to the final result.
Accordingly, the final result and the second operand have an

equal number of b

1ts.

20 Claims, 22 Drawing Sheets

ADD/SUB/PASSTOP _____ &

P

|]
- -

B76 — ™ —+
A7:6 900f %%

fi—-unl—l-u-lnl-n—l—q-r—l i

B3:2 —

B5:4 — 1
> i >\'
LOW A5:4 —::tlgooe Hf::/<£932b ;l_?'ﬁ
b 4! :

A32 —

B1:0 —N
0

Al:0 —

ADD/SUB/PASSLOW ——-1 |

= _.. CLOW.TOP
"'E:E:_L 714b;

%?‘E:I ________ 4—m» CLOWHIGH
T4

__-----——J-i-l-tl-: = CLOWOUT
' Y%e-1L_IN—0545

1
—d

1:0
7202
MIXL
ADD/SUB/PASSMIXL ~———b-t-——------—=- 715b
CIN -
10F6 10F5 10F 4 1 OF 3 10F2

U.S. Patent Dec. 25, 2001 Sheet 1 of 22 US 6,334,136 Bl

Vo
31
PRECHARGE
61
Ap
A1 00
Ap
A LOGIC 01
5 TREE
0 CIRCUIT 9
B 1 2
b3
CK EVALUATE

36

FIG. 1

US 6,334,136 Bl

Sheet 2 of 22

Dec. 25, 2001

U.S. Patent

001

S| 31| <51 {[<5

¢cIs ____F___.

INNOHO TWNLYHIA

N,

US 6,334,136 Bl

v
S
iy
-
)) o e e e - — ——— . - . —
) S ! _
| |
= g |
= /__6 l
e _ w “
- — 9
<5 O i
L J |
= ‘ _
7> | |
_ _
_ _
_ _
_ _
= “ _
& l - "
2-..,, “ M @ “
A | “
¢)
= 'S |
| — |
| |
S R,

U.S. Patent

600

Prneemgpeem——— g g < et e W W W T B Sl AN . S e R G G G S S S s Al . L S NN N - e S S

630

S S peian PERER SN IS EEED el NS IS I B U JEIE N T TEE Sl . A sy bk G S G IIIIIIII'IIII'!IIII"'.I.

U.S. Patent Dec. 25, 2001 Sheet 4 of 22 US 6,334,136 Bl

100

b
I S,

— T

Ag A1 As A3 Agp A1 Ao A3 Ap A1 Ar A3 Ap A1 Ao A3

Bo B1 B B3
FIG. 5

I I O I

AO A1 A2 A3 A4 AO A1 A2 A3 A4 Ao A1 Az A3 A4

US 6,334,136 Bl

R
o
\f)
E
i —
7 9
=
—
| NID
\f)
N doYd
= IvH

U.S. Patent

&y oy Hy

L "Ild

Eg cq lg

Oy 8y ¢y ly Oy & cy Ly Oy

Og

fy ¢y ly Oy

00,

001

9 Ii4

U.S. Patent Dec. 25, 2001 Sheet 6 of 22 US 6,334,136 Bl

701

1 A
B -
GEN

Ao A1 A> Az Ay Ap A; Ay Ag Ay Ao A As Az Ag

8 OId
£c JF
ENNS

ol
¢S
ZWNS

B1
6,334,136
US o,

Og
Oy
Ey
&g

il
5 — ﬂ

Colt —
o : |l o B

: |
R S rg JF __-“- - . |
n : - a
. o — /
.[wm III- w
% EE.:....1II
h _
s . __m|l
— WER mw : m.m. . -“I Nm
= mm u |
; JOYd >
3 Nm —
D Qm. |
ITVH s

t
ten
Pa

S.

U.

U.S. Patent Dec. 25, 2001 Sheet 8 of 22 US 6,334,136 Bl

801
RN

SUMO, HALT
SUM1, HALT

SUM2. HALT
I %2 sus, PhoF
..-= 4 SUMO, GEN

B Ss
SUM1T, GEN
56

|-— SUMZ, GEN

AO A1 Ao A3 Ag Ap A-! A2 A3 A4 Ao A1 Ao A3 A4

H_Lu f_LLJJ HLu . o

0 I 2

Sy H
Sy H
900 S, H

N Sy G

S, G

BU 81 32 B3 BO B; BZ 33 BO 81 82 83 Bo 81 32 B3 FIG. 9

AL

Az A Ap Ap A1 A3 Ay /

!
!
i
!
|
'
\

B \

PASS ADD SUB

US 6,334,136 Bl

Sheet 9 of 22

Dec. 25, 2001

U.S. Patent

J &
J ¢

J I
J U
d &
H ¢
H |

H 0

g cg ‘g Vg

p+

01 9l4

gav SSvd

]

NIO

Imnllllllhlll._..l

ly Oy ¢y &y

jll M1 j|1 F 1

£+

g ¢cg tg Og

(T

by ¢y Oy by

€gcg lglg ¢Egcg'lg Vg

|+

by

m.mmmh

0+
/Em

HVENID

Oy

g Ug

y—
- 1L DI
m., ¥9079 HOIH - 1Id INVIHINOIS 1SVTT
W, R (N G (RN
é 880NS ze9Lans ze9laay 90qay SSVd
= . - |
HYaNID NIO NID HYGNID
-1 1 r ° .
S —
< Oy vy Wy Oycyéy Ity oy Cfycylyty ty Oy
—
. Tt Tt
= cg2glglg Eglglglg €glglgly ¢Eglglglg £Egiglglg
S n g J
L\
3 Hig
o — [
= HZ ¢
& H i |
= H OO
. pt £+ g+ [+ / 0+
2 026
-

US 6,334,136 Bl

Sheet 11 of 22

Dec. 25, 2001

U.S. Patent

Vil 9id

[S e 7S S T P . S . o A D A D s o il A S N L S L L . S . S . . S A A S Y D D S D R S S S L D L L G L R S A L O L Ll e L S R S SR AR R £ R AR SR R IR Em e Em e R

(X3) 43181934 IANTLXT

(X) NOILHOd Y71S/93H GHYANVLS

IIIII_I_.I_I.I].IIII]II"]IIII]]IIIIIIIII

(H)
JIAG MOT JIA8 HIIH

c €& v & 9 [/ 8 6 0L LI cl &l vl Gl 9L /L 8L 6L 0OCIC cc & ve G 9 lé 8¢ 6¢ OE 1€

(uononJjsui X3 e ojur uoiiod doj aioaul 0
papaal SIng ‘uonaun) 4ol +d40. ‘dspui ou)
(1) NOILHOd dO

g g g SIS ST g TR W W § ¥ F §F F _F ¢ ¥ F F _F F_ ¥ [__¥ _F__§]

--—--——-—--_—-l_-_ L X X _§ K R 3 _J]

—_——m——m—m————T
.
=

———_—_—_—{

U.S. Patent Dec. 25, 2001 Sheet 12 of 22 US 6,334,136 Bl

950
N

SUM 0
SUM 1
SUM 2

‘——SUM3

FiG. 12

”
™ .- _.,#"
hhhhhhh

95 1\ HALT
PROP
GEN
Ag o Go
I W
”’l 3 \‘\‘
| |

FIG. 12A

HHHHHH
v . -

U.S. Patent Dec. 25, 2001 Sheet 13 of 22 US 6,334,136 Bl

716
Y
H
P
‘ G
Hp Pp Gg
I_H
H1 P1 Gy
Ho P2 Gp
H3 P3 G3
PASS PASS \
] AT ...,
ek ‘a
FIG. 13 13 3

"'n___ ’.r"
., o
T e sl i

US 6,334,136 B1

Sheet 14 of 22

Dec. 25, 2001

U.S. Patent

101

HPG
LOGIC

SUM 1
BYPASS

CHIGH.TOP

LOGIC

!
“
“
“
Q.
>
2,
%
=
-
S
Q
L

a
ay
5
c

r— — e e e ek anbin sl S S

LOGIC

13:12

I
= | st D E—
] e .
e, N\ ™
)] o) on
’9’9
I 1 _
$- nnu%-.ﬁunu ~——=d=q
=7
i
i X :
S| Si| S
—d o >
| - R
m
“

B15:14
A15:14

. P T N S G g . g p—

A13:1
B11:10
A11:10

HIGH

: - . el il S S S PR e A N S S S
] ¥

ADDS/ADD16/32

SUBS/SUB1632/PASSHIGH ~~~ 1

. Fw ¥ ¥ Fr T X ¥ _F 3 3

A7.0

lllll

:5|
i

lllll

K -900h:

,, 900

MIXH

-

B11:10

llllllllllll

9
()(: SR

[-9

-

S

ADD/SUB/PASS MIXH ~--

U.S. Patent Dec. 25, 2001 Sheet 15 of 22 US 6,334,136 Bl

@

]

ADD/SUBIPASSTOP . |[=] |-t CLOWTOP
e e = i I,
’ L7142 |
G Esadie
B7:6 — ™~
A7:6 , 900f ‘LkE
BS54 S G ' EE
LOW A5:4 , 900e fr
832 T
oG o+
Ot
A1:0 a10b
ADD/SUB/PASSLOW -

.
|
)
)
!
]
i
)
]
|
!
———
- W W . Wy '.
=1 11
- | 11
bt 1)

B76
A15:14 900¢c

| | T T m———— "'T-E:j'#-:
B5:4 —~ -
MIXL §
A13:12 ’ 9000+ , 9322
p3:2 — [~ i ’
A11:10 ’ go0a + 9312

B1:0 “J
Lo >
A9:8 9108 9504

FIG. 14B

31:30
27:26
9334
25:24
930h
23:27
930¢g
17:16

US 6,334,136 Bl
932e

CLOW.TOP

I
-

oy s g el delE — ey P R I I N S . e

15 S O ..__n.u_-._t----..-----:- B o e W A e A AP A

i |
- — 1' +'III 1[L. IIIIII

T

J?io
>
>
B
>
>

TOP

P &1
F &1
I I | S N Y O I O e B S YT GEVEEY W iR BN SN N SN _
< S — o Je- =" IR I - HE—— “
S I SO | “ | i | a
N _ _ _ _
S S 5| isloisl | K S e | =
| . - — _ a .
s n D[S IVIS I O|S IR |S o | S WS = |S 25
< > DD I DO | DD o |D D | DD [| S
m ...M...“: " M | M | S OO _ <N S (O | FHU
111
. S X /N /X /X /X
= =t RN N I B I
| | I S i Sl ey - AR R T
i S == o l m
I
S m s gl s LS
= “ S| 3! S 1S
= " “ | “ m “
3 5 T | 1 L__ |
§ = [AT AN
O w
- — :
o X :
S
- S8 ¥R &8 I Iy IR ee &
-_ - 0 s NN W W M M = ™~ O O
o) O\ A\l N\ T) g o b D
22 8§38 §¢ SIS 8¥EE 2 g
Q
.
o
~ - ~
/ S S S
= 't Q
by <
S
h o

U.S. Patent

HPG LOGIC
FIG. 14C

SUM/BYPASS LOGIC

U.S. Patent Dec. 25, 2001 Sheet 17 of 22 US 6,334,136 Bl

HALT

PROP
************ ‘ GEN

Sl
\ ; I U
N FIG. 14D
715
A PASS
T—Y__I: e
ADD SUB PASS o
FIG. 15 iﬁ
953 \ HALT
PROP
| GEN
Hp Po Gp
_.T_l
H1 Py G1
!frf" 9 H"“\x\\ H2 P2 G2
i,"i 3 \“I %l—_—l
| 3 3 —
\‘ 3 ’r
FIG. 15A

F
“.‘.-‘ .-##
. . — e

U.S. Patent Dec. 25, 2001 Sheet 18 of 22 US 6,334,136 Bl

954
Y
HALT
PROP
| GEN
Ho Po Gp
I_?_l
H1 Pq Gy
H2 P2 G 2 \
Hs P Gz —12
|————l—-—l ; |I;‘11
: 3 :
N CO
F ’ G- 16 ‘\\\ 3 ;“';
714
H
P
I G
Ho Po Gp
H1 P1 G
H Po G
H 3 P 3 G 3
PASS ADD SUB
%l_———l) ‘,.-""f hhhhhhhhh ~
S “*.
FIG. 17 g g 3 ;
\\\\ 3 ;;J'

-
e -»”
"‘-- -.ﬂ'
- p—

U.S. Patent Dec. 25, 2001 Sheet 19 of 22 US 6,334,136 Bl

930

932
N
DITXq
. ey
DITX
— 2
- o

FIG. 18A

U.S. Patent Dec. 25, 2001 Sheet 20 of 22 US 6,334,136 Bl

931
DITXp
_ ey
DITX2
DITX
SUM 3
7 SUM3 SUMo SUM»
SUMp SUM» SUM SUM 3
\f"f 1 O M‘x_ \
GO l!l‘i ;'
FiG. 18B
933
N
DITX,,
. i
IR e
DITX4
SUMp SUM5 SUM SUM3
Ao Po Go
H1 P { (3 1 \ e 20 ™ \
Ho P Go i; }
H3 P3 Gz NV 4

FIG. 18C

U.S. Patent Dec. 25, 2001 Sheet 21 of 22 US 6,334,136 Bl

718 PASS

N ADD
I S R R

ADD8 ADD1632 SUB8 SUB1632 PASS <«——FROM HIGH

FROM MIXH—ADD SUB PASS \,-"’

719\ - S
T ;
BEEEEEEE S

FROM HIGH— Bgp B1 B2 B3 Bp B1 B> B3 Mo M1 Mo M3 «— FROM MiIXH

S
.
"l‘_.- '—,.d"
‘ﬁ—n—!F

U.S. Patent Dec. 25, 2001 Sheet 22 of 22 US 6,334,136 Bl

S
720 0
~ — .
52
I 5
Bp By Bp B3 Mp My My M3
(FROM LOW) (FROM MIXL)
PASS PASS \
|_____—_\ .rf ' \\‘
FIG. 21
970
\
D B D B e
COUT
Ho Po G
= o
Hy Py Gy
Hy Po G
Ho Po Gp
I_+__J
HH PH GH HL PL GL G3 H G Hp Pp Gp
MIXH MIXL HGHS HIGHI63? LOW

US 6,334,136 Bl

1

DYNAMIC 3-LEVEL PARTIAL RESULT
MERGE ADDER

This application claims the benefits of the earlier filed
U.S. Provisional Application Ser. No. 60/069,250, filed Dec.
11, 1997, which 1s incorporated by reference for all purposes
into this application.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present 1nvention relates to digital computing, and
more particularly to an apparatus and method for a three
logic-level 32-bit adder/subtractor that implements carry-
propagate logic and that allows a subset of the contents of
the register containing one of the 32-bit operands to be
modified while leaving the remainder of the register contents
unmodified.

2. Description of the Related Art

Two areas of related art are relevant to the present
invention. One area of related art 1s the prior art x86
instruction set regarding addition and subtraction, and the
manner in which the x86 1nstruction set’s manipulation of
registers must be altered to support pipelining. The other
arca of related art 1s the N-nary logic design style. These two
arcas of prior art are discussed separately below.

x86 Instruction Set’s Manipulation of Registers

The original 8086 1nstruction set supported eight 16-bit
ogeneral purpose registers that could be used, among other
purposes, for addition and subtraction operations. Each
addition or subtraction instruction requires two operands,
which are stored in registers for use by the adder/subtractor.
The nomenclature “X” came to represent a standard 16-bit
register. Four 8086 registers of interest were therefore
known as “AX”, “BX”, “CX”, and “DX”. These four
standard registers AX, BX, CX, DX are of interest in the
background discussion of the present invention because the
8086 1nstruction set supported a conceptual division of such
registers 1nto two constituent parts each.

The 8086 standard registers were conceptually divided
into a low byte and a high byte, wherein the low byte is
identified by the “L” nomenclature and the high byte is
identified by the “H” nomenclature. The standard registers
AX, BX, CX, and DX therefore conceptually further com-
prised “AH” and “AL”, “BH” and “BL”, “CH” and “CL”,
and “DH”and “DL”, respectively. This division of registers
AX, BX, CX, and DX allowed byte-access (8-bit access) to
the upper (“H”) and lower (“L’) bytes of these registers for
purposes of performing addition and subtraction operations.

With the introduction of the 386, the x86 architecture
orew to support 32-bit registers, known as extended registers
and denoted by the nomenclature “ExX”. Despite this intro-
duction of extended registers, the 386 was required to
support older code that had been written for 16-bit registers.
The need to support both a 32-bit and a 16-bit instruction set
led to a conceptual overlay structure of extended registers.
The overlay structure for extended registers defines a stan-
dard 16-bit register (i.e., AX) to occupy the 16 least signifi-
cant bits of the corresponding extended register (1.e., EAX),
with a low byte (i.e., AL) occupying bits 0 through 7 of both
the standard and extended registers, and with a high byte
(i.e., AH) occupying bits 8 through 15 of the standard and
extended registers. This overlay structure 1s illustrated in
FIG. 11A. FIG. 11A 1illustrates that each extended register
EX comprises a top portion (bits 16-31), denoted in FIG.
11A with a “T”, and a standard register portion (bits 0—185),

10

15

20

25

30

35

40

45

50

55

60

65

2

denoted 1in FIG. 11A with an “X”. FIG. 11A further 1llus-
trates that the standard register portion X further comprises
a high byte H and a low byte L. Such overlay structure
allows, for each add or subtract instruction, the option of
utilizing one of four register sizes for the operands: a 32-bit
extended register, a 16-bit standard register, an 8-bit high
byte, or an 8-bit low byte.

N-nary Logic

A second area of interest regarding the background of the
present invention deals with the manner 1n which addition
and subtraction operands are represented when they are
stored 1n the registers discussed above. Most computer
systems represent addition and subtraction operands and
results as binary numbers. In systems using traditional

binary logic, the truth table for one-bit addition 1s set forth
in Table 1.

TABLE 1
A B A+B
0 0 0
0 1 1
1 0 1
1 1 0*

In the last row of Table 1, a carry condition occurs. That 1s,
the result 1s 0, but a carry into the next-higher-order bat
position, corresponding to a decimal value of 2, has con-
ceptually occurred. In addition to single bits, the addition
operation may be performed on multiple bits, mcluding
addition of two two-bit values. The truth table for such an
operation 1s set forth 1n Table 2, where the first operand A 1s
a two-bit value comprising bits A, and A,. The second
operand, B, 1s a two-bit value comprising bits B, and B;.

TABLE 2
A= B = A+ B-=

Decimal Decimal Dec.

A, Aq B, B, Value Value A+ B Value
0 0 0 0 0 0 00 0
0 0 0 1 0 1 01 1
0 0 1 0 0 2 10 2
0 0 1 1 0 3 11 3
0] 0 0] 0 01 1
0] 0 1] 1 10 2
0] 1 0] 2 11 3
0 1 1 1 1 3 00* 0
] 0 0 0 2 0 10 2
0 0 1 2 1 11 3
0 1 0 2 2 00* 0
0 1 1 2 3 01* 1
] 0 0 3 0 11 3
0 1 3 1 00* 0
1 0 3 2 01* 1
1 1 3 3 10%* 2

Each output value 1n the “A+B” column of Table 2 indicated
with an asterisk denotes a carry condition where a logical
one has conceptually carried into the next-higher-order bit
(the bit position corresponding to a decimal value of four).

