(12) United States Patent

Cooper

US006307488B1

US 6,307,488 Bl
Oct. 23, 2001

(10) Patent No.:
45) Date of Patent:

(54) LZW DATA COMPRESSION AND
DECOMPRESSION APPARATUS AND
METHOD USING GROUPED DATA
CHARACTERS TO REDUCE DICTIONARY
ACCESSES
(75) Inventor: Albert B. Cooper, New York, NY (US)
(73) Assignee: Unisys Corporation, Blue Bell, PA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent 15 extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/564,956

(22) Filed: May 4, 2000

(51) Int. CL7 e, HO3M 7/34

(52) U.S. Cl ceveeeneeneee. O41/81; 341/63

(58) Field of Search 341/50, 51, 63,

341/65, 67

(56) References Cited

U.S. PATENT DOCUMENTS
4,558,302 12/1985 WelCh veeveeveeoeeeeeeeeeeereerrennnn. 340/347
5,463,390 * 10/1995 Whitting et al. 341/51
5,764,167 * 6/1998 Adams et al.ccvvveennnnnn 341/63
5,861,827 * 1/1999 Welch et al. ...covvvvevvrveneennnnnne. 341/51
0,169,499 * 172001 CoOpercovvvvervvivinnniniivennnnnnn. 341/51
0,188,333 * 2/2001 CoOper ...oooevvvverviivinnninvivannnnnne. 341/51

OTHER PUBLICAITONS

Graphics Interchange Format (sm), Version 89a, Jul. 31,
1990.

TIFF Revision 6.0 Final—Jun. 3, 1992.
* cited by examiner

Primary FExaminer—Peguy JeanPierre

(74) Attorney, Agent, or Firm—Albert B. Cooper; Mark T.
Starr

(57) ABSTRACT

In a data compressor, the mnput stream of data characters 1s
formed 1nto one or more data character groupings where
cach grouping comprises a predetermined number of the
data characters (grouped character) followed by one or more
of the input data characters. The formed 1nput 1s compared
to stmilarly configured stored strings until a longest match 1s
determined. Each stored string has a code associated there-
with and the code of the longest match 1s output by the
compressor. An extended string 1s stored comprising the
longest match extended by the data character that caused the
mismatch. A next compression cycle begins with a grouped
character comprising the data character that caused the
mismatch concatenated by one less than the predetermined
number of the next following data characters. In one
embodiment, data character strings comprise an 1initial
orouped character followed by as many data characters as
can be matched. In another embodiment, a string 1s com-
prised of consecutive grouped characters followed by one or
more data characters up to a maximum of one less than the
predetermined number. In this embodiment, when extension
of a string for storage would result in the predetermined
number of data characters following the consecutive
ogrouped characters, the predetermined number of data char-
acters 1s appended to the consecutive grouped characters as
a further grouped character. In this embodiment two dictio-
naries are utilized, one for storing strings of consecutive
ogrouped characters and the other for storing data character
extensions of strings stored in the first dictionary.

62 Claims, 22 Drawing Sheets

INITIALIZE CODE |48
COUNTER TO 258
INITIALIZE CODE | 41
SIZETOS
CLEAR DICTIONARY AND | - 42
CURRENT MATCH

FETCH THE FIRST 4 DATA CHARACTERS TO
CURRENT MATCH TO FORM A GROUPED CHARACTER

I X

»-'|-<

FETCH THE NEXT DATA CHARACTER |- 44
TO CURRENT CHARACTER 46

Y

IS CURRENT MATCH + CURRENT

45
YES

/[

SET CURRENT MATCH TO

CHARACTER IN DICTIONARY? |

y NO

CURRENT MATCH + CURRENT
CHARACTER

OUTPUT CODE OF
CURRENT MATCH

- 47

Y

STORE CURRENT MATCH + CURRENT CHARACTERIN [50
DICTIONARY AT CODE AS3IGNED BY COGDE COUNTER

Y

51

DOES CODE IN CODE COUNTER REQUIRE |~ NDO
INCREASE IN CODE SIZE ?
+ YES
A7

ADD 1 TOCODE SIZE |
ADD 1 TO CODE COUNTER F— *°
GLEAR CURRENT MATCH |— ¥

FETCH THE NEXT 3 55
DATA CHARACTERS 56

SET CURRENT MATCH TO CURRENT CHARACTER +
THE 3 FETCHED DATA CHARACTERS TO
FORM A GROUPED CHARACTER

U.S. Patent Oct. 23, 2001 Sheet 1 of 22 US 6,307,488 B1

=== — Figure 1
L _— :

| ADDRESS | PREFIXCODE | DATA CHARACTER 22

| (12 BITS) (12 BITS) (2 BITS)

=2 23 24

DICTIONARY

21
26 27— 10

CURRENT MATCH CURRENT CHARACTER
(12 BITS) (2 BITS) CODE COUNTER
13 y 17
CODE SIZE WORKING BUFFERS CONTROL
15 16 20

COMPRESSOR
31 32 y .
INPUT DATA CHARACTER BUFFER | —— - GHARACILRS = HERESSED
30
CTTTT Figure 4
L
| ADDRESS | PREFIXCODE | DATACHARACTER 122
| (12BITS) (12 BITS) (2 BITS)
T 125 123 124
L DICTIONARY
121/ o
CURRENT CODE | [PREVIOUS CODE
(12 BITS) (12 BITS) CODECOUNTER | | CODESRZE
130 131 133 132
GROUPED DATA CONTROL
DICTIONARY CHARACTER L\ -
STRING TO DATA ARACT 137
" Loaic CONVERSION FORMING
\YERS BUFFERS
135 136
DECOMPRESSOR
141 142

11 112
INPUT CODE BUFFER _d COM R SoCD RECOVERED DATA

140

U.S. Patent Oct. 23, 2001 Sheet 2 of 22 US 6,307,488 B1

INITIALIZE CODE
COUNTER TO 258
INITIALIZE CODE 41
SIZE TO 9
CLEAR DICTIONARY AND 42
CURRENT MATCH
FETCH THE FIRST 4 DATA CHARACTERS TO 43
CURRENT MATCH TO FORM A GROUPED CHARACTER
FETCH THE NEXT DATA CHARACTER 44
TO CURRENT CHARACTER 46
49 SET CURRENT MATCH TO
9
CHARACTER IN DICTIONARY? CHARACTER
NO
OUTPUT CODE OF 47
CURRENT MATCH
STORE CURRENT MATCH + CURRENT CHARACTER IN 50
DICTIONARY AT CODE ASSIGNED BY CODE COUNTER
51
DOES CODE IN CODE COUNTER REQUIRE NO
INCREASE IN CODE SIZE 2
ADD 1 TO CODE SIZE

ADD 1 TO CODE COUNTER |— %°
CLEAR CURRENT MATCH 54
FETCH THE NEXT 3 55
DATA CHARACTERS o

SET CURRENT MATCH TO CURRENT CHARACTER +
THE 3 FETCHED DATA CHARACTERS TO
FORM A GROUPED CHARACTER

40

Figure 2

U.S. Patent

Oct. 23, 2001

Sheet 3 of 22

INPUT DATA CHARACTER STREAM
a1 by ¢q ap by ¢3 a3 by ¢3 a3 by ¢4 a5 bg C5....a17 by ¢47 a4y byg Cqp

US 6,307,488 Bl

1 a{bqcqas by 258 a{bicqas b, aibicqay 40-45,47,50

2 | bsyCsazb, C3 259 boCsazb; C3 | bscoaszbs 51-56,44,45,47,50

3 | cjagbscqy | as | 260 | cqagbecs | ag | Cyasbacs | 51-56,44,4547.50

4 | asbscsag | bg | 261 | 51-56,44,45

5 258 | cg 258 6 258 44-47,50

6 | cgasbc; | ag | 262 51-56,44,45

7 260 by | 260 | by | 260 44-47 50

8 | becsaby | co | 263 | 51-56,44,45

o 259 | ag | 259 n 250 | 44-4750

10 | ajgbigCioasy | byy | 264 51-56,44,45

11 258 | ¢y | | 44-46

12 261 [ap | 261 a5 261 L 44-47,50

13 | ajobyscioaqs | byz | 265 51-56,44,45
14 258 | cq3 | = 44-46

15 | 261 | ag " 44-46

16 | 264 ba | 264 n 264 44-47,50

17 | byscisassbys | cic | 266 | 51-56,44,45

18 | 259 | a; | 44-46

19 263 b1g 263 by 263 44-47,50

20 | bygCgassbyy | Ci7 | 267 51-56,44,45

21 | 259 | aq | 44-46

| B L I IR R

22 263 byg 44-46

23 | 266 Cig 266 | Cyp 266 44-47,50

24 | cg..... | 268 51-53

U.S. Patent Oct. 23, 2001 Sheet 4 of 22 US 6,307,488 B1

INITIALIZE CODE COUNTER TO 258 150
INITIALIZE CODE SIZE TO 9 191

CLEAR DICTIONARY, CURRENT CODE AND PREVIOUS CODE |— %%
FETCH FIRST CODE TO CURRENT CODE 153

OUTPUT THE 4 DATA CHARACTERS OF THE FETCHED GROUPED
CHARACTER IN CURRENT CODE, THEREBY OUTPUTTING THE STRING
CORRESPONDING TO CURRENT CODE

154

SET PREVIOUS CODE TO CURRENT CODE 1565

FETCH THE NEXT CODE TO CURRENT CODE }— 196

(57 166

NO IS CURRENT CODE < NO
9
IS CURRENT CODE < 256 4 CODE COUNTER 2

YES 160 YES 167 168

OUTPUT THE 4 DATA CHARACTERS
OF THE FETCHED GROUPED

CHARACTER IN CURRENT CODE,
THEREBY OUTPUTTING THE
STRING CORRESPONDING TO
CURRENT CODE

CURRENT CODE EXCEPTION CASE
PROCESSING PROCESSING
(FIG. 6) (FIG. 7)

167

STORE, IN DICTIONARY AT CODE
ASSIGNED BY CODE COUNTER,
PREVIOUS CODE + THE FIRST DATA
CHARACTER OF THE FETCHED
GROUPED CHARACTER IN CURRENT CODE

162

DOES CODE IN CODE COUNTER REQUIRE INCREASE IN CODE SIZE ? NO
ADD 1 TO CODE SIZE

ADD 1 TO CODE COUNTER 164
165 Figure 5
SET PREVIOUS CODE TO CURRENT CODE

U.S. Patent Oct. 23, 2001 Sheet 5 of 22 US 6,307,488 B1

FROM 166 OF FIG. 5
@

180

RECOVER THE DATA CHARACTERS FOLLOWING
THE INITIAL GROUPED CHARACTER OF THE STRING
CORRESPONDING TO CURRENT CODE

181

RECOVER THE 4 DATA CHARACTERS OF THE
INITIAL GROUPED CHARACTER OF THE STRING
CORRESPONDING TO CURRENT CODE

182

OUTPUT THE RECOVERED DATA CHARACTERS
IN APPROPRIATE ORDER, THEREBY OUTPUTTING
THE STRING CORRESPONDING TO CURRENT CODE

183
STORE, IN DICTIONARY AT CODE ASSIGNED

BY CODE COUNTER, PREVIOUS CODE + THE FIRST
DATA CHARACTER OF THE INITIAL GROUPED CHAR-
ACTER OF THE STRING CORRESPONDING TO
CURRENT CODE

/ TO 162 OF FIG. 5
167

U.S. Patent Oct. 23, 2001 Sheet 6 of 22 US 6,307,488 B1

FROM 166 OF FIG. 5
C

190
YES I' s PREVIOUS CODE <2562 |-NO
191 194

RECOVER THE DATA CHARACTERS
FOLLOWING THE INITIAL GROUPED

RECOVER THE 4 DATA CHARACTERS
OF THE GROUPED CHARACTER

CHARACTER OF THE STRING
CORRESPONDING TO PREVIOUS CODE

CORRESPONDING TO PREVIOUS CODE

192
a 195

OUTPUT THE 4 DATA CHARACTERS
OF THE GROUPED CHARACTER
CORRESPONDING TO PREVIOUS
CODE EXTENDED BY THE FIRST

DATA CHARACTER OF THE GROUPED
CHARACTER CORRESPONDING TO
PREVIOUS CODE, THEREBY

OUTPUTTING THE STRING 196
CORRESPONDING TO CURRENT CODE

RECOVER THE 4 DATA CHARACTERS
OF THE INITIAL GROUPED
CHARACTER OF THE STRING
CORRESPONDING TO PREVIOUS CODE

OUTPUT THE RECOVERED DATA
CHARACTERS IN APPROPRIATE
193 ORDER EXTENDED BY THE FIRST
DATA CHARACTER OF THE INITIAL
GROUPED CHARACTER OF THE STRING
CORRESPONDING TO PREVIOUS CODE,
THEREBY OUTPUTTING THE STRING
CORRESPONDING TO CURRENT CODE

STORE, IN DICTIONARY AT CODE
ASSIGNED BY CODE COUNTER,
PREVIOUS CODE + THE FIRST

DATA CHARACTER OF THE GROUPED
CHARACTER CORRESPONDING TO
PREVIOUS CODE

197

STORE, IN DICTIONARY AT CODE
ASSIGNED BY CODE COUNTER,
PREVIOUS CODE + THE FIRST

DATA CHARACTER OF THE INITIAL
GROUPED CHARACTER OF THE STRING
CORRESPONDING TO PREVIOUS CODE

168 TO 162 OF FIG. 5

Figure 7

US 6,307,488 Bl

Sheet 7 of 22

Oct. 23, 2001

U.S. Patent

g ainbi4

161-$61°061'991°951°G9L-291
£81-081'991°9G1°G9L-291
161-b61°061°991°9G1'G9L-291

£81-081'991 95} 591291 |
£81-081'991°061's91-29} | Cofqfelolq | %q | osr 092 9
wOeﬂvuno
mnnuuumn

£81-081'991°9G1'GOL-29}
191°091°261°9G1°G91-291

191°091°261-SS1

15Dl HVHO | 3009 |HIND | 3Q0D | 302
40 $%0078 Nd N0 1710 3000 | SNOIATHd |IN3HHNO |SNOILIV

992 £92 92 192 6ST 09Z 852 Yo ¥q ¥e o tq fte ¢ ¢q e o lq le
WY3Y1S 3009 a3SSIHAWOD LNdNI

—
aa -
2 6 ainbi4
4.-...,,
I~
~
ey 1174
\&
7p 1nd1no SHILOVHVHI A — —
- a35SIHANOI 012 vIVa 1ndNl & 4344Nn8 H310VHVHI vivd 1ndNi
212 e 767 167
HOSSIHdNOD
~ (sl1g Z1)
o SH344Ng
TOHLINOD H31S1H3Y-u diN3l
o ONIIHOM HOLYW LN3HHND
X _
- 922 222 622 b2c
= (s11g 8) H31OVHVHD LNIHHND
7 9
4T
HIINNO) (sLig 2) (sLig 2 (s1ig 2) (slig z1)
3005 HYH) HVYH) HVYHD HOLYIN
- Viva LN3HHND
m 122 £22 TV /1e 912 Gie
»
o ~~gpz b2 ~~ggz 682
- —— — — — e ——
Z AHYNOLLOIQ |_ |“
(s1182) (slig z1) (sLigzi) | (siig z1) (sugzy |
147 HILOVHVYHO VIVA | 300) XI434d Ss3yaav |“ 167 HILOVHYHD d34NOHD | 3302 XI43Hd ss3yaav |“
L T
e e

0vc 0&c

U.S. Patent

U.S. Patent

Oct. 23, 2001 Sheet 9 of 22

260

INITIALIZE CODE COUNTER TO 258
INITIALIZE CODE SIZE TO 9
CLEAR DICTIONARIES AND CURRENT MATCH

263 FETCH THE FIRST 4 DATA CHARACTERS TO CURRENT
MATCH TO FORM A GROUPED CHARACTER
FETCH THE NEXT 4 DATA CHARACTERS TO CURRENT 264
CHARACTER TO FORM A GROUPED CHARACTER

Figure 10

261

262

265

US 6,307,488 Bl

267

IS CURRENT MATCH + CURRENT YES SET CURRENT MATCH TO CODE OF
CHARACTER IN DICTIONARY 1? CURRENT MATCH + CURRENT CHARACTER
NC
266

CLEAR CURRENT MATCH TEMP

SET CURRENT MATCH TEMP TO CURRENT MATCH

268

279 SETnTO 1 269
IS CURRENT MATCH + SET CURRENT MATCH TO
THE nTH DATA ves | CODE OF CURRENT MATCH
CHARACTER OF + THE nTH DATA
CURRENT CHARACTER CHARACTER OF CURRENT
IN DICTIONARY 22 CHARACTER
NO o 275 YES
STORE CURRENT MATCH + THE nTH 280 STORE CURRENT MATCH TEMP
DATA CHARACTER OF CURRENT 300 + CURRENT CHARACTER IN
CHARACTER IN DICTIONARY 2 AT DICTIONARY 1 AT CODE
CODE ASSIGNED BY CODE COUNTER ASSIGNED BY CODE COUNTER
281
OUTPUT CODE OF CURRENT MATCH 301— QUTPUT CODE OF CURRENT MATCH
DOES CODE IN CODE | 262 302 DOES CODE IN CODE No
COUNTER REQUIRE COUNTER REQUIRE
283 | INCREASE IN CODE SIZE? INCREASE IN CODE SIZE ?
303 YES
ADD 1 TO CODE SIZE ADD 1 TO CODE SIZE
ADD 1 TO CODE COUNTER 264 304 ADD 1 TO CODE COUNTER
285 305
CLEAR CURRENT MATCH 287 CLEAR CURRENT MATCH

286

YES
Sn=12

FETCH THE NEXT n - 1 2868
DATA CHARACTER(s) 289
SET CURRENT MATCH TO THE nTH
THROUGH 4TH DATA CHARACTER
OF CURRENT CHARACTER + THE

n - 1 FETCHED DATA CHARACTER(s)
TO FORM A GROUPED CHARACTER

SET CURRENT MATCH
5 TO CURRENT CHARACTER

306

307 FETCH THE NEXT 3
DATA CHARACTER(s)
SET CURRENT MATCH TO THE

4TH DATA CHARACTER OF
CURRENT CHARACTER + THE 3

FETCHED DATA CHARACTERS TO
FORM A GROUPED CHARACTER

US 6,307,488 Bl

Sheet 10 of 22

Oct. 23, 2001

U.S. Patent

vLL ainbiq

182'082'G2-¢Le| 192 | € blq 192 192 9l
) Gl2-2L2 | IE | | 002 Gl
212°692-192'G9Z'¥9Z L0€-20¢E L | Steliqllediq] poz | ReStqéledlq | Steliqliedq|)
log‘oos’sLz-aLe | 292 | b dqdteSiqsie |Pighietigile | 2ot el
GlZ-2LT | | 652 Zl
c12-212 | I sz | u
212'692-192'692'v92'682'882'982-282 vigiigtigtie goz | Mqesiqile | vighietigtie| o)
182°082'GL2-2L2 | 652 tlp 652 | 6z | 6
- T 862 g
212°692-192°592' 192 682882082282 | | HqtHeliqoie 29z | Elqtietiqile | Hqtlediqte l
18z'08z'siz-22| 092 |2 Ol 002 | | o0ez | o
212°692-192'G92'¥92 182282 | | SeSqlelq 1oz | WeOlqliebq | GeSqlelq | g
- 182°082°2.2 | |
'69¢-292'592'v92'682'982'982-282 |‘eSq%eSq | | | leSq%eSq | lq | ‘edgeSq 00z | SefqPelq | ‘edgedq ¥
‘ 18208262212 | 852 | T ‘9 | gse 82 | £
212692~ 192'G92°v97 18228 | I vgtetqte 65¢ | 9q%eiqie | PqFetqte '/
182'082'2.2'692-192'G92-002 |*qPelqte | | | CqPelqle | fe | Iqlelqle gsz | 'qvetqfe | Cqlelqle L
mw_%_._.._m 1ndLno | u n__n__m,__w _“__w_#ws HYHO | 300D |H3LOVHVHO | 300D | wmzo HILOVHVHO [HOLVH |\ o) oy
Z 1914 L 1910 00 | IN3HHNI | 1IN3H4dNO
ISe 95q %p S5q SS¢ ' Pq Ye £q e Zq %e lq le

WY3H1S H31OVHVYHO VivQ LNdNI

US 6,307,488 Bl

Sheet 11 of 22

Oct. 23, 2001

U.S. Patent

gl ainbi4
i R B

G9Z'v92'682°882'082-282 LIz | $qsvelbqlie | WqdeSkqte | o

182°082°'5L2-2L2 | 192 Shp 192 192 e

S12-2.7 | | | 992 £6

212692492 £92 ShqSvettqtte | g9z | 2t

602'¥9Z°682°882'082-282 | | ozz | Srqtrethqie lhqivelbqove | |¢

182°082'/2-2L2 | 897 %e | goz | 8oz | ot

2L2'692-992 592 [Weohqovestq | g9z | 62

G9Z'v9Z° 182282 6oz | Ste¥tqsteltq | LLe%q¥estq| gz

182'082°2.2'692-¥92 | S92 9z | ®q | soz | 1 Iep%tq’estq | oz | L2

G9Z'v92'682'882'982-28¢ | 89z | Sevtqitettq | ettqiteltq| o

182°082'SL2-2LC | 992 Ieq 002 992 G2
212692192 | £92 4 | | [q¥eltqite | gz | @

G9Z‘v9Z‘182-28¢ 197 | OtqWeSeqiie | Hq¥celiqice| g7

182°082°2L2°692-%92 | €92 g2 | % | g0z | ®eqWeliqlle | gog 22

GOZ'Y9Z"L06-20E |]] 00z | ¥q¥eRq¥e | Wqiteteqite| |z

106°006°5L2-2L2 | 92 1 | tzeteqizeleq | Ielqiietiq | oz 0Z

S12-21% | .-.... | | e 61

G12-212 002 8l

212'692-192 |)
‘G9Z'792°682'882'982-287 lepliqlieblq Go7 | teeciqecpliq | lepliqiceSlq| 7

US 6,307,488 Bl

Sheet 12 of 22

Oct. 23, 2001

U.S. Patent

....h...m E:m.m..

