US006324687B1
a2 United States Patent (10) Patent No.: US 6,324,687 Bl
Beadle et al. 45) Date of Patent: Nov. 27, 2001
(54) METHOD AND APPARATUS TO 6,110,226 * 8/2000 Bothnerccceeeverveveenenenn. 717/7
SELECTIVELY CONTROL PROCESSING OF 6,139,199 * 10/2000 RodriquUezcccccveevrevreereeeenenns 717/9
A METHOD IN A JAVA VIRTUAL MACHINE OTHER PURI ICATIONS
(75) Inventors: Bruce Anthony Beadle, Round Rock; Asymetrix Corp., Asymetrix SuperCede Java Edition, Inter-
Michael Wayne Brown, Georgetwon,; net Search, 9-11, 1996.*
Michael Anthony Paolini; Douglas Somogyi et al., Java Finally Delivers, Apr. 9, 1998, Mack/
Scott Rothert, both of Austin, all of ord Reviews, pp. 1-5.*
TX (US) Olin, Inside The Java Virtual Machine, 1996, Que Corp., pp.
1-2.%
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner—Mark R. Powell
patent 1s extended or adjusted under 35 Assistant Examiner—John Q. Chavis
U.S.C. 154(b) by 0 days. (74) Antorney, Agent, or Firm—Duke W. Yee; Jeffrey S.
[LaBow; Michael R. Nichols
(22) Filed Dec. 3, 1998 A method and apparatus for executing bytecodes. Bytecodes
(51) Int. CL7 oo GO6F 9/45 are received for execution and a determination 1s made as to
G2 TR OE T ! KN 717/6 Whether the bytecodes should be compiled. The bytecodes
(58) Field of Search 717/6 are sent to a just 1n time compiler responsive to a determi-
.. nation that the method should be compiled. The bytecodes
(56) References Cited form a method, and the method 1s sent to an interpreter,
responsive to an absence of a determination that the method
U.S. PATENT DOCUMENTS should be compiled.
5,848,274 * 12/1998 Hamby et al. ...cccoeeeeeneennnenaee. 717/5
6,078,744 * 6/2000 Wolczko et al.ccceeeeennnnnnnnn, 717/5 18 Claims, 3 Drawing Sheets

INTERCEPT THE CALL

00 T0 JIT's COMPILE

CLASS () FUNCTION

SEARCH USER SPECIFIED
DATA FOR CLASS/METHOD

INFORMATION

002

IS
CLASS/METHOD MARKED

AS NO-JIT?

504

NO

CALL COMPILE CLASS ()

58— WITH THE CLASS/METHOD

TO BE JiTed

END

YES

006

LEAVE THE CLASS/METHOD

BYTECODES UNMODIFIED
(NON-JITed)

U.S. Patent Nov. 27, 2001 Sheet 1 of 3 US 6,324,687 Bl

100 FIG. 1
102 N

HOST /PC] MAIN AUDIO FLASH
PROCESSOR K= cacHE /BRIDGE N1 MEMORY ADAPTER MEMORY

106
SCSéUIgOST LAN Expguglon GRAPHICS | |AUDIO/VIDEO| BUS
ADAPTER ADAPTER | | \nrcoracr | | ADAPTER ADAPTER

112 I l
KEYBOARD
DISK AND MOUSL MODEM MEMORY
ADAPTER

122 124
FIG. 2
WM 200
Clossloader | INTERPRETER
216 208
204

DATA STRUCTURE —
(COMPILED CODE INTERFACE DATA

LINK VECTOR) STRUCTURE

FRAME AP

218

206

210

212

U.S. Patent Nov. 27, 2001 Sheet 2 of 3 US 6,324,687 Bl

316
318
320

322
324

402 FIG. 4
404
406

- LOCAL EXECUTING
408 —__ | VARIABLES | ENVIRONMENT
410 416 418

412

U.S. Patent Nov. 27, 2001 Sheet 3 of 3 US 6,324,687 Bl

FIG. 5

500 INTERCEPT THE CALL
TO JIT's COMPILE
CLASS () FUNCTION

<07 - | SEARCH USER SPECIFIED
DATA FOR CLASS/METHOD

INFORMATION

1S
CLASS/METHOD MARKED

AS NO-JIT?