In contrast to the binary system discussed above, the
present invention utilizes an N-nary logic representation.
The N-nary logic family supports a variety of signal
encodings, including 1-of-4. The N-nary logic family is
described 1 a copending patent application, U.S. patent
application Ser. No. 09/019,355, filed Feb. 5, 1998, now
U.S. Pat. No. 6,066,965, and titled “Method and Apparatus
for a N-Nary logic Circuit Using 1-of-4 Signals”, which 1s
incorporated heremn for all purposes and 1s hereinafter

US 6,334,136 Bl

3

referred to as “The N-nary Patent.” This application also
incorporates several other copending patent applications,

including U.S. patent application Ser. No. 09/179,330, filed
Oct. 27, 1998, entitled “Method and Apparatus for Logic
Synchronization,” now U.S. Pat. No. 6,118,304, and U.S.
patent application Ser. No. 09/206,463, filed Dec. 7, 1998,
fitled “Method and Apparatus for 3-stage 32-Bit Adder/
Subtractor,” hereinafter referred to as the “Adder Patent,” all
of which are incorporated by reference into this application.

In 1-0f-4 encoding, four wires are used to indicate one of
four possible values. In contrast, traditional static logic
design uses two wires to 1ndicate four values, as 1s demon-
strated 1n Table 2. In Table 2, the A, and A, wires are used
to 1ndicate the four possible values for operand A: 00, 01, 10,
and 11. The two B wires are similarly used to indicate the
same four possible values for operand B. “Traditional”
dual-rail dynamic logic also uses four wires to represent two
bits, but the dual-rail scheme always requires two wires to
be asserted. In contrast, N-nary logic only requires assertion
of one wire. The benelits of N-nary logic over dual-rail
dynamic logic, such as reduced power and reduced noise,
should be apparent from a reading of The N-nary Patent.

All signals in N-nary logic, including 1-o0f-4, are of the
1-0f-N form where N 1s any integer greater than one. A
1-0f-4 signal requires four wires to encode four values (0-3
inclusive), or the equivalent of two bits of information. More
than one wire will never be asserted for a 1-of-N signal.
Similarly, N-nary logic requires that a high voltage be
asserted for all values, even 0. (Some versions of N-nary
logic allow a “null” case, where no high voltage 1s asserted
for an N-nary signal, which indicates that the N-nary signal
has not yet evaluated, and is not required).

Any one N-nary gate may comprise multiple inputs and/or
outputs. In such a case, a variety of different N-nary encod-
ings may be employed. For instance, consider a gate that
comprises two mputs and two outputs, where the mputs are
a 1-of-4 signal and a 1-of-2 signal and the outputs comprise
a 1-of-4 signal and a 1-of-3 signal. Various variables,
including P, Q, R, and S, may be used to describe the
encoding for these 1inputs and outputs. One may say that one
input comprises 1-0f-P encoding and the other comprises
1-01-Q encoding, wherein P equals two and Q equals four.
Similarly, the variables R and S may be used to describe the
outputs. One might say that one output comprises 1-of-R
encoding and the other output comprises 1-of-S encoding,
wherein R equals four and S equals 3. Through the use of
these, and other, additional variables, it 1s possible to
describe multiple N-nary signals that comprise a variety of
different encodings.

SUMMARY OF THE INVENTION

The present 1nvention comprises a method and apparatus
that performs an arithmetic operation on two N-nary oper-
ands to generate a final result. The apparatus includes
control logic that selects one or more groupings of two or
more bits of the 1-of-P first operand and one or more
groupings of two or more bits of the second 1-o0f-Q operand.
The present 1mnvention also includes sum/bypass logic that
performs an arithmetic operation on the selected groupings
of bits from each operand to produce an mtermediate sum.
The arithmetic operation will comprise either addition or
subtraction, depending on the value of an operation selector.
In addition to the HPG signal generated by the sum/bypass
logic, a block HPG indicator 1s generated by the present
invention’s HPG logic. The apparatus comprises a result
logic that generates a 1-of-R final result. If the intermediate
sum comprises fewer bits than the original operands, undis-

10

15

20

25

30

35

40

45

50

55

60

65

4

turbed bits of the original second operand are bypassed to
the final result. Accordingly, the final result and the second
operand have an equal number of bits, the additional
“bypassed” bits of the second operand being selected
according to the control logic.

BRIEF DESCRIPTION OF THE DRAWINGS

To further aid in understanding the 1nvention, the attached
drawings help 1llustrate specific features of the invention and
the following 1s a brief description of the attached drawings:

FIG. 1 1s a block diagram of an N-nary gate.
FIG. 2 1s an illustration of an N-nary adder gate.

FIG. 3 1s a diagram of a first embodiment of an N-nary
output driver circuit, and 1n particular a half keeper output
driver circuit that comprises an mnverter and a PFET device.

FIG. 4 1s a diagram of a second embodiment of an N-nary
output driver circuit, and in particular a full keeper output

driver circuit that comprises an inverter coupled to a PFET
device and an NFET device.

FIG. 5 1s a shorthand representation of an N-nary adder
gate having two 1-of-4 inputs that uses 1-of-4 logic to
perform an addition function on two two-bit 1-of-4 inputs to
ogenerate a two-bit 1-of-4 output signal.

FIG. 5A 15 a shorthand representation of an N-nary adder
cgate having one 1-of-3 input and one 1-of-5 1nput, that
generates a two-bit 1-of-4 output signal.

FIG. 6 1s a high-level shorthand representation of an
N-nary adder gate, and a further simplification to the rep-
resentation of the FIG. 2 adder.

FIG. 7 1s a shorthand representation of an N-nary HPG
cgate having two 1-of-4 inputs.

FIG. 7A 1s a shorthand representation of an N-nary HPG
cgate having one 1-of-3 input and one 1-of-5 1nput.

FIG. 8 1s a modified shorthand representation of an
N-nary sum/HPG gate having two 1-of-4 inputs.

FIG. 8A 1s a shorthand representation of an N-nary
sum/HPG gate having one 1-o0f-3 addend input and one
1-0f-5 addend 1nput.

FIG. 9 15 a shorthand representation of a adder/subtractor/

bypass/HPG gate, configured to take as inputs two 1-of-4
addends, A and B, and a 1-of-3 ADD/SUB/PASS selector.

FIG. 10 1s a shorthand representation of an LSD adder/
subtractor/bypass/HPG gate that implements dual-mode
addition logic (straight and increment), carry propagate
logic, dual-mode subtraction logic (three’s complement and
four’s complement), and borrow propagate functions.

FIG. 11 1s a HIGH block Sum/Bypass LSD specialized

adder/subtractor/bypass/HPG gate that implement dual-
mode addition logic (straight and increment), carry propa-
gate logic, dual-mode subtraction logic (three’s complement
and four’s complement), and borrow propagate functions.

FIG. 11A 1s a representation of a register.
FIG. 12 1s a shorthand representation of a sum buffer.
FIG. 12A 1s a shorthand representation of an HPG butfer.

FIG. 13 1s a shorthand representation of a lower-block
4-1nput block HPG gate that receives a compressed PASS/

PASS 1nput.

FIGS. 14B-14C 1s a high-level shorthand representation
of the general structure of the present invention.

FIG. 14A 1s a shorthand representation of a two-input
block HPG gate that receives as inputs two 1-of-3 HPG
signals.

FIG. 14D 1s a shorthand representation of a two-1nput
block HPG gate that receives as inputs two 1-to-3 HPG
signals.

US 6,334,136 Bl

S

FIG. 15 1s a shorthand representation of a compression
buffer.

FIG. 15A 1s a a shorthand representation of a three-input
block HPG gate that receives as inputs three 1-of-3 HPG
signals.

FIG. 16 1s a shorthand representation of a four-input block
HPG gate that receives four 1-of-3 HPG inputs.

FIG. 17 1s a shorthand representation of a lower-block
4-1nput block HPG gate that receives a 1-of-3 ADD/PASS/

SUB 1nput.

FIGS. 18, 18A, 18B, and 18C are shorthand representa-
tfion of different incrementor gates 1n the final logic-level of
the present invention.

FIG. 19 1s a shorthand representation of a MIXH-HIGH
selection gate used to select between the intermediate results
of the MIXH and HIGH blocks in forming bits 8 through 15
of the final result.

FIG. 20 1s a shorthand representation of a MIXH/HIGH
selection gate.

FIG. 21 1s a shorthand representation of a MIXL/LOW
selection gate.

FIG. 22 1s a shorthand representation of a carry out gate
that generates the carry out of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

The present 1nvention relates to an N-nary merge adder/
subtractor that selects various operations, each operation
adding, subtracting, or passing various portions of a first
N-nary number and a second N-nary number. In other
words, an execution unit operates on portions of two
operands, rather than on full operands. This type of opera-
fion 1s known as a partial register operation.

The conceptual framework for partial register handlers
and their execution units 1s set forth 1n a copending patent
application, U.S. patent application Ser. No. 09/195,757,
filed Nov. 18, 1998, and titled “Method and Apparatus for
Partial Register Write Handling” which 1s incorporated
herein for all purposes and 1s hereinafter referred to as the
“Partial Register Handling Patent.” The partial result-merge
adder of the present invention 1s suitable for inclusion in a
N-nary partial-register handling system. Such a system may
also mclude an N-nary register file, such as the N-nary

register fille described m a copending patent application,
U.S. patent application Ser. No. 09/207,806, filed Dec. 9,

1998, now U.S. Pat. No. 6,104,642 and titled “Method and
Apparatus for 1-of-4 Register File Design,” which 1s 1ncor-
porated herein for all purposes and 1s hereinafter referred to
as the “Register File Patent.”

This disclosure describes numerous specific details that
include specific formats, structures, circuits, and logic func-
fions 1n order to provide a thorough understanding of the
present mnvention. One skilled 1n the art will appreciate that
one may practice the present invention without these speciiic
details. Additionally, this disclosure does not describe 1n
detail some well-known structures such as N-FETs, P-FETs,
nor does 1t describe N-nary logic in detail, 1n order not to
obscure the present invention.

N-nary Logic Circuits

N-nary logic may be used to create circuits to perform a
desired function. The present invention utilizes N-nary logic
in the preferred embodiment of a three-logic-level 32-bit
partial result merge adder. A background discussion of
N-nary circuits 1s 1 order before discussing the adder/
subtractor of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 1 illustrates an N-nary logic gate 60 that uses two
sets of 1-0f-N signals for the inputs and produces one 1-of-N
signal for the output. In gate 60, the A and B 1nputs comprise
four wires each, with each set of wires representing 2 bits
(one dit) of data. A is a one-dit input, B is a one-dit input,
and O 1s a one-dit output. In other words, the gate 60
depicted in FIG. 1 comprises 4 input bits (2 dits) and 2
output bits (one dit).

Referring to FIG. 1, each N-nary dit logic circuit 60
comprises a logic tree circuit 61, a precharge circuit 31, and
an evaluate circuit 36. The logic tree circuit 61 performs a
logic function on the two 1-of-4 input signals that could
comprise a variety of functions, for example, the Boolean
logic functions AND/NAND and OR/NOR, or the more
complex add/subtract/carry-propagate function of the
present invention. The logic gates of the N-nary family are
clocked pre-charge (CP) gates. FIG. 2 illustrates that each
input into the logic tree circuit 61 A—A;, B,—B; 1s coupled
to at least one N-channel field effect transistor (NFET)
A,—A;, B,—B;. Referring back to FIG. 1, the logic tree
circuit 61 therefore comprises one or more N-channel FETS.
Coupled to the wires of the 1-of-4 output signal are the
output buffers 34 that aid in driving additional circuits that
couple to the output signal. The preferred embodiment of the
present invention uses a circuit with an inverting function as
the output buffer 34.

Referring again to FIG. 1, a precharge circuit 31 couples
to the logic tree circuit 61 and precharges the dynamic logic
of the logic tree circuit 61. The precharge circuit 31 com-
prises one or more FETs with the preferred embodiment of
the circuit comprising P-channel FETs (PFETs). Each evalu-
ation path of the logic tree circuit 61 has 1ts own precharge
PFET, shown as 500 in FIG. 2. The PFETs 500 of the
precharge circuit 31 quickly and fully precharge all of the
dynamic logic 1n the logic tree circuit 61 during the pre-
charge phase of the clock cycle.

FIG. 2 1s a diagram of an N-nary adder gate. FIG. 2
illustrates that the precharge PFET 500 for an evaluation
node E of an N-nary circuit 1s connected to positive high
voltage, Vcc, and 1s used to create conductive paths between
the evaluation node E and Vcc. Each precharge PFET 500 1s
coupled to an input, the pre-charge signal. When the pre-
charge signal for any evaluate node has a low voltage, then
there 1s a conductive path between Vcc and the evaluation
node E. Coupled to the precharge circuit 31 1s the clock
signal CK. A low clock signal on CK will cause the FETs in
the logic tree circuit 32 to charge when using P-channel
FETs 1n the precharge circuit 31.

An evaluate circuit 36 couples to the logic tree circuit 61
and controls the evaluation of the logic tree circuit 61. The
evaluate circuit 36 comprises one or more FETs connected
to the CK signal, with the preferred embodiment of the
evaluate circuit comprising a single N-channel FET. The
single N-FET acts as an evaluation transistor that 1s used to
control when the gate 1s sensitive to inputs, helps avoid races
between other devices, and prevents excessive power con-
sumption. During the precharge phase, the evaluate circuit
36 receives a low value so that no path to Vss may exist
through the NFET(s) of the logic tree circuit 61. During the
evaluate phase, the evaluate circuit 36 receives a high signal
so that a path to Vss through the NFET(s) of the logic tree
circuit 61 may exist. Coupled to the evaluate circuit 36 is the
clock signal CK. A high clock signal on CK will cause the
FETs 1n the logic tree circuit 61 to evaluate when using
N-channel FETs 1n the evaluate circuit 36. In other words,
when the clock signal 1s high, the evaluate circuit 36
evaluates the logic tree circuit 61.

US 6,334,136 Bl

7

An evaluate node, E, which comprises the four wires E,,
E., E,, and E, 1s the signal pathway between the logic tree
circuit 61 and an output buffer 34, and constitutes an
evaluation path of the logic tree circuit 61. As stated earlier,
cach evaluation node wire E,, E,, E., and E; has its own
precharge PFET. The signal on a particular wire, E,, E,, E,,
E, of the evaluate node E is high only when there 1s no
connection to Vss through the logic tree circuit 61 NFET(s)
assoclated with that particular wire. If the pre-charge signal
1s low at time 0 and there 1s no path to ground through the
NFET(s) associated with an evaluate node E of the logic tree
circuit 61, then the evaluate node wire E gets pulled to a high
voltage. This is called the precharge phase of the gate and we
may also say that the gate 1s 1n precharge mode. If the
precharge signal switches to a high voltage at a later time,
the evaluate node E will be tloating but the charge left on 1t
will leave the voltage high. This 1s called the evaluate phase
of the gate, and we may also say that the gate 1s 1n evaluate
mode. If mnput signals generate a high voltage for any
NFET(s) in the logic tree circuit 61 such that a path from the
evaluate node E to ground (Vss) exists, then the charge on
the evaluate node E will drain to ground, and the evaluate
voltage will drop to Vss. If no such path exists, then the
evaluate node E will remaimn at Vcc. When any gate,
therefore, switches from precharge mode to evaluate mode,
the evaluate node voltage 1s high, and 1t either stays high or
ogoes low. Once the evaluate node voltage goes low during
the evaluate phase, it cannot be driven high again until the
next precharge phase.

Each evaluate node wire E, E,, E,, and E, couples to an
output buffer 34. Two embodiments of the output driver
circuit 600 comprising the output buffer 34 are 1llustrated in
FIGS. 3 and 4. FIG. 3 illustrates a half keeper output driver
circuit 602 that comprises an mnverter 620 and a PFET device
640. FIG. 4 1llustrates a full keeper output driver circuit 601
that comprises an inverter 610 coupled to a PFET device 630
and an NFET device 650. Full keeper circuits 601 are
necessary for gates that can be 1n neither evaluate nor
precharge mode for lengthy periods. The flow through the
output driver circuit 600 1s from evaluate node E to the
output signal path O. The inverter 610, 620 of the output
driver circuit 600 1s necessary because the evaluate nodes of
CP gates of the N-nary logic family precharge to a high
value and evaluate to a low value. The output driver circuit
600 of the output buffer 34 holds the value of an evaluate
node E during an evaluate phase if the evaluate node E has
not discharged. If the evaluate node E has discharged, then
there 1s a path to ground holding its value low. The output
of each evaluate node E will switch from low to high once,
at most, during an evaluate phase. The output of each
evaluate node E, once coupled to an output driver circuit 600
of an output buffer 34, 1s therefore suitable for feeding a
subsequent CP gate.

A shorthand notation for N-nary circuit diagrams can be
adopted to avoid needless repetition of elements common to
all N-nary circuits. FIG. 2 1llustrates these common ele-
ments. One common element 1s the precharge P-FET 500.
Precharge P-FETs 500 are required for each evaluate node E
in every 1-of-N gate. Since all N-nary gates require a
pre-charge P-FET 500 for each evaluate node E, the pre-
charge P-FETs 500 may be implied and need not be shown.
The same 1s true for the N-FET associated with each input
wire of the A and B inputs. Similarly, each evaluate node E
must have its own output buffer 34, which may be 1mplied.
The N-FET associated with the evaluate node 36 may also
be 1mplied. Since these features are common to all N-nary
circuits, we may use the shorthand shown i FIG. 5 to

10

15

20

25

30

35

40

45

50

55

60

65

3

represent the N-nary circuits. Accordingly, FIG. 5 1llustrates
a shorthand notation of the adder gate depicted 1in FIG. 2.
FIG. 8 uses a modified shorthand representation 1n which
N-FETS associated with certain inputs are expressly
represented, but all other elements discussed herein are
implied. In each figure, the elements discussed herein should
be 1mplied accordingly.

A further simplification to the representation of the FIG.
2 adder 1s shown 1n FIG. 6, where the mputs and outputs are
shown as single signals that each can represent one of four
signals and each implicitly comprises four wires. The num-
ber “4” shown within the add gate of FIG. 6, adjacent to the
connections, indicates that each signal can represent one of
four values. The number above the gate indicates the number
of transistors 1n the evaluate stack, and the number below the
FIG. 6 gate represents the maximum number of transistors
in series between the evaluate node and virtual ground. This
high level shorthand notation 1s also used 1n FIGS. 9-11 and

12-22, including 12A, 14A, 15A, and 18A-18C. In those
figures, the elements discussed herein should be implied

accordingly.
Overview of Preferred Embodiment

The present invention (“Merge Adder”) 101 adds or
subtracts all, or a portion of, two N-nary 32-bit input
operands and produces an N-nary result. The N-nary result
produced by the present invention 1s a 32-bit result that
includes the result of the addition or subtraction operation
and may also include other N-nary signals. That 1s, 1f the
operation 1s performed on less than all 32 bits of the
operands, the remaining operand bits for one of the operands
are merely passed through the adder/subtractor undisturbed
and will occupy the destination register along with the bits
reflecting the arithmetic result of the add/subtract operation.
(The same register that contains the source operand to be
bypassed will also contain the result after the add/subtract
operation is completed).

This concept, known as destination-result merging, 1s
accomplished 1n the present invention 1n two separate
phases. In the first phase of destination-result merging, the
adder/subtractor uses control signals to 1dentily the bits of
the source operand to be bypassed and, 1n contrast, the bits
of the source operand to be processed 1n the add or subtract
operation. At this point, the adder/subtractor adds the req-
uisite operands bits, depending on whether the control
signals indicate that an extended register, standard register,
or byte operation 1s to be performed. The adder/subtractor
simultaneously passes the remaining operand dits through to
the adder/subtractor’s next logic level undisturbed. The
second phase of destination-result merging addresses the
concept of carry-lookahead logic, which 1s described more
fully below. In the second phase of destination-result
merging, the adder/subtractor prevents carries propagated by
the addition or subtraction of the desired operand bits from
inadvertently causing bypassed operand bits to be incre-
mented.

