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HIGH-SPEED ACS FOR VITERBI DECODER
IMPLEMENTATIONS

BACKGROUND OF THE INVENTION

I. Field of the Invention

This i1nvention generally relates to applications of the
Viterbi algorithm. More particularly, the present mvention
relates to an 1mproved system and method of performing a
high-rate Add-Compare-Select (ACS) butterfly operation in
an 1mplementation of the Viterbi algorithm.

II. Description of Related Art

The Viterbr algorithm was first introduced 1 1967 as a
method for decoding convolutionally-encoded signals.
Since its mtroduction, the algorithm has gained wide accep-
tance 1n the field of data communications, data recording,
and digital signal processing. The algorithm has been used
to successtully combat a variety of digital estimation 1ssues,
including the reduction of recording errors 1n storage media,
the removal of intersymbol interference, and the enhance-
ment of character and text recognition.

As such, the Viterbi algorithm has become the foremost
method for the error-correction decoding of convolutionally-
encoded data. For such applications, the Viterbi algorithm
determines, based on a series of observations, the path with
the smallest error metric that traverses a trellis typifying all
possible encoder states. This shortest path exemplifies the
mostly likely sequence generated by a convolutional
encoder.

FIG. 1A 1illustrates a typical convolutional encoder. The
convolutional encoder 100 comprises an 8-bit tapped shift
register 110 and a pair of exclusive OR-type summers 120
that transform a sequence of input data bits U(D) 105 into a
sequence of output code symbols Cy(D), C,(D) 125. In
particular, FIG. 1A demonstrates the example of a rate,,code
which generates two output coding symbols C,(D), C,(D)
125 for each input data bit U(D) 1085. It is to be noted that
the specific code rate and configuration of the convolutional
encoder 100 shown i1s merely illustrative and in no way
limits the operation or scope of the various embodiments of
the 1nvention. As such, different code rates, such as Yzor |
for example, could be used 1n conjunction with the embodi-
ments of the mvention.

Encoder 100 generates each output code symbol Cy(D),
C,(D) 125 by shifting and exclusive-OR summing the input
bit stream U(D) 105 according to the particular shift-register
configuration specified by generator code polynomials
Go(D), G{(D). In this case, FIG. 1A depicts the shift-register
interconnections that provide the rate ,; generator code
polynomial G,(D)=1¢D*@D*@D’. The coefficients of
polynomial G,(D) are convolved with input data sequence
U(D) 105 to generate output convolutional code symbol
Co(D) 125. Similarly, FIG. 1A shows the rate |5 generator
code polynomial G,(D)=14D*&D>, whose coefficients are
convolved with input data sequence U(D) 105 to generate
output convolutional code symbol C,(D) 125. The constraint
length K of the encoder 100 1s one more than the number of
delay elements in shift register 110; for encoder 100, con-
straint length K equals 9. For each data bit 105 inputted into
encoder 100, the output code symbols Cy(D), C,(D) 125
depend on the mputted bit as well as the previous K-1 input
bits. Therefore, the encoder 100 produces output code sym-
bols Cy(D), C,(D) 125 that are capable of spanning 2%~
possible encoder states.

In a typical communication system, the output code
symbols C,(D), C,(D) 125 are subsequently modulated and
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transmitted over a noisy channel (not shown). A decoder
eventually receives the noisy convolutionally-encoded data
stream and employs the Viterb1 algorithm, which exploits
the properties of convolutional codes to ultimately deter-
mine the input data sequence U(D) 1085.

One advantage of convolutional codes 1s their highly
repetitive structure, which provides for a symmetrical code
tree. Theoretically, a convolutional code 1s capable of gen-
erating an 1niinite sequence of code symbols. However,
because of 1ts symmetry, the number of states that need to be
evaluated 1n locating the most probable path leading to the
inputted data sequence U(D) 1085 is reduced to 2, , (in this
case, 256) states. Moreover, in decoding such a symmetrical
code, only the most probable (i.e surviving) local path into
cach of the 256 possible encoder states 1s of interest—all
other paths maybe discarded from further consideration.
This 1s because the most probable global path through a state
must necessarily follow the surviving local path through that
state.

The Viterbi decoder relies on these code properties to
function as a finite state machine having a limited set of state
transitions. The decoder hypothesizes each of the possible
encoder 257 states and determines the probability that the
encoder transitioned from each of those states to the next set
of 271 possible encoder states, based on the observations
obtained from the received noisy convolutionally-encoded
data stream.