YES

206

CALL COMPILE CLASS ()
WITH THE CLASS/METHOD

LEAVE THE CLASS/METHOD
BYTECODES UNMODIFIED

NS TO BE JiTed (NON-JITed)
END
600
N FIG. 6

CLASS/METHOD A T 602
CLASS/METHOD B NO JIT 604
CLASS/METHOD C JT 606
CLASS/METHOD D NO JIT 508
CLASS/METHOD E NO JIT 510
CLASS/METHOD F JIT 617

US 6,324,687 Bl

1

METHOD AND APPARATUS TO
SELECTIVELY CONTROL PROCESSING OF
A METHOD IN A JAVA VIRTUAL MACHINE

CROSS REFERENCE TO RELATED
APPLICATTIONS

The present invention 1s related to applications entitled A
Method and Apparatus to Coordinate and Control the Simul-
tancous Use of Multiple Just In Time Compilers with a Java
Virtual Machine, Ser. No. 09/204,513, Method and Appa-
ratus for Automatic Service of JIT Compiler Generated
Errors, Ser. No. 09/204,511, Method and Apparatus for
Dynamically Selecting Bytecodes for Just in Time Compil-
ing 1n a User’s Environment, Ser. No. 09/204,976, A Method
and Apparatus for Dynamic Selection of which Bytecodes
should be Just In Time Compiled, Ser. No. 09/204,519,
JIT/Compiler Java Language Extensions to Enable Field
Performance and Serviceability, Ser. No. 09,204,968,
Dynamic Selection/Definition of which Class/Methods
should or should not be JIT ed Using Information Stored in
a JAR File, Ser. No. 09/204,975, and Method and Apparatus
for Dynamic Selection of Instructions for Compiling Using
Tags, Ser. No. 09/204,516, all of which are field even date
hereof, assigned to the same assignee, and incorporated
herein by reference.

1. Technical Field

The present mvention relates generally to an improved
data processing system and in particular to an 1mproved
method and apparatus for processing a method 1 a Java
virtual machine. Still more particularly, the present inven-
fion relates to a method and apparatus for selectively con-
trolling just in time compilation of a method.

2. Description of Related Art

Java 1s an object oriented programming language and
environment focusing on defining data as objects and the
methods that may be applied to those objects. Java 1is
designed to solve a number of problems 1in modern pro-
gramming practice. Java 1s able to support applications for
many types of data processing systems, which may contain
a variety of central processing units and operating systems
architectures. To enable a Java application to execute on
different types of data processing systems, a compiler typi-
cally generates an architecture-neutral file format—the com-
piled code 1s executable on many processors, given the
presence of the Java run time system. The Java compiler
generates bytecode instructions that are non-specific to a
particular computer architecture. A bytecode 1s a machine
independent code generated by the Java compiler and
executed by a Java interpreter. A Java interpreter 1s a module
that alternately decodes and executes a bytecode. The decod-
ing of the bytecode places the instruction into an executable
form for the computer on which the code 1s to be executed.
Then, the instruction 1s executed by the computer. These
bytecode 1nstructions are designed to be easy to interpret on
any machine and easily translated on the fly into native
machine code.

The Java virtual machine (JVM) is a virtual computer
component that resides only 1n memory. A JVM 1ncludes
components necessary to run a program on a compufer,
including an interpreter. The JVM allows Java programs to
be executed on different platforms as opposed to only the
one platform for which the code was compiled. Java pro-
orams are compiled for the JVM. In this manner, Java 1s able
to support applications for many types of data processing
systems, which may contain a variety of central processing
units and operating systems architectures. To enable a Java

10

15

20

25

30

35

40

45

50

55

60

65

2

application to execute on different types of data processing,
systems, a compiler typically generates an architecture-
neutral file format -the compiled code 1s executable on many
processors, given the presence of the Java run time system.