DLl b4

gl b4
viL b4

911 ainbi4

682'882'982-28¢ e12 LSp¥q¥esSq| b
- 182°092's/2-2L2 | 692 692 692 | ¢F
G12-2LT | | L 892 ev
212'602-97 | GOz HpSSqsterSq | g9z T,
69Z‘Y9Z 108-20¢ ¢le | YSefSqiipciq | cSelglselSq| oy
10£°008°GL2-212 | 0.2 05q0%ebbqbte | g9z B 0.2 6¢
G12-2L2 i 192 g
SL2-2L2 | | 99 T
212'692-792 €92 | 0sqosesiqéte | goz o

US 6,307,488 Bl

Sheet 13 of 22

Oct. 23, 2001

U.S. Patent

- 0.6
2L ainbld g vuvho $3009
V1Vd 03HIA0DIH o1& a3SSIHANOD H344N8 3000 INdN
olE g 770 1/
(S11g 8) HILOVHYHD NOISNILX3
HOSSIHAWNOI3a (slig 2) (slig 2) (sl1g 2)
HYHI HYHD HYHO
096 viva viva VLvd
G9¢ £G8 266
) dW3lL 378Vl
TOHINOD H31S1934-u V13 AHTNOLLOIG
/b€ g
1907
e NOISHIANOD 1907
BN S HILOVHVYH) A4IA0DIH AY3A0O3Y
HILOYHYH) viva ol DNIHLS DNIYLS
VIV H31OVHVYH) Z AHYNOILOIO 1 AHVYNOILOIQ
a3dnoyd
e £he 158
(sLig 21) (spigzh)
E 431NNOJ 3d02 3002 SNOIAIHd 3002 INFHHND
————gg¢ GEE 01 ~~gz¢ GZg
2 AHYNOILOIG |||||_ | AHYNOILOIG T ...i_
268 PEE ~ _ | ccé o€ —~ _ |
(sl1192) (sLig zt) (sLigzi) | (s1ig 8) (srigzi) (slig zl) |
106 HI1IOVHYHO VIva | 3009 X1434d ssIHaav | zp H319VYHVYHD a3dnoys | 3009 Xi1434d ss3HAQY |
] I
I ————_

0t€

0ct

U.S. Patent Oct. 23, 2001 Sheet 14 of 22 US 6,307,488 B1

INITIALIZE CODE COUNTER TO 258 400
INITIALIZE CODE SIZE 1O 9 407

402

CLEAR DICTIONARIES, CURRENT CODE AND PREVIOUS CODE
SET FLAG TO 2 403
FETCH FIRST CODE TO CURRENT CODE 404
OUTPUT THE 4 DATA CHARACTERS OF THE FETCHED GROUPED 405
CHARACTER IN CURRENT CODE, THEREBY OUTPUTTING THE STRING
CORRESPONDING TO CURRENT CODE
SET PREVIOUS CODE TO CURRENT CODE 406
407
FETCH THE NEXT CODE TO CURRENT CODE
410 412
NO IS CURRENT CODE < | NO
IS CURRENT COD ?
o o
413
GROUPED 411 YES 420
CHARACTER /

PROCESSING
(FIG. 14)

IS CURRENT CODE IN -
DICTIONARY TABLE? IS PREVIOUS CODE < 256

NO NO
IS PREVIOUS CODE
IN DICTIONARY TABLE?
NO

414 421

CURRENT EXCEPTION

CURRENT

CODE CODE CASE
DICTIONARY 1 DICTIONARY 2 GROUPED
PROCESSING PROCESSING CHARACTER
(FIG. 15) (FIG. 16) PROCESSING
(FIG. 17) 424

EXCEPTION EXCEPTION
CASE CASE
DICTIONARY 1 | | DICTIONARY 2
PROCESSING | | PROCESSING

(FIG. 18) (FIG. 19)

SET FLAG TO FLAG TEMP 430
SET PREVIOUS CODE TO CURRENT CODE 431
432 NO
DOES CODE IN CODE COUNTER REQUIRE INCREASE IN CODE SIZE?
439 ADD 1 TO CODE SIZE
434 :
ADD 1 TO CODE COUNTER F;gure 13

U.S. Patent Oct. 23, 2001 Sheet 15 of 22 US 6,307,488 B1

FROM 410 OF FIG. 13
C

OUTPUT THE 4 DATA CHARACTERS OF THE FETCHED GROUPED 440
CHARACTER IN CURRENT CODE, THEREBY OUTPUTTING THE STRING
CORRESPONDING TO CURRENT CODE

441

YES NO

SET FLAG TEMP TO 2

442
443 444

STORE, IN DICTIONARY 2

IN DICTIONARY 2, RECOVER ROOT CODE

AT CODE ASSIGNED BY AND THE 3 DATA CHARACTERS FOLLOWING
CODE COUNTER, PREVIOUS THE ROOT CODE OF STRING CORRESPONDING
CODE + THE FIRST DATA TO PREVIOUS CODE
CHARACTER OF THE
FETCHED GROUPED

CHARACTER
SET EXTENSION CHARACTER TO THE 3 DATA

CHARACTERS FOLLOWING THE ROOT CODE OF
445 STRING CORRESPONDING TO PREVIOUS CODE

+ THE FIRST DATA CHARACTER OF THE
FETCHED GROUPED CHARACTER

STORE, IN DICTIONARY 1 AT CODE ASSIGNED

446 BY CODE COUNTER, THE ROOT CODE OF STRING
CORRESPONDING TO PREVIOUS CODE +
EXTENSION CHARACTER
447 STORE CODE IN CODE COUNTER IN
DICTIONARY TABLE
411 TO 430 OF FIG. 13

Figure 14

U.S. Patent Oct. 23, 2001 Sheet 16 of 22 US 6,307,488 B1

FROM 413 OF FIG. 13

IN DICTIONARY 1, RECOVER THE GROUPED CHARACTERS OF THE
STRING CORRESPONDING TO CURRENT CODE

RECOVER THE DATA CHARACTERS OF THE RECOVERED GROUPED 451
CHARACTERS OF THE STRING CORRESPONDING TO CURRENT CODE

OUTPUT THE RECOVERED DATA CHARACTERS IN APPROPRIATE 452

ORDER, THEREBY OUTPUTTING THE STRING CORRESPONDING
TO CURRENT CODE

450

SETFLAG TEMP 10 2 453
ISFLAG = 27 NO

455 454 456

YES

STORE, IN DICTIONARY 2

IN DICTIONARY 2, RECOVER ROOT CODE

AT CODE ASSIGNED BY AND THE 3 DATA CHARACTERS FOLLOWING
CODE COUNTER, PREVIOUS THE ROOT CODE OF STRING CORRESPONDING
CODE + THE FIRST DATA TO PREVIOUS CODE
CHARACTER OF INITIAL
GROUPED CHARACTER OF
THE STRING
CORRESPONDING TO SET EXTENSION CHARACTER TO THE 3 DATA
CURRENT CODE CHARACTERS FOLLOWING THE ROOT CODE OF
STRING CORRESPONDING TO PREVIOUS CODE
+ THE FIRST DATA CHARACTER OF THE
457 INITIAL GROUPED CHARACTER OF THE
STRING CORRESPONDING TO CURRENT CODE
458 STORE, IN DICTIONARY 1 AT CODE ASSIGNED

BY CODE COUNTER, THE ROOT CODE OF STRING
CORRESPONDING TO PREVIOUS CODE +
EXTENSION CHARACTER

459 STORE CODE IN CODE COUNTER IN
DICTIONARY TABLE -

TO 430 OF FIG. 13

414

Figure 15

U.S. Patent Oct. 23, 2001 Sheet 17 of 22 US 6,307,488 B1

FROM 413 OF FIG. 13
C

IN DICTIONARY 2, RECOVER THE ROOT CODE AND THE 470
n DATA CHARACTERS FOLLOWING THE ROOT CODE OF
STRING CORRESPONDING TO CURRENT CODE

= — Sn-37 A
472
SET FLAG TEMP TO 1 SETFLAGTEMPTO2 | #7°
YES 474 NO
IS ROOT CODE < 2562
475
RECOVER THE 4 DATA 480 IN DICTIONARY 1, RECOVER THE GROUPED
CHARACTERS OF THE CHARACTERS OF THE STRING
ROOT CODE CORRESPONDING TO ROOT CODE
OUTPUT THE n + 4 481 RECOVER THE DATA CHARACTERS OF THE
RECOVERED DATA RECOVERED GROUPED CHARACTERS OF
CHARACTERS IN THE 476 THE STRING CORRESPONDING TO ROOT CODE
APPROPRIATE ORDER,
THEREBY OUTPUTTING THE
STRING CORRESPONDING 489 OUTPUT THE DATA CHARACTERS RECOVERED
TO CURRENT CODE FROM DICTIONARIES 1 AND 2 IN
APPROPRIATE ORDER, THEREBY
OUTPUTTING THE STRING CORRESPONDING
TO CURRENT CODE
L T
STORE, IN DICTIONARY 2 483 IN DICTIONARY 2, RECOVER ROOT CODE
AT CODE ASSIGNED BY 485 — AND THE 3 DATA CHARACTERS FOLLOWING
CODE COUNTER, PREVIOUS | 484 THE ROOT CODE OF STRING CORRESPONDING
CODE + THE FIRST DATA TO PREVIOUS CODE
CHARACTER OF THE
STRING CORRESPONDING

TO CURRENT CODE 486 —_ SET EXTENSION CHARACTER TO THE 3 DATA

CHARACTERS FOLLOWING THE ROOT CODE OF
STRING CORRESPONDING TO PREVIOUS CODE
+ THE FIRST DATA CHARACTER OF THE
STRING CORRESPONDING TO CURRENT CODE

STORE, IN DICTIONARY 1 AT CODE ASSIGNED

BY CODE COUNTER, THE ROOT CODE OF STRING
CORRESPONDING TO PREVIOUS CODE +

EXTENSION CHARACTER

487 —

488 — STORE CODE IN CODE COUNTER IN
DICTIONARY TABLE
e Figure 16

TO 430 OF FIG. 13

U.S. Patent Oct. 23, 2001 Sheet 18 of 22 US 6,307,488 B1

FROM 420 OF FIG. 13
O

RECOVER THE 4 DATA CHARACTERS OF THE GROUPED CHARACTER 200
CORRESPONDING TO PREVIOUS CODE

OUTPUT THE 4 DATA CHARACTERS OF THE GROUPED CHARACTER 501
CORRESPONDING TO PREVIOUS CODE EXTENDED BY THE FIRST
DATA CHARACTER OF THE GROUPED CHARACTER, THEREBY
OUTPUTTING THE STRING CORRESPONDING TO CURRENT CODE

STORE, IN DICTIONARY 2 AT CODE ASSIGNED BY CODE
COUNTER, PREVIOUS CODE + THE FIRST DATA CHARACTER
OF THE GROUPED CHARACTER CORRESPONDING TO
PREVIOUS CODE

902

SET FLAG TEMP TO 2 20

TO 430 OF FIG. 13

421

Figure 17

U.S. Patent Oct. 23, 2001 Sheet 19 of 22 US 6,307,488 B1

FROM 422 OF FIG. 13

IN DICTIONARY 1, RECOVER THE GROUPED CHARACTERS 510
OF THE STRING CORRESPONDING TO PREVIOUS CODE

CHARACTERS OF THE STRING CORRESPONDING TO PREVIOUS CODE

C
RECOVER THE DATA CHARACTERS OF THE RECOVERED GROUPED 511

OUTPUT THE RECOVERED DATA CHARACTERS IN APPROPRIATE 51
ORDER EXTENDED BY THE FIRST DATA CHARACTER OF THE
STRING CORRESPONDING TO PREVIOUS CODE, THEREBY
OUTPUTTING THE STRING CORRESPONDING TO CURRENT CODE

STORE., IN DICTIONARY 2 AT CODE ASSIGNED BY CODE

COUNTER, PREVIOUS CODE + THE FIRST DATA CHARACTER
OF THE STRING CORRESPONDING TO PREVIOUS CODE

513

SET FLAG TEMP TO 2 514

493 FROM 430 OF FIG. 13

Figure 18

U.S. Patent Oct. 23, 2001 Sheet 20 of 22 US 6,307,488 B1

FROM 4220F FIG. 13

IN DICTIONARY 2, RECOVER THE ROOT CODE AND THE
n DATA CHARACTERS FOLLOWING THE ROOT CODE OF
STRING CORRESPONDING TO PREVIOUS CODE

520

521
— a2 |0
SETFLAGTEMPTO 1 |- 222 SET FLAGTEMPTO 2 | %%

| 594
YESI™|S ROOT CODE < 2567 H'°

RECOVER THE 4 DATA 505 530 IN DICTIONARY 1, RECOVER THE GROUPED
CHARACTERS OF THE CHARACTERS OF THE STRING
ROOT CODE CORRESPONDING TO ROOT CODE
OUTPUT THE n + 4 531 RECOVER THE DATA CHARACTERS OF THE
RECOVERED DATA £op RECOVERED GROUPED CHARACTERS OF
CHARACTERS IN THE THE STRING CORRESPONDING TO ROOT CODE
APPROPRIATE ORDER
EXTENDED BY THE FIRST
DATA CHARACTER OF THE OUTPUT THE DATA CHARACTERS RECOVERED
ROOT CODE, THEREBY FROM DICTIONARIES 1 AND 2 IN
OUTPUTTING THE STRING 232 APPROPRIATE ORDER EXTENDED BY THE
CORRESPONDING TO FIRST DATA CHARACTER OF THE STRING

CURRENT CODE CORRESPONDING TO ROOT CODE, THEREBY

OUTPUTTING THE STRING CORRESPONDING
TO CURRENT CODE

—{__shue-z |2

cas 533 SET EXTENSION CHARACTER TO THE 3 DATA

CHARACTERS FOLLOWING THE ROOT CODE OF
536 —| STRING CORRESPONDING TO PREVIOUS CODE

STORE , IN DICTIONARY 2
AT CODE ASSIGNED BY
CODE COUNTER, PREVIOUS

CODE + THE FIRST DATA + THE FIRST DATA CHARACTER OF THE
CHARACTER OF THE STRING CORRESPONDING TO CURRENT CODE
STRING CORRESPONDING

TO CURRENT CODE

537_ | STORE, IN DICTIONARY 1 AT CODE ASSIGNED
BY CODE COUNTER, THE ROOT CODE OF THE

STRING CORRESPONDING TO PREVIOUS CODE +
EXTENSION CHARACTER

538 STORE CODE IN CODE COUNTER IN
424 DICTIONARY TABLE
— Figure 19
TO 430 OF FIG. 13 *

US 6,307,488 Bl

Sheet 21 of 22

Oct. 23, 2001

U.S. Patent

voZ ainbi4
¥15-01S Sqhesq
‘eveivlov'ver-oct | leSqledqesq 5q G0Z 892 | S92 892 ZL
LUV Pe¥ | | |
GSh-0SY leSqletq
‘CLYTLY Lob bEb-0ET Lp9q9eSq 5q 992 | 192 | 992 G9Z 1l
b1S-01S leSqledq
‘ereiviov'yer-oey | tetqlelgle 4: £9Z 992 | €92 992 0l
65-9SY bSh-0SY Sqlesqle
AR ARSI 2 2 8 s tqéelgle 92 leSqleSq | leSqleSq | Led9q%Sq | <9z | +9Z €92 6
bESeeG 029126 225028 Sqtesq
‘Zev ey Iovver-oeh LpdqdeSq Sq 192 b9Z | 192 v9Z g
g8 cety'csb oLyl L LT tefq
‘0LY°C LY LY LOb YEP-0LT LeSq%sq €92 SqteSqle | SqleSqle | ¢qéelqle | g9z | Z9¢ 192 l
| |
AR AR [TATR A A T4 g
‘ZeveIviobver-ocy | Sqlecqéetqle e 652 292 | 682 292 9
vev'eev'olb-eLt L IY
‘olveLbTIY Lobver-0et | Sqtecqlelqle le 092 192 | 092 652 G
€0S-00S |
‘ozvzLb LobyEr-0sh | SqleSqieSq Sq Lp9q9eSq 092 |le%%sSq| 092 b
ehy-0bb oLy 0P PEr-0SY iq 852 652 | 85z |le%g%S5q | ¢
£05-00S°0Z 2Ly L0b 90F le tqlelqle ‘qlelqle | g6z Z
S0b-00Y 852 Zqtetgte | |
61-¢1 "Dl HYHD HYHD
40 S$)2018 ndlno NOISNALX3I[| 190

692 0.2 192 892 S9Z 997 £9Z ¥9¢ 192 297 6S¢ 092 ledq%Sq ggz °qcelqle

WY3H1S 30D d3SS34dNOI 1NdNI

US 6,307,488 Bl

Sheet 22 of 22

Oct. 23, 2001

U.S. Patent

Sqtetqle

02 ainbi4
goz "bi4 —
g0z ainbi4
voz ‘bi4
bep-0et | 2
g8h-Sat
‘e8b-08t'PLV S LY LY leSqleSq
oLv'eivziviovveb-oey | 'efqleSa¥elq | z | L | 2 | M2 | Sqtesqte
bes-08s'ves‘zes-02s | teSqleSqle
‘evevLov'ver-oey | Sqletqéelqle | | Z 2 hp 192
beb-08Y ' bIb LY LI SqleSqle
‘oLb'ELb eIy Lov'ber-0ey | Sqlelqlelqle | 2 g Z le 892
{

0l¢

19¢

0LC

69¢

89¢

19¢

4

£l

US 6,307,485 Bl

1

LZW DATA COMPRESSION AND
DECOMPRESSION APPARATUS AND
METHOD USING GROUPED DATA
CHARACTERS TO REDUCE DICTIONARY
ACCESSES

BACKGROUND OF THE INVENTION

1. Field of the Invention

The 1nvention relates to LZW data compression and
decompression systems particularly with respect to reducing
compressor and decompressor dictionary accesses by form-
ing portions of the compressor mput data character stream
into grouped data characters recognizable by the compressor
and decompressor.

2. Description of the Prior Art

Professors Abraham Lempel and Jacob Ziv provided the
theoretical basis for LZ data compression and decompres-
sion systems that are 1n present day widespread usage. Two
of their seminal papers appear 1n the IEEE Transactions on
Information Theory, I'T-23-3, May 1977, pp. 337-343 and 1n
the IEEE Transactions on Information Theory, IT-24-5,
September 1978, pp. 530-536. A ubiquitously used data
compression and decompression system known as LZW,
adopted as the standard for V.42 bis modem compression
and decompression, 1s described 1n U.S. Pat. No. 4,558,302
by Welch, 1ssued Dec. 10, 1985. LZW has been adopted as
the compression and decompression standard used in the
GIF image communication protocol and is utilized in the
TIFF 1mage communication protocol. GIF 1s a development
of CompuServe Incorporated and the name GIF 1s a Service
Mark thereof. A reference to the GIF specification 1s found
in GRAPHICS INTERCHANGE FORMAT, Version 89a,
Jul. 31, 1990. TIFF 1s a development of Aldus Corporation
and the name TIFF 1s a Trademark thereof. Reference to the
TIFF specification 1s found i1n TIFE, Revision 6.0, Final—
Jun. 3, 1992.

Further examples of LZ dictionary based compression and
decompression systems are described 1n the following U.S.
patents: U.S. Pat. No. 4,464,650 by Eastman et al., 1ssued
Aug. 7,1984; U.S. Pat. No. 4,814,746 by Miller et al., 1ssued
Mar. 21, 1989; U.S. Pat. No. 4,876,541 by Storer, 1ssued
Oct. 24, 1989; U.S. Pat. No. 5,153,591 by Clark, 1ssued Oct.
6, 1992; U.S. Pat. No. 5,373,290 by Lempel et al., 1ssued
Dec. 13, 1994; U.S. Pat. No. 5,838,264 by Cooper, 1ssued
Nov. 17, 1998; and U.S. Pat. No. 5,861,827 by Welch et al.,
1ssued Jan. 19, 1999.

In the above dictionary based LZ compression and
decompression systems, the compressor and decompressor
dictionaries may be initialized with all of the single char-
acter strings ol the character alphabet. In some
implementations, the single character strings are considered
as recognized although not explicitly stored. In such systems
the value of the single character may be utilized as 1ts code
and the first available code utilized for multiple character
strings would have a value greater than the single character
values. In this way the decompressor can distinguish
between a single character string and a multiple character
string and recover the characters thereof. For example, 1n the
ASCII environment, the alphabet has an 8 bit character size
supporting an alphabet of 256 characters. Thus, the charac-
ters have values of 0-255. The first available multiple
character string code can, for example, be 258 where the
codes 256 and 257 are utilized as control codes as 1s well
known.

In the above dictionary based LZ compression and
decompression systems, numerous dictionary accesses are

10

15

20

25

30

35

40

45

50

55

60

65

2

required at the compressor for compressing an input stream
of data characters and also at the decompressor to recover
the data characters from the compressed code stream. At the
compressor at least one dictionary access 1s required for
cach 1nput data character and at the decompressor at least
one dictionary access 1s required for each recovered data
character. It 1s desirable 1in such systems to minimize the
number of dictionary accesses so as to enhance system
performance.