The transition probabilities are represented by quantities,
referred to as meftrics, which are proportional to the negative
logarithm of the probability values. Clearly, the smaller the
metric, the higher the probability of occurrence. There are
two types of metrics: state metrics and branch metrics. The
state metric, also called a path metric, represents the relative
probability that the transmitted set of code symbols passed
through a particular state. The branch metric represents the
conditional probability that the transition from a particular
source state to a particular target state was transmitted
(assuming that the source state was correct).

The Viterbi algorithm may be summarized as follows:
where time is divided into d samples and n possible states S *
exist at each time sample k (where 1 is an integer from 1gn
and k 1s an integer from 1gd). For k>1, each state may be
reached by a path from any one of p precursor states SJ,-’T‘T'1
(where j 1s an integer from 14p). For each state, the path
with the minimum metric among these p possible paths 1s
identified and stored, along with the value of that metric:

Initialization: for the starting time sample (k=1), the
metric stored at each state S." is initialized. In the case
where the starting state 1s known, the metric of this case
may be set to zero while the metrics of the other states
S, are set to a large number. This scheme forces later
iterations of the algorithm to choose only paths origi-
nating from the desired starting state.

[teration: for each time sample (k=24d), all of the states
S* are visited. At each state S*, the metric for each
path j leading to that state is calculated as the sum of (a)
the metric of the precursor state SJ,.”‘T‘1 and (b) the metric
bmjk of the branch leading from state S;'l to state S /.

Of the p paths leading to each state S*, the path with

the lowest metric (i.e. the survivor path) is selected and

stored at that state, and the metric for that path 1s also
stored as the metric sm* for that state.

Chainback: when all of the states for the last time sample
have been visited, the state S, having the lowest state
metric 1s 1dentified. The survivor path for this state is
read from storage, and the corresponding state for time
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sample d-1 1s thereby 1dentified. The survivor path for
this latter state 1s read from storage, and the chainback
process 1s repeated until all of the states comprising the
path leading to state S, (i.e. the most likely path
through the state-time matrix) have been identified.

Thus, at any time k, the Viterb1 algorithm calculates the
metrics of the paths leading to states S *, determines the
survivor paths (one for each of the n states S *), and stores
the n survivor paths as well as their respective metrics. This
1s equivalent to storing, for every target state considered, the
source state which leads to 1t. As such, any implementation
of the Viterbi algorithm requires the use of an Add-
Compare-Select (ACS) unit 150, as illustrated in FIG. 1B, to
perform these operations. The ACS unit 150 1s responsible
for calculating the state metric values and also characterizes
the relationships between the source and target states by
virtue of ACS butterfly operations. FIG. 2 depicts a single
ACS butterfly operation 1535.

The butterfly operation 155 includes the only possible
state transitions that could have occurred for two particular
source states 1n encoder 100. This 1s partly due to the fact
that, at any given time, the state of encoder 100 1s the
encoder’s previous state right-shifted by 1 bit. The next
(right-shifted) information bit determines which transition is
made from a source state and will appear as the most
significant bit (MSB) of the target state. As such, there are
only two possible target states that a source state can
transition to. Thus, as evidenced by FIG. 2, encoder 100 can
only transition from source state “x0” to target state “0x” or
“1x” and from source state “x1” to target state “0x” or “1x”,
depending on the value of the mputted data bit U(D). It is to
be noted that notation “x0” and “1x” 1ndicate that the least
significant bit (LSB) of the source state is “0” and “17,
respectively, while the upper bits are represented by “x”; and
notation “0Ox” and “1x” indicate that the MSB of the target
states are “0” or “1”, respectively, while the lower bits are
represented by “x”. The term “x” represents the same value
(e.g., 7 bit value) whether it is included in the source state
or target state.

FIG. 2 also reveals that each transition from a source state
to a target state generates a hypothesized set of code symbols
H,(D), H,(D) or Hy(D), H,(D),. In fact, when encoder 100
operates along the parallel branches of the ACS butterfly 155
(e.g., transitions from “x0” to “0x” or from “x1” to “1x”)
code symbols H,(D), H,(D) 125 are generated for both
parallel branches. This feature 1s due 1n part to the repetitive
nature of convolutional codes 1n general, as well as the use
of generator code polynomials having their MSBs and LSBs
set to unity (i.e., for both G4(D) and G,(D), g, and g, are
equal to 1). In like fashion, code symbols Hy(D), H,(D) are
ogenerated when encoder 100 operates along either of the
diagonal branches of the ACS butterfly 155 (e.g., transitions
from “x0” to “1x” or from “x1” to “0x”).