The Java compiler generates bytecode instructions that are
nonspecific to a particular computer architecture. Abytecode
1s a machine independent code generated by the Java com-
piler and executed by a Java interpreter.

When extra speed 1n executing a Java program or applets
is needed, a just in time (JIT) compiler may be used to
translate bytecodes for a method or class into native machine
instructions before executing them. Typically, this compila-
tion only occurs once per method. Some JIT compilers may
compile entire classes, rather than one method at a time.

In some situations, a JIT compiler may produce invalid
results when compiling bytecodes from a given method of a
class 1nto 1nstructions or machine code for execution on the
computer. These errors do not occur if the code 1s not just 1n
time compiled. Typically, these errors 1n execution of native
instructions occur as a result of faulty logic i the JIT
compiler. Currently, a mechanism for avoiding these errors
1s unavailable.

Therefore, 1t would be advantageous to have an improved
method and apparatus for just in time compiling of methods.

SUMMARY OF THE INVENTION

The present invention provides a method and apparatus
for executing bytecodes. Bytecodes are received for execu-
tion and a determination 1s made as to whether the bytecodes
should be compiled. The bytecodes are sent to a just 1n time
compiler responsive to a determination that the method
should be compiled. The bytecodes form a method, and the
method 1s sent to an 1nterpreter, responsive to an absence of
a determination that the method should be compiled.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth 1in the appended claims. The 1nvention itself,
however, as well as a preferred mode of use, further objec-
fives and advantages thereof, will best be understood by
reference to the following detailed description of an 1llus-
frative embodiment when read in conjunction with the
accompanying drawings, wherein:

FIG. 1 1s a block diagram of a data processing system 1n
which the present mnvention may be implemented;

FIG. 2 1s a diagram of components used to selectively
process methods 1n accordance with a preferred embodiment
of the present invention;

FIG. 3 1s a diagram of the compiled code link vector 1n
accordance with a preferred embodiment of the present
invention;

FIG. 4 1s a diagram of a Java stack and JVM {frame,
manipulated using the processes of the present mnvention, in
accordance with a preferred embodiment of the present
invention;

FIG. 5 1s a flowchart of a process used to determine
whether a method should be just mn time compiled in

accordance with a preferred embodiment of the present
invention; and

FIG. 6 1s an example of a data structure containing user
specified data for class/method information 1n accordance
with a preferred embodiment of the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

With reference now to FIG. 1, a block diagram of a data
processing system 1n which the present invention may be

US 6,324,687 Bl

3

implemented 1s 1llustrated. Data processing system 100 1s an
example of a client computer. Data processing system 100
employs a peripheral component interconnect (PCI) local
bus architecture. Although the depicted example employs a
PCI bus, other bus architectures such as Micro Channel and
ISA may be used. Processor 102 and main memory 104 are
connected to PCI local bus 106 through PCI bridge 108. PCI
bridge 108 also may include an mtegrated memory control-
ler and cache memory for processor 102. Additional con-
nections to PCI local bus 106 may be made through direct
component interconnection or through add-in boards. In the
depicted example, local area network (LAN) adapter 110,
Small Computer System Interface (SCSI) host bus adapter
112, and expansion bus interface 114 are connected to PCI
local bus 106 by direct component connection. In contrast,
audio adapter 116, graphics adapter 118, and audio/video
adapter (A/V) 119 are connected to PCI local bus 106 by

add-1n boards inserted into expansion slots. Expansion bus
interface 114 provides a connection for a keyboard and
mouse adapter 120, modem 122, and additional memory
124. SCSI host bus adapter 112 provides a connection for
hard disk drive 126, tape drive 128, and CDROM drive 130
in the depicted example. Typical PCI local bus implemen-
tations will support three or four PCI expansion slots or
add-in connectors. An operating system runs on processor
102 and 1s used to coordinate and provide control of various
components within data processing system 100 in FIG. 1.
The operating system may be a commercially available
operating system such as OS/2, which 1s available from
International Business Machines Corporation. “OS/2” 1s a
trademark of International Business Machines Corporation.
An object oriented programming system such as Java may
run 1n conjunction with the operating system and provides
calls to the operating system from Java programs or appli-
cations executing on data processing system 100. Instruc-
tions for the operating system, the object oriented operating
system, and applications or programs are located on storage
devices, such as hard disk drive 126 and may be loaded into
main memory 104 for execution by processor 102.