FIG. 14 1illustrates the general structure of the adder/
subtractor 101 of the present invention (sometimes referred
to hereinafter as “Merge Adder” or simply as “adder”). In
FIG. 14, input operands and the result(s) are represented in
1-0f-4 encoding such that each input and output signal
represents two logical bits of information. All intermediate
signals used in the adder 101 are 1-0f-N encoded. The level
of granularity for the input operands shown in FIG. 14 is the
1-o1-4 input level or “dit” level, where one dit comprises one
1-01-4 signal, which represents two bits of information. The
adder 101 was constructed in three levels of logic in the
preferred embodiment, referred to mm FIG. 14 as “Sum/
Bypass Logic,” “HPG Logic,” and “Result Logic”.

US 6,334,136 Bl

9

The broad function performed by each of the three logic
levels shown in FIG. 14 1s as follows. The Sum/Bypass
Logic performs operation size detection to determine
whether a full EX operation, or some smaller operation, 1s to
be performed. The function of the adder 1s entirely deter-
mined by the five “add/subtract/pass” control inputs and the
“s1ze” control iput 1illustrated i FIG. 14. For an EX
operation, the Sum/Bypass Logic forms intermediate sums
or differences and ditwise HPG indicators for all operand
dits. For anything less than a full EX operation, the Sum/
Bypass Logic forms intermediate sums or differences and
ditwise halt-propagate-generate (HPG) indicators for
selected bits of the operands. The intermediate sums do not
take carry propagation into account. The Sum/Bypass Logic
passes the value of the remaining operand bits of a partial
register operation through to the next logic level undis-
turbed. The second logic level, the HPG Logic, performs
block HPG signal formation. This logic generates two block
HPG indicators for the HIGH and LOW portions of the
adder, an architecturally correct block HPG 1ndicator and a
functionally correct HPG indicator. The functional HPG
indicator forces the HPG indicator generated by the most
significant block of the intermediate sum for a partial
register operation to a “HALT” so that bypassed operand bits
are not madvertently incremented. In all adder portions that
process operand LSD’s for one or more different types of
partial register operation, the HPG Logic 1n addition to
forming a block HPG indicator, increments the value of
intermediate sum dits upon propagation of a carry into the
dit. For adder portions that do not process an operand LSD,
this logic 1s performed 1n the Result Logic.

Finally, the Result Logic performs result resolution logic
to ensure that the mtermediate sum ultimately resides 1 the
proper dits of the destination register. This result resolution
logic 1s necessary to properly process both MIXL and LOW
and both MIXH and HIGH operations within the same
adder/subtractor. The MIXL, LOW, MIXH, and HIGH
operations are each described in further detail below. For the
TOP and HIGH portions of the adder, the Result Logic
increments the intermediate sum for dits into which a carry
has propagated. Following a discussion of the various partial
register operations supported by the present invention, the
function of each level of logic 1s discussed 1 further detail
below.

Partial Register Operations

Because it supports variable-sized operands, the present
invention supports a variety of add and subtract variations.
For instance, the control inputs into the adder 101 may
indicate that the high byte H of one operand 1s to be added
to the high byte H of the second operand, and the result is
to be stored 1n the high byte H of the register containing the
second operand. This type of operation 1s a HIGH add

operation. The present mmvention 101 supports five other
categories of operations besides the HIGH operation. These

s1x operation categories, and their functions, are set forth in
Table 3.

TABLE 3
CATEGORY FUNCTION
LOW AL, BL --> BL
HIGH AH, BH --> BH
STANDARD AX, BX —--» BX

10

15

20

25

30

35

40

45

50

55

60

65

10

TABLE 3-continued

CATEGORY FUNCITON

EXTENDED EAX, BBX ——>
EBX

MIX-L AH, BL. ——> BL

MIX-H AlL, BH --> BH

For purposes of the following discussion, we will assume
that the first source-operand 1s stored 1n register EAX and
the second source operand 1s stored in register EBX. Table
3 1llustrates that the present invention 101 stores the result
of each operation 1n the register EBX in which the second
operand was originally stored. In this manner, the register
EBX holding the second operand also becomes the destina-
tion register EBX for the operation’s final result. Table 3
illustrates that the LOW operation adds/subtracts the A
operand’s low byte (four least significant dits/eight least
significant bits), illustrated as L in FIG. 11A, to/from the low
byte L of the B operand and stores the result of such
operation in the low byte L of the register EBX 1n which the
B operand was originally stored. To generate the final result
in EBX, the present mvention 101 concatenates Bits 8
through 31 of the second operand with the eight-bit (four-
dit) result, where the result is stored in Bits 0 through 7 of
EBX. In order to facilitate the concatenation such that the
original Bits 8 through 31 of the second operand are
undisturbed, the HPG Logic shown 1n FIG. 14 generates a
functional block HPG indicator that prevents a carry from
propagating out of Bit 8 of the intermediate result.

Table 3 illustrates that the HIGH operation adds/subtracts
the high byte (dits 4 through 7, bits 8 through 15), illustrated
as H i FIG. 11A, of the A operand to/from the high byte H
of the B operand and stores the result of such operation in
the high byte H of the register EBX 1n which the B operand
was originally stored. To generate the final result in EBX,
the present invention 101 concatenates Bits 0 through 7 and
Bits 16 through 31 of the second operand with the eight-bit
(four-dit) result, where the result 1s stored in Bits 8 through
15 of EBX. In order to facilitate the concatenation such that
the original Bits 0 through 7 and Bits 16 through 31 of the
second operand are undisturbed, the HPG Logic shown 1n
FIG. 14 generates a functional block HPG indicator that
prevents a carry from propagating out of Bit 15 of the
intermediate result.

Table 3 1llustrates that the STANDARD operation adds/
subtracts the standard portion (dits 0 through 7, bits 0
through 185), illustrated as X in FIG. 11A, of the A operand
to/from the standard portion X of the B operand and stores
the result of such operation in the standard portion X of the
register EBX 1n which the B operand was originally stored.
To generate the final result in EBX, the present mvention
101 concatenates Bits 16 through 31 of the second operand
with the sixteen-bit (eight-dit) result, where the result 1s
stored 1n bits 0 through 15 of EBX. In order to facilitate the
concatenation such that the original Bits 16 through 31 of the
second operand are undisturbed, the HPG Logic shown 1n
FIG. 14 generates a functional block HPG 1indicator that
prevents a carry from propagating out of Bit 15 of the
intermediate result.

Table 3 1llustrates that the EXTENDED operation adds/
subtracts all 32 bits (dits 0 through 15, bits 0 through 31),
illustrated as EX 1n FIG. 11A, of the A operand to/from all
32 bits EX of the B operand and stores the result of such
operation 1n the register EBX 1n which the B operand was
originally stored. In the full-register EXTENDED operation,

US 6,334,136 Bl

11

there 1s no need to concatenate bits 1n the result register, nor
suppress block HPG 1ndicators.

Table 3 1llustrates that the MIX-H operation adds/
subtracts the low byte (dits 0 through 3, bits 0 through 7),
illustrated as L in FIG. 11A, of the A operand to/from the
high byte H (dits 4 through 7, bits 8 through 15), illustrated
as H 1n FIG. 11A, of the B operand and stores the result of
such operation in the high byte H of the register EBX 1n
which the B operand was originally stored. As with the
HIGH 1nstruction, the present invention 101 generates the
final result of a MIX-H operation in EBX by concatenating
Bits 0 through 7 and Bits 16 through 31 of the second
operand with the eight-bit (four-dit) result, where the result
1s stored 1n Bits 8 through 15 of EBX. In order to facilitate
the concatenation such that the original Bits 0 through 7 and
Bits 16 through 31 of the second operand are undisturbed,
the HPG Logic shown 1in FIG. 14 generates a functional
block HPG 1indicator that prevents a carry from propagating,
out of Bit 15 of the intermediate result.

Table 3 illustrates that the MIX-L operation adds/
subtracts the high byte H (dits 4 through 7, bits 8 through
15), illustrated as H in FIG. 11A, of the A operand to/from
the low byte L (four least significant dits/eight least signifi-
cant bits), illustrated as L in FIG. 1A, of the B operand and
stores the result of such operation in the low byte L of the
register EBX 1n which the B operand was originally stored.
To generate the final result iIn EBX, the present invention
101 concatenates Bits 8 through 31 of the second operand
with the eight-bit (four-dit) result, where the result is stored
in Bits 0 through 7 of EBX. In order to facilitate the
concatenation such that the original Bits 8 through 31 of the
second operand are undisturbed, the HPG Logic shown 1n
FIG. 14 generates a functional block HPG indicator that

prevents a carry from propagating out of Bit 8 of the
intermediate result.

Table 3 illustrates that the bit positions within EBX where
the second operand resides determine the ultimate bit posi-
tions where the 8-bit result of the operation will be stored.
For example, when the present invention 101 operates upon
source operand bits residing 1n BH, which refers to Bits 8
through 15 of the second operand, then the present invention
101 stores the result of the operation in BH, overwriting the
original operand value. Similarly, when the present 1nven-
tion 101 operates upon BL, which refers to Bits 0 through 7
of the second operand, then the present invention 101 stores
the result of the operation 1n BL, overwriting the original
operand value.

FIG. 14 1llustrates that each of the adder’s 101 logic levels
conceptually may be further grouped into “blocks.” Blocks
represent: a) certain corresponding dits of the two 32-bit
1-of-4 operands, and b) the logic gates of each logic level
associated with such dits. These blocks are labeled 1 FIG.
14 as the MIXL, LOW, MIXH, HIGH, AND TOP blocks.
FIG. 14 1llustrates that the TOP block 1s further grouped into
a least-significant sub-block, TOP0, and a most-significant
sub-block, TOP1. FIG. 14 1llustrates that the present 1nven-
tion 101 consists essentially of a 32-bit adder, similar to that
disclosed 1n the Adder Patent, interspersed with two 8-bit
adders to handle the MIX-L and MIX-H operations. FIG. 14
further 1llustrates that the blocks of the present invention 101
that functionally comprise the 32-bit adder comprise the
LOW, HIGH, and TOP blocks. The MIXL and MIXH blocks
comprise the two 8-bit adders.

The least significant block of the 32-bit adder, LOW,
represents the four least significant dits of each operand, dits
0 through 3 (comprising bits 0 through 7), along with the
Sum/Bypass Logic, HPG Logic, and Result Logic gates of

10

15

20

25

30

35

40

45

50

55

60

65

12

the 32-bit adder associated with said dits. Similarly, the
HIGH block represents dits 4 through 7 (bits 8 through 15)
of the A and B operands and also represents the Sum/Bypass
Logic, HPG Logic, and Result Logic gates of the 32-bit
adder associated with dits 4 through 7. By the same token,
the TOPO block represents dits 8 through 11 (bits 16 through
23) of the A and B operands and associated 32-bit adder
cgates, while the TOP1 block represents dits 12 through 15
(bits 24 through 31) of the A and B operands and associated
32-bit adder gates.

The operand bits operated upon by the mixed-alignment
byte blocks, MIXL and MIXH, are as follows. The MIXL
block represents dits () through 3 of the B operand and dits
4 through 7 of the A operands. The MIXL block further
represents the Sum/Bypass Logic, HPG Logic, and Result
Logic gates of the MIXL 8-bit adder. The MIXH block
represents dits 4 through 7 of the B operand and dits 0
through 3 of the A operands. The MIXH block further
represents the Sum/Bypass Logic, HPG Logic, and Result
Logic gates of the MIXH 8-bit adder.

FIG. 14 therefore illustrates that Dits (0 through 3 of the
B operand are wired as inputs into two separate blocks of the
present invention 101, the MIXL block and the LOW block.
Similarly, FIG. 14 illustrates that Dits through 7 of the A
operand are wired as mputs 1nto two separate blocks of the
present invention 101: the MIXL block and the HIGH block.
FIG. 14 also 1llustrates that Dits 0 through 3 of the A operand
are wired as 1nputs 1nto two separate blocks of the present
mvention 101, the MIXH block and the LOW block.
Similarly, FIG. 14 illustrates that Dits 4 through 7 of the B
operand are wired as mputs 1nto two separate blocks of the
present mnvention: the MIXH block and the HIGH block.
Dits 16 through 31 of both the A and B operands are only
wired as inputs into the TOP block.

Table 3 illustrates that all possible 8-bit addition/
subtraction operations are represented with the LOW,
HIGH, MIX-L, and MIX-H categories of operations. FIG.
14 and Table 3 illustrate that one may easily correlate the
categories listed 1n Table 3 with the block in FIG. 14 that
performs the processing for that category. The MIXL block

performs processing the MIX-L operation. Similarly, the
LOW operation 1s performed by the LOW block, the MIX-H

operation 1s performed by the MIXH block, and the HIGH
operation 1s performed by the HIGH block. The blocks that
are 1nvolved solely 1n byte adds, MIXL and MIXH, need not
propagate carries to any other block because addition waill
not be performed in any more significant block. These
blocks MIXL, MIXH therefore do not generate functional
HPG 1ndicators. FIG. 14 therefore 1llustrates that the MIXL
block produces only one block carry indicator, Cmaixl, and
the MIXH block produces only one block carry indicator,
Cmixh. Cmixl and Cmixh are architectural HPG indicators
that are passed to carry out gate 970.

Conceptually, the correlation between blocks and catego-

ries 1s more complicated for multibyte operations: STAN-
DARD and EXTENDED. The STANDARD operation 1s

performed by the LOW block and the HIGH block, with any
carry generated by the LOW block being propagated to the
HIGH block via the LOW block’s functional HPG indicator,
Clow.high. The EXTENDED operation 1s performed by the
LOW block, the HIGH, block, and the TOP block, similar to
the 32-bit operation disclosed in the Adder Patent. Any carry
ogenerated by the LOW block 1s propagated to the HIGH
block wvia the LOW block’s functional HPG indicator,
Clow.high, and also propagated to the TOP block via the
LOW block’s functional HPG indicator, Clow.top. (Two
functional HPG indicators are provided from the LOW

US 6,334,136 Bl

13

block because 1n the case of the STANDARD operation, any
carry from the LOW block must propagate only to the HIGH
block, without propagating into the TOP block. In this case,
Clow.high may indicate a carry, while Clow.top does not.)
Any carry generated by the HIGH block 1s propagated to the

TOP block via the HIGH block’s functional HPG 1ndicator,

Chigh.top. When the LOW or HIGH block 1s involved solely
in an 8-bit operation, that block’s functional HPG indicator

will reflect a “HALT” value. FIG. 14 illustrates that, in
addition to functional HPG indicators, the LOW and HIGH
blocks also generate architectural HPG indicators, Clow.out
and Chigh.out, respectively.

Before we turn to a detailed discussion of each logic level
of the present invention 101, a brief discussion of the control
inputs into the present 1invention 101 1s in order. For each
operation, the present invention 101 provides an entire
32-bit (sixteen dit) N-nary number, regardless of the cat-
egory of operation being performed. The output of the adder
101 comprises the result of the desired operation concat-
enated with any bits of the second operand that were not
used 1n the operation. We say that such unused operand bits
are “bypassed.” In order to indicate to a particular block of
the present mvention 101 that operand bits are to be
bypassed by that block, the control logic asserts an input
wire 1ndicating that the block should “pass.”

The function of the adder 101 1s entirely determined by
the values of the four 1-of-3 add/sub/pass mputs, one 1nto
cach block except the HIGH block, the HIGH block’s 1-0f-5
ADDS8/ADD1632/SUB8/SUB1632/PASS input, and the
1-01-6 carry out indicator labeled as “size” 1in FIG. 14. If a
block 1s to perform part or all of an operation, the “add” or
“sub” wire of 1ts add/sub/pass mput will be asserted by
control logic, depending on which arithmetic operation 1is
desired. If the block’s arithmetic logic 1s not necessary to
performance of the desired operation, then control logic will
assert the “pass” wire of that block’s add/sub/pass input,
indicating that the block is to pass the original B operand
values, unaltered, to the next logic level. (When performing
a pass operation, the block behaves more like a multiplexer
in which the received portion of second operand is selected.)
Table 4 1illustrates the state of each block’s add/sub/pass
control input (“a/s/p”) for each of the six operation catego-
ries supported by the present invention 101.

TABLE 4

TOP
a/s/p

HIGH MIXH MIXL
a/s/p afs/p a/s/p

LOW

CAI'EGORY FUNCITON a/s/p

LOW AL,
BL --> BL
AH,
BL --> BL
AL,

BH --> BH

add/

sub
pass

pass pass pass pass

MIX-L add/

sub
pass

pass pass pass

MIX-H add/

sub

pass pass pass

o o O o O

10

15

20

25

30

35

40

45

50

14

TABLE 4-continued

TOP HIGH MIXH

MIXL. LOW

CA

'EGORY FUNCITION a/s/p a/s/p a/s/p a/s/p a/s/p

IGH

AH,
BH --> BH
AX,

BX --» BX
FAX,

EBX --»
EBX

pass add/ pass pass pass

sub

STANDARD pass add/ pass pass add/

sub

add/

sub

EXTENDED add/ add/

pass pass

sub sub sub

Sum/Bypass Logic—Overview

The Sum/Bypass logic illustrated in FIG. 14 generates a
one-dit intermediate sum (or difference, in the case of
subtraction) from one dit of operand A and one dit of
operand B. If a block 1s bypassing, then the first-level gates
for that block generate as the intermediate sum the bypassed
B operand values for that block. The gates 900, 910, 920 that
ogenerate this intermediate sum are discussed 1n greater detail
below. The mntermediate sum produced by Level One does
not account for carry (or borrow) conditions, as this will be
added in a later level of logic. Instead, a (H)alt, P(ropagate),
and (G)enerate status is derived for each dit position. The
meaning of this HPG status 1s discussed 1n greater detail
below 1n the discussion of carry-propagate logic.

N-nary Addition Logic

The Sum/Bypass logic of the present invention imple-
ments both addition and subtraction using N-nary logic. Our
discussion of Sum/Bypass logic will begin with the addition
function. A truth table demonstrating the add operation using
1-01-4 encoding 1s set forth 1n Table 5. Each of the two-bit
1-0f-4 mputs, A and B, 1n Table 5 can represent one of four
values, 0 through 3 mclusive, depending on which of the
four wires for each signal 1s set high. Table 5 discards any
potential mput value that includes more than one wire
asserted for each 1-of-4 signal, such as 1111 and 0101. Such
values are undefined for the evaluate stage of 1-0f-4 logic
cgates. The four wires for the two-bit sum of the 1-of-4
addition operation 1n Table 5 are labeled S;, S,, S, and S,,.

TABLE 5

Output
Decimal

Sqo Value

O = OO O
O O = OO
o T e O e TR S S
s T T e T e T S
O = OO O
o T e T S e T
— O O = O
A T T e T e T
— e = O

US 6,334,136 Bl

15

TABLE 5-continued

A Dec. B Dec.

A; A, A, A, Value B; B, B, B, Value S:00S,
0 0 0] 0 0 1 0 1 0 1
0 0 0] 0 1 0 0 2 1 0
0 0 1 0 1 1 0 0 0 3 0 0
0 1 0 0 2 0 o 0 1 0 0 1
0 1 0 0 2 0 0 1 0 1 1 0
0 1 0 0 2 0 1 0 0 2 0 0
0 1 0 0 2 1 0 0 0 3 0 0
] 0 0 O 3 0 o 0 1 0 1 0

0 0 O 3 0 0 1 0 1 0 0
0 0 O 3 0 1 0 0 2 0 0
0 0 O 3 1 0 0O 0 3 0 1

In Table 5, output values with asterisks indicate that a carry
1s conceptually generated into a higher-order bit represent-
ing a decimal value of 4.