As stated above, the ACS 150 unit calculates the target
state metrics tm,_, tm,_. The ACS 150 logic stores the source
state metrics sm.,, sm_, which relate to the probability that
a received set of code symbols leads to source states “x0”
and “x1”. Returning to FIG. 1B, upon receiving a set of code
symbols, the Branch Metric Unit 140 computes the branch
metric values bm,;, bmg. ACS 150 “adds” the branch metric
bm,;, bms corresponding to cach of the two transitions
leading to a particular target state to the corresponding
source state metric sm,, sm, ;. The branch metrics bm,;, bm
7 represent the conditional probability that the transition
from a particular source state to a particular target state
occurred. Branch metric bm,; idicates how closely the

received code symbols match the ACS 150 hypothesized
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code symbols Hy(D), H,(D) 125, and branch metric bmg
indicates how closely the received code symbols match
Ho(D), Hy(D). The value of branch metrics bm,;, bmg is
dependent only upon the distance between the received
symbol pair and the hypothesized symbol pair Hy(D),
H, (D).

For each of the two target states, the ACS 150 compares
the sum of the source state metric-branch metric pairs
leading to that target state. The most likely transition into
cach target state, represented by the smallest metric sum, 1s
then “selected” by ACS 150 and assigned to that target state
as the target state metric tm,_, tm, .

As stated above, the ACS 150 logic adds the branch
metric bm,;,, bmg to the source state metric sm_,, sm_; for

Zj? x0?

cach of the two ftransitions leading to a target state and
decides that the most likely path into that target state came
from the transition that yields the smaller metric sum. The
smaller metric sum 1s then selected and becomes the new

target state metric tm,_, tm, . The ACS 150 also stores the
state metrics (1.€., the costs associated with the most likely
path leading to each target state) into the state RAM 145. As
indicated by FIG. 1B, the selection of the smallest metric
sum results 1n the storing of a one-bit quantity, referred to as
a decision bit, in the path memory of a chainback memory
unit 160. The decision bit, which 1s indicated by the LSB of
the winning source state metric, 1dentifies which of the two
transitions was selected.

The chainback memory unit 160 stores the decision bit
corresponding to the most likely transition into each target
state. For encoder 100 having a constraint length K=9, there
will be 2, , or 256 decision bits generated which corre-
spond to each of the 256 possible states of encoder 100.
Once a matrix of all such mnformation for a predetermined
number of states 1s generated and stored, the chainback unit
160 starts at the state with the greatest likelihood of heading
the correct path (i.e., the state among all those corresponding
to the most recent time unit having the lowest cost). The
chainback unit 160 then chains backward in time by reading
through the last Px256 (i.e., Px2~"") decision bits to select
P bits, where P 1s the effective chainback depth of the path
memory. Since the decision bits represent the most likely set
of bits hypothesized to have been passed through the
encoder 100, they are the best data that can be outputted by
the decoder. As a result, the further back i1n the decision
history the chain goes, the better likelihood that the selected
path merges with the correct path. Thus, the higher the
chainback depth P, the better the performance but the higher
the pipeline and storage delays. The chainback depth P is,
therefore, generally set between 3 and 10 times the encoder
100 constraint length K. For a K=9 encoder, the chainback
depth P 1s typically set at 64.

An ACS processing cycle defines the period in which the
ACS unit 150 calculates new target state metrics tm,, , tm,
for a predetermined number of received code symbols. For
a_ rate convolutional code, each pair of received code
symbols requires 1 process cycle for metric calculations.
The length of the process cycle equals the number of clock
cycles required to perform the ACS butterfly operations for
all encoder states for two sets of received symbols. For
example, a Viterbi decoder having a single ACS butterfly, as
depicted 1n FIG. 2, would generally require 128 clock cycles
per received code symbol to perform the operations for all
256 states of encoder 100. To improve processing speed,
ACS butterfly array architectures deploying multiple ACS
buttertlies can be used to reduce the number of clock cycles
In one processing cycle.