Those of ordinary skill i the art will appreciate that the
hardware 1n FIG. 1 may vary depending on the implemen-
tation. For example, other peripheral devices, such as optical
disk drives and the like may be used 1 addition to or 1n place
of the hardware depicted 1in FIG. 1. The depicted example 1s
not meant to 1mply architectural limitations with respect to
the present invention. For example, the processes of the
present mvention may be applied to multiprocessor data
processing system.

The present invention provides a method, apparatus, and
instructions for selecting which methods are to be just in
fime compiled, also referred to as being “JITed”. The
mechanism of the present invention includes an interface
that receives a call to just i time compile or “JIT compile”
a method that is normally intended for the just in time (JIT)
compiler. A determination 1s made as to whether to send the
method to the JIT compiler. In the depicted example, the
method 1s compared to a database or data structure contain-
ing nformation about methods that are known to produce
invalid results or errors when these methods are JI'Ted. If the
method 1s to be JITed, the method is then passed by the
interface on to the JIT compiler. Otherwise, the method
might be returned to the interpreter in the JVM for process-
ing. Alternatively, the processing of the method may be
terminated.

With reference now to FIG. 2, a diagram of components
used to selectively process methods are depicted 1 accor-
dance with a preferred embodiment of the present invention.

In this example, JVM 200 includes a class loader 202 and

10

15

20

25

30

35

40

45

50

55

60

65

4

interpreter 204. Interface 206 1s the component containing
the mechanism and process of the present invention. Data

structure 208 1s used by interface 206 to determine whether
or not to JIT compile a method. Also shown 1n FIG. 2 1s JIT
compiler 210, which includes a compiler unit 212. JVM 200
and JIT compiler 210 contain other components, which are
not shown to avoid obscuring the description of the present
invention.

JVM 200 will start execution by mvoking a method of a
specifled class. In the depicted example, this method may be
for example, main. The method may be passed a single
arcument in the form of an array of strings. This causes the
specifled class to be loaded, linked to other types that it uses,
and initialized. The loading of a class involves finding the
binary form of a class or interface type with a particular
name. In the depicted example, the loading process 1is
implemented by class loader 202. Class loader 202 1n this
example 1ncludes a ClassLoader class, which includes meth-
ods for loading new classes into the Java runtime environ-
ment. Interpreter 204 1s a program that translates a bytecode
to a native instruction and then executes the native instruc-
tions. The bytecode 1s translated 1nto a form executable by
the computer on which the JVM 1s located.

JIT compiler 210 includes a compiler unit 212 incorpo-
rating a compiler class, which includes methods for com-
piling methods to native instructions prior to execution. In
this example, the compilation occurs only once per method.
Some JIT compilers may compile entire, classes, rather than
onc method at a time. A specific class or method may be
compiled by passing an instance of the method or class to
compiler unit 212 in JIT compiler 210.

Interface 206 receives the call or passing of the method
destined for JIT compiler 210. Interface 206 may receive or
intercept the method being passed to JIT compiler 210 by
registering itself as a JIT compiler that 1s to receive the

method m place of JIT compiler 210. The method 1s received
from JVM 200 by interface 206 through a compile class API

invoked by interpreter 204 in JVM 200. Interface 206 takes
the method information received from class loader 202 and
determines whether or not to JIT compile the method. This
determination may be made by comparing the method name
to a list or table of methods 1n a data structure 208 containing
information about methods that produce 1nvalid results or
errors when JITed. This data structure may contain infor-
mation for a specific JIT compiler, such as JIT compiler 210.
If the method 1s to be JI'Ted, the method 1s then passed on to
JIT compiler 210. Otherwise, interface 206 may place a call
to have interpreter 204 interpret the method. Alternatively,
processing of the method may be terminated.