SUMMARY OF THE INVENTION

A data compressor compresses an input stream of data
characters 1nto an output stream of compressed codes by
storing strings of data characters encountered 1n the 1nput, a
string being stored as at least one grouping of a predeter-
mined number of the data characters (grouped character)
followed by one or more of the data characters. Each stored
string has a code associated therewith. In a compression
cycle, the mput stream 1s formed into at least one grouped
character followed by one or more of the data characters to
provide a formed 1nput stream. The formed input stream 1s
compared to the stored strings by matching the grouped
character(s) of the formed input stream with the grouped
character(s) of the stored strings and sequentially matching
the data character(s) of the formed input stream that follow
the grouped character(s) thereof with the data character(s) of
the stored strings that follow the grouped character(s)
thereof until one of the data characters causes a mismatch to
occur. In this manner, the longest match between the formed
input stream and the stored strings 1s determined. An
extended string 1s stored comprising the longest match
extended by the data character that caused the mismatch and
a code 1s assigned to the stored extended string. The code
assoclated with the longest match 1s output so as to provide
the stream of compressed codes. A grouped character com-
prising the data character that caused the mismatch concat-
enated by one less than the predetermined number of the
next following data characters 1s used to begin the next
compression cycle.

The predetermined number of data characters of the
orouped character 1s selected so that the grouped character
1s recognized at the decompressor and the data characters
comprising the grouped character can be recovered thereat.

In one embodiment, data character strings comprise an
initial grouped character followed by as many data charac-
ters as can be matched. In another embodiment, a string 1s
comprised of consecutive grouped characters followed by
one or more data characters up to a maximum of one less
than the predetermined number. In this embodiment, when
extension of a string for storage would result 1n the prede-
termined number of data characters following the consecu-
tive grouped characters, the predetermined number of data
characters 1s appended to the consecutive grouped characters
as a further grouped character.

The 1invention further includes a novel data decompressor
for recovering the mput stream of data characters from the
output stream of compressed codes for each compressor
embodiment. The decompressor recreates, from the stream
of compressed codes, the strings stored at the compressor in
lock-step fashion therewith. Furthermore, each decompres-

sor utilizes novel exception case processing based on that of
said U.S. Pat. No. 4,558,302.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic block diagram of a data compressor
for compressing data in accordance with the present inven-
tion.

US 6,307,485 Bl

3

FIG. 2 1s a control flow chart 1illustrating the operations
executed by the compressor of FIG. 1 so as to perform data
compression 1n accordance with the present mnvention.

FIG. 3 1s a chart exemplifying the operations of the
compressor of FIG. 1 1n accordance with the control tlow

chart of FIG. 2.

FIG. 4 1s a schematic block diagram of a data decom-
pressor embodied 1n accordance with the present invention
for recovering data compressed by the compressor of FIG.

1.

FIG. 5 1s a control flow chart illustrating the operations
executed by the decompressor of FIG. 4 so as to perform
data decompression 1in accordance with the present inven-
tion.

FIG. 6 1s a control flow chart 1llustrating the Current Code
processing logic utilized 1n the flow chart of FIG. §.

FIG. 7 1s a control flow chart 1llustrating the Exception
Case processing logic utilized 1n the flow chart of FIG. 5.

FIG. 8 1s a chart exemplifying the operations of the
decompressor of FIG. 4 1n accordance with the control flow
charts of FIGS. §, 6 and 7.

FIG. 9 1s a schematic block diagram of an alternative
embodiment of a data compressor for compressing data 1n
accordance with the present invention.

FIG. 10 1s a control flow chart illustrating the operations
executed by the compressor of FIG. 9 so as to perform data
compression 1n accordance with the present mnvention.

FIG. 11 1s a chart exemplifying the operations of the
compressor of FIG. 9 1n accordance with the control flow

chart of FIG. 10.

FIG. 12 1s a schematic block diagram of a data decom-
pressor embodied 1n accordance with the present invention
for recovering data compressed by the compressor of FIG.

9.

FIG. 13 1s a control flow chart illustrating the operations
executed by the decompressor of FIG. 12 so as to perform
data decompression 1n accordance with the alternative
embodiment of the present invention.

FIG. 14 1s a control flow chart 1llustrating the Grouped
Character processing logic utilized in the control flow chart

of FIG. 13.

FIG. 15 1s a control flow chart illustrating the Current
Code Dictionary 1 processing logic utilized 1n the flow chart

of FIG. 13.

FIG. 16 1s a control flow chart illustrating the Current
Code Dictionary 2 processing logic utilized 1n the flow chart

of FIG. 13.

FIG. 17 1s a control flow chart illustrating the Exception
Case Grouped Character processing logic utilized in the flow

chart of FIG. 13.

FIG. 18 1s a control flow chart illustrating the Exception
Case Dictionary 1 processing logic utilized 1n the flow chart
of FIG. 13.

FIG. 19 1s a control flow chart illustrating the Exception
Case Dictionary 2 processing logic utilized 1n the flow chart

of FIG. 13.

FIG. 20 1s a chart exemplifying the operations of the
decompressor of FIG. 12 1n accordance with the control flow

charts of FIGS. 13-19.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

In the present invention, groupings of a predetermined
number of mput data characters are recognized, or alterna-

10

15

20

25

30

35

40

45

50

55

60

65

4

tively stored, at the compressor and decompressor of a data
compression and decompression system. When the alphabet
over which data compression and decompression 1s per-
formed 1s comprised of a small number of data characters,
all combinations of a predetermined number of consecutive
data characters can form a set having a relatively small
number of groupings.

Consider, for example, a 4 character alphabet having a
character size of 2 bits. All combinations of 4 consecutive
characters form a set of 256 groupings. Each grouping can
be considered as an 8 bit character over an alphabet com-
prising 256 characters. For convenience, such a character
will be referred to herein as a “grouped character”. Alpha-
bets comprising 4 characters are prevalent on the Internet,
for example, in the 4 color images (e.g., advertisements,
logos, banners, labels and buttons) transported thereon. In
such an 1mage, each 1image pixel can assume one of four
colors.

The best mode embodiments described below are specifi-
cally directed to a 4 character alphabet where the grouped
character comprises 4 consecutive 2 bit data characters and,
therefore, the grouped character 1s 8 bits wide. It 1s appre-
clated that the invention 1s also applicable to other alphabet
sizes and data character groupings.

In the described embodiments, the 256 grouped characters
are assumed to be recognized at the compressor and decom-
pressor based on the values of the characters. In the
described embodiments, a grouped character will have a
value of less than 256. Strings longer than a single grouped
character will have codes greater than 256. It 1s appreciated
that the present invention could also be implemented utiliz-
ing embodiments wherein the dictionaries are initialized to
store the 256 grouped characters.

Two embodiments of the mmvention are described 1n detail
below. In the embodiment of FIGS. 1-8, each string begins
with a grouped character and i1s extended by matching
individual data characters. The compressor and decompres-
sor each utilize a single dictionary. In the embodiment of
FIGS. 9-20, consecutive grouped characters are matched
followed by matching data characters up to one less than the
predetermined number of data characters comprising the
orouped character. In this embodiment two dictionaries are
utilized. In the first dictionary, strings of consecutive
ogrouped characters are stored. The second dictionary 1is
utilized to store data character extensions of the strings
stored 1n the first dictionary.

The embodiments described below utilize dictionaries
that contain 4096 locations requiring a 12 bit wide address.
Many of the fields and registers to be described are,
therefore, 12 bits wide. The embodiments are also described
in terms of a variable code size that varies between 9 and 12
bits. When a grouped character of 8 bits or a code of less
than 12 bits 1s set 1into a 12 bit field or register, the quantity
1s considered right justified 1n the field or register with the
additional high order bits zero filled.

Referring to FIG. 1, a data compressor 10 1s illustrated
that compresses a stream of 1nput data characters applied at
an input 11 1nto a stream of corresponding compressed codes
at an output 12. The compressor 10 includes a 12 bit wide
Current Match register 13, a 2 bit wide Current Character
register 14 and a Code Size register 15. The Code Size
register 15 1s utilized 1n a well known manner to control the
number of bits utilized for transmitting the compressed
codes from the output 12. The compressor 10 also includes
Working Buifers 16 to provide buffering for fetched data
characters 1n a manner to be discussed. The compressor 10

US 6,307,485 Bl

S

further 1includes a Code Counter 17 for sequentially gener-
ating code values to be assigned to character strings 1n a
manner to be described. The compressor 10 additionally
includes control 20 for controlling the operations of the
compressor 10 1n accordance with the operational flow chart

of FIG. 2 to be described below.

Also 1ncluded 1s a Dictionary 21 for storing character
strings 1n cooperation with the compressor 10. Specifically,
the Dictionary 21 contains 4096 locations configured as
indicated at reference numeral 22. A Dictionary location
includes a 12 bit wide Prefix Code field 23 and a 2 bit wide
Data Character field 24. A location 1s accessed in the
Dictionary 21 by a 12 bit wide address 25. In a well known
manner, a string 1s stored 1n the Dictionary 21 by storing the
code of the string prefix in the Prefix Code field 23 and the
string extension data character in the Data Character field 24
of a location 22 of the Dictionary. For convenience, the
address 25 1s utilized as the string code. Data 1s communi-
cated between the compressor 10 and the Dictionary 21 via
a bi-directional data bus 26 under control of a control bus 27.

The Dictionary 21 1s conveniently configured and utilized
as an assoclative memory for string searching and storage 1n
the manner described 1n said U.S. Pat. No. 5,838,264. String
scarching and storage may also be effected by other
arrangements, such as by hashing, as 1s well known 1n the
art.

Further included 1s an Input Data Character Buffer 30 that
buffers the mnput data character stream received at the input
11. The 1nput data characters are applied from the Input Data
Character Buffer 30 via a bus 31 to the Current Match
reglster 13, the Current Character register 14 and the Work-
ing Buffers 16 in accordance with operatlons to be
described. The compressor 10 controls acqulrmg input data
characters from the Input Data Character Buffer 30 via a
control bus 32.

Briefly, the operation of the compressor 10 is as follows.
At the beginning of a compression cycle, the Current Match
register 13 contains a grouped character that 1s established at
the end of the preceding compression cycle. At the begin-
ning of the cycle, the next input data character 1s fetched to
the Current Character register 14. The Daictionary 21 1is
scarched for the string represented by the contents of the
Current Match register 13 and the Current Character register
14. Conveniently, the Dictionary 21 1s utilized, as described
above, as an assoclative memory where the contents of the
Current Match register 13 and the contents of the Current
Character register 14 are compared to the Prefix Code field
23 and the Data Character field 24, respectively. If the string,
1s found 1n the Dictionary 21, the string code represented by
the address 235 1s loaded into the Current Match register 13
and the next input data character 1s fetched to the Current
Character register 14. The search continues until the string
represented by the contents of the Current Match register 13
and the Current Character register 14 1s not found in the
Dictionary 21. In this manner, the mnput data character
stream 1s matched against the strings in the Dictionary 21
until the longest match 1s determined.

The code of the longest matching string 1s output at the
compressed output 12 from the Current Match register 13
utilizing the number of bits determined by the Code Size
register 15. An extended string 1s stored 1n the Dictionary 21
by storing the contents of the Current Match register 13 and
the contents of the Current Character register 14 in the Prefix
Code field 23 and the Data Character field 24, resepctively,
of the Dictionary location addressed by the Code Counter
17. The Code Counter 17 1s incremented by 1 and the code

10

15

20

25

30

35

40

45

50

55

60

65

6

size 1n the Code Size register 15 1s incremented by 1 when
the code 1n the Code Counter 17 indicates that an increase
in code size 1s required.

The compression cycle 1s concluded by setting the Cur-
rent Match register 13 to the grouped character comprising
the character in the Current Character register 14 concat-
enated with the next 3 fetched mput data characters.

The first compression cycle performed by the compressor
10 1s 1mitiated by fetching the first 4 input data characters to
the Current Match register 13 to form a grouped character
and by fetching the next input data character to the Current
Character register 14.

Referring to FIG. 2, with continued reference to FIG. 1,
a control flow chart 1s illustrated showing the detailed
operations to be executed by the compressor 10. The tlow
chart of FIG. 2 1s predicated on a variable length output and
the Code Size register 15 1s utilized to this effect. In the
preferred embodiment of the present invention, 256 grouped
characters are utilized as explained above. Therefore, the

code s1ze begins with 9 bits and sequentially increases to 10,
11 and 12 bats at codes 512, 1024 and 2048, respectively.

Accordingly, at a block 40, the Code Counter 17 1is
initialized to a first available code of, for example, 258. At
a block 41, the Code Size register 15 1s initialized to the
beginning code size of 9 bits. At a block 42, the Dictionary
21 and the Current Match register 13 are cleared to zero.

At a block 43, the first 4 input data characters are fetched
to the Current Match register 13 to form a grouped character
and at a block 44 the next input data character 1s fetched to
the Current Character register 14.

Processing continues at a block 45 whereat the Dictionary
21 1s searched to determine if the string comprising the
current match concatenated by the current character 1s 1n the
Dictionary. As described above, the Dictionary searching 1s
performed associatively and other known Dictionary search-
ing procedures may be utilized to the same effect.

If, at the block 45, the string 1s found 1n the Dictionary 21,
the YES branch from the block 435 1s taken to a block 46. At
block 46, the contents of the Current Match register 13 1s
updated to contain the code of the string that was found. At
block 46, therefore, the address 25 of the currently matched
string 1s set 1nto the Current Match register 13. After
updating the Current Match register 13 with the currently
matched string, control returns to the block 44 to fetch the
next input data character to the Current Character register
14. In this manner, the loop formed by the blocks 4446
compares the input data character stream with the strings
stored 1n the Dictionary 21 to find the longest match there-
with.

At the block 45, when the concatenation of the currently
matched string with the next data character fetched at the
block 44 results 1n an extended string that 1s not in the
Dictionary 21, the NO branch from the block 45 1s taken to
a block 47. At the block 47, the code of the current match 1s
output as part of the compressed code stream provided at the
compressor output 12. The code of the current match is
provided by the Current Match register 13. The code 1s
output utilizing the number of bits denoted by the Code Size
register 15. When current match 1s a grouped character
extended by one or more data characters, the code thereot
residing 1n the Current Match register 13 represents the
longest match found i1n the Dictionary 21 as described
above.

It 1s appreciated that the code of the current match that 1s
output at the block 47 can also be a grouped character having
a value of from 0 to 255. The code that 1s output for extended
strings will have a value from 258 through 4095.

US 6,307,485 Bl

7

Processing proceeds to a block 50 whereat the extended
string that was not found in the Dictionary at the block 45
1s entered therein and the extant code of the Code Counter
17 1s assigned to this stored extended string. The block 50 1s
implemented by storing the contents of the Current Match
register 13 and the contents of the Current Character register
14 1n the Prefix Code field 23 and the Data Character field
24, respectively, of the Dictionary location addressed by the
Code Counter 17.

Processing then proceeds to a block 51 whereat the code
in the Code Counter 17 1s tested to determine if an increase
in the code size 1s required. If so, processing continues to a
block 52 whereat the Code Size register 15 1s incremented
by 1. If an 1ncrease 1n code size 1s not required at the block

51, the block 52 1s bypassed to continue processing at a
block 53. At block 53, the Code Counter 17 1s incremented

by 1.
Processing then proceeds to a block 54 whereat the
Current Match register 13 1s cleared and at a block 55, the

next 3 mput data characters are fetched to the Working
Buffers 16. At a block 56, the Current Match register 13 1s

set to the current character in the Current Character register
14 concatenated with the 3 fetched data characters in the

Working Buifers 16 to form a grouped character with which
to begin the next compression cycle. Accordingly, control
returns to the block 44 to fetch the next data character to the
Current Character register 14.

Referring to FIG. 3, with continued reference to FIGS. 1
and 2, an example of the operation of the compressor 10 1n
accordance with the flow chart of FIG. 2 1s 1llustrated. At the
top of FIG. 3, an mput data character stream 1s shown where
sequential characters are identified by character sequence
numbers. This 1s done to facilitate following the progress of

the characters through the steps of the example. It 1s appre-
ciated that the sequence numbers are shown for purposes of
character 1dentification and do not appear 1n the actual data
character stream.

As discussed above, the embodiments described herein
are predicated on an underlying data character alphabet of 4
characters, e.g., a, b, ¢ and d. The example 1nput data
character stream at the top of FIG. 3 utilizes a repetition of
the characters a, b and ¢ to exemplily the operations of the
compressor 10. The example 1s largely self-explanatory,
with the actions performed delineated in the left-hand col-
umn and the blocks of FIG. 2 that participate 1n the actions
designated 1n the right-hand column.

In actions 1-4, 6, 8, 10, 13, 17 and 20, the grouped
character that 1nitiates each respective string search 1s 1llus-
trated. In action 1, for example, the grouped character that
1s set 1into the Current Match register 13 at block 43 1is
“abca”. At block 45, the string for which the compressor 10
1s searching in the Dictionary 21 1s the concatenation of
current match with current character, which, 1n action 1, 1s
“abca b”. Since this string 1s not yet in the Dictionary, 1t 1s
stored therein 1 block 50 at code 258 and the code of the
current match 1s output at block 47, namely “abca”. It is
appreciated, as explained above, that the value of this code
1s less than 256. In this manner the decompressor will
recognize that it 1s receiving a grouped character and will
extract the data characters therefrom.

Actions 10-12 depict the search at blocks 44-46 for the

string comprising the grouped character “abca” extended by
the data characters “b” and “c”. This search results in the
output, at action 12, of the code 261. Since this code 1is
oreater than 256, the decompressor will recognize that 1t 1s
the code for an extended string and can access the characters
thereof from the decompressor dictionary in a manner to be
described.

10

15

20

25

30

35

40

45

50

55

60

65

3

Actions 13-16 1illustrate a string search that results 1n
exception case processing which will be described 1n greater
detail with respect to the decompressor of FIG. 4. The
exception case processing utilized herein 1s a modification of
the exception case processing described 1n said U.S. Pat. No.

4,558,302.

More detailed descriptions of the actions of FIG. 3
relative to the blocks of FIG. 2 are readily apparent and will
not be provided for brevity.

It 1s appreciated from FIGS. 2 and 3 that because each
string search begins with a grouped character, dictionary
accesses are reduced compared to prior art procedures.
Additionally, since the string search continues after the
initial grouped character with individual data characters of
the mput data character stream, the compression ratio will
not be significantly affected.

Referring to FIG. 4, with continued reference to FIG. 1,
a data decompressor 110 1s illustrated that decompresses a
stream of compressed codes applied at an mnput 111 into a
recovered stream of data characters at an output 112. It 1s
appreciated that the compressed code stream from the output
12 of the compressor 10 (FIG. 1), if applied to the input 111
of the decompressor 110, results in the recovery, at the
output 112 of the decompressor 110, of the original 1nput
data character stream applied to the mput 11 of the com-
pressor 10.

A Dictionary 121 1s included for storing data character
strings corresponding to received compressed code inputs.
In the operation of the decompressor 110, the contents of the
Dictionary 121 are maintained identical to the contents of
the Dictionary 21 of the compressor 10 of FIG. 1. The
Dictionary 121 1s preferably implemented by a RAM and the
data structure thereof 1s arranged 1in a manner similar to that
described above with respect to the Dictionary 21.
Accordingly, a location 122 includes a 12 bit wide Prefix

Code field 123 and a 2 bit wide Data Character field 124.
The location 122 1s accessed by a 12 bit wide address 1285.
In a manner similar to that described above with respect to
the Dictionary 21, a string 1s stored 1n the Dictionary 121 by
storing the string prefix code 1n the field 123 and the string
extension character 1n the field 124. The string code for the
string stored at the location 122 1s conveniently provided by
the address 125. Data 1s communicated between the decom-
pressor 110 and the Dictionary 121 via a bi-directional data
bus 126 under control of a control bus 127.

The decompressor 110 includes a 12 bit wide Current
Code register 130, a 12 bit wide Previous Code register 131
and a Code Size register 132. The Code Size register 132
performs a similar function to that described above with
respect to the Code Size register 15 of the compressor 10 in
that the Code Size register 132 determines the number of bits
in which the decompressor 110 receives mnput compressed
codes. The decompressor 110 further includes a Code
Counter 133 for sequentially generating code values to be
assigned to extended strings stored 1 the Dictionary 121 by
the decompressor 110. The Code Counter 133 maintains a
lock-step relationship with the Code Counter 17 of the
compressor 10 of FIG. 1 as will be appreciated from the
descriptions to follow.

The decompressor 110 further includes Dictionary String
Recovery logic 134 for recovering strings stored in the
Dictionary 121 that are accessed by compressed codes. The
general methodology for recovering data character strings
from a dictionary in response to the string code correspond-
ing thereto 1s known 1n the art of data compression and

decompression (see, e.g., U.S. Pat. No. 4,558,302). The

US 6,307,485 Bl

9

specific string recovery operations performed with respect to
the 1nmitial grouped character of each string will be described
below.

The decompressor 110 further includes Grouped Charac-
ter To Data Character Conversion logic 135. The logic 135
recovers, from a grouped character, the individual data
characters comprising the grouped character. The decom-
pressor 110 also includes Data Character String Forming
buifers 136. The buffers 136 are utilized by the logic 134 and
135 1 assembling the data characters comprising a string
recovered from the Dictionary 121. Further included 1n the
decompressor 110 1s control 137 for controlling the opera-
fions of the decompressor 110 in accordance with the
operational flow charts of FIGS. 5—7 in a manner to be

described.