An example of such an architecture 1s the 8x1 ACS
buttertly array 300, illustrated in FIG. 3. Array 300 proffers
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an 8x 1mprovement 1n processing speed by virtue of 1mple-
menting 8 parallel ACS buttertly units 155 1n parallel. For a
set of received code symbols, the 8x1 butterfly array 300
uses all 8 buttertly units 155 to read 16 of the source states
and calculate the 16 corresponding target state metrics tm,_,
tm, ., within a single clock cycle. As stated above, the ACS
unit 155 receives the state metric for each of the source
states and branch metrics bm,, bmg for ¢ach of the four
possible transitions. The branch metric bm,;, bmg 1s depen-
dent only upon the value of the received code symbol pair
and the hypothesized symbol pair H,(D), H,(D) or Hy(D),
H,(D), and is a measurement of the distance between the

two. The “X” included as part of the source and target states
in FIG. 3 represents a four-bit place-holder (i.e, X=] X0, X1,

X2, X3]) which chronicles through 16 clock cycles by
counting from O through 15. Thus, for two sets of received
code symbols, the 8x1 butterfly array 300 computes the
target state metrics tm,,, tm, -, for all 256 possible states of
encoder 100 1n 32 clock cycles (i.€., 16 clock cycles for each
received code symbol).

A drawback of the 8x1 butterfly array architecture 300 1s
that for each set of recerved code symbols, 1t needs to read
16 source state metrics and must simultaneously generate
the required branch metrics for each of the 16 clock cycles.
Thus the 8x1 butterfly array 300 requires an i1mmense
memory bandwidth to accommodate such operations.

Another example of the array architectures 1s the 4x2 ACS
butterfly array 400, illustrated in FIG. 4. The 4x2 ACS
butterfly array 400 boasts the same speed improvement as
the 8x1 butterfly array 300, but does so by implementing 2
sets of 4 ACS butterfly 155 units 1n parallel. Butterfly array
400 mitigates the memory bandwidth 1ssue by temporarily
storing the intermediate target state metrics tm,,., tm,,.. For
example, within a single clock cycle, the first stage of array
400 reads the 8 source states and calculates the 8 corre-
sponding target state metrics tmg,-, tm,,. However, buttertly
array 400 does not immediately store the intermediate target
state metrics tm,_, tm, . Instead, while still within the clock
cycle, buttertly array 400 rearranges the mtermediate target
states to feed 1nto the second stage, as source states, and
subsequently calculates the 8 corresponding target state
metrics tmy,-, tm, 5-for the next set of received code symbols.
Thus, much like the 8x1 butterfly array 300, butterfly array
400 1s capable of computing the target state metrics tmgs,
tm,,- for two sets of received code symbols over a span of
32 clock cycles.

The 4x2 ACS butterfly array 400 has the distinct advan-
tage of reducing the ACS 150 state memory bandwidth,
since the intermediate target state metrics (i.e., first stage
target metrics tm,, tm, ) do not need to be read from, or
written to, the ACS 150 state memory. Rather, the interme-
diate target state values flow combinatorially into the next
stage, avolding delays and minimizing bandwidth require-
ments.

However, the 4x2 ACS butterfly array 400 1s not without
its limitations. For example, the advantage of reducing the
state memory bandwidth rests squarely on the fact that array
400 pertorms 2 stages of ACS 150 calculations within a
single clock cycle. This critical path can be significantly
limiting for higher clock speeds.

Moreover, for either the 8x1 ACS butterfly array 300 or
the 4x2 ACS butterfly array 400, there exist performance
1ssues with respect to the chainback operation. As stated
above, the chainback unit 160 is responsible for storing the
decision bits generated by the ACS array and for chaining
back through the stored decision bits to generate the decoded
decision bits.
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For an encoder having a constraint length K=9 (e.g.,
encoder 100), the ACS array in the decoder will generate
251 or 256 decision bits for each set of received code
symbols (1.e., 1 decision bit for each of the 256 possible
encoder states) and the chainback memory unit 160 will
typically contain a chainback path memory depth of P=64
blocks.