In addition, the mechanism of the present invention in
interface 206 allows for access to Java stack frames in a
stack. Without interface 206, Java stack frames are 1nacces-
sible 1n some JVMs, such as the JVM for OS/2, which 1s
available from International Business Machines Corpora-
fion. Such access may typically be used for traversal and
study to determine security permissions. The stack 1s avail-
able because a data structure containing information about
functions for accessing the stack is passed to mterface 206.
In the depicted example, this data structure 1s a compiled
code link vector 216. Typically, JVM 200 will generate
compiled code link vector 216 and pass this data structure to
JIT compiler 210. JIT compiler 210 may replace functions
for actions listed 1n this data structure with 1ts own version
of the action.

When interface 206 receives compiled code link vector
216, the contents of the stack may be accessed through
frame Application Programming Interface (API) 218, also
referred to as Framelntf—a function available 1n JVMs from
International Business Machines Corporation, such as the

JVM for OS/2, which is part of compiled code link vector

US 6,324,687 Bl

S

216. In this manner, when vector 216 with frame API 218 1s
hooked or received by interface 206, a shared library is

created as a bridge between JVM 200 and JI'T compiler 210.

In the depicted example, compiled code link vector 216 1s
intercepted or received by interface 206 using a forwarder
dynamic link library (DLL), which is found in JVMs avail-
able from International Business Machines Corporation,
such as, the IBM JVM for OS/2. JVM 200 employs a
forwarder DLL to send compiled code link vector 216 to JIT

compiler 210. JVM 200 uses the forwarder DLL as the just
in time compiler. In this case, the call 1s sent to the forwarder
DLL with interface 206 intercepting the call to the JIT
compiler. At this point, compiled code link vector 216 may
be used to access the stack and stack frames within the stack.
In the depicted example, compiled code link vector 216 1s a
compiled code link vector which contains pointers to func-

fions. Although the processes of the present mmvention are
implemented 1n 1nterface 206, the process could be imple-

mented 1 other software components, such as, for example,
m JVM 200.

Turning now to FIG. 3, a diagram of the compiled code
link vector 1n FIG. 2 1s depicted mn accordance with a
preferred embodiment of the present invention. Compiled
code link vector 216 contains a number of entries 302—-308.
Each entry contains a pointer to a function (PFN) and an
identification of the function. These pointers point to an
address for the function. In addition, these pointers are
replaceable 1n the depicted example so that a function called
for an action may be changed by changing the PFN for an
entry 1n compiled code link vector 300. For example, entry
302 in compiled code link vector 300 includes a PEFN 310 for
an action 312, which 1n this example 1s a frame interface
function, Framelntf. Framelntf 1 entry 302 1s actually a
pointer to data structure 314, containing a number of PFNs
that point to functions for traversing the Java stack and Java
frames. For example, data structure 314 for Framelntt
includes the following functions: an 1nitial frame function,
initFrame () 316; clone frame function, cloneFrame (), 318;
previous frame function, prevFrame(), 320; more frame
function, moreFram (), 322; and method block function,
methodBlock (), 324. Initial frame function 316 is used to
initialize the Framelntf structure with the top level frame
bemng the current frame. Clone frame function 318 1s
employed to create a copy of the current frame so that the
current frame can be stored. Next, previous frame function
320 1s used to set the Framelntf structure to point to the
previous frame. More frame function 322 1s employed to see
if more frames are present 1n the stack, and method block
function 324 1s used to obtain the current method block out
of the current frame. Example of code using the various
Framelntf function may be as follows:

//To traverse all of the stack frames until the end
//of the stack starting at the current frame
for (Framelntf.init{ee, &trav); Framelntf. more(&trav);
Framelntf.prev(&trav)))

1
//does the method block of this frame match
//pAFrame->methodblk?
if (Frameintf.method{&trav) !=pAFrame->methodblk)
break;
y

In this manner, compiled code link vector 216 and its
contents can be examined and analyzed. The forwarder DLL
uses Framelntf, found 1in IBM JVMs, to access stack frames
in compiled code link vector 216 whether or not the stack
frames have been JI'Ted.