Included with the decompressor 110 1s an Input Code
Bufler 140 that buffers the input compressed codes received
at the mnput 111. The individual mnput codes are applied from
the Input Code Buifer 140, via a bus 141, to the Current
Code register 130 in accordance with operations to be
described. The decompressor 110 controls acquiring input
codes from the Input Code Buifer 140 via a control bus 142.

Briefly, the operation of the decompressor 110 1s as
follows. A code 1s fetched to the Current Code register 130
utilizing the number of bits determined by the code size in
Code Size register 132. The fetched code 1s examined to
determine if 1t 1s less than 256. If so, the input code
comprises a grouped character transmitted by the compres-
sor 10. The 4 data characters comprising the fetched grouped
character 1n the Current Code register 130 are provided at
the output 112 as the recovered data characters of the string
corresponding to current code. The Grouped Character To
Data Character Conversion logic 135 and the Data Character
String Forming buffers 136 are utilized 1n this string recov-
ery process. Since the 4 data characters comprising the
fetched grouped character are contiguous in the Current
Code register 130, the recovered data characters are readily
extracted from the register 130 by the logic 135 and placed
in the buifers 136 for outputting. It 1s appreciated that access
to the Dictionary 121 1s not required 1n this string recovery
Process.

The Daictionary 121 1s then updated by storing an
extended string comprising the previous code extended by
the first data character of the fetched grouped character from
the Current Code register 130. Accordingly, the previous
code 1n the Previous Code register 131 1s stored in the Prefix
Code field 123 and the first data character of the fetched
orouped character 1s stored 1n the Data Character field 124
of the Dictionary location accessed by the Code Counter
133. The Code Counter 133 1s advanced and the Code Size
register 132 1s advanced 1if required and the current code 1n
the register 130 1s transferred to the Previous Code register
131 to conclude the cycle.

If the code fetched to the Current Code register 130 1s not
less than 256 and 1s less than the code 1n the Code Counter
133, the string corresponding to current code 1s recovered
from the Dictionary 121. The general methodology for
recovering a string from a dictionary 1s known as, for
example, from said U.S. Pat. No. 4,558,302. Brieily, the
Dictionary 121 1s accessed by the fetched current code and
the data character 1n the field 124 of the accessed Dictionary
location 1s transferred to the buffers 136. The code 1n the
field 123 1s utilized to again access the Dictionary 121 and
the data character at the accessed location 1s again stored in
the buffers 136. The process continues until the code 1n the

Prefix Code field 123 1s less than 256.

10

15

20

25

30

35

40

45

50

55

60

65

10

In accordance with the present invention this prefix code
in the field 123 comprises the 1nitial grouped character of the
string represented by current code. The 4 contiguous data
characters of this grouped character are readily recovered
utilizing the logic 135 and are transferred to the buffers 136
to complete the string recovery process. The data characters
of the string in the buffers 136 are then provided to the
output 112 1n the appropriate order.

It 1s appreciated that the data characters of the string are
recovered from the field 124 of the Dictionary 121 in reverse
order. The buffers 136 are utilized to provide the data
characters 1n the correct order. The Dictionary String Recov-
ery logic 134 1s utilized to perform the described operations.

It 1s appreciated that since each string stored in the
Dictionary 121 begins with an mitial grouped character,
fewer Dictionary accesses are required than in the prior art
since the 1initial grouped character, comprising 4 data
characters, only requires one Dictionary access.

As above, the Dictionary 121 1s updated, the Code
Counter 133 and Code Size register 132 are incremented as
required and the current code 1s transferred from the register

130 to the Previous Code register 131.

If the fetched 1mnput code 1n the Current Code register 130
1s not less than the code 1 the Code Counter 133, exception
case processing similar to that described in said U.S. Pat.
No. 4,558,302 1s utilized. Briefly, the code 1n the Previous
Code register 131 1s utilized to recover the previous string.
The previous string 1s then utilized to recover the current
string by extending the previous string by the first data
character of the previous string. This extended string 1s then
output as the current string and stored 1n the Dictionary 121.
Different processing 1s utilized depending on whether the
previous code 1s or 1s not less than 256 as will be described
below.

As above, the Code Counter 133 and Code Size register
132 are incremented as required and the current code 1s
transterred from the register 130 to the Previous Code
register 131.

The control flow charts of FIGS. 5-7 1llustrate the detailed
operations to be executed by the decompressor 110. The
control 137 1s considered as containing appropriate circuitry
such as state machines to control execution of the opera-
fions.

Referring to FIG. §, with continued reference to FIG. 4,
at a block 150, the Code Counter 133 1s initialized in the

same manner as described above with respect to the block 40
of FIG. 2. At a block 151, the Code Size register 132 1is
mnitialized to the beginning code size as explained above
with respect to the block 41 of FIG. 2. At a block 152, the
Dictionary 121, the Current Code register 130 and the
Previous Code register 131 are cleared to zero.

At a block 153, the first input compressed code 1s fetched
to the Current Code register 130 utilizing the number of bits
determined by code size. Because of the above described
operations of the compressor 10, the first fetched code 1s a
orouped character. Accordingly, at a block 154, the 4 data
characters of the fetched grouped character are provided at
the decompressor output 112. The 4 data characters are
recovered from the Current Code register 130 1n the manner
described above. The 4 outputted data characters comprise
the string corresponding to current code. At a block 1355, the
current code 1n the Current Code register 130 1s transferred
to the Previous Code register 131.

At a block 156, the next input compressed code 1s fetched
to the Current Code register 130. It 1s appreciated that the
code fetched to the Current Code register 130 may represent

US 6,307,485 Bl

11

cither a grouped character or a string having an nitial
orouped character followed by subsequent data characters.
As discussed above, such strings are distinguished from one
another by the value of the code. A code representing a
single grouped character has a value less than 256 while a

code representing a longer string has a value that 1s not less
than 256.

Accordingly, at a block 157, the code 1n the Current Code
register 130 1s tested to determine 1f current code 1s less than
256. If so, the YES branch 1s taken from the block 157 to a
block 160 whereat the 4 data characters of the fetched
orouped character 1n the Current Code register 130 are
provided by the decompressor 110 at the output 112.

Processing proceeds to a block 161 whereat an extended
string 1s stored 1n the Dictionary 121 comprising the previ-
ous code extended by the first data character of the fetched
grouped character 1n the Current Code register 130. The
extended string 1s stored in the Dictionary 121 at the code
assigned by the Code Counter 133. The block 161 1s
implemented by storing the contents of the Previous Code
register 131 and the first data character of the fetched
ogrouped character 1n the Prefix Code field 123 and the Data
Character field 124, respectively, of the Dictionary location
addressed by the Code Counter 133.

Processing proceeds to blocks 162-164 whereat 1ncre-
mentation of the Code Counter 133 and the Code Size
register 132 are performed 1n the manner described above
with respect to the blocks 51-53 of FIG. 2. In this manner,
the Code Counter 133 of the decompressor 110 remains 1n
lock-step with the Code Counter 17 of the compressor 10.

Processing proceeds to a block 165 whereat the current
code 1 the Current Code register 130 1s transferred to the
Previous Code register 131. Processing then loops back to
the block 156 to fetch the next input compressed code.

If, at the block 157, current code 1s not less than 256, the
No branch from the block 157 1s taken to a block 166
whereat the current code 1s tested against the code in the
Code Counter 133. If current code in the Current Code
register 130 1s less than the code in the Code Counter 133,
the YES branch from the block 166 1s taken to a block 167.
At the block 167, Current Code processing 1s performed, as
will be discussed 1n detail with respect to FIG. 6.

If at the block 166, current code 1s not less than the code
in the Code Counter 133, the NO branch 1s taken from the
block 166 to a block 168. At the block 168, Exception Case
processing 1s performed, as will be described 1n detail with
respect to FIG. 7. It 1s appreciated that Exception Case
processing will be mvoked in the embodiment described

herein when the received compressed code 1s equal to the
code 1n the Code Counter 133.

Processing continues from the blocks 167 and 168 to the
block 162 described above.

Referring to FIG. 6, with continued reference to FIGS. 4
and 5, details of the Current Code processing of the block
167 of FIG. 5 are illustrated. It 1s appreciated that the
Current Code processing of FIG. 6 1s mmvoked when the
decompressor 110 receives an input compressed code that
represents a string that 1s stored 1n the Dictionary 121. In the
present embodiment the stored string begins with an initial
ogrouped character followed by one or more data characters.

Accordingly, at a block 180, the data characters following
the 1nitial grouped character of the string corresponding to
current code are recovered from the Dictionary 121. At a
block 181, the 4 data characters that comprise the initial
orouped character of the string are recovered. The data
character recovery of the blocks 180 and 181 were described

10

15

20

25

30

35

40

45

50

55

60

65

12

above with respect to FIG. 4 utilizing the logic 134 and 135
and the buffers 136.

At ablock 182, the data characters recovered at the blocks
180 and 181 are output by the decompressor 110 1n appro-
priate order. Thus, the recovered data character string at the
output 112 corresponds to the compressed code fetched to

the Current Code register 130.

The Dictionary 121 1s updated at a block 183 by storing,
an extended string comprising the string corresponding to
the code 1n the Previous Code register 131 extended by the
first data character of the initial grouped character of the
string corresponding to current code. This stored extended
string 1s assigned the string code value of the extant code of
the Code Counter 133. The block 183 1s implemented by
storing previous code from the Previous Code register 131
and the first data character of the 1nitial grouped character
recovered at the block 181 in the Prefix Code field 123 and
the Data Character field 124, respectively, of the location of
the Dictionary 121 addressed by the Code Counter 133.
Processing then continues at the block 162 of FIG. §.

When the compressed code fetched to the Current Code
register 130 imnvokes the Exception Case processing of block
168 of FIG. 5, the Dictionary 121 1s not yet storing the string,
corresponding to current code. The Exception Case process-
ing of block 168 constructs this string from the string

corresponding to previous code as 1illustrated 1n detail 1n
FIG. 7.

Referring to FIG. 7, with continued reference to FIGS. 4
and 3, details of the Exception Case processing of block 168
of FIG. § are illustrated. The Exception Case processing of
FIG. 7 proceeds differently 1f previous code 1n the Previous
Code register 131 represents a grouped character or an
extended string. Accordingly, at a block 190, the previous

code 1s tested to determine 1if it less than 256. If previous
code 1s less than 256, the YES branch 1s taken from the block

190 to a block 191. At the block 191, the 4 data characters
of the grouped character corresponding to previous code are
recovered. The 4 data characters are recovered by the logic
135 from the Previous Code register 131 and are stored 1n
the buffers 136 1n a manner similar to that described above
with respect to the recovery of the data characters of a
ogrouped character from the Current Code register 130.

Processing proceeds to a block 192 whereat the 4 data
characters of the grouped character corresponding to previ-
ous code extended by the first data character of this grouped
character are output by the decompressor 110. This extended
string 1s the string corresponding to the code just fetched to
Current Code register 130. The logic 135 extends the 4 data
characters held in the buffers 136 by the first data character
thereof and control 137 then outputs these 5 data characters
from the buffers 136 to the output 112.

Processing proceeds to a block 193 whereat the Dictio-
nary 121 1s updated with an extended string comprising the
string corresponding to previous code extended by the first
data character of the grouped character corresponding to
previous code. The string 1s stored 1n the Dictionary 121 at
the string code assigned by the Code Counter 133. The
function of block 193 is performed in a manner similar to
that described above with respect to block 161 as follows.
The code 1n the Previous Code register 131 1s stored 1n the
Prefix Code field 123 of the Dictionary location accessed by
the extant code in the Code Counter 133. The first data
character of the grouped character corresponding to previous
code 1s stored 1n the Data Character field 124 of the accessed
Dictionary location. This 1s readily accomplished since this
data character 1s stored 1n the buffers 136 as described above.

US 6,307,485 Bl

13

Alternatively, this data character can be extracted from the
Previous Code register 131 since it 1s part of the grouped
character stored therein.

I, at the block 190, previous code 1s not less than 256, the
NO branch 1s taken to a block 194. At the block 194, the data
characters following the imitial grouped character of the
string corresponding to previous code are recovered. This
operation 1s performed 1n the manner described above with
respect to the block 180 of FIG. 6, except that in the block
194, the previous code 1s utilized rather than the current
code.

Processing proceeds to a block 195 whereat the 4 data
characters of the initial grouped character of the string
corresponding to previous code are recovered. The process-
ing of the block 195 1s similar to that described above with
respect to the block 181 of FIG. 6 except that the previous
code string 1s utilized rather than the current code string. At
this point 1n the processing, all of the data characters of the
string corresponding to previous code are arranged 1n the
buifers 136 1n the appropriate order 1n the manner described
above with respect to FIG. 6 with respect to the current code
string.

Processing proceeds to a block 196 whercat the data
character string recovered in the blocks 194 and 195 is
extended by the first data character of the initial grouped
character of this string and then output in the appropriate
order at the decompressor output 112. By these operations
the string corresponding to current code 1s recovered and
output. The operations are readily performed 1n the manner
generally described above with respect to block 182 of FIG.
6 cxcept that the string was recovered from previous code
rather than from current code. The string extending process
of block 196 is readily performed in the buffers 136 since
this first data character utilized to extend the string 1s already

in the buffers 136 pursuant to the data character recovery
process of the block 195.

Processing proceeds to a block 197 whereat the extended
string constructed and output 1n the block 196 1s effectively
stored 1n the Dictionary 121 at the code assigned by the
Code Counter 133. This 1s performed by storing the previous
code 1n the Previous Code register 131 1n the Prefix Code
field 123 of the Dictionary location accessed by the extant
code 1n the Code Counter 133. The first data character of the
initial grouped character of the string corresponding to
previous code 1s stored 1n the Data Character field 124 of this
accessed Dictionary location. The data character utilized to

extend the string 1s found in the buffers 136 as described
above. Control then returns to the block 162 of FIG. 5.

Referring to FIG. 8, with continued reference to FIGS.
4—7, an example of the operation of the decompressor 110 in
accordance with the flow charts of FIGS. 5-7 1s 1llustrated.
The format of FIG. 8 1s generally similar to that of FIG. 3
and descriptions given above with respect to FIG. 3 are
applicable. The Input Compressed Code Stream at the top of
FIG. 8 1s the compressor output illustrated 1n FIG. 3. It 1s
observed that the output of FIG. 8 1s the recovered data
character stream 1illustrated at the top of FIG. 3.

It 1s noted that the Input Compressed Code Stream at the
top of FIG. 8 begins with three grouped characters namely
“abca”, “bcab” and “cabc”. In actions 1-3, these three
ogrouped characters are processed by the denoted blocks of
FIG. 5 without the use of dictionary string searching which
otherwise would have been required 1n the prior art. Actions
4-7 and 9 exemplily the processing of the strings repre-
sented by mput codes 258, 259, 260, 261 and 263. The string
processing of these actions utilize the Current Code pro-
cessing of block 167 detailed 1n FIG. 6.

10

15

20

25

30

35

40

45

50

55

60

65

14

Actions 8 and 10 exemplify the Exception Case process-
ing of FIG. 7 for input codes 264 and 266, respectively. As
described above, this Exception Case processing utilizes the
Exception Case processing blocks 190 and 194-197.

More detailed descriptions of the actions of FIG. 8
relative to the blocks of FIGS. 5-7 are readily apparent and
will not be provided for brevity.

It 1s appreciated that 1in the compressor and decompressor
embodiment of FIGS. 1-8, numerous dictionary accesses are
avolded compared to prior art implementations. For
example, 1n FIG. 2, blocks 44 and 56, 4 data characters are
concatenated and processed as grouped characters thereby
climinating numerous compressor dictionary accesses. In
FIG. 5, block 160, grouped character mputs to the decom-
pressor are processed without accessing the dictionary.
Furthermore, 1n FIG. 6, block 181, and FIG. 7, block 195,
the 1mitial grouped character of a string 1s processed to
provide 4 data characters of the string which otherwise
would have required 4 separate dictionary accesses.
Additionally, FIG. 7, block 191, recovers 4 data characters
of a grouped character during Exception Case processing
which does not require dictionary access.

It 1s appreciated that to the extent grouped characters are
utilized, dictionary accesses are eliminated. However, uti-
lizing grouped characters modifies the statistics of the under-
lying data potentially reducing the compression ratio. In the
embodiment of FIGS. 1-8, a grouped character 1s utilized at
the beginning of a string followed by as many data charac-
ters as can be matched. Therefore, a compromise 1s estab-
lished between the elimination of dictionary accesses and
the preservation of the data character statistics. In the

compressor and decompressor embodiment of FIGS. 9-20,
to be described, successive grouped characters are matched
followed by up to 3 matching data characters. It 1s appre-
clated that compared to the embodiment of FIGS. 1-8,
further dictionary accesses may be eliminated but with a
further suppression of the original data statistics. Since,
however, the underlying LZW process utilized herein adapts
to the statistics of input data, any reduction of data com-
pression should be minimal.

FIGS. 9-11 depict a data compressor of an alternative
embodiment of the invention. Referring to FIG. 9, a data
compressor 210 1s illustrated that compresses a stream of
input data characters applied at an mput 211 into a stream of
corresponding compressed codes at an output 212. The
compressor 210 includes a 12 bit wide Current Match
register 213 and an 8 bit wide Current Character register 214
for holding a grouped character. The Current Character
register 214 1s comprised of 4 contiguous 2 bit wide data
character fields 215-218 for holding and indexing the data
characters comprising the grouped character. The compres-
sor 210 mncludes a Code Size register 221 utilized 1n a well
known manner to control the number of bits utilized for
transmitting the compressed codes from the output 212. The
compressor 210 further includes Working Buffers 222 to
provide buifering for fetched data characters in a manner to
be discussed. The compressor 210 also includes a Code
Counter 223 for sequentially generating code values to be
assigned to character strings 1n a manner to be described.
The compressor 210 includes a 12 bit wide Current Match
Temp register 224 for providing temporary storage of cur-
rent match code values and an n-register 225 for holding an
index n for reasons to be discussed. The compressor 210
additionally mncludes control 226 for controlling the opera-

tions of the compressor 210 1n accordance with the opera-
tional flow chart of FIG. 10 to be described below.

Also included is a Dictionary 230 (denoted as Dictionary
1) for storing strings in cooperation with the compressor 210

US 6,307,485 Bl

15

that are comprised of consecutive grouped characters. The
Dictionary 230 contains 4096 locations configured as indi-

cated at reference numeral 231. A Dictionary location
includes a 12 bit wide Prefix Code field 232 and an 8 bat
wide Grouped Character field 233. A location 1s accessed 1n
the Dictionary 230 by a 12 bit wide address 234. In a manner
similar to that described above with respect to the Dictionary
21 of FIG. 1, a string 1s stored in the Dictionary 230 by
storing the code of the string prefix 1n the Prefix Code field
232 and an extension grouped character in the Grouped
Character field 233 of a location 231 of the Dictionary. For
convenience, the address 234 1s utilized as the string code.
Data 1s communicated between the compressor 210 and the
Dictionary 230 via a bi-directional data bus 235 under
control of a control bus 236.

Also included is a Dictionary 240 (denoted as Dictionary
2) for storing single data character extensions of the strings
stored 1n the Dictionary 230. The descriptions given with
respect to elements 231-236 of the Dictionary 230 also
apply to the elements 241-246, respectively, of the Dictio-
nary 240 except for the 2 bit wide Data Character field 243.
A string 1s stored 1n the Dictionary 240 by storing the code
of the string prefix in the Prefix Code field 242 and the string
extension data character in the Data Character field 243. The
string code 1s provided by the address 244.

The Dictionaries 230 and 240 are conveniently configured
and utilized as associative memories for string searching and
storage generally 1n the manner described 1n said U.S. Pat.
No. 5,838,264. String searching and storage may also be
clfected by other arrangements, such as by hashing, as is
well known 1n the art.

Further included 1s an Input Data Character Buifer 250
that buffers the mput data character stream received at the
input 211. The 1nput data characters are applied from the
Input Data Character Buifer 250 via a bus 251 to the Current
Match register 213, the Current Character register 214 and
the Working Buifers 222 1n accordance with operations to be
described. The compressor 210 controls acquiring input data
characters from the Input Data Character Buffer 250 via a
control bus 252.

Briefly, the operation of the compressor 210 1s as follows.
At the beginning of a compression cycle, the Current Match
register 213 contains a grouped character that 1s established
at the end of the preceding compression cycle. At the
beginning of the cycle, the next grouped character in the
input data character stream 1s fetched to the Current Char-
acter register 214. The Dictionary 230 1s searched for the
string represented by the contents of the Current Match
register 213 extended by the grouped character in the
Current Character register 214. Conveniently, the Dictionary
230 1s utilized, as described above, as an associative
memory where the contents of the Current Match register
213 and the contents of the Current Character register 214
are compared to the Prefix Code field 232 and the Grouped
Character ficld 233, respectively. If the string 1s found 1 the
Dictionary 230, the string code represented by the address
234 is loaded into the Current Match register 213 and the
next grouped character 1n the mput data character stream 1s
fetched to the Current Character register 214. The search
continues until the string represented by the contents of the
Current Match register 213 and the Current Character reg-
ister 214 1s not found in the Daictionary 230. When this
occurs, the contents of the Current Match register 213 are
temporarily stored in the Current Match Temp register 224
and the mmdex n i1n the n-register 225 1s set to 1. The
Dictionary 240 1s then searched for single data character
extensions of current match.