[llustration: Basic N-nary Adder Gate

FIG. § illustrates an N-nary adder circuit 100 that uses
1-01-4 logic to perform the addition function on two two-bit
1-0f-4 mputs to generate a two-bit 1-o0f-4 output signal
conforming to Table 5. A similar function may be performed
with a gate 102 that takes one 1-of-3 input and one 1-o0f-5
input. Such a gate 102 1s 1llustrated 1n FIG. 5A. The function
of the adder circuit 100 1llustrated 1 FIG. 5 1s to add two
1-01-4 mputs and produce the least significant two bits of the
sum, which 1s also implemented as a 1-of-4 signal. Since the
adder circuit 100 operates on two four-value signals 1t 1s not
appropriate to refer to it as binary. The function of the adder
cgate 100 1s quaternary, rather than binary.

The adder circuit 100 1llustrated in FIG. § has an A input
signal comprising four wires, A,, A;, A,, and A;, and a B
input signal comprising four wires, B,, B,, B,, and B;. The
A mput signal and the B input signal can each represent any
integer having a decimal value between zero and three,
inclusive. Since N-nary logic requires that only one of the
four wires representing the A mput be asserted at any one
fime, and only one of the B input wires be asserted at one
fime, 1t 1s convenient to treat the A and B signals as
individual mputs that each can represent one of four values.

The adder circuit 100 therefore has eight inputs: A,, A, A,
A;, B,, B,, B,, and B,. If the value of zero, then the A, wire

1s set high and all other A wires, A, A, A,, are set low. By
the same token, the B, wire corresponds to zero. Similarly,
the A, wire and B, wire correspond to the decimal value of
one. The A, wire and B, wire correspond to the decimal
value of two. Finally, the A; wire and B; wire correspond to
the decimal value of three. The adder circuit 100 1llustrated
in FIG. 5 performs the following logic functions:

So=BAo|BAz|B.A,|BsA, (all cases that equal 0 or 4),
S,=BA|B.Ao|B-As|BsA, (all cases that equal 1 or 5),

S,=BA,|B,A|B-A|BsA5 (all cases that equal 2 or 6),

and
S;=BA;|B.A,|B-A|B3A, (all cases that equal 3).

Carry Propagate Logic

The adder gate 1n FIG. § 1s not complete for the purposes
of the present invention because 1t does not provide any
information as to whether the sum 1is too large to represent
in two bits of information. In other words, the FIG. 5 adder

s
 —

I S R T TR G G T e T v Y

20

25

30

35

40

45

50

55

60

65

16

Output
Decimal
S, Value
2
3
U £
2
3
O *
1 £
3
U *
1 *
2=+=

O OO0 OO0 OoO0

does not support the carry conditions denoted by asterisks in
Table 5. For the addition function of the present invention,
what 1s required 1s an adder gate that can not only sum two
one-dit numbers, but can utilize carry-propagate techniques
to account for carry conditions. This 1s accomplished
through the use of carry propagate logic, as described below.

Carry propagate logic takes carry conditions into account.
For any two binary numbers A and B, the sum, S, , and the
carry, C,, for a given bit position, n, are:

S, =A, DB, DC,,_,, where C,_, 1s the carry 1n from the previous
bit, n-1.

(1)

C =AB|AC .|BC, _,, where C_is the carry out from bitn (2)

The bmary truth tables for Equation 1 and Equation 2 are
set forth 1n Table 6.

TABLE 6
S, =
An Bn An Cﬂ—l BI] Cn—l An @ Bn (4) @ CI] =

0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0
0 1 0 0 0 0] 1 0
0 1 1 0 0 1] 0 1
] 0 0 0 0 0] 1 0

0 1 0 1 0 1 0]

1 0 1 0 0 0 0

1 1 1 1 1 0 1

In formulating carry propagate logic, one must recognize
that the critical path in any adder 1s along the carry chain.
The most significant bit of the sum depends not only on the
two most significant addend bits, but also the addend bits of
every other bit position via the carry chain. Simply allowing
carries to ripple from the least significant end would result
in a compact but very slow adder, since the worst-case carry

propagation delay would be approximately as many gate
delays as the bit width of the adder.

Fast carry-propagate techniques can dramatically
decrease the carry propagation delay, and therefore decrease
the overall delay of the adder. Adders employing such
techniques are sometimes referred to as carry-propagate
adders or carry-lookahead adders. Conventional carry
propagate adder structures speed up the carry chain by
computing the individual carry propagate (P) and carry
generate () signals for each bit position.

US 6,334,136 Bl

17

For any two binary numbers A and B, the P and G signals
for a given bit position, n, are:

P,=ADE, (3)

G.=A B.. (4)
P and G may also be generated for 1-of-4 numbers. G
indicates that the given dit position, n, generates a carry that
will have to be accounted for 1n the higher dits of the sum.
G will be set when the sum of two 1-0f-4 numbers 1s greater
than 3. P indicates that any carry generated 1n lower dits will
propagate across the given dit position, n, to atfect the higher
dits of the sum. P will be set when the sum of two 1-0f-4
numbers 1s exactly three. If neither G nor P 1s true for a given
dit position, then a carry halt signal (H) 1s implied. An H
signal indicates that any carry generated in lower dits will
not propagate across the given dit position, n. H will be set
if the sum of two 1-of-4 numbers 1s less than three. Restated,
if the sum of two operand dits 1n a given dit position 1s
oreater than 3, G 1s true. If the sum 1s exactly 3, P 1s true.
Otherwise, H 1s true. Final carry and sum computations

proceed following exactly the same logic as 1s followed for
the bitwise case.

FIG. 7 illustrates an N-nary HPG gate 700 that utilizes
carry propagate logic to generate an H, P, or G indication for
two two-bit 1-of-4 addends. A similar function may be

performed using one 1-of-3 addend and one 1-of-5 addend.
Such a gate 701 1s illustrated 1n FIG. 7A. The output of the

HPG gate 700 conforms to Table 7. The output of the FIG.
7 gate 1s a 1-0f-3 N-nary signal, such that one, and only one,
of the H, P, or G wires 1s set high during a given evaluate
cycle.

TABLE 7
A Dec. B Dec.

A; A, A A, Value B; B, B, B, Value H, P, G,
0O 0 0 0 0O 0 0 1 0] 0 O
0O 0 0 0 0O 0O 1 0 1] 0 O
0O 0 0 ! 0 0O 1 0 0 2 1 0 O
o 0 0 1 0 1 0 0 0O 3 0 1 O
0 0 0] 0O 0 0 1 0 1 0 O
0 0 0] 0O 0 1 0 1 1 0 O
0 0 0] 0O 1 0 0O 2 0 1 O
0O 0 1 0 1 1 0 0 0 3 o 0 1
0O 1 0 O 2 0O 0 0 1 0 1 0 O
0O 1 0 O 2 0O 0 1 0 1 0 1 O
o 1 0 0O 2 0O 1 0 0O 2 o 0 1
0O 1 0 O 2 1 0 0 0O 3 o 0 1
1 0 0 O 3 0O 0 0 1 0 0 1 O

0 0 O 3 0O 0O 1 0 1 0 0 1
0 0 O 3 0O 1 0 0 2 0 0
0 0 O 3 1 0 0 O 3 0 O

Reterring back to Equ. 1, above, the Carry 1nto a bit, C,__ .,
1s calculated as: C,_,=G, . +P,_.G__.+P__.P_ .G __.+ ...
+P_.P_,...+P__.P ., ...P,G,.Toreduce the complexity
of the carry computation, the scope of the computation is
often constrained to a block of a fixed number of bits. In
such a case, block-level propagates and generates are com-
puted recursively.

Combined Sum/HPG Function

The function of the HPG gate 1llustrated 1n FIG. 7 differs
from that of the adder gate illustrated 1n FIG. §, but the two
cgates share the same 1nput terms. The sum/HPG adder gate
shown for 1illustrative purposes in FIG. 8 combines the two

functions to generate outputs conforming with Table 8.

10

15

20

25

30

35

40

45

50

55

60

65

TABLE 8
A B
Dec. Dec.

A; A, A, A, Valuve B; B, B, B Value Sum H P G
0 0 0 ! 0 0 0 0 1 0 0] 0 O
0 0 0 ! 0 0 0 1 0 1 1] 0 O
0 0 0 ! 0 0 1 0 0O 2 2 1 0 0
o 0 0 1 0 1 0 0 0 3 3 0 1 0
0O 0 1 0] 0 0 0 1 0 1 1 0 0
0O 0 1 0] 0 0 1 0O 1 2 1 0 0
0O 0 1 0] 0 1 0 0O 2 3 0 1 O
0O 0 1 0 1 1 0 0 O 3 0 0 0 1
0O 1 0 0 2 0 0O 0 1 0 2 1 0 0
0O 1 0 0 2 0 0O 1 0O 1 3 0 1 O
0O 1 0 0 2 0 1 0 0O 2 0 0 0 1
0O 1 0 0 2 1 0 0 O 3 1 0 0 1
1 0 0 O 3 0 0O 0 1 0 3 0 1 O

0 0 0 3 0 0O 1 0O 1 0 0 0 1
0 0 0 3 0 1 0 0O 2 1 0 0
0 0 0 3 1 0 0 O 3 2 0 0

The function of the sum/HPG adder gate illustrated in
FIG. 8 1s to add two two-bit 1-of-4 mputs and generate the
sum and the H, P, and G values set forth in Table &. The two
operands A and B are two-bit 1-01-4 values, as 1s the sum S.

The H, P, and G outputs represent the three wires for a 1-01-3
output. A similar function may be performed using one
1-01-3 mput and one 1-of-5 1nput, as illustrated in FIG. SA.

FIG. 8 illustrates that it 1s not necessary to construct
multiple i1dentical output signals from an evaluate node,
even when a gate comprises two output signals. FIG. 8
illustrates that it 1s mstead possible to construct multiple
output signals from a single set of evaluate nodes. In FIG. 8,
the evaluate nodes are 1dentified as S0, S1, S2, S3, $4, S5,
and S6. In order for the two different output signals to
conform to the 1-0of-N signal definition, additional process-
ing 1s performed on the evaluate nodes. In this processing,
cach evaluate node S0-S6 drives more than one output, and
the outputs are ditferent. FIG. 8 illustrates that for the HALT
output, the S0, S1, and S2 evaluate nodes are NAND ed
together. (Because the evaluate nodes are asserted low and
the outputs are high, the effect of NAND’1ng 1s to OR the
evaluate terms.) The PROP output is pulled high if the S3
evaluate node 1s asserted. For the GEN output, the S4, S35,
and S6 evaluate nodes are NAND ed together. The Sum ()
output 1s pulled high if the NAND’ed SO or $4 evaluate
nodes are asserted. For Sum 1, the S1 and S5 evaluate nodes
arc NAND ed together. For Sum 2, the S2 and 56 evaluate
nodes are NAND’ed together. Finally, the Sum 3 output is
pulled high if the S3 evaluate node 1s asserted.
Sum/Bypass Logic Gates

The Sum/Bypass logic gates 900, 910, 920 combine the
sum and HPG functions described above with bypass logic
and subtraction logic, which are discussed below. FIG. 14
illustrates that the Sum/Bypass Logic comprises three dif-
ferent variants of combined adder/subtractor/bypass/HPG
logic gates 900, 910, 920. FIGS. 9, 10, and 11 depict the
Sum/Bypass Logic’s combined adder/subtractor/bypass/
HPG logic gates 900, 910, 920, respectively.

FIGS. 9 through 11 illustrate that all Sum/Bypass Logic
cgates 900, 910, 920 take at least the following as inputs: two
1-0f-4 mput operands, A and B, and an ADD/SUB/PASS
control signal that controls whether addition, subtraction, or
bypass logic is performed. (For Gates 900 and 910, the
ADDS/SUB/PASS control signal 1s a 1-01-3 signal; Gate 920
receives a 1-of-5 control signal.) Because the LSD adder/
subtractor/bypass/HPG gates 910, 920 support add-with-
carry and subtract-with-borrow operations, they receive an

US 6,334,136 Bl

19

additional carry-in mput. These Sum/Bypass Logic gates
900, 910, 920 all combine the following functions: addition,
carry propagate logic, subtraction, borrow propagate logic,
and bypass logic.

Although 1t 1s not expressly represented in FIGS. 9
through 11, these gates 900, 910, 920 perform logic that
drives two output signals from the same evaluate nodes,
much like the gate 800 shown 1n FIG. 8. FIGS. 9-11 show
the outputs of the basic adder/subtractor/bypass/HPG gate
900, 910, 920, comprising S and HPG, in an expanded form
for clarity. Gates 900, 910, 920 comprise seven (Gate 900)
or eight (Gates 910, 920) evaluate nodes, SO through S7.
These nodes are NAND ed together as described above and
shown 1n FIG. 8 to form the two discrete output signals: a
1-0f-4 sum, SUM, and a 1-of-3 HPG indicator.

All of the Sum/Bypass Logic gates 900, 910, 920 perform
the same bypass logic. If the PASS value of the ADD/SUB/
PASS control input 1s asserted, then the value of the B
operand 1s passed through as the gate’s output. FIGS. 9, 10,
and 11 illustrate that each gate 900, 910, 920 performs this
operation the same way. If the PASS value 1s asserted, then
the outputs associated with the “+0” node of the B inputs are
enabled. (The “+0” node is discussed below in connection
with the add function) In essence, a PASS is logically the
same as the B+0 addition operation. The additional opera-
fion of each Level One gate 900, 910, 920, including
subtraction, 1s discussed separately below.

Gate 900 1s a standard combined adder/subtractor/bypass/
HPG gate that selectably adds, subtracts, or bypasses the A
and B operands. The standard combined adder/subtractor/
bypass HPG gate 900 1s illustrated mn FIG. 9. Gate 900 1s
used for each dit of the mput operands A and B that will
never fall as the least significant dit for any of the six

operation categories set forth in Table 3. FIG. 14 illustrates
that gate 900 is therefore used in the 32-bit adder (1.e., LOW,

HIGH, and TOP) to process the following dits of the A and
B operands, where each 32-bit operand comprises dits 0
through 15: 1-3, 5-7, and 8-15. FIG. 14 1llustrates that the
standard adder/subtractor/bypass/HPG gate 900 for each
such dit 1s labeled, respectively, as 9004-900f, 900;-900/,
and 900m—900z. F1G. 14 illustrates that Gate 900 1s also used
for each dit of the MIXL and MIXH 8-bit adders, except the
LSD’s of each adder. FIG. 14 illustrates that Gates
9002—900c¢ process the three most significant dits of the
MIXL block and that Gates 900g—900: process the three
most significant dits of the MIXH block.

FIG. 9 1illustrates that the standard adder/subtractor/
bypass/HPG gate 900 takes as inputs two 1-0f-4 addends, A
and B, and the 1-of-3 ADD/SUB/PASS selector. Gate 900
produces as outputs a 1-of-4 mtermediate sum, SUM, and a
1-01-3 HPG signal that reflects the carry/borrow status of the
intermediate sum. Because the gate 900 possesses selectable
add/subtract/bypass capability, the SUM output can com-
prise either an addition sun, a subtraction difference, or a
bypassed B operand value (discussed above).

For addition, gate 900 computes the mtermediate sum of
one dit of the A and B operands and also computes the HPG
status for this dit of the intermediate sum. FIG. 9 illustrates
that, for addition, the standard adder/subtractor/bypass/HPG
cgate 900 adds A and B together. The standard gate 900
operates more simply regarding addition than do the LSD
cgates 910, 920, described below, because gate 900 does not
support carry-in logic. For addition, gate 900 derives the
intermediate sum as the simple sum of the two addend dits.
FIG. 9 illustrates that the logic path for the ADD wire
connects to four sets, referred to as “nodes”, of the four
wires comprising the B input, B;, B, B, B,. In FIG. 9, each

10

15

20

25

30

35

40

45

50

55

60

65

20

node of B input wires has been labeled with the conceptual
value of the A mput associated with that node for the
addition function. For instance, the leftmost node of B 1nput
wires 1n FIG. 9, corresponding to an addition value of “0”
for A, 1s labeled as the “+0” node. From left to right in FIG.
9, the remaining nodes of B input wires have been labeled
as the “+17, “427, “+3” nodes, respectively. If the ADD
value 1s asserted for the ADD/SUB/PASS selector, the A,
input value will lead to the “+0” node and the value of B will
therefore will be NAND’ed with zero to produce the“+0”
node output. Thus, the value of B will be added to zero.
Similarly, the A, mput value will lead, for addition, to the
“+1” node and will therefore cause the value of one to be
NAND’ed with the B 1nput value for that dit. The A, 1nput
value will lead, for addition, to the “+2” node and waill
therefore cause the value of two to be NAND’ed with the B
input value for that dit. Finally, the A, input value will lead,
for addition, to the “+3” node and will therefore cause the
value of three to be NAND ed with the B input value for that
dit. For each intermediate result generated as the result of an
addition operation, gate 900 sets the HPG 1indicator
appropriately, as set forth above 1n Table 7. FIGS. 10 and 11
illustrate that this same processing 1s performed 1n Gates 910
and 920 when there 1s no carry into the LSD.

FIG. 9 illustrates that, for subtraction, gate 900 comple-
ments the minuend. That 1s, the standard adder/subtractor/
bypass/HPG gate 900, for subtraction, adds the 3°s comple-
ment of the A operand to the B operand. This subtraction
logic 1s discussed below 1n further detail.

The operation of the two LSD gates, gate 910 and gate
920, 1s more complex than that of the standard gate 900.

FIG. 14 1llustrates that the present invention 101 uses Gates
910 and 920 in LSD positions. Gate 910 1s used as the LSD

cgate for the MIXL, LOW, and MIXH blocks. FIG. 14 further
illustrates that gate 920 1s used as the LSD gate for the HIGH
block. Gate 910 1s therefore used to process the LSD for the
blocks MIXL, MIXH that perform one-byte operations, and
for LOW block, whose LSD will always be the LSD for an
entire operation.

FIG. 10 illustrates that Gates 910 and 920, because they
process the LSD for a block, must support dual modes of
addition and subtraction. These LSD gates 910, 920 support
the add-with-carry and subtract-with-borrow functions that
are supported in the x86 instruction set. (This varies con-
siderably from the operation of the LSD gate disclosed in the
Adder Patent, which assumes that a carry will never propa-
gate into the LSD.) They possess selectable subtract behav-
ior (three’s complement vs. four’s complement) and addi-
tion behavior (straight addition vs. increment addition)
based on the value of the carry-in signal.

FIGS. 10 and 11 1llustrate that, for an addition operation,
the mode of addition 1s selected by the value of the Cin
mput. If the Cinbar input wire 1s asserted, then no carry has
propagated 1nto the gates 910, 920. In such a case, the gates
910, 920 perform “straight” addition of A+B, as described
above 1n connection with gate 900. In contrast, when the Cin
wire 1s asserted, the gates 910, 920 perform “increment”
addition, adding A+B+1, to account for the carry into the
cgate. That 1s, FIGS. 10 and 11 illustrate that, 1f an input value
of A, 1s asserted, an incremented value of one, rather than
zero, 1s added to the B operand. Similarly, the A, 1nput 1s
routed to the “+2” node, the A, 1nput 1s routed to the “+3”
node, and the A, 1nput is routed to the “+4” node.