Turning now to FIG. 4, a diagram of a Java stack and JVM
frame, manipulated using the processes of the present

10

15

20

25

30

35

40

45

50

55

60

65

6

invention, 1s depicted 1n accordance with a preferred
embodiment of the present invention. Java stack 400

includes 1n the depicted example, JVM frames 402—412.
Java stack 400 1s an example of a stack that 1s intercepted by
interface 206 i FIG. 2.

Each JVM has a Java stack, such as Java stack 400. Java
stack 400 1s created at the same time as the JVM. Java stack
400 1s similar to the stack of a conventional language such
as C because Java stack 400 holds local variables and partial
results and also plays part 1n method mnvocation and return.
The memory for Java stack 400 need not be contiguous.
Each frame may include information regarding a method. In
particular, a frame may store data and partial results as well
allow for dynamic linking to return values for methods and
to dispatch exceptions. A new frame 1s created each time a
Java method 1s invoked. Frames are allocated from Java
stack 400. In this example, frame 408 contains local vari-
ables 416 and executing environment 418. This executing,
environment may be 1n the form of an operand stack from
which a JVM mstruction may take values, operate on these
values, and return results. Argcuments may be passed to
methods and results may be received from methods through
the operand stack. All of the information within frames
402—412 may be made available for traversal and analysis
when stack 400 1s received by interface 206 1n FIG. 2.

With reference now to FIG. §, a flowchart of a process
used to determine whether a method should be just 1in time
compiled 1s depicted 1n accordance with a preferred embodi-
ment of the present invention. The process begins by inter-
cepting a call to the JIT compiler’s compile class function
(step 500). Thereafter, a search is made for users specified
data for a particular class/method (step 502). This search
may be made 1 a data structure containing information
about various classes or methods. In particular, the infor-
mation 1denftifies methods that produce invalid results or
errors when compiled by a JIT compiler. The information
may be targeted to specific JIT compilers.

In FIG. 6, an example of a data structure containing user
specified data for class/method information i1s depicted in
accordance with a preferred embodiment of the present
invention. Data structure 600 includes a number of entries
602—-612 1n which each entry 1dentifies a class/method and
an 1ndication as to whether the method 1s to be JI'Ted or not
HTed. A “no-JIT”, such as that found in entry 604 for
class/method B indicates that the method should not be
JITed. A determination 1s then made as to whether the
class/method has been marked as no JIT (step 504). This
determination 1s made by comparing the method to be JI'Ted
to data within a data structure, such as data structure 600 in
FIG. 6. If the class/method 1s not to be JI'Ted, then the
class/method bytecodes are unmodified (step 506) with the
process terminating thereatter. These bytecodes may then be
sent to the imterpreter for execution. Otherwise, the class/
method to be JI'Ted 1s sent to the JIT compiler by calling
compile class (step 508) with the process terminating there-
atter.

It 1s important to note that while the present invention has
been described 1n the context of a fully functioning data
processing system, those of ordinary skill in the art waill
appreciate that the processes of the present invention are
capable of being distributed 1n a form of a computer readable
medium of instructions and a variety of forms and that the
present invention applies equally regardless of the particular
type of signal bearing media actually used to carry out the
distribution. Examples of computer readable media include
recordable-type media such a floppy disc, a hard disk drive,
a RAM, and CD-ROMs and transmission-type media such
as digital and analog communications links.