10

15

20

25

30

35

40

45

50

55

60

65

16

Accordingly, the Dictionary 240 1s associatively searched
for the string represented by the contents of the Current
Match register 213 extended by the first Data Character of
the Current Character register 214 as indexed by n. In the
manner described above with respect to the Dictionary 230,
the contents of the Current Match register 213 and the
contents of the first Data Character field 215 of the Current
Character register 214 are compared to the Prefix Code field
242 and the Data Character field 243, respectively. If the
string 1s found in the Dictionary 240, the string code
represented by the address 244 1s loaded into the Current
Match register 213 and the 1ndex n 1n the n-register 225 1s
increased by 1. The search continues until the string repre-
sented by the contents of the Current Match register 213 and
the contents of the nth Data Character ficld of the Current
Character register 214 1s not found 1n the Dictionary 240 or
the 1ndex n becomes greater than 3.

If the searched for string 1s not found in the Dictionary
240, 1t 1s stored therein and the code of the current match
from the Current Match register 213 1s output. If the index
n becomes greater than 3, the string represented by the
contents of the Current Match Temp register 224 extended
by the grouped character in the Current Character register
214 1s stored 1n the Dictionary 230 and the code of the
current match from the Current Match register 213 1s output.
In this manner, the mput data character stream 1s matched
against the strings 1n the Dictionaries 230 and 240 until the
longest match 1s determined. The code of the longest match-
ing string 1s output from the Current Match register 213 at
the compressed output 212 utilizing the number of bits
determined by the Code Size register 221.

Speciiically, if the string was not found 1n the Dictionary
240, the extended string 1s stored therein by storing the
contents of the Current Match register 213 and the contents
of the n” Data Character field of the Current Character
register 214 in the Prefix Code field 242 and the Data
Character field 243, respectively, of the location of the
Dictionary 240 addressed by the Code Counter 223. If the
index n became greater than 3, the extended string 1s stored
in the Dictionary 230 by storing the contents of the Current
Match Temp register 224 and the contents of the Current
Character register 214 1n the Prefix Code field 232 and the
Grouped Character field 233, respectively, of the location of
the Dictionary 230 addressed by the Code Counter 223.

The Code Counter 223 1s incremented by 1 and the code
size 1n the Code Size register 221 1s incremented by 1 when
the code 1n the Code Counter 223 mdicates that an increase
in code size 1s required.

If the string was not found in the Dictionary 240 and n 1s
equal to 1, the compression cycle 1s concluded by setting the
Current Match register 213 to the contents of the Current
Character register 214.

If the string was not found in the Dictionary 240 and n 1s
2 or 3, the compression cycle 1s concluded by setting the
Current Match register 213 to the n”* through the 4” Data
Character of the Current Character register 214 concatenated
with the next n-1 fetched data characters.

If n 1s greater than 3, the compression cycle 1s concluded
by setting the Current Match register 213 to the 4”7 Data
Character of the Current Character register 214 concatenated
with the next 3 fetched data characters.

The first compression cycle performed by the compressor
210 1s 1mitiated by fetching the first 4 input data characters
to the Current Match register 213 to form a grouped char-
acter and by fetching the next 4 data characters to the
Current Character register 214 to form a grouped character.

US 6,307,485 Bl

17

Referring to FIG. 10, with continued reference to FIG. 9,
a control flow chart 1s 1illustrated showing the detailed
operations to be executed by the compressor 210. The flow
chart of FIG. 10 1s predicated on a variable length output as
discussed above with respect to FIG. 2. Accordingly, at a
block 260, the Code Counter 223 1s initialized to a first
available code of, for example, 258. At a block 261, the

Code Size register 221 1s mitialized to the beginning code
size of 9 bits. At a block 262, the Dictionaries 230 and 240

and the Current Match register 213 are cleared to zero.

At a block 263, the first 4 input data characters are fetched
to the Current Match register 213 to form a grouped char-
acter and at a block 264, the next 4 input data characters are
fetched to the Current Character register 214 to form a
orouped character.

Processing continues at a block 265 whereat the Dictio-
nary 230 1s searched to determine if the string comprising
the current match concatenated by the current grouped
character 1s in the Dictionary 230. As described above, the
dictionary searching 1s performed associatively and other
known dictionary searching procedures may be utilized to
the same effect. Specifically, in the embodiment of FIG. 9,
the Current Match register 213 1s compared to the Prefix
Code field 232 and the current grouped character i the
Current Character register 214 1s compared to the Grouped

Character field 233.

If, at the block 265, the string 1s found 1n the Dictionary
230, the YES branch from the block 265 1s taken to a block
266. At the block 266, the contents of the Current Match
register 213 1s updated to contain the code of the string that
was found in the Dictionary 230. At block 266, therefore, the
address 234 of the matched string 1s set into the Current
Match register 213. After updating the Current Match reg-
ister 213 with the currently matched string, control returns
to the block 264 to fetch the next 4 input data characters to
the Current Character register 214 to form the next input
ogrouped character. In this manner, the loop formed by the
blocks 264-266 compares the input data character stream
with the strings stored i the Dictionary 230 to find the
longest match with the stored strings which, as discussed
above, comprise strings of consecutive grouped characters.

At the block 265, when the concatenation of the currently
matched string 1n the Dictionary 230 with the next grouped

character fetched at the block 264 results in a string that 1s
not 1n the Dictionary 230, the NO branch from the block 265

1s taken to a block 267. At the block 267, the Current Match
Temp register 224 1s cleared to zero and, at a block 268, the

contents of the Current Match register 213 1s set into the
Current Match Temp register 224. At a block 269 the
n-register 225 1s set to 1.

Processing continues at a block 272 whereat the Dictio-
nary 240 1s searched to determine if the string comprising
the current match concatenated by the n”* data character in
the Current Character register 214 1s 1n the Dictionary 2440.
As described above, the dictionary searching 1s performed
associatively and other known dictionary searching proce-
dures may be utilized to the same effect. Specifically, when
scarching associatively, the contents of the Current Match
register 213 1s compared to the Prefix Code field 242 and the
data character 1in the Current Character register 214 selected
by the index n 1s compared to the Data Character ficld 243.
Since the index n 1s set to 1 1n the block 269, the comparison
1s first made utilizing the data character 1in the Data Char-

acter field 215.

If, at the block 272, the string 1s found 1n the Dictionary
240, the YES branch from the block 272 1s taken to a block

10

15

20

25

30

35

40

45

50

55

60

65

138

273. At block 273 the contents of the Current Match register
213 1s updated to contain the code of the string that was
found. At block 273, therefore, the address 244 of the
currently matched string i1s set into the Current Match
register 213. Control then proceeds to a block 274 whereat
the index n, 1n the n-register 225, 1s incremented by 1 and,
at a block 275, the incremented 1index 1s tested to determine
if 1t 1s greater than 3. If the index n 1s not greater than 3, the
NO branch from the block 275 1s taken back to the block 272
to determine if the string comprising current match concat-
enated by the data character in the Data Character field 216
(n=2) of the Current Character register 214 is in the Dic-
tionary 240. In this manner, the loop formed by the blocks
272275 extends the current match sequentially by the first,
seccond and third data characters in the respective Data
Character fields 215, 216 and 217 of the Current Character
register 214 to determine 1f each extended string 1s in the
Dictionary 240.

If, during the processing of the loop comprising the blocks
272275, one of these extended strings 1s not 1n the Dictio-
nary 240, the NO branch from the block 272 1s taken to a
block 280. At the block 280, the extended string that was not
found 1n the Daictionary 240 at the block 272 1s entered
therein and the extant code of the Code Counter 223 1is
assigned to this stored extended string. The block 280 1s
implemented by storing the contents of the Current Match
register 213 and the data character 1n the Current Character
register 214 indexed by the n-register 225 1n the Prefix Code
field 242 and the Data Character field 243, respectively, of
the location of the Dictionary 240 addressed by the Code
Counter 223.

At a block 281, the code of the current match 1s output as
part of the compressed code stream provided at the com-
pressor output 212. The code of the current match 1s
provided by the Current Match register 213. The code 1s
output utilizing the number of bits denoted by the Code Size
register 221.

It 1s appreciated by the operation of the compressor 210
that the code of the current match that is output at the block
281 can be of a grouped character having a value of from O
to 255 or can be of an extended string having a code value
of from 258 through 4095. Thercafter, at blocks 282284,
the Code Counter 223 and the Code Size register 221 are
incremented 1n the manner described above with respect to

the blocks 51-53 of FIG. 2.

Processing then proceeds to a block 285 whereat the
Current Match register 213 is cleared to zero. At a block 286,
the 1index 1n the n-register 225 1s tested to determine 1f n 1s
equal to 1. If n 1s equal to 1, the YES branch from the block
286 1s taken to a block 287 whereat the Current Match
register 213 1s set to the contents of the Current Character
register 214.

If, at the block 286, the index n 1s not equal to 1, the NO
branch from the block 286 1s taken to a block 288 whereat
the next n—1 data characters are fetched to the Working
Buffers 222. At a block 289, the Current Match register 213
is set to the n” through 4 data characters of the Current
Character register 214 concatenated with the n-1 fetched
data characters 1n the Working Buffers 222 to form a
orouped character. It 1s appreciated that at both the blocks
287 and 289, the Current Match register 213 1s set with a
orouped character with which to begin the next compression
cycle. Accordingly, control returns from the block 287 or the
block 289 to the block 264 to fetch the next 4 input data
characters to the Current Character register 214 to form a
orouped character.

US 6,307,485 Bl

19

If. at the block 275, the index n 1n the n-register 225 1s
orcater than 3, the YES branch 1s taken from the block 275

to a block 300. At this point in the processing, the code 1n
the Current Match register 213 represents a string in the
Dictionary 240 that was successively extended and matched
utilizing the data characters 1n the Data Character fields 215,
216 and 217 of the Current Character register 214. In effect,
it was the data character in the Data Character field 218 of

the Current Character register 214 that caused the mismatch
at the block 2685. It 1s now appropriate to extend the string
in the Dictionary 230 represented by the code 1n the Current
Match Temp register 224 by the grouped character residing
in the Current Character register 214 and to store this string
in the Dictionary 230.

Thus, at the block 300, this extended string 1s entered mto
the Dictionary 230 and the extant code of the Code Counter
223 1s assigned to this stored extended string. The block 300
1s implemented by storing the contents of the Current Match
Temp register 224 and the contents of the Current Character
register 214 1n the Prefix Code field 232 and the Grouped

Character field 233, respectively, of the location of the
Dictionary 230 addressed by the Code Counter 223.

The operations of the blocks 301-3035 parallel the opera-
tions described above with respect to the blocks 281-2885.
Briefly, the code of current match i1s output, the Code
Counter and code size are appropriately incremented and the
Current Match register 213 1s cleared to zero.

At a block 306, the next 3 mnput data characters are fetched
to the Working Buifers 222. At a block 307, the Current
Match register 213 1s set to the fourth data character in the
Data Character ficld 218 of the Current Character register
214 concatenated with the 3 fetched data characters 1n the
Working Buffers 222 to form a grouped character with
which to begin the next compression cycle. Accordingly,
control returns from the block 307 to the block 264 to fetch
the next mput grouped character to the Current Character
register 214 as discussed above with respect to the blocks

287 and 289.

Referring to FIG. 11, with continued reference to FIGS. 9
and 10, an example of the operation of the compressor 210
in accordance with the flow chart of FIG. 10 1s 1llustrated.
The format of FIG. 11 1s similar to that of FIG. 3 and
descriptions given above with respect to FIG. 3 are appli-
cable. As discussed above, an underlying data character
alphabet of 4 characters, €.g., a, b, ¢ and d, 1s assumed. The
example mput data character stream at the top of FIG. 11
utilizes the repetition of the characters a and b to exemplily
the operations of the compressor 210.

Inactions 1, 2, 4, §, 7, 10, 14, 17, 21, 23, 26, 28, 35 and
40, the two consecutive grouped characters that initiate each
respective string search 1s 1illustrated. In action 4, for
example, the grouped character that 1s set into the Current
Match register 213 at the end of the preceding cycle is
“baba”. The fetched grouped character in the Current Char-
acter register 214 1s “baba”. The string for which the
compressor 210 1s searching in Dictionary 1 1s the concat-
enation of current match with current character, which, 1n
action 4 1s “baba baba”. Since the string 1s not 1n Dictionary
1, block 272 determines 1f current match concatenated with
the first data character of current character 1s 1n Dictionary
2. Since this string “baba b” 1s not yet 1n Dictionary 2, 1t 1s
stored therein at code 260 and the code of the current match
1s output, namely, “baba”. It 1s appreciated, as explained
above, that the value of this code 1s less than 256. In this
manner, the decompressor will recognize that it 1s receiving
a grouped character and will extract the data characters
therefrom.

10

15

20

25

30

35

40

45

50

55

60

65

20

Actions 7-9 depict the search for the string “abab abab”
in Dictionary 1. Since this string 1s not yet in Dictionary 1,
Dictionary 2 1s searched for the string “abab a” which 1s
found therein. Pursuant to the blocks 272275 of FIG. 10,
Dictionary 2 1s then searched for the string “258 b” which 1s
also found therein. Reiteration of the loop comprising blocks
272-275 then searches Dictionary 2 for the string “259a”.
Since this string 1s not yet in Dictionary 2, 1t 1s stored therein
and the code 259 1s output. Since this code 1s greater than
256, the decompressor will recognize that it 1s the code for
an extended string and can access the characters thereof
from the Decompressor Dictionary in a manner to be

described.

Actions 10-13 depict a search similar to that described
with respect to actions 7-9 except that the index n at the
block 275 becomes greater than 3 and at action 13 the string
“abab abab” 1s stored in Dictionary 1.

Actions 35-39 depict the operations of the flow chart of
FIG. 10 whereby a string comprising 3 consecutive grouped
characters 1s stored 1n Dictionary 1. As seen, this string 1s
comprised of the grouped characters “abab abab abab™.

Numerous of the string searches depicted 1in FIG. 11 result
in Exception Case processing which will be described in
oreater detail with respect to the decompressor of FIG. 12.
The string searches that result in the Exception Case pro-
cessing are depicted by actions 2-3, 5-6, 10-13, 17-20,
23-25, 28-30 and 35-39. The Exception Case processing
utilized heremn 1s a modification of the Exception Case
processing described 1n said U.S. Pat. No. 4,558,302,

More detailed descriptions of the actions of FIG. 11
relative to the blocks of FIG. 10 are readily apparent and will
not be provided for brevity.

FIGS. 12-20 depict a data decompressor of the alternative
embodiment of the mvention. Referring to FIG. 12, with
continued reference to FIG. 9, a data decompressor 310 1s
illustrated that decompresses a stream of compressed codes
applied at an input 311 into a recovered stream of data
characters at an output 312. It 1s appreciated that the
compressed code stream from the output 212 of the com-
pressor 210 (FIG. 9), if applied to the input 311 of the
decompressor 310, results. 1n the recovery, at the output 312
of the decompressor 310, of the original 1nput data character
stream applied to the input 211 of the compressor 210.

Dictionaries 320 and 330, denoted as Dictionary 1 and
Dictionary 2, respectively, are included for storing data
character strings corresponding to received compressed
input codes. In the operation of the decompressor 310, the
contents of the Daictionaries 320 and 330 are maintamed

identical to the contents of the respective Dictionaries 230
and 240 of the compressor 210 of FIG. 9. The Dictionaries

320 and 330 are preferably implemented by RAM and the
data structures thereof are arranged in a manner similar to
that described above with respect to the Dictionaries 230 and
240, respectively.

Accordingly, a location 321 of Dictionary 320 includes a

12 bit wide Prefix Code field 322 and an 8 bit wide Grouped
Character ficld 323. The location 321 1s accessed by a 12 bit
wide address 324. In a manner similar to that described
above with respect to the Dictionary 230, a string 1s stored
in the Dictionary 320 by storing the string prefix code 1n the
field 322 and the string extension grouped character in the
field 323. The string code for the stored string at the location
321 i1s conveniently provided by the address 324. Data 1s
communicated between the decompressor 310 and the Dic-
tionary 320 via a bi-directional data bus 325 under control
of a control bus 326.

US 6,307,485 Bl

21

A location 331 of the Dictionary 330 mcludes a 12 bit
wide Prefix Code field 332 and a 2 bit wide Data Character
field 333. The location 331 1s accessed by a 12 bit wide
address 334. In a manner similar to that described above
with respect to the Dictionary 240, a string 1s stored 1n the
Dictionary 330 by storing the string prefix code in the field
332 and the string extension data character in the field 333.
The string code for the string stored at the location 331 is
conveniently provided by the address 334. Data 1s commu-
nicated between the decompressor 310 and the Dictionary

330 via a bi-directional data bus 335 under control of a
control bus 336.

In a manner similar to that described above with respect
to FIG. 9, the Dictionary 320 stores strings that are com-
prised of consecutive grouped characters and the Dictionary
330 stores single data character extensions of the strings
stored 1n the Dictionary 320.

The decompressor 310 includes a 12 bit wide Current
Code register 340, a 12 bit wide Previous Code register 341
and a Code Size register 342. The Code Size register 342
performs a similar function to that described above with
respect to the Code Size register 221 of the compressor 210
in that the Code Size register 342 determines the number of
bits 1n which the decompressor 310 receives mput com-
pressed codes. The decompressor 310 further includes a
Code Counter 343 for sequentially generating code values to
be assigned to extended strings stored in the Dictionaries
320 and 330 by the decompressor 310. The codes are
assigned so that a string stored either 1n the Dictionary 320
or the Dictionary 330 has a unique string code. The Code
Counter 343 maintains a lock-step relationship with the
Code Counter 223 of the compressor 210 of FIG. 9 as will

be appreciated from the descriptions to follow.

The decompressor 310 further includes Dictionary 1
String Recovery logic 344 and Dictionary 2 String Recovery
logic 345 for recovering strings stored i1n the respective
Dictionaries 320 and 330 that are accessed by compressed
codes. The general methodology for recovering data char-
acter strings from a dictionary 1n response to the string code
corresponding thereto 1s known in the art of data compres-
sion and decompression (see, €.g., U.S. Pat. No. 4,558,302).
The specific string recovery operations performed with
respect to the grouped characters of the strings will be
described below.

Since the Dictionary 320 stores strings comprising con-
secutive grouped characters and the Dictionary 330 stores
single character extensions of the strings stored in the
Dictionary 320, recovery of such a string involves access of
both Dictionaries 320 and 330 1n a manner to be described.

The decompressor 310 further includes Grouped Charac-
ter to Data Character Conversion logic 346 that recovers,
from a grouped character, the individual data characters
comprising the grouped character. The decompressor 310
also 1ncludes Data Character String Forming butfers 347 that
are utilized by the logic 344, 345 and 346 1n assembling the

data characters comprising a string recovered from the
Dictionaries 320 and 330.

The decompressor 310 further includes a Dictionary Table
350 for listing the codes of the strings stored 1n Dictionary
1. The Daictionary Table 350 1s used by the decompressor
310 to determine which Dictionary to access for a current
input code or for a previous code when doing Exception
Case processing.

The decompressor 310 also includes a Flag register 351
and a Flag Temp register 352. The decompressor 310 uses
the registers 351 and 352 to determine which of Dictionary

10

15

20

25

30

35

40

45

50

55

60

65

22

1 or Dictionary 2 1s appropriate for storing an extended
string. The string recovered 1n a current cycle becomes the
previous string 1n the next cycle. It 1s the previous string in
the next cycle that 1s extended and stored. Thus, 1n a current
cycle, the decompressor 310 determines from the character-
istics of the current recovered string, the appropriate Dic-
tionary for storing this string when extended in the next
cycle. A flag indicating the Dictionary 1in which the string
should be stored 1s set 1into the Flag Temp register 352. At the
end of a decompression cycle, the flag in the Flag Temp
register 352 1s transferred to the Flag register 351. During
the string storage portion of the decompression cycle, the
decompressor 310 consults the Flag register 351 to deter-
mine the Dictionary into which to store the extended string.

The decompressor 310 further includes an n-register 353.
One of the criteria utilized by the decompressor 310 to
determine whether to store the Dictionary 1 flag or the
Dictionary 2 flag in the Flag Temp register 352 1s the number
of data characters following the root code of a string
accessed 1 Dictionary 2. This number of data characters 1s
denoted by the variable n which 1s held 1n the n-register 353.

The decompressor 310 also includes an 8 bit wide Exten-
sion Character register 360 comprised of contiguous 2 bit
wide Data Character ficlds 361-364. The Extension Char-
acter register 360 1s utilized by the decompressor 310 for
providing the extension grouped character for the Grouped
Character field 323 of the Dictionary 320 when storing an
extended string 1n the Dictionary 320. Further mncluded in
the decompressor 310 1s control 365 for controlling the
operations of the decompressor 310 1n accordance with the

operational flow charts of FIGS. 13—19 in a manner to be
described.

Included with the decompressor 310 1s an Input Code
Bufler 370 that buffers the input compressed codes received
at the input 311. The individual 1nput codes are applied from
the Input Code Buffer 370, via a bus 371, to the Current
Code register 340 1n accordance with operations to be
described. The decompressor 310 controls acquiring i1nput
codes from the Input Code Buifer 370 via a control bus 372.

Briefly, the operation of the decompressor 310 1s as
follows. A code 1s fetched to the Current Code register 340
utilizing the number of bits determined by the code size 1n
Code Size register 342. The fetched code 1s examined to
determine 1f 1t 1s less than 256. If current code 1s less than
256, the 1nput code comprises a grouped character transmit-
ted by the compressor 210. The 4 data characters comprising
the fetched grouped character in the Current Code register
340 are provided at the output 312 of the decompressor 310
as the recovered data characters of the string corresponding
to current code. The Grouped Character To Data Character
Conversion logic 346 and the Data Character String Form-
ing buffers 347 are utilized 1n this string recovery process.
Since the 4 data characters comprising the fetched grouped
character are contiguous 1n the Current Code register 340,
the recovered data characters are readily extracted from the
register 340 by the logic 346 and placed 1n the buifers 347
for outputting. It 1s appreciated that access to the Dictionar-
ies 320 and 330 are not required 1n this string recovery
Process.