Similar dual-mode processing occurs for subtraction in
the LSD gates 910, 920. Gates 910 and 920 possess the add
and subtract capabilities of gate 900, discussed above. In
addition, Gates 910 and 920 address the need to increment

US 6,334,136 Bl

21

the three’s complement of the minuend in order to form the
four’s complement for LSD subtraction. That 1s, the A
operand 1s not only complemented, but, if the gate 1s used 1n
the LSD position, the A operand 1s then incremented by one
to form the four’s complement. For any dit acting as the LSD

for an operation, four’s complement addition must be per-
formed.

For LSD subtract processing, FIGS. 10 and 11 illustrate
that, If the Cinbar input wire is asserted (indicating that no
carry has propagated into the gate) that gates 910, 920 will
perform four’s complement addition to effect the desired
subtraction operation (except, as explained below, when Dit
4 of the 32-bit adder is not acting as the LSD). Because they
perform four’s complement arithmetic, gates 910 and 920
have an additional evaluate node, S7, that gate 900 does not
have, simce gate 900 only performs three’s complement
arithmetic. The S7 evaluate node pulls the GEN output and
the SUMJ3 output high.

Gates 910 and 920 do not always perform four’s comple-
ment arithmetic for subtraction. When the Cin mput wire 1s
asserted for an LSD, Gates 910 and 920 must perform a
subtraction operation that effects a borrow out of the LSD.
To do so, the gates 910, 920 must subtract B-A-1. As 1s
explained below, four’s complement addition adds one to the
A operand before it 1s subtracted from the B operand. In
essence, then, the borrow-1n subtraction operation of B-A-1
in an LSD gate 1s a three’s complement operation. As a
result, Gates 910 and 920 selectably perform three’s or
four’s complement addition for a subtraction operation,
depending on the value of the carry-in input. Both three’s
and four’s complement subtraction are discussed in further
detail below.

FIG. 10 1llustrates the Sum/Bypass Logic’s LSD gate 910.
FIG. 14 1llustrates that the Sum/Bypass Logic’s LSD gate
910 1s used to process all operand dits that do or may act as
the least significant dit (“LSD”) of an operation, except that
gate 910 1s not used to process Dit 4, the LSD of the HIGH
block. FIG. 14 illustrates that gate 910 1s therefore used to
process Dit 0 of the 32-bit adder and to process the LSD’s
of MIXH and MIXL. Specifically, FIG. 14 illustrates that
cgate 910b processes Dit 0, gate 910a processes the LSD of
MIXL, and gate 910c processes the LSD of MIXH.

FIG. 10 1llustrates that gate 910 takes as mputs the 1-of-4
L.SD’s of the A and B operands and the 1-0f-3 ADD/SUB/
PASS indicator. Gate 910 produces as outputs a 1-of-4
intermediate sum, SUM, and a 1-of-3 HPG indicator. FIG.
10 1llustrates that, when the PASS 1nput wire 1s asserted, gate
910 passes the B operand values through as the intermediate
sum output, and generates the corresponding HPG indicator
value as set forth 1n Table 7.

FIG. 10 1llustrates that, for addition, the gate 910 performs
either straight addition or increment addition, depending on
the value of the Cin input. If Cin 1s asserted, then the A input
wires, A,—A,, are routed to, respectively, the “+17, “+27,
“+3”, and “+4” B input nodes. In contrast i1f Cinbar 1is
asserted, then the A input wires, A,—A;, are routed to,
respectively, the “+07, “+17, “+2, and “+3” B input nodes.

FIG. 10 further illustrates that, for subtraction, gate 910
selectably performs four’s complement subtraction or
three’s complement subtraction, based on the value of the
Cin 1nput. Gate 910 performs four’s complement
subtraction, and not three’s complement subtraction, when
there 1s no borrow propagated into the LSD (i.e., Cinbar is
asserted). When Cin is asserted, gate 910 performs three
complement subtraction. The discussion of subtraction
within the Sum/Bypass Logic gates 900, 910, 920 1s set forth
below.

10

15

20

25

30

35

40

45

50

55

60

65

22

The third Sum/Bypass adder/subtractor/bypass/HPG gate
920 1s 1llustrated 1n FIG. 11. Gate 920 1s a specialized LSD

combined adder/subtractor/bypass HPG gate that, like gate
910, also possesses dual subtraction (three’s complement vs.
four’s complement) and dual addition (straight wvs.
increment) capabilities. The gate 920 also performs bypass
logic as described above. The gate 920 1s a specialized”
cgate because 1t performs differently depending on the size of
the operands.

FIG. 14 1llustrates that gate 920 1s used only to process the
LSD of the HIGH block. Unlike gate 910, gate 920 has two
levels of select controls that determine whether gate 920 will
perform three’s or four’s complement subtraction and
whether gate 920 will perform straight or increment addi-
tion. This multi-level subtraction and addition control stems
from the fact that the HIGH block may act as an LSD block

for some operation categories (1.e., HIGH), but as an inter-
mediate block for others (i.e., STANDARD and

EXTENDED).

FIG. 11 1illustrates that, depending on the value of the
partition size control signal, gate 920 acts either as a
non-LSD gate or acts as an LSD gate for an 8-bit operation.
In order to dynamically select between its LSD and non-
LSD functionality, FIG. 14 1llustrates that gate 920 receives
a specialized control mput. The control input to gate 920,
rather than a 1-0f-3 ADD/SUB/PASS input, must give gate
920 more information. That 1s, gate 920 must determine not
only whether addition or subtraction 1s the selected
operation, but whether gate 920 1s acting as an LSD gate for
the selected operation. To impart this information to gate
920, the control logic produces a 1-of-5 control signal

labeled 1n FIG. 14 as ADDS/ADD1632/SUBS/SUB1632/
PASS.

The ADDS/ADD1632 wires of the gate 920 control 1nput
indicate to gate 920 whether the selected operation category
is a HIGH addition operation (for which gate 920 acts as the
[.SD) or is either a 16-bit addition operation (i.e., a STAN-
DARD operation) or a 32-bit addition operation (i.e., an
EXTENDED). The control logic compresses the 16-bit and
32-bit indicators because gate 920 functions the same way in
cither case: 1t does not act as the LSD gate for such
operations.

Similarly, the SUB8/SUB1632 wires of the gate 920
control 1nput indicate to gate 920 whether the selected
operation category is a HIGH subtraction operation (for
which gate 920 acts as the LSD) or is either a 16-bit
subtraction operation (STANDARD) or a 32-bit operation
(EXTENDED). The control logic compresses the 16- and
32-bit subtraction indicators for the same reason that 1t does
so for the addition indicators.

FIG. 11 1llustrates that the specialized Sum/Bypass Logic
cgate 920 performs addition as follows. If the ADDS8 wire of
the 1nput 1s asserted, then the gate 920 1s acting as the LSD.
For this reason, the gate 920 must evaluate the state of the
Cin 1nput, because the LSD must support the add-with-carry
function. FIG. 11 therefore illustrates that gate 920 performs
straight addition 1f the ADDS8 wire 1s asserted and the Cinbar
wire 1s asserted. FIG. 11 further illustrates that gate 920
performs increment addition if the gate 1s acting as an LSD
gate (1.e., ADDS is asserted) and there is a carry into the gate
(i.e., Cin 1s asserted). FIG. 11 illustrates that gate 920
disregards the Cin mnput when the ADD1632 input wire 1s
asserted, since there 1s no need to support the add-with-carry
function when the gate 920 1s not acting as an LSD gate.
Gate 920 therefore performs straight addition when the
ADD1632 1nput wire 1s asserted.

Gate 920 possesses similar dual-subtraction capabilities
that also require two levels of controls. The first level of

US 6,334,136 Bl

23

control, similar to addition, comprises the SUBS/SUB1632
control input wires. The second level of control, also stmilar
to addition, 1s the Cin mput. FIG. 11 illustrates that two
things happen within gate 920 when the SUBS 1nput wire 1s
asserted. First, the gate 1s acting as an LSD gate, so the
baseline assumption 1s that the gate 920 will perform four’s
complement addition. Second, the gate 920 must evaluate
the Cin 1nput, since the LSD must support subtraction-with-
borrow functionality when the HIGH block processes the
LSD 1n 8-bit operations. FIG. 11 therefore 1llustrates that the
A 1nput 1s routed to the “+4” node of B mputs when SUBS
and Cinbar are asserted. When SUB8 and Cin are both
asserted, the 1ncrement for four’s complement 1s effectively
canceled by the borrow 1n, so the gate 920 performs three’s
complement addition by routing the A mput to the “+3” node
of B mnputs. When SUB1632 1s asserted, the gate 920 does
not act as the LSD gate, and therefore bypasses the Cin input
wires and simply performs three’s complement addition.
Level One N-nary Subtraction Logic

As stated above, the Sum/Bypass Logic gates 900, 910,
920 possess selectable subtract capability, and may be used
for either addition or subtraction, based on the value of the
ADD/SUB/PASS control inputs. FIGS. 9 through 11 illus-
trate that the Sum/Bypass Logic gates 900, 910, 920 not only
implement the combined Sum/HPG functions discussed
above, but also 1mplement the subtraction and borrow
propagate logic discussed herein.

For subtraction, the Sum/Bypass Logic gates 900, 910,
920 subtract the value of the A operand from the B operand
to produce a result 1n a specialized format discussed below.
For 1llustrative purposes, a truth table generally demonstrat-
ing the subtraction operation, B-A, using 1-of-4 encoding 1s
set forth 1n Table 9. Each of the two-bit 1-0f-4 mputs, A and
B, 1n Table 9 can represent one of four values, 0 through 3
inclusive, depending on which of the four wires for each
signal 1s set high. The four wires for the two-bit 1-o0f-4
representation of the decimal difference of the subtraction
operation 1n Table 9 are labeled D, D,, D, and D,.

TABLE 9
B Dec. A Dec.

0 B, B, B, Value Ay A, A, A, Value D; D,
0 0 0 0 0 o 0 1 0 0 0
0 0 0 1 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 0 2 0 1
0 0 0 1 0 1 0 0 0 3 1 0
0 0 0] 0 o 0 1 0 0 0
0 0 0] 0 0 1 0 1 0 0
0 0 0] 0 1 0 0 2 1 0
0 0 1 0 1 1 0 0O 0 3 0 1
0 1 0 0 2 0 o 0 1 0 0 1
0 1 0 0 2 0 0 1 0 1 1 0
0 1 0 0 2 0 1 0 0 2 0 0
0 1 0 0 2 1 0 0 0 3 0 0
] 0 0 O 3 0 o 0 1 0 1 0

0 0 O 3 0 0 1 0 1 0 1

0 0 O 3 0 1 0 0 2 0 0

0 0 O 3 1 0 0 0 3 0 0

In Table 9, negative output values in the “B-A” column
indicate that a borrow from the next higher-order dit must

occur. As 1s discussed below, the present invention produces
output values that are based on the assumption that such a
borrow will occur 1in every case. In cases where such a
borrow 1s not necessary, the present invention compensates
accordingly.

10

15

20

25

30

35

o= O O OO O O oo - o OO

60

65

24

In performing subtract logic within a processor, it 1s useful
to implement subtraction as a form of complement addition.
An adder may be made to subtract by forming the radix
complement of the subtrahend and adding it to the minuend,
where “radix” refers to the base of the number system being
used. The radix complement of a number 1s formed by
adding one to the least significant bit of the diminished radix
complement of the number. The diminished radix comple-
ment 1s formed by subtracting every digit of the subtrahend
from a number y, where y=base-1. In binary systems,
subtraction 1s often 1mplemented using the radix
complement, or two’s complement. Two’s complement 1s
formed by incrementing a one’s complement number (the
diminished radix complement). One’s complement is
formed by subtracting each bit of the subtrahend from 1,
which is one less than the base (2). Formation of the 1°s

complement effects an 1nversion of each digit of the sub-
trahend.

The preferred embodiment of the Sum/Bypass Logic
cgates 900, 910, 920, because they operate on 1-of-4 1nputs,
are not binary. Instead, the addition system of the present
invention i1s quaternary, with a base of four. Accordingly, the
subtraction of the present invention i1s implemented as a
form of four’s complement addition. In the present
imvention, therefore, the subtrahend 1s converted to three’s
complement, the diminished radix complement, by novel
circuitry that emulates the effect of subtracting each dit of
the subtrahend from three. In the LSD Sum/Bypass Logic
cgates 910, 920, when processing dits that fall as the LSD for
an operation category, the subtrahend i1s converted from
three’s complement to four’s complement, the radix
complement, by novel circuitry that emulates the effect of
incrementing the least significant dit of the three’s comple-
ment number. (Unless, of course, the Cin input indicates that
there 1s a carry into the LSD). Table 10 illustrates the three’s
complement for each of the four possible values of a 1-01-4

dit.

s S T v T G O G T v T T R G R v R v B R
[~

TABLE 10

X (decimal) X (1-of-4) 3’s Comp. (3-x) 3-x (1-o0f-4)

0 0001 3
1 0010 2

1000
0100

US 6,334,136 Bl

25

TABLE 10-continued

X (decimal) X (1-0f-4) 3’s Comp. (3-x) 3-x (1-of-4)
2 0100 1 0010
3 1000 0 0001

Since four’s complement 1s generated by adding one to
the least significant dit of a three’s complement number, the
present invention provides subtraction capability with mini-
mal additional cost by providing a path that converts each dit
of the subtrahend to the three’s complement. In the least
significant dit for each category of subtraction operation, the
present 1nvention converts the subtrahend to a four’s
complement representation if there 1s no carry into the LSD.
Subtraction using Three’s Complement—All Dits Except
LSD with no Borrow 1n

Table 11 sets forth the truth table for the subtraction
portion of the N-nary circuit illustrated in FIG. 9, which
performs subtraction on two 1-of-4 numbers, A and B, by
adding the three’s complement of A to B 1n order derive the
two-bit difference of B—A. This processing 1s performed on
all dits, except the LSD for each operation category, during
a subtract operation. This processing 1s also performed on
[.SD’s that a receive a borrow-in indication (i.e., Cin
asserted for subtraction). In Table 11, A and B are repre-
sented 1n both decimal and 1-of-4 representations. The “~A”

column of Table 11 represents the three’s complement value
of the subtrahend, A. The “7A (1-0f-4)” column represents
the three’s complement of A 1n 1-of-4 representation. The
“Pre-corr. Diff.” column represents the difference of B-A,
represented 1n a pre-correction format discussed 1n detail
below. The “Diif.” column represents the difference in
post-correction decimal format.

TABLE 11
B A ~A Pre-Corr.
B (1-of-4) A (1-0of-4) ~A (1-of-4) Diff (B - A) Dift
0 0001 0 0001 3 1000 3 0
1 0010 0 0001 3 1000 0* 1
2 0100 0 0001 3 1000 1* 2
3 1000 0 0001 3 1000 2* 3
0 0001] 0010 2 0100 2 -1
1 0010] 0010 2 0100 3 0
2 0100] 0010 2 0100 0* 1
3 1000 1 0010 2 0100 1* 2
0 0001 2 0100 1 0010 1 -2
1 0010 2 0100 1 0010 2 -1
2 0100 2 0100 1 0010 3 0
3 1000 2 0100 1 0010 0* 1
0 0001 3 1000 0 000 0 -3
1 0010 3 1000 0 000 1 -2
2 0100 3 1000 0 0001 2 -1
3 1000 3 1000 0 0001 3 0

The values 1n the “Pre-Corr. Diff” column of Table 11
denoted by asterisks are mod 4 values of a difference that 1s
too large to be represented 1n two bits. Conceptually, these
cases generate a carry into the next higher-order dit, where
such carry represents a value of four.

FIG. 9 illustrates a gate 900 that performs three’s comple-
ment subtraction in the following manner. FIG. 9 illustrates
that each node of B inputs 1n gate 900 has been labeled with
the conceptual value of the A input. The left most node of B
inputs 1n FIG. 9, corresponding to an addition value of “0”
for A and a three’s complement subtraction value of “3” for
A has been labeled “+0.” From left to right, the remaining,
nodes have been labeled as the “+17, “4+2”, and “+3” nodes,
respectively. For subtraction, the A, mput 1s coupled to the

10

15

20

25

30

35

40

45

50

55

60

65

26

“+3” node. Because the three’s complement of zero 1s three,
the addition of three to the B input when the value of A, 1s
zero elfectuates the conversion of A to a three’s complement
value before it 1s added to B. Similarly, the A, mput for
subtraction 1s coupled to the “+2” node because the three’s
complement of one 1s two. Likewise, the A, mnput 1s coupled
to the “+1” node and the A, input 1s coupled to the “+0”
node. Through this novel circuitry approach, A 1s simply and
clegantly converted to its three’s complement representa-
fion.

Pre-correction Format for Three’s Complement Subtraction

The values set forth m the “Pre-Corr. Dift” column of
Table 11 represent the present invention’s pre-correction
format for three’s complement subtraction. Rather than
producing an intermediate difference (hereinafter referred to
as “Diff”’) value that represents B—A for a given bit n, the
format of the pre-corrected Diff in Table 11 is : (b-1)+B, —
A_, where b 1s the base. In the preferred embodiment of the
present mvention, the base 1s four. Such format 1s based on
the following two assumptions.

Assumptions:

[) a borrow from dit x by the dit of next-lowest significance is implied
for each dit except the least significant dit of the intermediate
difference; and

1) every dit x will require a borrow from the dit of next-higher
significance.

Considering the first assumption in 1solation, the borrow
results in 1 being subtracted (“borrowed”) from dit n. This
first borrow conceptually adds the base to dit n—1. The first
assumption therefore results 1n subtraction of 1 from the
intermediate difference for dit n, providing a pre-correction
format of (-1)+(B,—A,). The latter assumption results in the
base, b, being subtracted (“borrowed”) from dit n+1 and
added to dit n. Combining the second assumption with the
first, the pre-correction format of the present invention
therefore becomes (b-1)+(B,-A). The “Pre-Corr. Diff”
column of Table 11 1illustrates that the output of gate 900
conforms to this pre-correction format.

Subtraction using Four’s Complement—I.cast Significant
Dit with no Borrow 1n

Table 12 sets forth the subtraction truth table for the four’s
complement subtraction circuit of gates 910 and 920, which
perform subtraction of two 1-0f-4 numbers, A and B, by
adding the four’s complement of A to B 1n order derive the
two-bit difference of B-A. In Table 12, A and B are
represented 1in both decimal and 1-of-4 representations. The
“~A” column of Table 12 represents the three’s complement
value of the subtrahend, A, and the ““A+1” column repre-
sents the four’s complement value of A. The ““A+1 (1-of-
4)” column represents the four’s complement of A in 1-of-4
representation. The “Pre-corr. Diff.” column represents the
difference of B-A, represented in a pre-correction format
discussed 1n detail below. The “Difl.” column represents the
difference 1n post-correction decimal format.

TABLE 12
Pre-Corr.
B A ~A+ 1 Dift Dift
B (1—c:f—4) A (1—0f—4) ~A ~A+ 1 (1—0f—4) (B — A) (B — A)
0 0001 0 0001 3 4 0001* O* 0
1 0010 0 0001 3 4 0001* 1* 1

US 6,334,136 Bl

27

TABLE 12-continued

Pre-Corr.