After 32 process cycles, each of which computes the
target state metrics for two sets of received symbols, the
chainback unit 160 begins with the most recent process
cycle (e.g., the rightmost memory block B, of the 64 path
memory blocks), as shown in FIG. SA. The chainback unit
160 i1dentifies, from the 256 decision bits within chainback
memory block B, the decision bit corresponding to the state
with the lowest metric value R,,. This state 1s defined as the
best state BS,, and has an & b1t address, as shown 1n FIG. $B.
The chamback unit 160 reads the best state decision bit value
and then introduces the value into the BS,, address by
left-shifting it into the BS,, least significant bit (i.¢., bs,), as
shown in FIG. 5. FIG. 5B further illustrates that the values
of the other bits in the BS, address (i.e., bs,, bs, bs,, bs,,
bs,, bs,) are also left-shifted, resulting in the loss of the BS,,
most significant bit (i.e., bs,) and the manifestation of a new
address BS,. As depicted 1n FIG. SA, BS,, 1s the address of
the best state value R, 1 chainback memory block B,. The
chainback unit 160 then reads the decision bit value corre-
sponding to the BS,, address and left-shifts that value into
the BS,, address to generate the next address BS,, which
corresponds to the best state of chainback memory block B.,.

This read and left-shift operation 1s repeated until all
chainback memory blocks (1.e., P=64 blocks) have been
processed. Generally, the chainback operation performs as
many reads as the defined chainback length P, so that 1in this
case, for example, 64 reads are performed to trace back the
desired path and generate the decoded decision bits. This
many reads, however, may compromise the efficiency and
performance of the decoding process.

What 1s needed, therefore, 1s a system and method that 1s
capable of efficiently performing high-rate ACS buttertly
operations 1n a Viterb1 algorithm implementation.

SUMMARY OF THE INVENTION

Systems and methods consistent with the principles of the
present 1nvention address the need idenfified above by
providing a system and method that performs high-rate ACS
butterfly operations 1n an implementation of the Viterbi
algorithm.

A system and method, consistent with the principles of the
present invention as embodied and broadly described herein,
includes a first memory element for storing a plurality of
source state metrics. The first memory element 1s coupled to
a multiplexer which is capable of selecting between a first
and second operating path based on even and odd clock
cycles. The multiplexer 1s coupled to an add-compare-select
mechanism, which calculates the target state metrics for
cach of the source state metrics. second storage element,
coupled to the add-compare-select mechanism and the
multiplexer, 1s used to temporarily store the target state
metrics while a third storage element stores a predetermined
logic bit which corresponds to the source state resulting in
the lowest value target state metric. The multiplexer,
therefore, selects the first operating path during even clock
cycles and supplies the source state metrics from the {first
memory element to the add-compare-select mechanism to
ogenerate target state metrics. During odd clock cycles, the
multiplexer selects the second operating path to access the
second memory element and use the previously calculated
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target state metrics as intermediate source state metrics, such
that the add-compare-select mechanism generates the target
state metrics based on the intermediate source state metrics.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this Specification, illustrate an
embodiment of the invention and, together with the
description, explain the objects, advantages, and principles
of the mvention. In the drawings:

FIG. 1A 1s a block level diagram 1illustrating a K=9, rate
=_convolutional encoder.

FIG. 1B 1s a system level block diagram depicting an ACS
and chainback unait

FIG. 2 1s a transition diagram illustrating the ACS but-
tertfly operation.

FIG. 3 1s a transition diagram depicting an 8x1 ACS
butterfly array.

FIG. 4 1s a transition diagram depicting an 4x2 ACS
butterfly array.

FIGS. SA, 5B are functional block diagrams depicting a
chainback operation.

FIGS. 6A, 6B are diagrams depicting an embodiment of
the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The following detailed description of the present inven-
fion refers to the accompanying drawings that illustrate
preferred embodiments consistent with this invention. Other
embodiments are possible and modifications maybe made to
the embodiments without departing from the spirit and scope
of the invention. Therefore, the following detailed descrip-
fion 1s not meant to limit the invention. Rather the scope of
the 1nvention 1s defined by the appended claims.

It will be apparent to one of ordinary skill in the art that
the present invention as described below may be imple-
mented 1n many different embodiments of software,
firmware, and hardware 1n the entities illustrated in the
figures. The actual software code or specialized control
hardware used to implement the present invention 1s not
limiting of the present invention. Thus, the operation and
behavior of the present invention will be described without
specific reference to the actual software code or specialized
hardware components, 1t being understood that a person of
ordinary skill in the art would be able to design software and
control hardware to implement the preferred embodiment of
the present invention based on the description herein.