The decompression cycle 1s concluded by appropriately
updating either Dictionary 320 or 330, incrementing the
Code Counter 343 and Code Size register 342 as required,
and transferring current code from the register 340 to the
Previous Code register 341.

If the code fetched to the Current Code register 340 1s not
less than 256 and 1s less than the code 1n the Code Counter

US 6,307,485 Bl

23

343, the string corresponding to current code exists i the
Dictionaries 320 and 330. Current Code processing 1s uti-
lized to recover the string by consulting the Dictionary Table
350 to determine if Current Code Dictionary 1 processing or
Current Code Daictionary 2 processing should be utilized as
will be described i1n detail below. Although the general
methodology for recovering a string from a Dictionary 1s
known as, for example, from said U.S. Pat. No. 4,558,302,
numerous modifications thereof are utilized in accordance
with the present invention, as described below, to perform
the string recovery procedure.

The decompression cycle 1s then concluded as described
above.

If the fetched mput code m the Current Code register 340
1s not less than the code 1n the Code Counter 343, Exception
Case processing based on that described 1n said U.S. Pat. No.
4,558,302 1s utilized. Brieily, the code 1n the Previous Code
register 341 1s utilized to access the previous string. The
previous string 1s modified to recover the current string by
extending the previous string by the first data character of
the previous string. This extended string 1s then output as the
current string and appropriately stored 1n the Dictionary 320
or the Dictionary 330. Different processing 1s uftilized
depending on whether the previous code 1s or 1s not less than
256 and whether the previous code 1s an entry in the
Dictionary Table 350 as will be described below.

As above, the Code Counter 343 and Code Size register
342 are incremented as required and the current code 1s
transferred from the register 340 to the Previous Code
register 341.

The control flow charts of FIGS. 13-19 illustrate the
detailed operations to be executed by the decompressor 310.
The control 365 1s considered as containing appropriate
circuitry such as state machines to control execution of the
operations.

Referring to FIG. 13, with continued reference to FIG. 12,
at a block 400, the Code Counter 343 1s initialized 1n the
same manner as described above with respect to the block
260 of FIG. 10. At a block 401, the Code Size register 342
1s 1itialized to the beginning code size as explained above
with respect to the block 261 of FIG. 10. At a block 402, the
Dictionaries 320 and 330, the Current Code register 340 and
the Previous Code register 341 are cleared to zero.

At a block 403, the Flag register 351 1s set to 2 designating,
the Dictionary 330 (Dictionary 2). It is appreciated from the
processing described above with respect to the compressor
210 that the first string to be stored in the Dictionaries will
be stored 1n Dictionary 2.

At a block 404, the first input compressed code 1s fetched
to the Current Code register 340 utilizing the number of bits
determined by code size. Because of the above described
operations of the compressor 210, the first fetched code 1s a
ogrouped character. Accordingly, at a block 405, the 4 data
characters of the fetched grouped character are provided at
the output 312 of the decompressor 310. The 4 data char-
acters are recovered from the Current Code register 340 1n
the manner described above. The 4 outputted data characters
comprise the string corresponding to current code. At a
block 406, the current code in the Current Code register 340
1s transferred to the Previous Code register 341.

At a block 407, the next input compressed code 1s fetched
to the Current Code register 340. The code fetched to the
Current Code register 340 may represent either a grouped
character or a longer extended string as discussed above.
Such strings are distinguished from one another by the value
of the code. A code representing a single grouped character

10

15

20

25

30

35

40

45

50

55

60

65

24

has a value less than 256 while a code representing a longer
string has a value that 1s not less than 256.

Accordingly, at a block 410, the code 1n the Current Code
register 340 1s tested to determine 1f current code 1s less than
256. If so, the YES branch 1s taken from the block 410 to a
block 411 whereat Grouped Character processing 1s per-
formed. The details of the processing of the block 411 will
be described below with respect to FIG. 14.

If, at the block 410, current code 1s not less than 256, the
NO branch from the block 410 1s taken to a block 412
whereat the current code 1s tested against the code in the
Code Counter 343. If current code 1n the Current Code
register 340 1s less than the code 1n the Code Counter 343,
the YES branch from the block 412 1s taken. When the YES
branch from the block 412 1s taken, current code processing
1s performed by accessing a string that exists in Dictionary
1 or Dictionary 2.

Accordingly, the YES branch from the block 412 enters a
block 413 whereat the Dictionary Table 350 1s consulted to
determine 1f current code 1s listed therein. As discussed
above, the Dictionary Table 350 lists the codes of the strings
stored 1n Dictionary 1. Thus, if in the current code
processing, Dictionary 1 should be accessed, the YES
branch from the block 413 1s take to a block 414. Details of
the Current Code Dictionary 1 processing of block 414 will
be described below with respect to FIG. 15. If, however,
current code 1s not 1n the Dictionary Table 350, Dictionary
2 should be accessed and the NO branch from the block 413
1s taken to a block 415. Details of the Current Code
Dictionary 2 processing of block 415 will be described
below with respect to FIG. 16.

If, at the block 412 current code 1s not less than the code
in the Code Counter 343, the NO branch from the block 412
1s taken. When the NO branch from the block 412 1s taken,
Exception Case processing 1s performed. It 1s appreciated
that Exception Case processing will be mvoked in the
embodiment described herein when the received com-
pressed code 1s equal to the code 1n the Code Counter 343.

When the compressed code fetched to the Current Code
register 340 mvokes the Exception Case processing, the
Dictionaries 320 and 330 are not yet storing the string
corresponding to current code. As above, the Exception Case
processing 1nvolves utilizing the string corresponding to
previous code for constructing, outputting and storing the
string corresponding to current code.

Accordingly, processing proceeds from the NO branch of
the block 412 to a block 420 whereat the previous code 1n
the Previous Code register 341 1s tested to determine 1if 1t 1s
less than 256. If so, the string corresponding to previous
code 1s a single grouped character and the YES branch from
the block 420 1s taken to a block 421 for performing
Exception Case Grouped Character processing. Details of
the Exception Case Grouped Character processing of block

421 will be described below with respect to FIG. 17.

If, at the block 420, previous code 1s not less than 256, the
NO branch from the block 420 1s taken to a block 422. When
this occurs, access will be effected either to Dictionary 1 or
Dictionary 2 as appropriate. Accordingly, at the block 422,
the Dictionary Table 350 is consulted to determine which
Dictionary to access. If previous code 1s listed in the
Dictionary Table 350, the string corresponding to previous
code 1s stored in Dictionary 1. The YES branch from the
block 422 1s therefore taken to a block 423 for performing
Exception Case Dictionary 1 processing. The details of the
Exception Case Dictionary 1 processing of block 423 will be
described below with respect to FIG. 18.

US 6,307,485 Bl

25

If, at the block 422, previous code 1s not listed 1n the
Dictionary Table 350, the NO branch from the block 422 is

taken. When this occurs, the string corresponding to previ-
ous code 1s retrieved by accessing Dictionary 2. Thus, the
NO branch from the block 422 is taken to a block 424
whereat Exception Case Dictionary 2 processing 1S per-
formed. The details of the Exception Case Dictionary 2
processing of the block 424 will be described below with
respect to FIG. 19.

It 1s appreciated that 1n each of the blocks 411, 414, 415,

421, 423 and 424, a string corresponding to current code 1s
determined 1n the current decompression cycle. In accor-
dance with the methodology utilized herein, the code of this
string will become previous code 1n the next cycle and will
be appropriately extended 1n the next cycle and stored 1 one
of the Dictionaries 320 or 330. The Dictionary 1n which the
extended string will be stored 1s determinable, 1n a manner
to be described below, from the current code string. Thus, 1n
cach of the blocks 411, 414, 415, 421, 423 and 424, the
appropriate Dictionary 1s determined for storing the exten-
sion of the current code string and the appropriate flag is
stored 1n the Flag Temp register 352.

Accordingly, processing proceeds from each of blocks
411, 414, 415, 421, 423 and 424 to a block 430 at which the
Flag register 351 1s set to the value 1n the Flag Temp register
352. Thus, when the next cycle occurs, the Flag register 351
1s consulted to determine in which of the Dictionaries to
store the extended string. Additionally, 1n preparation for the
next cycle, at a block 431, the Previous Code register 341 1s
set to the current code value 1n the Current Code register

340.

Processing proceeds to blocks 432—434 to perform updat-
ing of the Code Counter 343 and the Code Size register 342
in the manner described above with respect to the blocks

51-53 of FIG. 2. Control then returns to the block 407 to
begin the next decompression cycle.

Referring to FIG. 14, with continued reference to FIGS.
12 and 13, details of the Grouped Character processing of
the block 411 of FIG. 13 are 1llustrated. As discussed above,
the processing 411 of FIG. 14 1s invoked when the decom-
pressor 310 receives an mput compressed code that 1s less
than 256. The mput compressed code, therefore, 1s a single
ogrouped character.

Accordingly, at a block 440, the 4 data characters of the
fetched grouped character are provided at the output 312 of
the decompressor 310 thereby outputting the string corre-
sponding to current code. The block 440 1s 1implemented
utilizing the logic 346 and the buffers 347 to recover the 4
data characters from the Current Code register 340 in the
manner described above.

Processing proceeds to a block 441 whereat the flag in the
Flag Temp register 352 1s set to 2. It 1s appreciated from the
operations of FIG. 10 with respect to the compressor 210
that when a single grouped character 1s output as a longest
match, it 1s extended and stored in Dictionary 2 of the
compressor 210. Thus, in the decompressor 310, a received
compressed code comprising a single grouped character 1s
extended and stored 1n the decompressor Dictionary 2 1n the
next decompression cycle.

In order to determine 1n which Dictionary to store the
extended string 1n the current decompression cycle, process-
ing proceeds to a block 442 whereat the flag 1in the Flag
register 351 1s examined. If the flag 1n the Flag register 351
1s equal to 2, the YES branch from the block 442 is taken to
a block 443.

At the block 443, the Dictionary 330 1s updated by storing
therein an extended string comprising the previous code

10

15

20

25

30

35

40

45

50

55

60

65

26

extended by the first data character of the fetched grouped
character 1in the Current Code register 340. The extended

string 1s stored 1n the Dictionary 330 at the code assigned by
the Code Counter 343. The block 443 1s implemented by

storing previous code from the Previous Code register 341
and the first data character of the fetched grouped character

in the Prefix Code field 332 and the Data Character field 333,
respectively, of the location of the Dictionary 330 addressed

by the Code Counter 343. The first data character of the
fetched grouped character may be extracted either from the

Current Code register 340 or from the buflers 347.

If, at the block 442, the flag in the Flag register 351 1s set
to 1, the NO branch from the block 442 1s taken to store the
appropriate extended string 1n Dictionary 1. It 1s appreciated
from the operations described above with respect to FIGS.
9 and 10, that compressor Dictionary 1 1s updated when a
string 1s matched in compressor Dictionary 2 that comprises
one or more sequential grouped characters followed by 3
extension data characters. Accordingly, the NO branch from
the block 442 1s taken to a block 444 at which, 1n Dictionary
330, the root code and the 3 data characters following the
root code of the string corresponding to previous code 1s
recovered. The string 1s recovered from the Dictionary 330
utilizing the logic 345 and the buffers 347 of the decom-
pressor 310 of FIG. 12 generally utilizing the dictionary
string recovering methodology described above.

Specidically, the Dictionary 330 1s accessed by the previ-
ous code 1n the Previous Code register 341 and the data
character 1n the Data Character ficld 333 of the accessed
Dictionary location 1s transferred to the bufiers 347. The
code 1n the Prefix Code field 332 1s utilized to again access
the Dictionary 330 and the data character at the accessed
location 1s again stored in the buffers 347. The process 1s
repeated a third time and the 3 data characters following the
root code of the string corresponding to previous code are
now 1n the buffers 347. The root code of the string 1s now
stored 1n the Prefix Code field 332 of the accessed location
of the Dictionary 330. For convenience, the root code 1s
transferred to the buifers 347.

At a block 4435, the Extension Character register 360 1s set
to the 3 data characters extracted at the block 444 concat-
enated with the first data character of the fetched grouped
character 1n the Current Code register 340. In a manner
similar to that discussed above with respect to dictionary
string recovery methodology, the 3 data characters are
recovered from the Dictionary 330 1n reverse order and the
buffers 347 are utilized to provide these data characters in
correct order. Control 365 extracts these 3 data characters
from the buffers 347 and places them 1n the appropriate
order 1n the Data Character fields 361-363 of the Extension
Character register 360. Control 365 then extracts the first
data character of the grouped character in the Current

Character register 340 and places that data character into the
Data Character field 364 of the Extension Character register
360.

Processing continues with the block 446 whereat the root
code of the string corresponding to previous code concat-
enated with the contents of the Extension Character register
360 are stored 1n Dictionary 1 at the code assigned by the
Code Counter 343. As described above with respect to the
block 444, the root code of the string corresponding to
previous code 1s now held 1n the buffers 347. The block 446
1s implemented by storing this root code and the contents of
the Extension Character register 360 1n the Prefix Code field
322 and the Grouped Character field 323, respectively, of the
location of the Dictionary 320 addressed by the Code
Counter 343.

US 6,307,485 Bl

27

This extended string stored in the Dictionary 320
(Dictionary 1) is assigned the string code value of the extant
code of the Code Counter 343. At a block 447, the extant
code 1n the Code Counter 343 1s listed 1n the Dictionary
Table 350. In this manner, the Dictionary Table 350 main-
tains a list of the codes of the strings stored in Dictionary 1.

Processing continues from the block 443 and the block
447 to the block 430 of FIG. 13.

Referring to FIG. 15, with continued reference to FIGS.
12 and 13, the details of the Current Code Dictionary 1
processing 414 of FIG. 13 are illustrated. It 1s appreciated
that the processing 414 of FIG. 13 1s invoked when the
decompressor 310 receives an input compressed code that
represents a string that 1s stored in the Dictionary 320
(Dictionary 1). In the present embodiment, the stored string
1s comprised of sequential grouped characters.

Accordingly, at a block 450, the grouped characters of the
string corresponding to current code are recovered from
Dictionary 1. Recovering the string from Dictionary 1 1is
performed generally in the manner described above with
respect to dictionary string recovery methodology. The
operations of block 450 are performed by the Dictionary 1
String Recovery logic 344 utilizing the Data Character
String Forming buifers 347. Specifically, the Dictionary 320
1s accessed by the fetched current code in the Current Code
register 340 and the grouped character 1n the field 323 of the
accessed Dictionary location 1s transferred to the buffers
347. The code 1n the field 322 1s utilized to again access the
Dictionary 320 and the grouped character at the accessed
location 1s again stored in the bufifers 347. This process
continues until the code 1n the Prefix Code field 322 1s less
than 256. This prefix code in the field 322 comprises the
initial grouped character of the string represented by current
code. It 1s appreciated that the grouped characters of the
string are recovered from the field 323 of the Dictionary 320
in reverse order. The bullers 347 are utilized to organize the
orouped characters 1n the correct order.

Processing proceeds to a block 451 whereat the data
characters of the recovered grouped characters of the string
corresponding to current code are recovered. At a block 452,
the recovered data characters are output from the decom-
pressor 310 at the output 312 1 appropriate order. The
recovered outputted data characters comprise the string
corresponding to current code. The operations of the blocks
451 and 452 are performed by the logic 346 and the buifers
347 under control of the logic 344. The 4 contiguous data
characters of each recovered grouped character are readily
recovered and transferred from the buffers 347 to the output
312 1n the appropriate order.

At a block 453, the flag in the Flag Temp register 352 1s
set to 2. It 1s appreciated from the operations of the com-
pressor 210 described with respect to FIGS. 9 and 10 that a
longest matched string 1n Dictionary 1 will be extended by
1 data character and stored 1n Dictionary 2. Thus, the string,
corresponding to current code that was recovered from
Dictionary 1 will be extended and stored 1n the next decom-
pression cycle 1 Dictionary 2.

Processing proceeds to a block 454 whereat the flag in the
Flag register 351 1s consulted to determine m which Dic-
fionary to store the extended string 1n the current decom-

pression cycle. If the flag 1n the Flag register 351 1s set to 2,
the YES branch from the block 454 1s taken to a block 4585.

The processing of the block 455 1s substantially the same
as that described above with respect to the block 443 of FIG.
14. At the block 4585, the previous code string 1s extended by
the first data character of the 1nitial grouped character of the

10

15

20

25

30

35

40

45

50

55

60

65

23

string corresponding to current code. This data character 1s
available 1n the buffers 347 pursuant to the processing,
described above with respect to the blocks 450—452.

If, at the block 454, the flag 1n the Flag register 351
denotes Dictionary 1, the NO branch from the block 454 1s
taken to blocks 456—459. The processing of the blocks
456—459 1s substantially identical to that described above
with respect to the blocks 444447 of FIG. 14. It 1s
appreciated, however, that at the block 457, the first data
character of the initial grouped character of the string
corresponding to current code 1s set 1into the Data Character
field 364 of the Extension Character register 360. This data
character 1s obtained from the buffers 347 as discussed
above with respect to the block 4585.

Processing continues from the blocks 455 and 439 to the
block 430 of FIG. 13.

Referring to FIG. 16, with continued reference to FIGS.
12 and 13, details of the Current Code Dictionary 2 pro-
cessing of the block 415 of FIG. 13 are illustrated. It 1s
appreciated that the processing 415 of FIG. 16 1s invoked
when the decompressor 310 receives an mput compressed
code that represents a string that 1s stored 1n the Dictionary
330 (Dictionary 2). In the present embodiment, the stored
string 1s a 1, 2 or 3 data character extension of a single
orouped character or of a multiple grouped character string
stored 1n the Dictionary 320.

Accordingly, at a block 470, the root code and the n data
characters following the root code of the string correspond-
ing to current code are recovered from Dictionary 2. It 1s
appreciated that the root code of the string will either be a
orouped character having a value less than 256 or the code
of a string 1n Dictionary 1 having a value of greater than 256.
The Dictionary 2 String Recovery logic 345 and the Data
Character String Forming buffers 347 are utilized in the
processing of the block 470. Generally, the processing of the
block 470 1s performed 1n the manner described above with
respect to dictionary string recovery methodology.

Specidically, the Dictionary 330 1s accessed by the fetched
current code in the Current Code register 340 and the data
character in the Data Character ficld 333 of the accessed
Dictionary location 1s transferred to the buffers 347. The
prefix code 1n the field 332 is tested to determine if 1t 1s the
root code of the string by first testing if 1t 1s less than 256.
If not, the Dictionary Table 350 1s consulted to determine 1f
the prefix code 1s listed therein. If the prefix code 1s less than
256 or 1s 1n the Dictionary Table 350, the prefix code 1s the
string root code. If not, the prefix code 1n the field 332 1s
utilized to again access the Dictionary 330 and the data
character 1n the Data Character field 333 of the accessed
location 1s again stored in the buifers 347. The process
confinues until the code 1n the Prefix Code field 332 1s the
string root code which 1s stored for convenience in the

buffers 347.

It 1s appreciated that the data characters of the string are
recovered from the field 333 1n reverse order. The buifers
347 are utilized to provide the data characters 1n the correct
order. As the data characters are recovered from the field 333
into the buffers 347, the number of recovered data characters
are counted and the count stored 1n the n-register 353. It 1s
appreciated 1n the present embodiment that n will be either

1, 2 or 3.

Processing proceeds to blocks 471473 for setting the flag
in the Flag Temp register 352 to determine the Dictionary
into which to store the extended string in the next decom-
pression cycle. Accordingly, at a block 471, the count n 1n
the n-register 353 1s tested to determine 1f n 1s equal to 3. If

US 6,307,485 Bl

29

so, the YES branch from the block 471 1s taken to the block
472 to set the Flag Temp register 352 to 1. If n 1s not equal

to 3, the NO branch from the block 471 1s taken to the block
473 to set the Flag Temp register 352 to 2.

At a block 474, the root code recovered at the block 470
1s tested to determine 1if 1t 1s less than 256. If so, the YES

branch 1s taken from the block 474 to a block 475. At the
block 475, the 4 data characters comprising the root code are
recovered. Since the root code resides in the buffers 347

pursuant to the processing of the block 470, the 4 contiguous
data characters of this grouped character are readily recov-
ered utilizing the logic 346 with the 4 data characters
remaining in the buifers 347. At a block 476, the n+4 data
characters recovered at the blocks 470 and 475 are output 1n
the appropriate order at the output 312 of the decompressor
310. This recovered string of data characters comprises the
string corresponding to current code 1n the Current Code
register 340. It 1s appreciated that the logic 345 and 346
places the data characters 1n the buffers 347 in the appro-
priate order for outputting.

If, at the block 474, the root code 1s not less than 256, the
NO branch from the block 474 is taken to a block 480. As
discussed above with respect to the block 470, 1t 1s appre-
ciated that if the NO branch from the block 474 1s taken to
the block 480, the root code 1s the code of a string in
Dictionary 1. Accordingly, at the block 480, the grouped
characters of the string corresponding to the root code are
recovered from the Dictionary 320. The processing of the
block 480 1s the same as that described above with respect
to the block 450 of FIG. 15 except that the string corre-
sponding the root code 1s being recovered. Processing pro-
ceeds to a block 481 whereat the data characters of the
recovered grouped characters of the string corresponding to
root code are recovered. The processing of the block 481 is
the same as that described above with respect to the block
451 of FIG. 15. At ablock 482, the data characters recovered
from Daictionaries 1 and 2 at the blocks 470 and 481 are
output 1 appropriate order thereby outputting the string
corresponding to current code. Control 365 extracts the data
characters from the buffers 347 and provides them 1n the
appropriate order at the output 312 of the decompressor 310.