B A ~A + 1 Dift Dift
B (1-of-4) A (1-0of-4) ~A ~A+1 (1-0of-4) (B-A) (B-A)
2 0100 0 0001 3 4 0001* 2* 2
3 1000 0 0001 3 4 0001* 3* 3
0 0001] 0010 2 3 1000 3 -1
1 0010] 0010 2 3 1000 0* 0
2 0100] 0010 2 3 1000 1* 1
3 1000 1 0010 2 3 1000 2* 2
0 0001 2 0100] 2 0100 2 -2
1 0010 2 0100] 2 0100 3 -1
2 0100 2 0100] 2 0100 0* 0
3 1000 2 0100 1 2 0100 1* 1
0 0001 3 1000 0] 0010 1 -3
1 0010 3 1000 0 0010 2 -2
2 0100 3 1000 0 0010 3 -1
3 1000 3 1000 0 0010 0* 0

The values in the “Pre-Corr. Diff” and “~A+1 (1-of-4)”

columns denoted by asterisks are mod 4 values of a ditfer-
ence that 1s too large to be represented 1n two bits.
Conceptually, these cases generate a carry into the next
higher-order dit, where such carry represents a value of four.
Gates 910 and 920 perform four’s complement subtraction
in the following manner. Each node of B mputs in FIGS. 10
and 11 have been labeled with the conceptual value of the A
input. The leftmost node of B inputs in FIGS. 10 through 13,
corresponding to a normal addition value of “0” for A and a
three’s complement addition value of “3” for A and unused
for four’s complement addition, has been labeled as the “+0”

node. From left to right, the remaining nodes have been
labeled as the “+17, “+27, “43”, and “+4” nodes, respec-
tively. For subtraction, the A, input is coupled to the “+4”
node. Because the four’s complement of zero is four (i.e.,
3-0=3; 3+1=4), the addition of four to the B input when the
value of A 1s zero elfectuates the conversion of Ato a four’s
complement value before 1t 1s added to B. Table 12 1llus-
trates that the output of Gates 910 and 920 1n such a case will
be the value of B, with a carry generated. Therefore, it 1s
apparent that the novel four’s complement subtraction cir-
cuits depicted m FIGS. 10 and 11 properly perform four’s
complement subtraction 1n gates 910 and 920 when a dit 1s
acting as the LSD for an operation and there 1s no borrow
into the LSD.
Pre-correction Format for Four’s Complement Subtraction
The values set forth in the “Pre. Corr. Diff” column of
Table 12 represent the present invention’s pre-correction
format for four’s complement subtraction. Rather than
three’s complement subtraction, gates 910 and 920 perform
four’s complement subtraction to 1mplement the least sig-
nificant dit (LSD) of the subtraction operation when there is
no borrow propagated into the LSD. When there 1s a borrow
out of the LSD for a subtraction operation, Gates 910 and
920 ctiectively perform three’s complement arithmetic and
therefore implement both Assumption I and Assumption II,
as discussed above for the three’s complement pre-
correction format. In contrast, when there 1s no borrow out
of the LSD, Gates 910 and 920 only implement Assumption
IT listed above, and not Assumption I. Assumption II results
in the base, b, being subtracted (“borrowed”) from dit n+1
and added to dit n. The pre-correction format for the
intermediate difference for gates 910 and 920 when there 1s
no borrow propagated ito the LSD, represented in the
“Pre-Corr. Difl” column of Table 12, is therefore b+B, —-A_,
where b 1s the base, which 1s 4. Table 12 1llustrates that the
output of four’s complement subtraction logic paths for
Gates 910 and 920 conform to this pre-correction format.

5

10

15

20

25

30

35

40

45

50

55

60

65

23

Level One Borrow Propagate Logic

FIGS. 9, 10 and 11 illustrate that, during subtraction, the
Sum/Bypass Logic gates 900, 910, 920 generate a (H)alt-
(P)ropagate-G(enerate) signal for each dit in addition to the
intermediate difference 1n the pre-correction formats dis-
cussed above. In order to understand the present invention’s
operation regarding the setting of the H, P, and G signals for
subtraction, it 1s useful to keep 1n mind the various concep-
tual transfers of data that may occur during a subtract
operation. Example 1 sets forth these conceptual transfers

among three dits in a subtract operation, the LSD, dit n, and
dit n+1.

EXAMPLE 1
W X
Dit ==-mmmmm-- - Dit mmmmmmea--- -=» ISD
N+] e eeee e e e N emmmm e e m =
Y Z

In Example 1, W represents a borrow from Dit n+1 1nto
Dit n. Such borrow will conceptually subtract one from the
value of Dit n+1 and will conceptually add a value equal to
the base (in this case, four) to the value of Dit n. The borrow
depicted by W 1n Example 1 1illustrates the application of
Assumption I discussed above to Dit n+1. Likewise, data
transfer W also 1llustrates the application of Assumption II
to Dit n. Stmilarly, X represents a borrow from Dit n into the
LSD. Data transfer X therefore represents the application of

Assumption I to Dit n and the application of Assumption II
to the LSD.

Still referring to Example 1, data transfer Y represents a
carry from Dit n into Dit n+1. Such carry will decrement the
base (four) from the value of Dit n and will add one to Dit
n+1. The carry represented in Y will occur whenever the
intermediate difference for Dit n 1s too large to be repre-

sented with two bits. Similarly, Z represents a carry from the
L.SD 1nto Dit n.

Example 1 also illustrates that there ordinarily will not be
a borrow out of the LSD because there 1s no dit to the right
of the LSD. This 1s the reason that the four’s-complement
subtraction circuits of Gates 920 and 920 apply only
Assumption II, and not Assumption I, to generate the four’s
complement pre-correction format when there 1s no Cin
indication.

Keeping the foregoing assumptions and data transfers in
mind, we now turn to the present invention’s setting of the
H, P, and G indicators for subtract operations. In the sub-
fraction operation of the present invention, an H signal
relates to the concept of “borrowing.” A borrow 1s the
complement of a generate associated with addition.
Conceptually, the action of a borrow from dit n i1s to
decrement the value of the difference for dit n in the final
level of logic 1n a subtractor, after all borrows have been
propagated—ijust as a G signal that propagates to a given dit
position in addition will increment the value of the sum for
dit n.

Regarding the H signal, 1t 1s important to note that, as
stated 1 Assumption II above, the present invention
assumes that the mtermediate difference generated for any
dit n will be incremented via a borrow. In other words, there
1s an 1mplied assumption that there will be a borrow by dit
n from the dit of next-higher significance (n+1). Assumption
IT therefore assumes that the data transfer denoted by W 1n
Example 1 will always occur. Accordingly, the intermediate
difference for dit n created by the present invention contains

US 6,334,136 Bl

29

an “implied borrow.” The H(alt) signal associated with the
subtraction operation on dit n simply means that, for a dit n,
the 1mplied borrow out of the dit of next-higher significance
(n+1) will indeed take place as assumed. The H signal will
be set when the intermediate sum of dit n 1s a negative

number, indicating that a borrow must occur. H will be set
when B <A .

A G signal 1n subtraction corrects the implied borrow
described above, 1f the borrow was unnecessary, by indicat-
ing that the intermediate difference for dit n should be
incremented by one. In other words, a G signal indicates that
the carry denoted by Y in Example 1 should occur to offset
the unnecessary borrow denoted by data transfer W 1n
Example 1. For elaboration, consider the example set forth
in Table 13 below. Table 13 shows two consecutive dits in
a subtract operation, the LSD and the dit of next-higher
significance, dit n. The value of B, ., 1s 3, the value of B

1s 1, the value of A, ., 1s 1, and the value of A, 1s 2.

Fi

TABLE 13
Step 1 Step 2 Step 3 Step 4 Step 5
n LSD n LSD n LSD n LSD n LSD
B 1 3 11 3 10 13 10 13 10 13
-A 2 1 2 1 2 1 2 1 2 1
Int. Diff. — — — 2 12 3 2

The first step of Table 13 shows the two dits to be
subtracted. Step 2 1llustrates the borrow 1nto dit n from the
next-higher dit, dit n+1 (not shown), which results in a value

of 11 for B, . The value of 11 1s the base four representation
of 5 (ie.,, 5 MOD 4), and 5 is the result of adding the

borrowed four to the original value (1) of B,. Step 2

5

10

15

20

25

30

30

The fourth step of Table 13 1llustrates the result of ditwise
subtraction on dit n and the LSD after the borrow assump-
tions have been applied. The mntermediate difference for the
LSD generates a carry because the result of the subtraction
results 1n a value for the LSD that 1s greater than the base.
The intermediate difference for the LSD 1s 12, which 1s the
base four representation of 6.

Step 5 1illustrates the carry from the LSD back into dit n.
This carry corresponds to data transfer Z shown 1n Example
1. This carry will correct the initial borrow out of dit n that
was 1llustrated in Step 1, and depicted as data transfer X 1n
Example 1. In Step 5, the carry results in 1) the intermediate
difference for dit n being incremented by one; and 2) the
intermediate difference for the LSD being decremented by
four, which 1s the base. The borrow from dit n into the LSD
is unnecessary any time that B,>A, (B, 2A, in the case of
the LSD). Accordingly, the present invention sets the G bit
to generate a carry any time B, >A (B, Z2A in the case of
the LSD), thereby correcting unnecessary Assumption I
borrows.

The P signal, for subtraction, means the same thing as it
does for addition. That 1s, whether or not a carry will be

ogenerated out of dit n depends on whether there 1s a carry
into dit n. P will be set when B, =A .

The state of the H, P, and G bits for each combination of
inputs mto any dit of the present invention not acting as an
LSD 1s set forth 1n Table 14. FIG. 9 illustrates a gate 900 that
does not ever act as an LSD and whose outputs always
conform to Table 14. FIGS. 10 and 10 and 11 1illustrate that
the outputs of the circuits of the present mvention that
implement subtraction and borrow propagate logic for
[L.SD’s that receive a borrow-in also conform to Table 14.

TABLE 14

B A ~A Pre-Corr. H P G
B (1-of-4) A (1-of-4) ~A (1-of-4) Diff(B-A) Dif B,<A, B,=A, B,>A,
0 1000 0 1000 3 0001 3 0 0 1 0
1 0100 0 1000 3 0001 O* 1 0 0]
2 0010 0 1000 3 0001 1* 2 0 0]
3 0001 0 1000 3 0001 2* 3 0 0 1
0 1000] 0100 2 0010 2 -1 1 0 0
1 0100] 0100 2 0010 3 0 0 1 0
2 0010] 0100 2 0010 O* 1 0 0 1
3 0001 1 0100 2 0010 1* 2 0 0 1
0 1000 2 0010] 0100 1 -2 1 0 0
1 0100 2 0010] 0100 2 -1 1 0 0
2 0010 2 0010] 0100 3 0 0 1 0
3 0001 2 0010 1 0100 O* 1 0 0 1
0 1000 3 000 0 1000 0 -3] 0 0
1 0100 3 000 0 1000 1 -2 0 0
2 0010 3 0001 0 1000 2 -1 0 0
3 0001 3 0001 0 1000 3 0 0 1 0

therefore corresponds to the application of Assumption Il to 35 It is apparent from Table 14 that the H signal is set for each

dit n, which 1s depicted as data transfer W in Example 1.
Step 2 also corresponds to the application of Assumption I
to dit n+1 (not shown).

The third step of Table 13 1llustrates the borrow 1nto LSD
from dit n and shows that such borrow has two effects. First,
the borrow decrements one from B_, resulting 1in a value of
10 for B . This first effect corresponds to the application of
Assumption I to dit n. Second, the borrow 1llustrated 1n Step
3 also results 1n the addition of four to the original value of
B, <, With a resultant value of 7, which has a base four
representation of 13. This second effect corresponds to the
application of Assumption II to the LSD. Both effects are
illustrated by data transfer X in Example 1.

60

65

situation where B, <A , so that every instance where the
“Diff” column of Table 14 shows a negative number, a
borrow 1s 1ndicated because the H bit 1s set for that row.
Table 14 also shows that any time the “Pre-corr. Diff”

column of Table 10 indicates a carry, the G bit 1s set 1n Table
14 for that row. That 1s, G 1s set every time B, >A .

Table 15 1llustrates the outputs of the four’s complement
subtraction logic paths for gates 910 and 920, when there 1s
no borrow propagated into the LSD. FIGS. 10 and 11
illustrate Gates 910 and 920, respectively. The outputs of the
four’s complement logic paths of Gates 910 and 920,
comprising the pre-corrected intermediate difference, H, P,

31

and G, conform to Table 15.

US 6,334,136 Bl

TABLE 15

B A ~A + 1 Pre-Corr. Difft
B (1-of-4) A (1-0of-4) ~A ~A+1 (1-0of-4) Df (B-A) (B-A) H
0 0001 0 0001 3 4 0001* 0* 0
1 0010 0 0001 3 4 0001* 1% 1
2 0100 0 0001 3 4 0001* 2% 2
3 1000 0 0001 3 4 0001* 3% 3
0 0001 1 0010 2 3 1000 3 -1
1 0010 1 0010 2 3 1000 0* 0
2 0100 1 0010 2 3 1000 1% 1
3 1000 1 0010 2 3 1000 2* 2
0 0001 2 0100] 2 0100 2 -2
1 0010 2 0100] 2 0100 3 -1
2 0100 2 0100] 2 0100 0* 0
3 1000 2 0100 1 2 0100 1* 1
0 0001 3 1000 0 1 0010 1 -3
1 0010 3 1000 0 1 0010 2 -2
2 0100 3 1000 0 1 0010 3 -1
3 1000 3 1000 0 1 0010 0* 0

Table 15 shows that the H signal 1s set for four’s comple-
ment addition any time that (B+1)<A. If B=A-1, then the P
signal 1s set. Table 15 also shows that the G signal 1s set
when A=B. These three conditions for setting H, P, and G are
true, and differ from the conditions shown in Table 11,
because four’s complement addition increments the three’s
complement before adding the minuend to the subtrahend.
Table 15 shows that, 1n all cases where a carry 1s generated,
the G signal 1s set for four’s complement addition.

In sum, the Sum/Bypass Logic gates, 900, 910, 920 utilize
N-nary logic to perform both addition and subtraction within
one gate. FIG. 9 1llustrates an embodiment of a Level One
combined sum/HPG gate 900 that implements the add, carry
propagate, subtract (three’s complement), and borrow
propagate functions, discussed above, into one gate. This
cgate 900 may be used for any dit that will never act as the
LSD for an operation. Gate 900 always performs three’s
complement arithmetic for subtraction and always performs
straight addition. FIGS. 10 and 11 illustrate LSD Sum/
Bypass Logic gates 910, 920 that implement dual-mode
addition logic (straight and increment), carry propagate
logic, dual-mode subtraction logic (three’s complement and
four’s complement), and borrow propagate functions. It will
be noted from FIGS. 9, 10, and 11 that the inputs into the
Level One gates 900, 910, 920, at the least, comprise two
two-bit (one-dit) operands, A and B. Gates 900 and 910 each
receive a 1-of-3 ADD/SUB/PASS control input while gate
920 receives a 1-of-5 ADDS/ADD1632/SUBS/SUB1632/
PASS control mput. The value of these control signals
determine whether the gate 900, 910, 920 will perform
subtraction or addition. FIGS. 10 and 11 further illustrate
that Gates 910 and 920 also receive as mputs a 1-of-2 Cin
input control, which the gates 910, 920 use to determine
whether an LSD gate should perform straight or increment
addition and whether an LSD gate should perform three’s or
four’s complement subtraction.

The combined add/subtract function of the Sum/Bypass
Logic gates 900, 910, 920 i1s performed as follows. The
standard adder/subtractor/bypass/HPG gate 900 comprises
four sets, referred to as “nodes”, of the four wires compris-
ing the B imput, B;, B,, B,, B,. Each of the other two
adder/subtractor/bypass/HPG gates 910, 920 comprise five
sets of the four-wire nodes comprising the B input, since
they must have the capability to perform four’s complement
subtraction. In gate 900, cach of the wires A5, A, A, A,, for
input A are connected to two separate nodes of the B input

25

30

35

40

45

50

55

60

65

R e T v T e T e e Y O T O T o T o

32

wires. In FIGS. 9 through 11, each node of B input wires has

P G
0]
0]
0 1
0 1
1 0
0 1
0 1
0 1
0 0
1 0
0 1
0 1
0 0
0 0
1 0
0 1

been labeled with the conceptual value of the A input
assoclated with that node for the addition function. For
instance, the leftmost node of B mput wires 1n FIGS. 9
through 11, corresponding to an addition value of “0” for A,
1s labeled as the “+0” node. From left to right in FIG. 9, the
succeeding nodes of B 1nput wires have been labeled as the
“+17,“+27, “+3” blocks, respectively. Finally, the remaining
nodes of B mputs for Gates 910 and 920 have been labeled
as Block “+4.”

In gate 910, the value of the ADD/SUB/PASS input will
determine which A mput line corresponds to each node of B
input wires. For 1nstance, 1n gate 900, although the A, wire
1s coupled to the “+0” node for addition, the three’s comple-
ment of zero, A;, 1s coupled to the “+0” node for subtraction.
FIG. 9 and Tables 8 and 14 illustrate that this novel scheme
produces the desired results for both addition and subtrac-
tion. For 1nstance, consider the add and subtract functions

for A,, which corresponds to an A input value of zero. If the
ADD value 1s enabled for the ADD/SUB selector, the A,
input value will be NAND ed with the “+0” node B 1nputs.
Thus, the value of B will be added to zero. In contrast, for
subtraction the A, mnput 1s NAND’ed with the “+3” node of
B 1nputs, representing the three’s complement of A. If SUB
value 1s enabled for the ADD/SUB selector, the three’s
complement of zero will therefore be added to the B input.

For gate 910, the values of the ADD/SUB/PASS 1nput and
the Cin input will determine which A input line corresponds
to each node of B mput wires. For gate 920, this correspon-

dence 1s determined by the values of the ADDS8/ADD1632/
SUBS8/SUB1632/PASS mput and the Cin mnput. In Gates 910
and 920, the A, 1nput 1s NAND ed with the “+4” node of B
inputs, representing the four’s complement of A5, when an
LSD subtraction with no borrow 1n 1s 1ndicated.
Sum/Bypass Logic Configuration

FIG. 14 illustrates that the 16-dit operands are each
processed by at least one of the present invention’s 101 six
functional blocks: MIXL, LOW, MIXH, HIGH, TOPO0, and
TOP1. The Sum/Bypass Logic for each block contains three
standard adder/subtractor/bypass/HPG gates 900 to process
the three most significant dits within each block. Within each
block except the TOP block, an LSD gate, 910 or 920, 1s
placed to process the least significant dit within each block.
The LSD of the MIXL block is processed by gate 910a. The
LSD of the LOW block is processed by gate 9105. The LSD
of the MIXH block 1s processed by gate 910c. The LSD of
the HIGH block 1s processed by the specialized LSD gate

US 6,334,136 Bl

33

920. The LSD of the TOP0 and TOP1 blocks are processed
by additional standard adder/subtractor/bypass/HPG gates
900 and 900g, respectively. The Sum/Bypass Logic for the
LSD’s of the TOP sub-blocks does not comprise LSD gates
because neither TOPO nor TOP1 will ever process the LSD
for an operation category. Instead, TOP will only ever
process the sixteen most significant dits of an EXTENDED
operation.

In addition to the adder/subtractor/bypass/HPG gates
9004-910z, 910a-911c, 920 discussed above, FIG. 14 1llus-
frates that the Sum/Bypass Logic also comprises a TOP
block compression buffer 715. This TOP block compression
buffer 713 1s 1llustrated in FIG. 15 and 1s used as part of the
present invention’s logic that determines whether the HIGH
block’s functional HPG indicator should be forced to a
HALT or should be allowed to propagate, 1f appropriate, a
carry into the TOP block. FIG. 15 illustrates that the TOP
block compression buffer receives as an iput the ADD/
SUB/PASS control input for the TOP block. If the ADD or
SUB wire 1s asserted, then the TOP block will not be
bypassing, and the PASS output wire 1s asserted. In contrast,
it the TOP block’s PASS control input wire 1s asserted, the
cgate 715 asserts the Pass output wire. FIG. 14 1llustrates that
this PASS/PASS output 1s passed from the TOP block
compression buffer 715 to the HPG Logic, discussed below.
(The compression feature is not necessary to the practice of
this invention, although such compression 1s an efficiency
feature. The following discussion 1illustrates that the HPG
Logic may also utilize 1-0f-3 ADD/SUB/PASS indicators to
perform the same basic function as the PASS/PASS indicator
generated by Buffer 715).