FIGS. 6A, 6B 1illustrate an embodiment of the present
invention. The embodiment makes use of an 8x1 ACS
butterfly array 600, imncorporating 8 parallel ACS butterfly
155 units to provide an 8x 1improvement 1n processing speed.
Unlike other attempts to achieve such improvement, butter-
fly array 600 functions over different clock cycles to reduce
memory bandwidth requirements while limiting the number
of calculations per clock cycle.

Referring to FIG. 6A, butterfly array 600 uses all 8
butterfly 155 units, during an even clock cycle, to read the
new 16 source states as identified by the 4 bit counter X.
Butterfly array 600 then calculates the 16 corresponding
target state metrics tmg,, tm, 5 for the current level of the
trellis. After the even clock cycle (i.e., during an odd clock
cycle), butterfly array 600 uses the even cycle target states
as the odd source states for the next trellis level. As such,
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3

butterfly array 600 adopts the values of the even cycle target
state metrics tm,,, tm,, as the odd source states metric
values smy,,, sm,,. Butterfly array 600 then computes the
odd target state metrics tmq,, tm,, In accordance with
metric values sm,.,, Sm,-, for the corresponding trellis level.

Thus, the 8x1 modified ACS butterfly array 600, as
depicted 1in FIG. 6A, requires 32 clock cycles to completely
process two sets of received symbols generated by a K=9
encoder. During even clock cycles, buttertly array 600 reads
the new 16 source states identified by the incremented 4 bat
counter X and calculates the 16 corresponding target state
meftrics tmy,., tm,, for the first set of received symbols. For
odd clock cycles, buttertly array 600 uses the even cycle
target states as the new source states and computes the odd
target state metrics tm,,-, tm,,- for the second set of received
symbols. As such, butterfly array 600 only performs one
level of ACS per clock cycle, thereby overcoming the single
clock cycle multi-level ACS calculation problems of the 4x2
butterfly array 400.

FIG. 6B illustrates the Viterbi decoder circuitry 650 to
support the 8x1 modified ACS butterfly array 600 shown in
FIG. 6 A. The source state metrics sms,,, Sm,-, for all states
are stored 1n the state RAM 145. By way of 1illustration, the
operation of the Viterbi decoder circuitry 650 will be
described by beginning with reading from the state RAM
145 during the even clock cycles. Artisans of ordinary skill
will readily appreciate that this embodiment may equally be
described by beginning with reading from state RAM 145
during odd clock cycles. Similarly, all reading operations
may be performed during odd cycles and all writing opera-
fions may be performed during even cycles, or vice-versa.

As such, during even clock cycles, multiplexer MUX 670
1s configured to select the source state metric information for
16 sequential states from RAM 145 corresponding to the
first set of received code symbols. The source state infor-
mation 1s directly supplied to the ACS unit 150, which
includes the 8x1 ACS butterfly array 600. Butterfly array
600 then calculates the corresponding 16 target state metrics
tm,y-, tm,y, which 1s fed back to the state RAM 145 and
MUX 670. The calculated target state information 1s then
supplied to a register 680 for temporarily storing the target
state information. By temporarily storing the target state
information 1n register 680, butterfly array 600 circumvents
storing the state information back into memory, thereby
ameliorating the memory bandwidth 1ssues of the 8x1 ACS
butterfly array 300.

During odd clock cycles, multiplexer MUX 670 selects
the target state 20 metric information calculated in the
previous clock cycle, which 1s latched 1n register 680. This
target state metric information 1s then used by the 8x1 ACS
butterfly array 600 as new source state metrics Smy.,, Sm,-.
Butterfly array 600 subsequently processes the source state
metric information to generate the target metric information
corresponding to the second set of set of received code
symbols. The target metric information 1s then stored in the
state memory RAM 145, which will be used as source state
metrics for the following iteration. For the first and second
set of recerved code symbols, this process 1s repeated for 32
clock cycles to generate 256 decision bits for each of the two
sets of received symbols. After the 32 clock cycles, the
Viterbi decoder circuitry 630 1nitiates this entire process
with the next two sets of received code symbols.