Processing continues from the block 476 or the block 482
to a block 483 to determine the Dictionary in which to store
the extended string 1n the current decompression cycle.
Accordingly, at the block 483, the flag 1in the Flag register
351 1s consulted to determine the Dictionary. If the flag 1s
equal to 2, the YES branch from the block 483 1s taken to a
block 484 for updating the Dictionary 330. At the block 484,
the string corresponding to previous code extended by the
first data character of the string corresponding to current
code 15 stored 1n Dictionary 2 and 1s assigned the string code
value of the extant code of the Code Counter 343. The
processing of the block 484 1s similar to that described above
with respect to the block 443 of FIG. 14 and the block 455
of FIG. 15. The block 484 is implemented by storing the
previous code from the Previous Code register 341 and the
first data character of the string corresponding to current
code 1n the Prefix Code field 332 and the Data Character
field 333, respectively, of the location of the Dictionary 330
addressed by the code counter 343. The first data character
of the string corresponding to current code resides 1n the

bufters 347.

If, at the block 483, the flag 1in the Flag register 351 1s
equal to 1, the NO branch from the block 483 1s taken to
blocks 485—488 for storing the appropriate extended string,
in Dictionary 1. The processing of the blocks 485488
parallels the processing of blocks 444447 of FIG. 14 and

10

15

20

25

30

35

40

45

50

55

60

65

30

the blocks 456—459 of FIG. 15. At the block 486, however,
the first data character of the string corresponding to current
code 1s set 1nto the Data Character field 364 of the Extension

Character register 360. As discussed with respect to the
block 484, this character resides 1n the buffers 347.

Processing continues from the block 484 and the block
488 to the block 430 of FIG. 13.

Referring to FIG. 17, with continued reference to FIGS.
12 and 13, details of the Exception Case Grouped Character
processing of the block 421 of FIG. 13 are illustrated. As
discussed above, the processing 421 of FIG. 17 1s invoked
when the decompressor 310 receives an mput compressed
code that 1s equal to the code 1n the Code Counter 343 and

the previous code 1n the Previous Code register 341 1s less
than 256.

At a block 500, the 4 data characters of the grouped
character corresponding to previous code are recovered. The
4 data characters are recovered by the logic 346 from the
Previous Code register 341 and are stored 1n the buflers 347.

Processing proceeds to a block 501 whereat the 4 data
characters of the grouped character corresponding to previ-
ous code extended by the first data character of this grouped
character are output by the decompressor 310. This extended
string 1s the string corresponding to the code just fetched to
Current Code register 340. The logic 346 extends the 4 data
characters held in the buffers 347 by the first data character
thereof and control 365 then outputs these 5 data characters
from the buffers 347 to the output 312.

Processing proceeds to a block 502 whereat the Dictio-
nary 330 (Dictionary 2) is updated with an extended string,
comprising the string corresponding to previous code
extended by the first data character of the grouped character
corresponding to previous code. The string 1s stored 1n the
Dictionary 330 at the string code assigned by the Code
Counter 343. The function of block 502 1s performed 1n a
manner similar to that described above as follows. The code
in the Previous Code register 341 1s stored 1n the Prefix Code
field 332 of the location of the Dictionary 330 accessed by
the extant code in the Code Counter 343. The first data
character of the grouped character corresponding to previous
code 1s stored 1n the Data Character field 333 of the accessed
Dictionary location. This 1s readily accomplished since this
data character 1s stored 1n the buffers 347 as described above.
Alternatively, this data character can be extracted from the
Previous Code register 341 since it 1s part of the grouped
character stored therein.

It 1s readily appreciated from the operations performed by
the compressor 210 described above with respect to FIGS.
9 and 10 that, in the context of the processing 421 of FIG.
17, the extended string will always be stored in Dictionary

2

At a block 503, the Flag Temp register 352 1s set to 2. It
1s appreciated that the string created at the block 501, when
extended 1n the next decompression cycle, will always be
stored 1n Dictionary 2. Processing then continues from the

block 503 to the block 430 of FIG. 13.

It 1s appreciated with respect to the processing of F1G. 17
that Dictionary accesses are not required to recover the
string corresponding to previous code.

Referring to FIG. 18, with continued reference to FIGS.
12 and 13, details of the Exception Case Dictionary 1
processing 423 of FIG. 13 are illustrated. It 1s appreciated
that the processing 423 of FIG. 13 1s invoked when the
decompressor 310 receives an input compressed code that 1s
equal to the code 1in the Code Counter 343 and the previous
code 1 the Previous Code register 341 1s listed in the

US 6,307,485 Bl

31

Dictionary Table 350. Thus, the string corresponding to
previous code 1s located 1n Dictionary 1.

Accordingly, at a block 510, the grouped characters of the
string corresponding to previous code are recovered from
Dictionary 1. At a block 511, the data characters of the
recovered grouped characters of the string corresponding to
previous code are recovered. At a block 512, the data
characters comprising the string corresponding to previous
code are extended by the first data character of the string
corresponding to previous code and this extended string 1s
output from the decompressor 310 at the output 312 1in
appropriate order. The recovered and extended data charac-
ters that are outputted comprise the string corresponding to

current code.

The operations performed at the blocks 510-512 corre-
spond substantially to the operations described above with
respect to the blocks 450452 of FIG. 15. At the blocks
510-512, the processing 1s performed with respect to the
previous code 1n the Previous Code register 341 rather than
with respect to current code. Additionally, at the block 512,
the string 1s extended by the first data character thereotf. This
string extension 1s readily performed in the butfers 347 since

the data characters of the string corresponding to previous
code recovered at the block 511 are held therein.

Processing proceeds to a block 513 whereat the Daictio-
nary 330 1s updated by storing therein an extended string
comprising the string corresponding to previous code
extended by the first data character thereof. The extended
string 1s stored 1n the Dictionary 330 at the code assigned by
the Code Counter 343. It 1s appreciated that the string stored
at the block 513 1s the string outputted at the block 512. The
block 513 1s implemented by storing previous code from the
Previous Code register 341 and the first data character of the
string corresponding to previous code 1n the Prefix Code
field 332 and the Data Character field 333, respectively, of
the location of the Dictionary 330 addressed by the Code
Counter 343. The first data character of the string corre-
sponding to previous code 1s extracted from the buflers 347.

Dictionary 2 1s updated in the processing of FIG. 18
without consulting the Flag register 351, since the register
351 was set to 2 1n the previous decompression cycle. This
follows from the condition that in the processing of FIG. 18
previous code 1s recovered from Daictionary 1.

Processing proceeds to a block 514 whereat the Flag
Temp register 352 1s set to 2. The string corresponding to
current code constructed at the block 512 will be extended
in the next decompression cycle and stored in Dictionary 2.
Processing continues from the block 514 to the block 430 of
FIG. 13.

Referring to FIG. 19, with continued reference to FIGS.
12 and 13, details of the Exception Case Dictionary 2
processing of the block 424 of FIG. 13 are illustrated. It 1s
appreciated that the processing 424 of FIG. 19 1s mnvoked
when the decompressor 310 received an mnput compressed
code that 1s equal to the code 1n the Code Counter 343 and
previous code 1n the Previous Code register 341 1s not listed
in the Dictionary Table 350. Thus, the string corresponding
to previous code 1s located m Dictionary 2.

Accordingly, at a block 520, the root code and the n data
characters following the root code of the string correspond-
ing to previous code are recovered from Dictionary 2. The
processing of the block 520 parallels that of the block 470
of FIG. 16 and the descriptions given above with respect
thereto apply to the block 520. It 1s appreciated, however,
that at the block 520 the Dictionary 330 1s accessed by
previous code 1n the Previous Code register 341 rather than
current code 1n the Current Code register 340.

10

15

20

25

30

35

40

45

50

55

60

65

32

Processing proceeds to blocks 521-523 for setting the flag
in the Flag Temp register 352 to determine the Dictionary
into which to store the extended string 1n the next decom-
pression cycle. The blocks 521-523 are similar to the blocks
471-473 of FIG. 16 except that 1n the block 521, the count
n 1n the n-register 353 1s tested to determine 1f n 1s equal to
2. The count of n=2 1s appropriate in the Exception Case
processing of FIG. 19 because the string corresponding to
current code 1s recovered from the string corresponding to
previous code by extending the previous code string by the
first data character thereof. Thus, the Flag Temp register 352
1s appropriately set at the blocks 522 and 523 so that 1n the
next decompression cycle the appropriate Dictionary 1s
updated.

At a block 524, the root code recovered at the block 520
1s tested to determine 1if 1t 1s less than 256. If so, the YES
branch 1s taken from the block 524 to a block 525. At the
block 5235, the 4 data characters comprising the root code are
recovered. The operations of the block 525 are the same as
those described above with respect to the block 475 of FIG.
16.

At a block 526, the n+4 data characters recovered at the
blocks 520 and 525 are extended by the first data character
of the root code recovered at the block 525. These n+5
characters are output 1n the appropriate order at the output
312 of the decompressor 310. This recovered string of data
characters comprises the string corresponding to current
code. The string 1s readily extended by the first data char-
acter of the root code since these data characters resides 1n
the buifers 347. It 1s appreciated that the logic 345 and 346
places the data characters 1n the buifers 347 1n the appro-
priate order for outputting.

If, at the block 524, the root code 1s not less than 256, the
NO branch from the block 524 1s taken to blocks 530 and
531. At the block 530, the grouped characters of the string
corresponding to root code are recovered from Dictionary 1.
At the block 531, the data characters of the recovered
ogrouped characters of the string corresponding to root code
are recovered. The operations of the blocks 530 and 531
parallel those of the blocks 480 and 481, respectively, of

FIG. 16 and the descriptions given above with respect to the
blocks 480 and 481 also apply to the blocks 530 and 531.

At a block 532, the string of data characters recovered
from Dictionaries 1 and 2 at the blocks 520 and 531 is
extended by the first data character of the string correspond-
ing to root code. This 1s readily accomplished since all of the
data characters involved reside in the buifers 347. The data
characters of the extended string are output 1n appropriate
order thereby outputting the string corresponding to current
code. Control 365 extracts the data characters from the
buffers 347 and provides them 1n the appropriate order at the
output 312 of the decompressor 310.

Processing continues from the block 526 or the block 532
to blocks 533, 534 and 536—-538. The processing of these
blocks updates either the Dictionary 320 or the Dictionary

330 with an appropriate extended string. The operations of
the blocks 533, 534 and 536—538 parallel those of the blocks

483, 484 and 486488, respectively, of FIG. 16. The descrip-
fions given above with respect to the blocks 483, 484 and
486—488 also apply to the blocks 533, 534 and 536538,

respectively. Processing continues from the block 534 and
the block 538 to the block 430 of FIG. 13.

Referring to FIG. 20, with continued reference to FIGS.
12-19, an example of the operation of the compressor 310
in accordance with the flow charts of FIGS. 13-19 1s
illustrated. The format of FIG. 20 1s generally similar to that

US 6,307,485 Bl

33

of FIG. 11 and descriptions given above with respect to FIG.
11 are applicable. The Input Compressed Code Stream at the
top of FIG. 20 1s the compressor output illustrated 1 FIG.
11. It 1s observed that the output of FIG. 20 1s the recovered
data character stream 1illustrated at the top of FIG. 11.

It 1s noted that the first and third codes of the Input
Compressed Code Stream at the top of FIG. 20 are grouped
characters, namely “abab” and “baba”. In actions 1 and 3,

these grouped characters are processed by the denoted
blocks of FIGS. 13 and 14 without the use of Dictionary

string searching which otherwise would have been required
in the prior art. Actions 5, 7,9, 11, 13 and 15 exemplity the
processing ol the strings represented by mnput codes 259,
261, 263, 265, 267 and 269, respectively. The string pro-
cessing of these actions utilize the Current Code processing

of blocks 413—415 detailed 1n FIGS. 15 and 16.

Actions 2,4, 6,8, 10, 12 and 14 exemplily the processing,
of the strings represented by 1input codes 258, 260, 262, 264,
266, 268 and 270, respectively. The string processing of

these actions utilize the Exception Case processing of blocks
420424 detailed in FIGS. 17-19.

More detailed descriptions of the actions of FIG. 20
relative to the blocks of FIGS. 13—19 are readily apparent
and will not be provided for brevity.

It 1s appreciated that 1n the compressor and decompressor
embodiment of FIGS. 12-20, numerous Dictionary accesses
are avolded compared to prior art implementations. For
example, 1n FIG. 10, blocks 263, 264, 287, 289 and 307, 4
data characters are concatenated and processed as grouped
characters thereby eliminating numerous compressor Dic-
fionary accesses. Additionally, in FIG. 14, block 440 and
FIG. 17, block 500, 4 data characters of grouped character
inputs to the decompressor are recovered without accessing
the Dictionary. Furthermore, in FIG. 15, block 451; FIG. 16,
blocks 475 and 481; FIG. 18, block 511 and FIG. 19, blocks
525 and 531, each grouped character of a string 1s processed
to provide 4 data characters of the string which otherwise
would have required four separate Dictionary accesses.

A procedure 15 described above with respect to the decom-
pressor of FIGS. 1220 for recovering the root code and the
data characters following root code from Dictionary 2 (e.g.,
FIG. 16, block 470). The process involves repetitively
comparing the prefix code 1n the Prefix Code field 332 of the
Dictionary 330 with 256 and repetitively determining if the
prefix code 1s listed 1n the Dictionary Table 350. An alter-
native procedure may he effected as follows. At blocks 447,
459, 488 and 538 where the code 1n the Code Counter 343
1s stored in the Dictionary Table 350, a unique “Dictionary
1 marker” 1s also stored mm Dictionary 2 at the location
addressed by the code 1n the Code Counter 343. It would
then only he necessary to repetitively compare the prefix
code 1n the Prefix Code field 332 to 256. The root code 1s
determined either when the prefix code 1n the Prefix Code
field 332 1s less than 256 or when the prefix code accesses
a location 1 Dictionary 2 storing the unique “Dictionary 1
marker”.

The above embodiments were described m terms of an
alphabet comprising 4 data characters and a grouped char-
acter of 4 consecutive data characters. Modifications to the
embodiments to accommodate alphabet and grouped char-
acter sizes will be readily apparent to those skilled 1n the art.

While the mnvention has been described in its preferred
embodiments, it 1s to be understood that the words which
have been used are words of description rather than of
limitation and that changes may be made within the purview
of the appended claims without departing from the true
scope and spirit of the 1nvention 1n 1ts broader aspects.

5

10

15

20

25

30

35

40

45

50

55

60

65

34

What 1s claimed 1s:

1. A data compression method for compressing an input
strcam of data characters into an output stream of com-
pressed codes comprising

storing strings of data characters encountered 1n said 1nput
stream, said stored strings having respective codes
assoclated therewith, a string being stored as a group-
ing of a predetermined number of data characters
concatenated with at least one data character, said
ogrouping of said predetermined number of data char-
acters defining a grouped character,

in a compression cycle, forming said mnput stream 1nto a
ogrouped character comprised of said predetermined
number of data characters followed by at least one data
character, thereby providing a formed 1nput stream,

determining the longest match between said formed 1nput
strcam and said stored strings by comparing said
formed 1mput stream to said stored strings by matching
said grouped character of said formed mnput stream with
saild grouped character of said stored strings and
sequentially matching said at least one data character of
said formed input stream with said at least one data
character of said stored strings until one of the data
characters of said formed input stream causes a mis-
match to occur,

outputting the code associated with said longest match so
as to provide said output stream of compressed codes,

storing an extended string comprising said longest match
extended by said data character that caused said
mismatch, and

assigning a code corresponding to said stored extended

string,

said step of forming said input stream 1ncluding forming,

a new grouped character to begin the next compression
cycle, said new grouped character comprising said data
character that caused said mismatch concatenated by
one less than said predetermined number of the next
following data characters from said input stream.

2. The method of claim 1 wherein a stored string com-
prises an 1nitial grouped character comprised of said prede-
termined number of data characters concatenated with a
number of data characters,

said forming step comprising forming said mput stream
into an 1nitial grouped character comprised of said
predetermined number of data characters followed by a
number of data characters from said mput stream,

sald determining step comprising matching said initial
ogrouped character of said formed input stream with said
initial grouped character of said stored strings and
sequentially matching said number of data characters of
said formed input stream with said number of data
characters of said stored strings, said number of data
characters increasing until one of the data characters
causes said mismatch to occur.

3. The method of claim 1 wherein said step of forming
said mput stream 1ncludes forming said new grouped char-
acter and fetching following data characters from said input
stream until the data character that causes said mismatch 1s
fetched.

4. The method of claim 1 further mncluding forming an
initializing grouped character prior to initiating operations of
said method, said imitializing grouped character comprising
sald predetermined number of the first data characters of
said mput stream.

5. The method of claam 1 wherein each said grouped
character has a code associated therewith, said code assigned

US 6,307,485 Bl

35

to said stored extended string being greater than any code
associated with said grouped characters.

6. The method of claim 1 wherein said data characters of
said input stream are from an alphabet of characters com-
prising 4 data characters and said predetermined number
comprises 4 consecutive data characters of said input stream.

7. A data compression method for compressing an input
stream of data characters mto an output stream of com-
pressed codes comprising

storing strings of data characters encountered in said input
stream, said stored strings having respective codes
assoclated therewith, a string being stored as at least
one grouping of a predetermined number of data char-
acters concatenated with at most one less than said
predetermined number of data characters, said group-
ing of said predetermined number of data characters
defining a grouped character,

in a compression cycle, forming said mput stream 1nto a
plurality of consecutive grouped characters, each
grouped character comprised of said predetermined
number of data characters, thereby providing a formed
Input stream,

determining the longest match between said formed input
stream and said stored strings by comparing said
formed 1put stream to said stored strings by sequen-
tially matching said plurality of consecutive grouped
characters of said formed 1nput stream with said at least
one grouped character of said stored strings until a
mismatching grouped character of said formed input
stream occurs, and then sequentially matching the data
characters of said mismatching grouped character with
said concatenated data characters of said stored strings
until said longest match 1s determined,

outputting the code associated with said longest match so
as to provide said output stream of compressed codes,

storing an extended string comprising said longest match
extended hy the data character of said mismatching
ogrouped character following said longest match, and

assigning a code corresponding to said stored extended

string,

said step of forming said input stream including forming,

a new grouped character to begin the next compression
cycle, said new grouped character comprising the data
characters of said mismatching grouped character fol-
lowing said longest match concatenated by a number of
next following data characters from said mput stream
so that said new grouped character comprises said
predetermined number of data characters.

8. The method of claim 7 wherein said step of storing
strings comprises storing said strings of data characters in
first and second storage means, a string being stored 1n said
first storage means as a plurality of consecutive grouped
characters, each grouped character comprised of said pre-
determined number of data characters, a string being stored
in said second storage means as an extension of a string
stored 1n said first storage means, said extension comprising
at most one less than said predetermined number of data
characters.

9. The method of claim 8 wherein said step of storing
strings includes storing a string 1n said second storage means
as a string comprising one grouped character extended by at
most one less than said predetermined number of data
characters.

10. The method of claim 9 wherein said determining step
comprises comparing said formed mnput stream to said stored
strings by sequentially matching said plurality of consecu-

10

15

20

25

30

35

40

45

50

55

60

65

36

tive grouped characters of said formed iput stream with
said plurality of consecutive grouped characters of said
strings stored 1n said first storage means until said mismatch-
ing grouped character of said formed mput stream occurs,
and then sequentially matching the data characters of said
mismatching grouped character with the extension data
characters of the strings stored 1n said second storage means
until one of the data characters of said mismatching grouped
character causes a mismatch to occur, thereby determining
said longest match.

11. The method of claim 10 wherein said step of storing
an extended string comprises storing, in said second storage
means, an extended string comprising said longest match
extended by said data character of said mismatching
orouped character that caused said mismatch.

12. The method of claim 10 wherein said step of forming
a new groused character comprises forming said new
orouped character comprising the data characters of said
mismatching grouped character beginning with and follow-
ing said data character that caused said mismatch concat-
enated by a number of next following data characters from
said 1put stream so that said new grouped character com-
prises saild predetermined number of data characters.

13. The method of claim 12 wherein said new grouped
character 1s equal to said mismatching groused character.

14. The method of claim 9 wherein said determining step
comprises comparing said formed input stream to said stored
strings by sequentially matching said plurality of consecu-
tive grouped characters of said formed input stream with
said plurality of consecutive grouped characters of said
strings stored 1n said first storage means until said mismatch-
ing grouped character of said formed nput stream occurs,
thereby defining a longest matching string in said first
storage means, and then sequentially matching the data
characters of said mismatching groused character with the
extension data characters of the strings stored in said second
storage means until one less than said predetermined number
of said extension data characters are matched, thereby
determining said longest match.

15. The method of claim 14 wherein said step of storing
an extended string comprises storing, in said first storage
means, an extended string comprising said longest matching
string 1n said first storage means extended by said mismatch-
ing grouped character.

16. The method of claim 14 wherein said step of forming
a new grouped character comprises forming said new
orouped character comprising the last data character of said
mismatching grouped character concatenated by one less
than said predetermined number of next following data
characters from said mput stream.

17. The method of claim 7 wherein each said grouped
character has a code associated therewith, said code assigned
to said stored extended string being greater than any code
assigned to said grouped characters.

18. The method of claim 7 wherein said data characters of
said 1nput stream are from an alphabet of characters com-
prising 4 data characters and said predetermined number
comprises 4 consecutive data characters of said input stream.