The description of the present mvention has been pre-
sented for purposes of illustration and description, but is not

US 6,324,687 Bl

7

intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. For example,
although the depicted embodiment 1s directed towards pro-
cessing bytecodes 1n Java, the processes of the present
invention may be applied to other programming languages
and environments that process instructions, which are non-
specific to a computer on which the instructions are to be
executed. In such a case, a virtual machine on the computer
may 1nterpret the instructions or send the instructions to a
compiler to generate code suitable for execution by the
computer on which the virtual machine 1s located. The
processes of the present invention also may be applied to
selectively compiling instructions based on criteria other
than the generation errors or exceptions. For example,
selective compiling may be based on memory or speed. The
process may be applied to entire classes, or individual
methods or to paths in a method such a loop. The embodi-
ment was chosen and described 1n order to best explain the
principles of the invention, the practical application, and to
enable others of ordinary skill 1in the art to understand the
invention for various embodiments with various modifica-
fions as are suited to the particular use contemplated.
What 1s claimed 1s:

1. A process 1n a data processing system for executing
bytecodes comprising;:

receiving bytecodes for execution;

responsive to a determination that the bytecodes should be
compiled, sending the bytecodes to a just mm fime
compiler;

responsive to an absence of a determination that the

bytecodes should be compiled, sending the bytecodes
to an interpreter;

comparing the bytecodes to information about a plurality
of sets of bytecodes; and

determining whether the bytecodes should be compiled
based on the information about the plurality of sets of
bytecodes.
2. The process of claim 1, wherein the bytecodes form a
method.
3. The process of claim 1, wherein the step of receiving
COMprises:

intercepting a call to the compiler to process the byte-

codes.

4. The process of claim 1, wherein the information about
the plurality of sets of bytecodes 1s stored 1n a data structure.

5. The process of claim 1, wherein the information about
the plurality of sets of bytecodes mncludes an 1identification of
bytecodes that generate errors when sent to a just 1n time
compiler.

6. A process 1n a data processing system for just in time
compilation of a method 1n a Java virtual machine by a just
in time compiler, the process comprising:

monitoring for a call to the just in time compiler to

execute a method;

responsive to detecting the call, intercepting the call;

determining whether the method should be just in time
compiled 1n response to intercepting the call;

responsive to a determination that the method should be
just in time compiled, sending the method to the just 1n
time compiler; and

responsive to an absence of a determination that the
method should be just in time compiled, halting execu-
tion of the method.

7. A method 1n a computer for executing instructions for
a virtual machine running on the computer, the method
comprising:

10

15

20

25

30

35

40

45

50

55

60

65

3

receiving an 1nstruction for execution, wherein the
instruction 1s nonspecific to the computer;

determining whether the instruction should be compiled
into native code specific for the computer;

responsive to a determination that the instruction should
be just in time compiled, sending the instructions to a
compiler designed to generate native code specific for
the computer; and

responsive to an absence of a determination that the
instruction should be just in time compiled, sending the
instruction to an interpreter.

8. A method 1n a computer for accessing a stack used by
a virtual machine and a compiler, the method comprising the
computer implemented steps of:

intercepting a call passing the stack from the wvirtual
machine to the compiler, wherein the call includes
mmformation used to access the stack; and

using information to access the stack.
9. The method of claim 8, wherein the information
COmMPrises:
a plurality of pointers to a plurality of functions.
10. The method of claim 8, wherein the call 1s made using
a forwarder dynamic link library.
11. A virtual machine for use 1n a computer, the virtual
machine comprising;
a class loader, wherein the class loader loads a method for
execution, wherein the method includes first instruc-
tions which are nonspecific to the computer;

a compiler, wherein the compiler generates second
Instructions executable by the computer;

an 1nterpreter, wherein the interpreter performs each of
the first instructions;

an 1nterface, wherein the interface includes a plurality of

modes of operations mncluding:

a first mode of operation 1n which the interface receives
the first 1nstructions from the class loader destined
for the compiler;

a second mode of operation, responsive to receiving the
first 1nstructions, in which the interface determines
whether to send the first instructions to the compiler;

a third mode of operation, responsive to a determina-
tion that the first instructions are to be sent to the
compiler, 1n which the interface sends the first
instructions to the compiler; and

a fourth mode of operation, responsive to an absence of
a determination that the instructions are to be sent to
the compiler, in which the interface sends the
instructions to the interpreter; and

a data structure, wherein the data structure contains
information about methods, wherein the interface 1n
the second mode of operation queries the data struc-
ture for mformation used to determine whether to
send the first instructions to the compiler.