The WViterb1 decoder circuitry 6350 also improves the
performance of the chainback operation by reducing the
number of reads required to generate the decoded decision
bits. As stated above, the chainback unit 160 1s responsible
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for storing the decision bits generated by the ACS array.
Furthermore, after two clock cycles (i.e., an even and odd
clock cycle), the 8x1 modified ACS butterfly array 600
generates 32 decision bits. The Viterbi decoder circuitry 650
enables these 32 decision bits to be stored 1n a single 32-bit
memory word, and thus, the decision bits generated during
the even and odd clock cycles are stored in the same memory
word.

Therefore, as stated above with respect to chainback
operations, the best state 1s first used to i1dentily the state
with the lowest metric from the last process cycle (i.e., best
state decision bit value), in order to establish a starting point
for chamning backward 1n time. Since there are 32 bits per
memory word, there exists 16 words per process cycle (due
to 2 sets of received code symbols), and each of the 32-bit
memory words has a unique 8-bit address. One embodiment
uses 4 bits of the best state address to select which memory
word to read, while the other 4 bits of the best state address
determine which of the 16 bits in the 32-bit memory word
to read. In particular, 1f best state BS, has the 8-bit address:
(bs,, bsg, bss, bs,, bs;, bs,, bs;bs,), the embodiment
chooses bits: (bss, bs,, bs,, bs,) to select a specific memory
word within the memory block B, and relies on bits: (bs-,
bs,, bs,, bs,) to select the best state decision bit R,,. The new
best state address BS,, 1s formed by left shifting the best
state decision bit R, into the BS, LSB: (bs,, bs., bs,, bs,,
bs,, bs,, bsy, Ry).

Because the ACS calculations operate on two sets of
received symbols, the source states leading to the target state
for the just-read decision bit, have, 1n turn, their decision bits
stored within the same 32-bit memory word. Thus, the
embodiment chooses bits: (bs,, bs,, bs,, R,) to select the
next best state decision bit R, out of the other half of the
32-bit memory word. Therefore, the best state decision bit 1s
selected from half the bits in the 32-bit memory word,
wherein that selected bit helps determine which decision bit
in the other half of the 32-bit memory word 1s the next best
state decision bit. By doing so, the number of reads required
to correctly chain back the desired path and genecrate the
decoded decision bits 1s reduced by a factor of 2. Thus, for
a chainback unit 160 having a path memory depth of P=64
memory blocks, only 32 reads are required.

The foregoing description of preferred embodiments of
the present 1nvention provides illustration and description,
but 1s not intended to be exhaustive or to limit the invention
to the precise form disclosed. Modifications and variations
are possible consistent with the above teachings or maybe
acquired from practice of the mvention. For example, the
architecture of the embodiments disclosed herein can easily
be extended to a 16x1 array or 32x1 array, where 32 or 64
states can be generated per clock cycle. Additionally, instead
of operating on two sets of received symbols, the embodi-
ments can be adapted to operate on several sets of received
symbols. Thus, 1t 1s noted that the scope of the invention 1s
defined by the claims and their equivalents.

What 1s claimed 1s:

1. A method of performing an add-compare-select butter-
fly operation for a Viterbi algorithm implementation, said
method comprising:

reading, during even clock cycles, a plurality of source
state metrics from a first storage element corresponding
to a first set of received symbols;

calculating a target state metric for each of said source
state metrics;

temporarily storing said target state metrics into a second
storage element;
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determining which one of said target state metric contains
a lowest value;

storing a predetermined logic bit corresponding to said
lowest value target state metric in a third storage
celement;

reading, during odd clock cycles, said target state metrics
from said second storage element and using said read
target state metrics as a plurality of intermediate source
states metrics corresponding to a second set of received
symbols;

calculating an intermediate target state metric for each of
sald intermediate source states metrics;

determining which one of said mtermediate target state
metric contains a lowest value;

storing a predetermined logic bit corresponding to said
lowest value intermediate target state metric i said
third storage element.

2. The method of claim 1, wherein said first and second
set of received symbols are encoded using a constraint
length of K.

3. The method of claim 2, wherein said add-compare-
select butterfly operation is performed until each 2%~ target
state 1s visited for each of said first and second set of
received symbols.

4. The method of claim 3, wherein said add-compare-
select buttertly operation 1s performed by an 8x1 add-
compare-select butterfly structure.

5. The method of claim 4, wherein said a plurality of
source state metrics consists of metrics for a set of 16
consecutive source states, said set of 16 consecutive source
states being sequentially selected during increasing even
clock cycles.