HPG Logic—Overview

Generally, the HPG Logic performs block HPG process-
ing. In the TOP block, the intermediate sums generated by
the Sum/Bypass Logic are merely held by the HPG Logic in
buffers for later use by the next level of logic, the Result
Logic. In contrast, handling of the carry logic in the lower
(less significant) blocks of the HPG Logic is complicated by
the need to support various result-merging modes. In
particular, 1t 1s necessary to inhibit carry propagation 1nto
any adder section that 1s bypassing, while allowing carry
propagation to occur between sections during 16- and 32-bit
operations.

FIG. 14 illustrates that the HPG Logic for blocks that only
act as the least significant block of an operation (1.e., LOW,
MIXL, and MIXH) comprise adder cells. Because a carry
ogenerated by the mtermediate sum of a dit of lesser signifi-
cance can never propagate into the LSD of an operation, the
ultimate result of such blocks may be generated in the
second logic level. In contrast, the TOP block may receive
a carry propagated by the HIGH block.

Even more complicated i1s the processing for the HIGH
block. In some circumstances (i.e., HIGH operation) the
HIGH block acts as the least significant block for an
operation. In those circumstances, the ultimate result may be
calculated 1n the second logic level. The HPG Logic for the
HIGH block therefore comprises adder gates. However, in a
16- or 32-bit operation, a carry may propagate 1nto the
HIGH block from the LOW block. For this reason, addi-
tional processing for the HIGH block occurs in the Result
Logic, discussed below.

Further complicating the HPG Logic, the carry out of the
Merge Adder 101 must reflect the appropriate size of the
operation being performed.

Level Two Logic Gates

FIG. 14 1llustrates that the HPG Logic comprises adder

cgates 931a—d, 932a—e, 930a—-h, 933a—, block HPG gates,

10

15

20

25

30

35

40

45

50

55

60

65

34

714a-b, 716, 952a—b, 953a—b, 954a—f, a compression buller
715b, a HIGH/MIXH mux 718, and other buffers 950a—/,
951a—c. The adder gates 930, 931, 932, 933, are illustrated
in FIGS. 18, 18B, 18A, and 18C, respectively. The block
HPG gates 952, 953, 954, 714, 716, are 1llustrated in FIGS.
14A, 15A, 16, 17, and 13, respectively. The compression
buffer 715 1s illustrated 1n FIG. 15. The HIGH/MIXH mux
718 1s 1llustrated 1n FIG. 19. The other buffers 950, 951 are
illustrated m FIGS. 12 and 12A, respectively.

As stated above, the HPG Logic for the TOP block
involves storing the intermediate sum for each dit in a sum
buffer 950. FIG. 14 illustrates that Gates 900 through 900¢
route their intermediate sum values to Buffers 950¢ through
950/ respectlvely The operation of the sum buffer 950
illustrated 1n FIG. 12 1s simply to store a 1-of-4 value
without disturbing its value.

FIG. 14 1illustrates that the HPG Logic comprises a
compression buifer 7155, which compresses the ADD/SUB/
PASS control input for the MIXL block mnto a 1-of-2 PASS/

PASS value. This PASS/PASS value 1s passed to Result
Logic gates 720a—720. The compression buiter 7135 1s 1llus-
trated in FIG. 135.

FIG. 14 1illustrates that HPG Logic processing for the
MIXL, LOW, MIXH, and HIGH blocks differs from that for
the TOP block. This 1s true because a carry from a block of
lesser significance will never propagate into the MIXL,
LOW, or MIXH blocks, nor into the HIGH block when a
HIGH operation 1s being performed. For this reason, the
final output values for Dits 00 through 7 and for Dits 8
through 15 are generated at the HPG Logic level. The final
result for Dits 0 through 7 for a MIXL operation are
generated by Gates 931a, 932a, and 9304, respectively. The
final result for Dits 0 through 7 for a LOW operation are
generated by Gates 931b, 932b, and 930b, respectively. The
final result for Dits 8 through 15 of a MIXH operation are
ogenerated by Gates 931c, 932¢, and 930c, respectively. The
final result for Dits 8 through 15 of a HIGH operation are
ogenerated by Gates 931d, 932d, and 930d, respectively. The
operation of gates 930 and 932 1s set forth below in the
section entitled “Result Logic Incrementor Gates.” Because
cgate 931 1s only used 1n the HPG Logic, 1ts operation 1s set
forth immediately below.

Gate 931 increments the value of a particular dit of the
intermediate sum, 1if there 1s a carry or propagate into said
dit. This logic utilizes the HPG signals generated by the
Sum/Bypass Logic to determine whether to increment the
intermediate sum values generated by Gates 910a— and
900a—I. FIG. 18B 1llustrates the simplest incrementor gate.
FIG. 18B illustrates that the mnputs into the simple incre-
mentor gates are the 1-of-4 intermediate sum for the dit of
interest, computed 1n the first level of logic, and one 1-01-3
HPG signal, computed 1n the first logic level for the dit
immediately less significant that the dit whose intermediate
sum 1S being processed by the simple mmcrementor gate 931.
The output of the simple incrementor gate 931 1s a final
1-0f-4 sum for the dit of interest. (Resolution of whether the
LOW vs MIXL and HIGH vs. MIXH final result should be
used 1s determined 1n the Result Logic by gates 720 and
719).

For 1llustrative purposes, the operation of gate 931 1s
presented 1n the context of Dit 1 processing. FIG. 18B
illustrates that SUM (for Dit 1) and the HPG signal for the

LSD, HPGO, are mnputs into the simple incrementor gate
931a. Gate 9314 15 1llustrated 1n FIG. 18B. The HPGO signal

1s a 1-of-2 signal generated by the Level One LSD gate,
which 1s labeled as 910a 1n FIG. 14. The value of the HPG(

signal indicates whether a Halt, Propagate, or Generate

US 6,334,136 Bl

35

signal 1s generated by the LSD. FIG. 18B 1llustrates that the
simple incrementor gate 9314 takes this 1-o0f-3 HPGO signal
and the 1-of-4 SUM signal and increments SUM by one, 1f
the GO signal 1s asserted, to generate the final output for dit
1, DIT1. Otherwise, a carry into the dit of interest, Dit 1, has
not occurred. Accordingly, when the HO or PO wires are
asserted, the simple incrementor gate 931a does not incre-
ment the value of SUM, but merely passes 1t through as the
final output, DITX.

Our discussion of HPG Logic gates now turns to the sum
buffers 950a—950d. FIG. 14 illustrates that the HPG Logic
LSD of each of the MIXL, LOW, MIXH, and HIGH blocks
operate differently than the three most significant dits of
cach said block. The intermediate sum generated by the
Sum/BypaSS Logic for each said block 1s stored by the HPG
Logic 1in a sum bufter 9504, 9505, 950c, 9504, respectwely

FIG. 14 1illustrates that the HPG Logic comprises, in
addition to the logic gates already discussed, various block
HPG gates 952a—-b, 953a—b, 954a—{, 714a—b, and 716. The
HPG Logic computes block-level HPG signals. This step 1s
executed to reduce the complexity of the “carry in” com-
putation for each block of dits that occurs 1n the third level
of logic.

The basic function of the block HPG gates 1s to perform
“block HPG™ logic to determine if a carry into a particular
dit of the intermediate sum will occur. This block HPG logic
takes 1nto account any carry into the dit of interest that is
ogenerated by dits of lesser significance within the same
block. The block HPG signals generated by the HPG Logic
are used by the Result Logic to do two things. First, the
Result Logic determines 1f the intermediate difference for
cach dit should be incremented before final output. The
block HPG signals used to do this are called “functional”
HPG 1ndicators. Second, the Result Logic uses the block
HPG 1ndicators to generate “architectural” HPG indicators
that are passed to the control logic’s status register to
indicate whether or not a carry was generated by the
requested operation.

The ciiciency of block-level HPG logic 1n the second
logic level 1s revealed when the carry-in calculation for each
dit 1s examined. Referring back to Equ. 1, above, the Carry
mto a bit, C 1s calculated as:

Fi—1?

C._ 1=G n-1)|P(n-1)G(n-2)|P(n-1)P(n-2)G(n-3)| . . . |P(n-1)P(n-
2) ... P(1G(0). (5)

Equation 5 1llustrates that any carry can theoretically be
determined from propagate and generate signals using a
single level of logic. To do so, however, becomes 1mprac-
tfical for any substantial adder because the size of the carry
cgate becomes impractical for one level of logic. For
instance, 1n a 32-bit adder, Equation 5 indicates that 31 AND
terms would be required with the largest term containing 31
literals. To reduce the complexity of the carry computation,
the Second Level of the present invention constrains the
scope of the computation to blocks of 4 dits each. This
simplifies the gates required in return for the cost of adding
more levels of logic to the critical path.

The block HPG gates of the TOP block are 1illustrated in
FIG. 14 as 952a—b, 953a-b, and 954¢—f. FIG. 14 illustrates
that a four-input block HPG gate 954 1s used to process the
block HPG indicator for the TOPO (954¢) and TOP1 (954f)
sub-blocks. The block HPG indicator generated by gate 954¢
1s used by the Result Logic to determine whether to incre-
ment each intermediate sum dit of the TOP1 block before
final output. FIG. 14 illustrates that gate 954 1s also used in
the MIXL block (954a), LOW block (954b), the MIXH
block (954c¢), and the HIGH block (954d). The lower block

10

15

20

25

30

35

40

45

50

55

60

65

36

gates 954a—d and the TOP1 gate (954/) generate block HPG
indicators that are used for the same purpose—they are used
by the carry out gate 970 to determine the architectural HPG
indicator for the requested operation. (FIG. 14 illustrates
that, in addition to its sum increment function, the HPG
indicator generated by gate 954¢ 1s also used by the carry out
gate 970 to determine the architectural HPG indicator).

FIG. 14 1llustrates that the remaining block HPG gates of
the TOP block are of varying sizes. These gates 952, 953 are
smaller and are used within a block to compute the carry into
dit positions not on block boundaries. The smallest Level
Two HPG gate 952 calculates the carry into a particular dit
based on the HPG signals for the two dits of lesser signifi-
cance within the sub-block block in which the dit of interest
lies. FIG. 14A further illustrates this two-mput Level Two
HPG gate 952. The two-mput Level Two HPG gate 952
receives as mputs two 1-0f-3 HPG signals. The first signal,
noted as HPG1 1n FIG. 14A, comprises three wires labeled
as H1, P1, and G1. FIG. 11 illustrates that the HPG1 signal
delivers to gate 952 the HPG signal for the dit immediately
adjacent (less significant) than the dit of interest. The second
HPG mput mto the two-input Level Two HPG gate 952,
noted as HPG0 1n FIG. 14A, comprises three wires labeled
as HO, PO, and GO. FIG. 11 illustrates that the HPGO0 signal
delivers to gate 952 the HPG signal from the second dit less
significant than the dit of interest. FIG. 14A 1llustrates that
if the H1 signal 1s asserted, signifying a halt signal from the
adjacent dit, then the HALT output signal 1s asserted. If the
G1 signal 1s asserted, signifying a generate signal from the
adjacent dit, then a GEN signal output signal 1s asserted. If
the P1 mput signal 1s asserted, then the HPGO signal must be
evaluated. FIG. 14A illustrates that if P1 and HO are
asserted, a halt signal has propagated, from the dit of second
lesser significance, across the immediately adjacent dit. In
such a case, the two-mput block HPG gate 952 asserts the
HALT output signal. If P1 and G0 are asserted, then a
generate signal has propagated, from the dit of second lesser
significance, across the immediately adjacent dit. In such a
case, the two-mnput block HPG gate 952 asserts the GEN
signal output. If P1 and PO are both asserted, then a PROP
output 1s asserted by gate 952.

FIG. 14 1llustrates that the remaining block HPG gates of
the TOP block are of varying sizes. These gates 952, 953 are
smaller and are used within a block to compute the carry into
dit positions not on block boundaries. The smallest Level
Two HPG gate 952 calculates the carry into a particular dit
based on the HPG signals for the two dits of lesser signifi-
cance within the sub-block block 1in which the dit of interest
lies. FIG. 14D further illustrates this two-input Level Two
HPG gate 952. The two-mnput Level Two HPG gate 952
receives as mputs two 1-0f-3 HPG signals. The first signal,
noted as HPG1 1n FIG. 14D, comprises three wires labeled
as H1, P1, and G1. FIG. 11 illustrates that the HPG1 signal
delivers to gate 952 the HPG signal for the dit immediately
adjacent (less significant) than the dit of interest. The second
HPG 1nput into the two-input Level Two HPG gate 952,
noted as HPGO 1 FIG. 14D, comprises three wires labeled
as HO, PO, and GO. FIG. 11 1illustrates that the HPGO signal
delivers to gate 952 the HPG signal from the second dit less
significant than the dit of interest. FIG. 14D 1illustrates that
if the H1 signal 1s asserted, signifying a halt signal from the
adjacent dit, then the HALT output signal 1s asserted. If the
G1 signal 15 asserted, signifying a generate signal from the
adjacent dit, then a GEN signal output signal 1s asserted. If
the P1 mput signal 1s asserted, then the HPGO signal must be
evaluated. FIG. 14D 1illustrates that if P1 and HO are

asserted, a halt signal has propagated, from the dit of second

US 6,334,136 Bl

37

lesser significance, across the immediately adjacent dit. In
such a case, the two-mnput block HPG gate 952 asserts the
HALT output signal. If P1 and G0 are asserted, then a
generate signal has propagated, from the dit of second lesser
significance, across the immediately adjacent dit. In such a
case, the two-mnput block HPG gate 952 asserts the GEN
signal output. If P1 and PO are both asserted, then a PROP
output 1s asserted by gate 952.

FIG.15A 1llustrates that the operation of the three-input
block HPG gate 953 1s essentially the same as that of the
two-1nput block HPG gate 952 discussed above, except that
the three-input block HPG gate 953 receives as mputs three
1-01-3 HPG signals 1nstead of two. Similarly, the four-input
Level Two HPG gate 954 1llustrated in FIG. 16 receives four
1-0f-3 HPG 1nputs. As with the two-input gate 952, the
three-input 953 and four-input 954 block HPG gates gener-
ate a HALT output if they encounter an H mput, generate a
GEN output 1f they encounter a G input, and go on to
evaluate the HPG signal for a dit of lesser significance if
they encounter a P mnput.

Before turning to a discussion of the lower block HPG
gates, one should note an additional feature of the TOP
block’s block HPG processing. The HPG signal generated
for Dit 8 by Sum/Bypass Logic gate 900 and for Dit 12 by
Sum/Bypass Logic gate 900g are stored in HPG buffers as
well as being processed by block HPG gates. For the
carry-in calculations for Dit 9 and Dit 13, only a single HPG
indicator need be consulted. Accordingly, the Dit 8 HPG
indicator 1s stored in Buifer 9514 for use by the Result Logic
to determine whether the Dit 9 intermediate sum should be
incremented before final output. Similarly, the Dit 9 HPG
indicator 1s stored 1n Buifer 9515 for use by the Result Logic
to determine whether the Dit 13 intermediate sum should be
incremented before final output. FIG. 12A 1llustrates that the
HPG buffer merely passes through its 1-of-3 1nput as its
output.

Our discussion now turns to the remaining block HPG
cgates 714a, 714b, 716 of the lower blocks. Handling of the

carry logic in the lower blocks (MIXL, LOW, MIXH,
HIGH) 1s complicated by the need to support the result-
merge requirements of the six operation categories sup-
ported by the present invention. In particular, i1t 1s necessary
to 1nhibit carry propagation in the functional HPG indicators
ogenerated by Gates 714a, 714b, and 716 when such 1ndica-
tors are passed to a higher block that 1s bypassing.
Coincidentally, however, such indicators must allow carry
propagation, when necessary, for 16-bit and 32-bit opera-
tions. This problem 1s handled, 1n part, by incorporating the
bypass control mto the block-HPG gates shown 1n FIGS. 13
and 17. The two block HPG gates shown therein, 716 and
714, respectively, are basically identical except that gate 716
receives a compressed PASS/PASS 1nput from the first-level
compression bufter 7154, whereas gate 714 receives a 1-01-3
ADD/PASS/SUB 1nput. In either case, the gate 714, 716
ogenerates a HALT output when the PASS wire of such 1nput
1s asserted. For mstance, FIG. 14 illustrates that gate 714a
generates the functional HPG indicator from the LOW block
to the HIGH block. One would expect this HPG signal to be
set to HALT any time the HIGH block 1s bypassing. Further
examination of FIG. 17 shows this to be true. FIG. 14
illustrates that the control for the HIGH block, ADD/SUB/
PASS HIGH, 1s an input into gate 714a. FIG. 17 illustrates
that, 1f the HIGH block’s control 1s set such that the PASS
wire is asserted, then the output from gate 714a is a H(alt)
indicator. Otherwise, the gate 714a goes on to evaluate the
HPG signals for each dit, beginning with the MSD, within
the LOW block. If an H indicator 1s met, then an H output

10

15

20

25

30

35

40

45

50

55

60

65

33

1s generated. If a G indicator 1s met, then a G output 1s
cgenerated. If a P indicator 1s met, the HPG signal for the dit
of next-lesser significance within the LOW block 1s evalu-
ated. If all dits 1n the LOW block have generated a P
indicator, then gate 714a generates a P output as well.
FIG. 14 1llustrates that gate 714b generates the block HPG

indicator, Clow.top, 1n the same manner. Whereas gate 714a
oenerates the functional HPG indicator, from the LOW
block as in input to the HIGH block, gate 714b generates the
block HPG 1ndicator, Clow.top, from the LOW block to the

TOP block. The latter 1s necessary because incrementing of
the mtermediate sum, 1f necessary, for the TOP block dits

does not occur until the third logic level, much as described
in the Adder Patent. For this reason, the HIGH block must

also pass a functional HPG indicator to the TOP block. FIG.
14 illustrates that gate 716 generates the HIGH-to-TOP
functional HPG indicator, Chigh.top. If gate 716 receives a
PASS indicator from gate 7154, then the TOP block 1is

bypassing. FIG. 13 1llustrates that, 1n such a case, gate 716
generates a H(alt) output. Otherwise, when the TOP block is
either adding or subtracting for the selected operation (i.e.,

EXTENDED), then gate 716 generates a block HPG signal
as described above, examining the HPG indicator for the
MSD of the HIGH block first, and examining the HPG
indicators for successively less significant dits within the
HIGH block as long as a P indicator 1s encountered.

Our discussion of the HPG Logic gates now turns to the
portions of the MIXL/LOW and MIXH/HIGH result reso-
lution logic that takes place 1n the second logic level. FIG.
14 1llustrates that the adder 101 does not determine until the
final logic level whether to form Daits 0 through 7 of the final
result from the MIXL intermediate sum or from the LOW
intermediate sum. Similarly, FIG. 14 also 1llustrates that the
same determination takes place at the third logic level for the
MIXH and HIGH intermediate results. In order to allow this
determination to be made at the third level, Gates 715b and
718 perform mux logic at the second level.