12. The virtual machine of claim 11, wherein the infor-
mation about methods includes an identification of methods
that generate errors when compiled by the compiler.

13. A data processing system for executing bytecodes
comprising:

receiving means for receiving bytecodes for execution;

sending means, responsive to a determination that the

bytecodes should be compiled, for sending the byte-
codes to a just 1n time compiler;

comparing means for comparing the method to informa-
tion about a plurality of sets of bytecodes;

determining means for determining whether the byte-
codes should be compiled based on the information
about the plurality of sets of bytecodes; and

US 6,324,687 Bl

9

sending means, responsive to an absence of a determina-
tion that the bytecodes should be compiled, for sending
the bytecodes to an interpreter.

14. The data processing system of claim 13, wherein the
receiving means Comprises:

intercepting means for intercepting a call to the compiler

to process the bytecodes.

15. A data processing system for just 1n time compilation
of a data processing system 1n a Java virtual machine by a
just 1n time compiler, the data processing system compris-
Ing:

monitoring means for monitoring a call to the just 1in time

compiler to executed a method;

intercepting means, responsive to detecting the call, for
intercepting the call;

determining means for determining whether the method
should be just 1n time compiled 1n response to inter-
cepting the call;

sending means, responsive to a determination that the
method should be just in time compiled, for sending the
method to the just in time compiler; and

halting means, responsive to an absence of a determina-
tion that the method should be just 1n time compiled,
for halting execution of the method.

16. A data processing system 1n a computer for executing
instructions for a virtual machine running on the computer,
the data processing system comprising:

receiving means for receiving an 1nstruction {for
execution, wherein the mstruction i1s nonspeciiic to the
computer;

sending means, responsive to a determination that the
method should be just in time compiled, for sending the
instructions to a compiler designed to generate native
code specific for the computer;

comparing means for comparing the method to informa-
tion about a plurality of methods;

determining means for determining whether the method
should be compiled based on the information about the
plurality of methods; and

5

10

15

20

25

30

35

10

sending means, responsive to an absence of a determina-
tion that the method should be compiled, for sending
the 1nstructions to an interpreter.

17. A computer program product in a data processing
system for executing bytecodes comprising:

first mnstructions for receiving bytecodes for execution;

second 1nstructions, responsive to a determination that the
bytecodes should be compiled, for sending the byte-
codes to a just 1n time compiler;

third instructions for comparing the bytecodes to infor-
mation about a plurality of sets of bytecodes;

fourth 1nstructions for determining whether the bytecodes
should be compiled based on the information about the
plurality of sets of bytecodes; and

fifth structions responsive to an absence of a determi-
nation that the bytecodes should be compiled, for
sending the bytecodes to an interpreter.

18. A computer program product in a data processing
system for just 1n time compilation of a computer program
product 1n a Java virtual machine by a just 1in time compiler,
the computer program product comprising:

first instructions for monitoring a call to the just in time
compiler to execute a method;

second 1nstructions for responsive to detecting the call,
intercepting the call;

third instructions, responsive to a determination that the
method should be just in time compiled, for sending the
method to the just in time compiler;

fourth instructions for comparing the method to 1nforma-
tion about a plurality of methods;

fifth 1nstructions for determining whether the method
should be just 1n time compiled based on the informa-
tion about the plurality of methods; and

sixth 1nstructions responsive to an absence of a determi-
nation that the method should be just 1n time compiled,
for sending the method to an interpreter.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,324,687 Bl Page | of |
DATED - November 27, 2001
INVENTOR(S) : Beadile et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Title page,
Attorney, Agent, or Firm, “Jeffrey S. LaBow™ should read -- Jeffrey S. LaBaw --;

Column 1,
Line 19, ©09,204,968" should read -- 09/204,968 --;

Column 9,
Line 13, after “to”, delete “executed” and insert -- execute --.

Signed and Sealed this

Nineteenth Day of March, 2002

Anest:

JAMES E. ROGAN
Attesting Officer Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