6. The method of claim 5, wherein said calculating said
target state metrics includes,

adding said source state metrics to a branch metric
corresponding to each of two possible transitions,

comparing cach of the sums of said source state metrics
and branch metrics, and

selecting and designating the smallest sum and as the
target state metric.
7. The method of claim 6, wherein said calculating said
intermediate target state metrics includes,

adding said intermediate source state metrics to a branch
metric corresponding to each of two possible
transitions,

comparing each of the sums of said intermediate source
state metrics and branch metrics, and

sclecting the smallest sum and designating it as the

intermediate target state metric.

8. The method of claim 7, wherein said add-compare-
select butterfly operation 1s used to decode convolutionally-
encoded data.

9. The method of claim 8, wherein said third storage
clement 1s provided 1n a chainback memory unit containing
a plurality of memory blocks, each of said memory blocks
containing said predetermined logic bit for each of said even
and odd clock cycles.

10. The method of claim 8, further including a chainback
operation for generating a plurality of decoded bit values.

11. The method of claim 10, wherein said chainback
operation 1ncludes,

1dentifying for the most recent of said memory blocks 1n
said chainback memory unit, said predetermined logi-
cal bit having the lowest value;

assoclating said lowest value logical bit with a specific
address:
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reading said predetermined logical bit; and

transierring the value of said lowest value logical bit 1nto
the least significant bit of said specific address and
shifting all values within said specific address by one
bit position to the left to ascertain a next speciiic
address corresponding to a next memory block 1 said
chainback memory unit.

12. A system for performing an add-compare-select but-
tertly operation for a Viterb1 algorithm implementation, said
system comprising:

a first memory element for storing a plurality of source

state metrics;

a multiplexer coupled to said first memory element for
selecting a first operating path during even clock cycles
and for selecting a second operating path during odd
clock cycles;

a second storage element, coupled to said multiplexer, for
temporarily storing target state metrics;

an add-compare-select mechanism, coupled to said sec-
ond storage element and said multiplexer, for calculat-
ing a calculated target state metric for each of said
source state metrics; and

a third storage element for storing a predetermined logic

bit corresponding to a calculated target state metric
having the lowest value,

wherein said multiplexer selects said first operating path
during even clock cycles and supplies said source state
metrics from said first memory element to said add-
compare-select mechanism to generate target state met-

rics corresponding to a first set of received symbols,
and

wherein said multiplexer selects said second operating
path during odd clock cycles to read said target state
metrics from said second memory element and use said
read target state metrics as intermediate source state
metrics in order for said add-compare-select mecha-
nism to generate intermediate target state metrics based
on said intermediate source state metrics corresponding

to a second set of received symbols.
13. The system of claim 12, wherein said first and second
set of received symbols are encoded using a constraint

length of K.
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14. The system of claim 13, wherein said add-compare-
select butterfly operation is performed until each 2* target
state 1s visited for each of said first and second set of
received symbols.

15. The system of claim 14, wherein said add-compare-
select butterfly operation 1s performed by an 8x1 add-
compare-select butterfly structure.

16. The system of claim 15, wherein said a plurality of
source state metrics consists of metrics for a set of 16
consecutive source states, said set of 16 consecutive source
states being sequentially selected during increasing even
clock cycles.

17. The system of claim 12, wherein said add-compare-
select mechanism performs said add-compare-select opera-
tion by adding said source state metrics to a branch metric
corresponding to each of two possible transitions, compar-
ing cach of the sums of said source state metrics and branch
metrics, and selecting the smallest sum and designating it as
the target state metric.

18. The system of claim 17, wherein said add-compare-
select butterfly operation 1s used to decode convolutionally-
encoded data.

19. The system of claim 18, wherein said third storage
clement 1s provided 1n a chainback memory unit containing
a plurality of memory blocks, each of said memory blocks
containing said predetermined logic bit for each of said even
and odd clock cycles.

20. The system of claim 19, wherein said chainback
memory unit generates a plurality of decoded bit values.

21. The system of claim 20, wherein said chainback
memory unit identifies said predetermined logical bit having
the lowest value for the most recent of said memory blocks,
assoclates said lowest value logical bit with a specific
address, reads said predetermined logical bit, and transfers
the value of said lowest value logical bit into the least
significant bit of said specific address and shifts all values
within said specific address by one bit position to the left in
order to ascertain a next specific address corresponding to a
next memory block within said chainback memory unit.
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