FIG. 15 1illustrates the compression buifer 715 discussed
above. FIG. 14 1llustrates that the output from compression
buffer 715b 1s an input 1nto the third level logic gates for the
bits 0 through 7 of the final result. Gate 7155 acts as a simple
1-0f-2 mux that selects the result of the MIXL section (1.e.,
asserts the PASS output wire) when the ADD/SUB/PASS
MIXL control 1s set to either ADD or SUB. Otherwise, gate
715b will assert the PASS output wire, which will be used
by gate 720 of the result logic to select the intermediate
result of the LOW block as the final result of the selected
operation.

FIG. 19 1llustrates the mux logic gate 718 used to select
between the intermediate results of the MIXH and HIGH
blocks 1n forming 8 through 15 of the final result. Gate 718
sclects the intermediate result of the MIXH block, by
asserting the MIX output wire, when the ADD or SUB wires
of the MIXH control, ADD/SUB/PASS MIXH, are asserted.
If the MIXH control’s PASS wire 18 asserted, then the 1-of-5
control for the HIGH block must be consulted. If an add (any
size) or subtract (any size) is indicated by the HIGH block
control, ADDS8/ADD1632/SUBS8/SUB1632/PASS HIGH,
then gate 718 selects the intermediate sum of the HIGH
block by asserting the ADD wire, which indicates that the
final result will be the intermediate result of the HIGH block
after 1t 1s added to any carry generated by the LOW block.
If the PASS wires of the controls for both the MIXH and
HIGH blocks are asserted, then gate 718 selects to pass the
HIGH result.

Result Logic

The final logic level, the Result Logic, performs two basic

functions. For the least significant dits of the final result

US 6,334,136 Bl

39

(Dits 0 through 15), the Result Logic selects either the MIXL
or LOW intermediate results and selects either the MIXH
intermediate result or selects the HIGH intermediate result
and 1increments that result, 1f necessary, with a carry from the
LOW block. For the TOP block, the Result Logic uses
incrementor gates to determine whether there 1s a carry into
a particular dit of the intermediate sum and to increment the
value 1n the dit, if necessary. The gates that perform the latter
function will be discussed below first.

Result Logic Incrementor Gates

The incrementor gates 930, 932, and 933 of the final level
are shown 1n FIGS. 18, 18B, and 18C. The inputs mnto the
incrementor gates 930, 932, and 933 are the 1-of-4 inter-
mediate sum for the dit of interest, computed 1n the first level
of logic, and up to three 1-o0f-3 block HPG signals computed
in the second level. The output of the incrementor gates 930,
932, and 933 1s a final 1-of-4 sum for the dit of interest. In
the third logic level, if there 1s a carry into the dit position
for the dit of interest, then 1 1s added to the intermediate sum
to form the final sum. A carry into the dit of interest is
signified by a generate 1n an adjacent dit or a more distant
ogenerate propagated through adjacent dits. If there i1s no
carry 1n, then the intermediate sum for the dit of interest is
passed through the incrementor gates 930, 932, 933 unmodi-
fied.

FIG. 18A 1llustrates an incrementor gate 932 that 1s
slightly more complex than the simple incrementor gate 931,
discussed above in connection with the HPG Logic, because
it takes two block HPG signals as inputs, rather than one.
Such gate 932 i1s referred to herein as the “two-block
incrementor gate.” The two-block incrementor gate 932
receives as inputs the intermediate sum, SUM, for a par-
ticular dit, as well as two block HPG signals, HPG0 and
HPG1. HPG1, comprising H1, P1, and G1, 1s the 1-0f-3
functional block HPG signal generated by the HIGH block,
Chigh.top. HPGO, comprising HO, PO and G0, is the 1-of-3
HPG signal for the LOW block, Clow.top. FIG. 18A 1llus-
trates that the two-block incrementor gate 932 first evaluates
the HPG1 signal. If H1 1s asserted, then the intermediate
sum, SUM, for the dit of interest 1s simply passed through
as the final output, DITX. If G1 1s set, then a carry has been
generated by the block of lesser significance closest (HIGH)
to the block in which the dit of interest lies (TOP). FIG. 18A
llustrates that, 1f G1 1s asserted, then the mntermediate sum,
SUM, 1s incremented by one before being delivered as the
final output for the dit of interest, DITX. If P1 1s asserted,
then SUM will only be incremented if a carry from the

next-further block (i.e., LOW) propagates across the HIGH
block to dit of interest. HPG0 must therefore be examined if
P1 1s asserted. FIG. 18A 1llustrates that when P1 1s asserted,
the two-block incrementor gate 932 increments the mnterme-
diate sum, SUM, 1f GO 1s asserted. If P1 and either HO or PO
are asserted, then the two-block incrementor gate 932 sim-
ply passes SUM through as the final output, DITX.

FIG. 18 illustrates that similar processing occurs 1n 1ncre-
mentor gate 930, referred to herein as the “three-block
incrementor gate.” The three-block incrementor gate 930 1s
slightly more complex than the two-block incrementor gate
932 because it receives three block HPG signals as inputs,
rather than two. The three-block incrementor gate 930
receives as inputs the 1-of-4 intermediate sum, SUM, for the
dit of interest. FIG. 18 illustrates that SUM 1s a 1-0f-4 1nput
comprising 4 wires: SUM,, SUM,,, SUM,, and SUM,,. FIG.
18 also illustrates that gate 930 also receives as mputs three
block HPG signals, HPG0, HPG1, and HPG2. HPG2, com-
prising H2, P2, and G2, 1s the 1-of-3 block HPG signal

generated by the dit(s) of lesser significance within the TOP

10

15

20

25

30

35

40

45

50

55

60

65

40

sub-block in which the dit of interest lies. HPG1, comprising
H1, P1, and G1, 1s the 1-of-3 block HPG signal for the
immediately adjacent block of lesser significance, HIGH.
HPGO, comprising HO, PO and GO, is the 1-of-3 block HPG
signal for the LOW block. FIG. 18 illustrates that the
three-block incrementor gate 930 first evaluates the HPG2
signal. If H2 1s asserted, then the intermediate sum, SUM,
for the dit of interest 1s simply passed through as the final
output, DITX. If G2 1s asserted, then a carry has been
ogenerated by the HIGH block. FIG. 18 1llustrates that, 1f G2
1s asserted, then the intermediate sum, SUM, 1s incremented
by one before being delivered as the final output for the dit
of interest, DITX. If P2 1s set, then SUM will only be
incremented 1f a carry has generated mto the adjacent dit or
has propagated from a more distant dit across all intervening
dits. HPG1 must therefore be examined if P2 1s asserted.
FIG. 18 illustrates that, if P2 1s asserted, the three-block
incrementor gate 930 next evaluates the HPG1 signal. If H1
1s asserted, then the intermediate sum, SUM, for the dit of
interest 1s simply passed through as the final output, DITX.
If G1 1s set, then a carry has been generated by the block of
lesser significance closest to the block in which the dit of
interest lies. FIG. 18 illustrates that, if G1 1s asserted, then
the mtermediate sum, SUM, 1s incremented by one before
being delivered as the final output for the dit of interest,
DITX. If P1 1s set, then SUM will only be imncremented 1t
there 1s a carry mto the dit of interest. HPG0 must therefore
be examined if P1 is asserted. FIG. 18 illustrates that when
P1 1s set, the three-block incrementor gate 930 increments
the intermediate sum, SUM, 1f GO 1s set. If P1 and either HO
or PO are set, then the three-block incrementor gate 930
simply passes SUM through as the final output, DITX.

As one can glean from the foregoing discussion, gate 933
operates 1n a similar fashion, receiving as mputs the LOW
and HIGH block functional HPG indicators as well as the
TOPO functional HPG indicator generated by gate 954e.
Gate 933 also receives as a final mput the HPG indicator
generated by the dit(s) of lesser significance within the
TOP1 sub-block. As with the other incrementor blocks, gate
933 examines the HPG indicators from dits within the
sub-block first, then the TOPO block, then the HIGH block,
then the LOW block, and increments the intermediate sum
if necessary.

Result Resolution Gates

As stated above, the other main function of the Result
Logic, besides incrementing the intermediate sums, 15 to
select the proper output for the lower sixteen bits. FIG. 14

illustrates that this function 1s performed by Gates 719 and
720. The MIXL/LOW selection gate 720 1s 1llustrated in

FIG. 21. FIG. 21 shows that, if the PASS input has been
asserted by gate 715b, then gate 720 passes the LOW block’s
intermediate sum through as the output for gate 720. In
contrast, when the PASS input wire has been asserted by
cate 715b, then gate 720 passes the MIXL block’s interme-
diate sum through as the output for gate 720.

FIG. 20 illustrates that the operation of the MIXH/HIGH
selection gate 719 1s more complex than that of the MIXL/
LOW selection gate 720. This 1s due to the fact that the gate
719 must increment the value of the HIGH block’s inter-
mediate sum before final output if a carry has been generated
by the LOW block. FIG. 20 1llustrates that, if the PASS input
has been asserted by gate 718, then the value of the HIGH
block’s intermediate sum 1s passed through as the output of
the gate 719. (This value will reflect unaltered bypassed bits)
FIG. 20 1llustrates that, if the MIX 1nput has been asserted
by gate 718, then the MIXH block’s intermediate sum 1s
passed through as the output of gate 719. FIG. 20 illustrates

US 6,334,136 Bl

41

that, if the ADD input 1s asserted by gate 718, the additional
processing must be performed. FIG. 14 illustrates that gate
719 receives as an mput the LOW block’s functional block
HPG 1ndicator generated by gate 714a. FIG. 20 illustrates
that, when the ADD input wire into gate 719 1s asserted, the
intermediate sum from the HIGH block will be passed

through as the gate’s 719 output when the H or P wire of the
LOW block’s tunctional HPG indicator 1s asserted. If the G

wire 15 asserted, then gate 719 increments the value of one
dit of the HIGH block’s intermediate sum before output.
Carry Out Gate

The final gate of the Result Logic to be discussed is the
carry out gate 970. This gate 970 generates the carry out of
the adder. The carry out of the adder must be selected from
the position appropriate to size of the operation being
performed. To this end, FIG. 14 1llustrates that the carry out
cgate 970 receives a 1-of-6 control labeled “size.” The size
input indicates to the carry out gate 970 which block’s
architectural carry 1s to be reported. The possible values for
the 1-0f-6 size control are:

LOW (i.e., the LOW block’s architectural carry is to be
reported for a LOW operation)

MIXL (i.e., the MIXL block’s architectural carry is to be
reported for a MIXL operation)

MIXH (i.e., the MIXH block’s architectural carry is to be
reported for a MIXH operation)

HIGHS (i.c., the HIGH block’s architectural carry is to be
reported for a HIGH operation)

HIGH1632 (i.c., the HIGH block’s architectural carry is
to be generated for a STANDARD or EXTENDED
operation)

TOP (i.e., the TOP block’s architectural carry is to be
generated)

FIG. 22 1illustrates that the carry out for the 8-bit LOW,
MIXL, and MIXH operations 1s a trivial function of the
functional HPG signal. If the H or P wire for the block HPG
signal for these blocks, then gate 970 asserts the no carry
indicator. Otherwise, when the G wire 1s asserted 1n the
block HPG signal for the LOW, MIXL, or MIXH operation,
then gate 970 asserts the carry indicator.

FIG. 22 1llustrates that, for the HIGH and TOP blocks, the
carry out must be generated from the various dependent
block HPG indicators, which are not available until the
second level of logic.

In sum, the present invention comprises a 32-bit result-
merge adder that 1s constructed in three logic levels. In order
to perform the bypass function necessary for result merging,
the carry from one block of the adder to another may be
forced to a Halt 1n order to avoid altering bypassed operand
bits.

Other embodiments of the invention will be apparent to
those skilled 1n the art after considering this specification 1n
conjunction with the N-nary Patent or after practicing the
disclosed 1nvention. The specification and examples above
arec exemplary only, with the true scope of the invention
being mndicated by the following claims.

We claim the following invention:

1. An apparatus that performs an arithmetic operation on
two N-nary operands including a 1-of-P first operand and a
1-01-Q second operand, comprising:

a sum/bypass logic that performs an arithmetic operation
on one or more groupings of two or more bits of the
1-0f-P first operand and one or more groupings of two
or more bits of the 1-0f-Q second operand to generate
an mntermediate sum and an HPG 1ndicator;

a control logic, coupled to said sum/bypass logic, that
selects one or more said groupings of two or more bits

10

15

20

25

30

35

40

45

50

55

60

65

42

of the 1-of-P first operand and one or more said
ogroupings of two or more bits of the 1-of-Q second
operand for said arithmetic operation;

an HPG logic, coupled to said sum/bypass logic, that
generates a block HPG indicator; and

a result logic, coupled to said HPG logic, that generates a
1-of-R final result, wherein said 1-of-R final result
comprises said intermediate sum, and wherein said
final result further comprises additional bits of said
second operand when said intermediate sum comprises
bits than said second operand, such that said final result
and said second operand comprise an equal number of
bits, said additional bits of said second operand being

selected according to said control logic.
2. The apparatus of claim 1 further comprises:

a 1-of-S operation selector 1nput, coupled to said sum/
bypass logic, that receives a 1-0f-S operation selector,
wherein said operation selector comprises one of a
predetermined plurality of select values comprising an
add selection and a subtract selection.

3. The apparatus of claam 2 wherein said arithmetic
operation comprises one of a predetermined plurality of
operations comprising an add operation, to be performed
when said operation selector comprises said add selection,
and a subtract operation to be performed when said opera-
fion selector comprises said subtract selection.

4. The apparatus of claim 3 wherein said add operation
comprises adding said selected grouping(s) of two or more
bits of the first operand to said selected grouping(s) of two
or more bits of the second operand to produce said inter-
mediate sum.

5. The apparatus of claim 3 wherein said subtract opera-
tion comprises subtracting said selected grouping(s) of two
or more bits of the first operand from said selected grouping
(s) of two or more bits of the second operand to produce said
intermediate sum.

6. A system for performing an arithmetic operation on two
N-nary operands including a 1-of-P first operand and a
1-01-Q second operand, comprising:

a sum/bypass logic means for performing an arithmetic
operation on one or more groupings of two or more bits
of the 1-of-P first operand and one or more groupings
of two or more bits of the 1-0f-Q second operand to
generate an mntermediate sum and an HPG indicator;

a control logic means, coupled to said sum/bypass logic
means, for selecting said one or more groupings of two
or more bits of the 1-of-P first operand and said one or
more groupings of two or more bits of the 1-of-Q
second operand for said arithmetic operation;

an HPG logic means, coupled to said sum/bypass logic
means, for generating a block HPG 1indicator; and

a result logic means, coupled to said HPG logic means, for
generating a 1-of-R final result, wherein said 1-of-R
final result comprises said intermediate sum, and
wherein said final result further comprises additional
bits of said second operand when said intermediate sum
comprises fewer bits than said second operand, such
that said final result and said second operand comprise
an equal number of bits, said additional bits of said
second operand being selected according to said control
logic.

7. The system of claim 6 further comprises:

a 1-of-S mput means, coupled to said sum/bypass logic
means, for receiving a 1-of-S operation selector,
wherein said operation selector comprises one of a
predetermined plurality of select values comprising an
add selection and a subtract selection.

US 6,334,136 Bl

43

8. The system of claim 7 wherein said arithmetic opera-
fion comprises one of a predetermined plurality of opera-
fions comprising an add operation, to be performed when
said operation selector comprises said add selection, and a
subtract operation to be performed when said operation
selector comprises said subtract selection.

9. The system of claim 8 wherein said add operation
comprises adding said selected grouping(s) of two or more
bits of the first operand to said selected grouping(s) of two
or more bits of the second operand to produce said inter-
mediate sum.

10. The system of claim 8 wherein said subtract operation
comprises subtracting said selected grouping(s) of two or
more bits of the first operand from said selected grouping(s)
of two or more bits of the second operand to produce said
intermediate sum.

11. A method to manufacture an apparatus that performs
an arithmetic operation on two N-nary operands including a
1-01-P first operand and a 1-of-Q second operand, compris-
Ing:

providing a sum/bypass logic that performs an arithmetic

operation on one or more groupings of two or more bits
of the 1-of-P first operand and one or more groupings
of two or more bits of the 1-of-Q second operand to
generate an mtermediate sum and an HPG indicator;

providing a control logic that selects said one or more
groupings of two or more bits of the 1-of-P first
operand and said one or more groupings of two or more
bits of the 1-o0f-Q second operand for said arithmetic
operation;

coupling said sum/bypass logic to said control logic;

providing an HPG logic that generates a block HPG
indicator;

coupling said HPG logic to said sum/bypass logic;

providing a result logic that generates a 1-of-R final result,
wherein said 1-of-R final result comprises said inter-
mediate sum, and wherein said final result further
comprises additional bits of said second operand when
said 1ntermediate sum comprises fewer bits than said
second operand, such that said final result and said
second operand comprise an equal number of bits, said
additional bits of said second operand being selected
according to said control logic; and

coupling said result logic to said HPG logic.
12. The method of claim 11 further comprises:

providing a 1-of-S 1nput that receives a 1-0f-S operation
selector, wherein said operation selector comprises one
of a predetermined plurality of select values comprising
an add selection and a subtract selection; and

coupling said 1-of-S 1nput to said sum/bypass logic.
13. The method of claim 12 further comprises:
configuring said sum/bypass logic such that said arith-

metic operation comprises one of a predetermined
plurality of operations comprising an add operation, to

5

10

15

20

25

30

35

40

45

50

55

44

be performed when said operation selector comprises
said add selection, and a subtract operation to be
performed when said operation selector comprises said
subtract selection.

14. The method of claim 13 wherein said add operation
comprises adding said selected grouping(s) of two or more
bits of the first operand to said selected grouping(s) of two
or more bits of the second operand to produce said inter-
mediate sum.

15. The system of claim 13 wherein said subtract opera-
tion comprises subtracting said selected grouping(s) of two
or more bits of the first operand from said selected grouping
(s) of two or more bits of the second operand to produce said
intermediate sum.

16. A method to perform an arithmetic operation on two
N-nary operands including a 1-of-P first operand and a
1-01-Q second operand, comprising:

selecting one or more groupings of two or more bits of the
1-01-P first operand and one or more groupings of two
or more bits of the 1-0f-Q second operand;

performing an arithmetic operation on said selected
groupings to generate an intermediate sum and an HPG
indicator;

generating a block HPG 1ndicator; and

generating a 1-of-R final result, wherein said 1-of-R {inal
result comprises said intermediate sum, and wherein
said final result further comprises additional bits of said
second operand when said intermediate sum comprises
fewer bits than said second operand, such that said final
result and said second operand comprise an equal
number of bits, said additional bits of said second
operand being selected according to said control logic.

17. The method of claim 16 further comprises:

receiving a 1-of-S operation selector, wherein said opera-
tion selector comprises one of a predetermined plurality
of select values comprising an add selection and a
subtract selection.

18. The method of claim 17 wherein said step of per-
forming an arithmetic operation comprises performing an
add operation when said operation selector comprises said
add selection, and a performing subtract operation when said
operation selector comprises said subtract selection.

19. The method of claim 18 wherein said step of per-
forming an add operation comprises adding said selected
grouping(s) of two or more bits of the first operand to said
selected grouping(s) of two or more bits of the second
operand to produce said intermediate sum.

20. The method of claim 18 wherein said step of per-
forming a subtract operation comprises subtracting said
selected grouping(s) of two or more bits of the first operand
from said selected grouping(s) of two or more bits of the
second operand to produce said intermediate sum.

	Front Page
	Drawings
	Specification
	Claims