19. A data decompression method for decompressing an
input stream of compressed codes to recover an output
stream of data characters corresponding thereto comprising

storing strings of data characters, said stored strings
having respective codes associated therewith, a string
being stored as a grouping of a predetermined number
of data characters concatenated with at least one data
character, said grouping of said predetermined number
of data characters defining a grouped character, each

US 6,307,485 Bl

37

said grouped character having associated therewith a
code less than a predetermined code, each code asso-
cilated with a stored string being greater than any code
associated with a grouped character,

in a decompression cycle, comparing a received com-
pressed code to said predetermined code and if said
received compressed code 1s less than said predeter-
mined code,

outputting the data characters of the grouped character
corresponding to said received compressed code so as
to provide said output stream of data characters,

storing an extended string comprising the string corre-
sponding to the compressed code received in the pre-
vious decompression cycle extended by the first data
character of said grouped character corresponding to
said recerved compressed code,

said compressed code received 1n said previous decom-
pression cycle defining a previous code, and

assigning a code to said stored extended string, said code

assigned to said stored extended string being greater

than any code associated with said grouped characters.

20. The method of claim 19 wherein, if said received

compressed code 1s not less than said predetermined code

and said received compressed code corresponds to one of
said stored strings, said method includes

recovering said grouped character and said at least one
data character of the stored string corresponding to said
received compressed code,

recovering the data characters of the recovered grouped
character of said stored string corresponding to said
received compressed code,

outputting the recovered data characters so as to provide
said output stream of data characters,

storing an extended string comprising the string corre-
sponding to said previous code extended hy the first
data character of the recovered grouped character of
said stored string corresponding to said received com-
pressed code, and

assigning a code to said stored extended string, said code

assigned to said stored extended string being greater

than any code associated with said grouped characters.

21. The method of claim 19 wherein, if said received

compressed code 1s not less than said predetermined code

and said received compressed code does not correspond to
one of said stored strings, said method includes

comparing said previous code to said predetermined code
and 1f said previous code 1s less than said predeter-
mined code,

recovering the data characters of the grouped character
corresponding to said previous code,

outputting the data characters of said grouped character
corresponding to said previous code extended by the
first data character of said grouped character corre-
sponding to said previous code so as to provide said
output stream of data characters,

storing an extended string comprising said grouped char-
acter corresponding to said previous code extended by
the first data character of said grouped character cor-
responding to said previous code, and

assigning a code to said stored extended string, said code
assigned to said stored extended string being equal to
said received compressed code.

22. The method of claim 19 wherein, if said received

compressed code 1s not less than said predetermined code

10

15

20

25

30

35

40

45

50

55

60

65

33

and said received compressed code does not correspond to
one of said stored strings, said method includes

comparing said previous code to said predetermined code
and 1f said previous code 1s not less than said prede-
termined code,

recovering said grouped character and said at least one
data character of the stored string corresponding to said
previous code,

recovering the data characters of the recovered grouped
character of said stored string corresponding to said
previous code,

outputting the recovered data characters extended by the
first data character of said recovered grouped character
of said stored string corresponding to said previous
code so as to provide said output stream of data
characters,

storing an extended string comprising said stored string,
corresponding to said previous code extended by said
first data character of said recovered grouped character
of said stored string corresponding to said previous
code, and

assigning a code to said stored extended string, said code
assigned to said stored extended string being equal to

said received compressed code.
23. A data decompression method for decompressing an
mput stream of compressed codes to recover an output
stream of data characters corresponding thereto comprising

storing strings of data characters i1n first and second
storage means, sald stored strings having respective
codes associated therewith,

a string being stored 1n said first storage means as a
plurality of consecutive groupings of data characters,
cach said grouping comprising a predetermined num-
ber of data characters, said grouping of said predeter-
mined number of data characters defining a grouped
character, each said grouped character having associ-
ated therewith a code less than a predetermined code,
cach code associated with a stored string being greater
than any code associated with a grouped character,

a string being stored 1n said second storage means as a
root code extended by at most one less than said
predetermined number of data characters,

at least one of said strings stored 1n said second storage
means being stored as an extension of a string stored 1n
said first storage means wherein said root code com-
prises the code associated with said string stored 1n said
first storage means,

at least one of said strings stored 1n said second storage
means being stored as one grouped character extended
by at most one less than said predetermined number of
data characters wherein said root code comprises said
one grouped character,

maintaining a table of the codes associated with strings
stored 1n a particular one of said first and second
storage means,

in a decompression cycle,
receiving a compressed code,

outputting the data characters of a string of data characters
corresponding to said received compressed code so as
to provide said output stream of data characters,

setting a temporary flag 1in accordance with said string
corresponding to said received compressed code, said
temporary flag indicating one of said first and second
storage means 1nto which to store an extended string in
the next decompression cycle,

US 6,307,485 Bl

39

storing an extended string 1n one of said first and second
storage means 1n accordance with an update flag 1indi-
cating into which of said first and second storage means
to store said extended string, said extended string based
on the string corresponding to the compressed code
received 1n the previous decompression cycle,

said compressed code received 1n said previous decom-
pression cycle defining a previous code,

assigning a code to said stored extended string, said code
assigned to said stored extended string being greater
than any code associated with said grouped characters,

said maintaining step including listing said code assigned
to said stored extended string i1n said table if said
extended string 1s stored 1n said particular one of said
first and second storage means, and

transferring said temporary flag to said update flag.

24. The method of claim 23 wherein, 1n said decompres-
sion cycle, said method includes comparing said received
compressed code to said predetermined code and if said
received compressed code 1s less than said predetermined
code

said outputting step comprises outputting the data char-
acters of the grouped character corresponding to said
received compressed code,

said setting step comprises setting said temporary flag to
indicate said second storage means,

if said update flag indicates said second storage means,
said step of storing said extended string comprises
storing said extended string in said second storage
means, sald extended string comprising the string cor-
responding to said previous code extended by the first
data character of said grouped character corresponding
to said recerved compressed code, and

if said update flag indicates said first storage means, said
step of storing an extended string comprises storing
said extended string 1n said first storage means, said
extended string comprising the root code of the string
corresponding to said previous code extended by an
extension grouped character, said extension grouped
character comprising the data characters extending the
root code of said string corresponding to said previous
code concatenated by the first data character of said
grouped character corresponding to said received com-
pressed code.

25. The method of claim 23 wherein, 1n said decompres-
sion cycle, said method includes comparing said received
compressed code to said predetermined code and if said
received compressed code 1s not less than said predeter-
mined code and said received compressed code corresponds
to one of said stored strings, said method 1ncludes

determining, from said table, 1n which of said first and

second storage means the string corresponding to said

received compressed code 1s stored and 1f said string

corresponding to said received compressed code i1s

stored 1n said first storage means, said method further

includes

recovering, from said first storage means, the grouped
characters of said string corresponding to said
received compressed code,

recovering the data characters of the recovered grouped
characters of said string corresponding to said
received compressed code,

said outputting step comprising outputting the recov-
ered data characters,

said setting step comprising setting said temporary flag
to indicate said second storage means,

10

15

20

25

30

35

40

45

50

55

60

65

40

if said update flag indicates said second storage means,
said step of storing an extended string comprising,
storing said extended string 1n said second storage
means, sald extended string comprising the string
corresponding to said previous code extended by the
first data character of the initial grouped character of
said string corresponding to said received com-

pressed code, and

if said update flag indicates said first storage means, said
step of storing an extended string comprising storing
said extended string 1n said first storage means, said
extended string comprising the root code of the string
corresponding to said previous code extended by an
extension grouped character, said extension grouped
character comprising the data characters extending said
root code of said string corresponding to said previous
code concatenated by said first data character of said
initial grouped character of said string corresponding to
said recerved compressed code.

26. The method of claim 23 wherein, 1n said decompres-
sion cycle, said method includes comparing said received
compressed code to said predetermined code and if said
received compressed code 1s not less than said predeter-
mined code and said received compressed code corresponds
to one of said stored strings, said method includes

determining, from said table, in which of said first and

second storage means the string corresponding to said

received compressed code 1s stored and 1f said string,

corresponding to said received compressed code i1s

stored 1n said second storage means, said method

further includes

recovering, from said second storage means, the root
code and the n data characters extending the root
code of said string corresponding to said received
compressed code,

if said recovered root code 1s less than said predeter-
mined code, recovering the data characters of said
recovered root code, said outputting step comprising,
outputting the recovered data characters of said
recovered root code and said n data characters recov-
ered from said string corresponding to said received
compressed code, thereby outputting the data char-
acters of said string corresponding to said received
compressed code,

if said recovered root code 1s not less than said prede-
termined code, recovering, from said {first storage
means, the grouped characters of the string corre-
sponding to said recovered root code, recovering the
data characters of the recovered grouped characters
of said string corresponding to said recovered root
code, said outputting step comprising outputting the
data characters recovered from said grouped charac-
ters of said string corresponding to said recovered
root code and outputting said n data characters
recovered from said string corresponding to said
received compressed code, thereby outputting the
data characters of said string corresponding to said
received compressed code,

said setting step comprising setting said temporary flag
to mndicate said first storage means 1f n 1s equal to one
less than said predetermined number of data
characters, otherwise setting said temporary flag to
indicate said second storage means,

if said update flag indicates said second storage means,
said step of storing an extended string comprising,
storing said extended string 1n said second storage
means, sald extended string comprising the string,

US 6,307,485 Bl

41

corresponding to said previous code extended by the
first data character of said string corresponding to
said received compressed code, and

if said update flag indicates said first storage means,
said step of storing an extended string comprising
storing said extended string in said first storage
means, sald extended string comprising the root code
of the string corresponding to said previous code
extended by an extension grouped character, said
extension grouped character comprising the data
characters extending said root code of said string
corresponding to said previous code concatenated by
the first data character of said string corresponding to
said received compressed code.

27. The method of claim 23 wherein, in said decompres-
sion cycle, said method includes comparing said received
compressed code to said predetermined code and if said
received compressed code 1s not less than said predeter-
mined code and said received compressed code does not

correspond to one of said stored strings, said method
includes

comparing said previous code to said predetermined code
and 1f said previous code 1s less than said predeter-
mined code

said outputting step comprises outputting the data char-
acters of the grouped character corresponding to said
previous code extended hy the first data character of
said grouped character corresponding to said previous
code,

said setting step comprises setting said temporary flag to
indicate said second storage means, and

said step of storing an extended string comprises storing,
said extended string 1n said second storage means, said
extended string comprising said grouped character cor-
responding to said previous code extended by the first
data character of said grouped character corresponding
to said previous code.

28. The method of claim 23 wherein, 1n said decompres-
sion cycle, said method includes comparing said received
compressed code to said predetermined code and if said
received compressed code 1s not less than said predeter-
mined code and said received compressed code does not
correspond to one of said stored strings, said method
includes

comparing said previous code to said predetermined code
and 1f said previous code 1s not less than said prede-
termined code, said method further includes
determining, from said table, in which of said first and
second storage means the string corresponding to
said previous code 1s stored and if said string corre-
sponding to said previous code 1s stored 1n said first
storage means, said method further includes
recovering, from said first storage means, the
orouped characters of the string corresponding to
said previous code,
recovering the data characters of the recovered
orouped characters of said string corresponding to
said previous code,
said outputting step comprising outputting the recov-
ered data characters extended by the first data
character of said string corresponding to said
previous code,
said setting step comprising setting said temporary
flag to 1ndicate said second storage means, and
said step of storing an extended string comprising
storing said extended string in said second storage

10

15

20

25

30

35

40

45

50

55

60

65

42

means, said extended string comprising said string,
corresponding to said previous code extended by
said first data character of said string correspond-
ing to said previous code.

29. The method of claim 23 wherein, 1n said decompres-
sion cycle, said method includes comparing said received
compressed code to said predetermined code and if said
received compressed code 1s not less than said predeter-
mined code and said received compressed code does not
correspond to one of said stored strings, said method
includes

comparing said previous code to said predetermined code
and 1f said previous code 1s not less than said prede-
termined code, said method further includes
determining, from said table, in which of said first and
second storage means the string corresponding to
said previous code 1s stored and 1f said string corre-
sponding to said previous code 1s stored 1n said
second storage means, said method further includes
recovering, from said second storage means the root
code and the n data characters extending the root
code of said string corresponding to said previous
code,
if said recovered root code 1s less than said prede-
termined code, recovering the data characters of
said recovered root code, said outputting step
comprising outputting the recovered data charac-
ters of said recovered root code and said n data
characters recovered from said string correspond-
ing to said previous code extended by the first data
character of said recovered root code, thereby
outputting the data characters of the string corre-
sponding to said received compressed code,
if said recovered root code 1s not less than said
predetermined code, recovering, from said first
storage means, the grouped characters of the string
corresponding to said recovered root code, recov-
ering the data characters of the recovered grouped
characters of said string corresponding to said
recovered root code, said outputting step compris-
ing outputting the data characters recovered from
said grouped characters of said string correspond-
ing to said recovered root code and outputting said
n data characters recovered from said string cor-
responding to said previous code extended by the
first data character of said string corresponding to
said recovered root code, thereby outputting the
data characters of the string corresponding to said
received compressed code,
said setting step comprising setting said temporary
flag to indicate said first storage means 1f n 1s equal
to two less than said predetermined number of
data characters, otherwise setting said temporary
flag to indicate said second storage means,
if said update flag indicates said second storage
means, sald step of storing an extended string
comprises storing said extended string in said
second storage means, said extended string com-
prising said string corresponding to said previous
code extended by the first data character of said
string corresponding to said received compressed
code, and
if said update flag indicates said first storage means,
said step of storing an extended string comprises
storing said extended string 1n said first storage
means, said extended string comprising said
recovered root code of said string corresponding

US 6,307,485 Bl

43

to said previous code extended by an extension
orouped character, said extension grouped char-
acter comprising the data characters extending
said root code of said string corresponding to said
previous code concatenated by the first data char-
acter of said string corresponding to said received

compressed code.
30. The method of claim 27, 28 or 29 wherein said

assigning step 1ncludes assigning a code to said stored
extended string, said code assigned to said stored extended

string being equal to said received compressed code.
31. The method of claim 21, 22, 27, 28 or 29 wherein said
assigning step comprises assigning said code to said stored

extended string from a code counter that 1s incremented for
cach assigned code, further including

comparing said received compressed code to the code in

saidd code counter so as to determine if the string
corresponding to said received compressed code 1s one
of said stored strings.

32. Data compression apparatus for compressing an 1nput
stream of data characters mto an output stream of com-
pressed codes comprising

means for storing strings of data characters encountered in

said 1nput stream, said stored strings having respective
codes associated therewith, a string being stored as a
grouping of a predetermined number of data characters
concatenated with at least one data character, said
grouping of said predetermined number of data char-
acters deflning a grouped character,

means operative 1n a compression cycle for forming said

input stream 1nto a grouped character comprised of said
predetermined number of data characters followed by
at least one data character, thereby providing a formed
input stream,

means for determining the longest match between said

formed mput stream and said stored strings by com-
paring said formed input stream to said stored strings
by matching said grouped character of said formed
input stream with said grouped character of said stored
strings and sequentially matching said at least one data
character of said formed mput stream with said at least
one data character of said stored strings until one of the
data characters of said formed input stream causes a
mismatch to occur,

means for outputting the code associated with said longest
match so as to provide said output stream of com-
pressed codes,

means for storing an extended string comprising said
longest match extended by said data character that
caused said mismatch, and

means for assigning a code corresponding to said stored
extended string,

said means for forming said input stream including means
for forming a new grouped character to begin the next
compression cycle, said new grouped character com-
prising sald data character that caused said mismatch
concatenated hy one less than said predetermined num-
ber of the next following data characters from said
Input stream.

33. The apparatus of claim 32 wherein a stored string
comprises an 1nitial grouped character comprised of said
predetermined number of data characters concatenated with
a number of data characters,

sald forming means including means for forming said
input stream 1nto an initial grouped character com-
prised of said predetermined number of data characters
followed by a number of data characters from said
input stream,

10

15

20

25

30

35

40

45

50

55

60

65

44

said determining means comprising means for matching
said 1nitial grouped character of said formed input
stream with said 1nitial grouped character of said stored
strings and sequentially matching said number of data
characters of said formed input stream with said num-
ber of data characters of said stored strings, said
number of data characters increasing until one of the
data characters causes said mismatch to occur.

34. The apparatus of claim 32 wherein said means for
forming said mput stream includes means for forming said
new grouped character and fetching following data charac-
ters from said input stream until the data character that
causes said mismatch 1s fetched.

35. The apparatus of claim 32 further including means for
forming an 1itializing grouped character prior to initiating
operations of said apparatus, said initializing grouped char-
acter comprising said predetermined number of the first data
characters of said input stream.

36. The apparatus of claim 32 wherein each said grouped
character has a code associated therewith, said code assigned
to said stored extended string being greater than any code
assoclated with said grouped characters.

37. The apparatus of claim 32 wherein said data charac-
ters of said 1nput stream are from an alphabet of characters
comprising 4 data characters and said predetermined number
comprises 4 consecutive data characters of said input stream.

38. Data compression apparatus for compressing an input
strcam of data characters into an output stream of com-
pressed codes comprising

means for storing strings of data characters encountered 1n
said 1nput stream, said stored strings having respective
codes associated therewith, a string being stored as at
least one grouping of a predetermined number of data
characters concatenated with at most one less than said
predetermined number of data characters, said group-
ing of said predetermined number of data characters
defining a grouped character,

means operative 1n a compression cycle for forming said
input stream 1nto a plurality of consecutive grouped
characters, each grouped character comprised of said
predetermined number of data characters, thereby Pro-
viding a formed 1nput stream,

means for determining the longest match between said
formed mput stream and said stored strings by com-
paring said formed 1nput stream to said stored strings
by sequentially matching said plurality of consecutive
ogrouped characters of said formed mput stream with
said at least one grouped character of said stored strings
untill a mismatching grouped character of said formed
input stream occurs, and then sequentially matching the
data characters of said mismatching grouped character
with said concatenated data characters of said stored
strings until said longest match 1s determined,

means for outputting the code associated with said longest
match so as to provide said output stream of com-
pressed codes,

means for storing an extended string comprising said
longest match extended by the data character of said
mismatching grouped character following said longest
match, and

means for assigning a code corresponding to said stored
extended string,

said means for forming said input stream including means
for forming a new grouped character to begin the next
compression cycle, said new grouped character com-
prising the data characters of said mismatching grouped

US 6,307,485 Bl

45

character following said longest match concatenated by
a number of next following data characters from said
input stream so that said new grouped character com-
prises said predetermined number of data characters.

39. The apparatus of claim 38 wherein said means for
storing strings comprises means for storing said strings of
data characters in first and second storage means, a string
being stored 1n said first storage means as a plurality of
consecutive grouped characters, each grouped character
comprised of said predetermined number of data characters,
a string being stored in said second storage means as an
extension of a string stored 1n said first storage means, said
extension comprising at most one less than said predeter-
mined number of data characters.

40. The apparatus of claim 39 wherein said means for
storing strings includes means for storing a string 1n said
second storage means as a string comprising one grouped
character extended by at most one less than said predeter-
mined number of data characters.

41. The apparatus of claim 40 wherein said determining
means comprises means for comparing said formed input
stream to said stored strings by sequentially matching said
plurality of consecutive grouped characters of said formed
input stream with said plurality of consecutive grouped
characters of said strings stored i1n said first storage means
until said mismatching grouped character of said formed
Input stream occurs, and then sequentially matching the data
characters of said mismatching grouped character with the
extension data characters of the strings stored 1n said second
storage means until one of the data characters of said
mismatching erouped character causes a mismatch to occur,
thereby determining said longest match.

42. The apparatus of claim 41 wherein said means for
storing an extended string comprises means for storing, in
said second storage means, an extended string comprising
said longest match extended by said data character of said
mismatching grouped character that caused said mismatch.

43. The apparatus of claim 41 wherein said means for
forming a new grouped character comprises means for
forming said new grouped character comprising the data
characters of said mismatching grouped character beginning
with and following said data character that caused said
mismatch concatenated by a number of next following data
characters from said input stream so that said new grouped
character comprises said predetermined number of data
characters.

44. The apparatus of claim 43 wherein said means for
forming a new grouped character comprises means for
forming said new grouped character equal to said mismatch-
ing grouped character.

45. The apparatus of claim 40 wherein said determining,
means comprises means for comparing said formed input
stream to said stored strings by sequentially matching said
plurality of consecutive grouped characters of said formed
input stream with said plurality of consecutive grouped
characters of said strings stored 1n said {irst storage means
until said mismatching grouped character of said formed
input stream occurs, thereby defining a longest matching
string 1n said first storage means, and then sequentially
matching the data characters of said mismatching grouped
character with the extension data characters of the strings
stored 1n said second storage means until one less than said
predetermined number of said extension data characters are
matched, thereby determining said longest match.

46. The apparatus of claim 45 wherein said means for
storing an extended string comprises means for storing, in
said first storage means, an extended string comprising said

10

15

20

25

30

35

40

45

50

55

60

65

46

longest matching string 1n said first storage means extended
by said mismatching grouped character.

47. The apparatus of claim 45 wherein said means for
forming a new grouped character comprises means for
forming said new grouped character comprising the last data
character of said mismatching grouped character concat-
enated by one less than said predetermined number of next
following data characters from said mput stream.

48. The apparatus of claim 38 wherein each said grouped
character has a code associated therewith, said code assigned
to said stored extended string being greater than any code
assigned to said grouped characters.

49. The apparatus of claim 38 wherein said data charac-
ters of said 1nput stream are from an alphabet of characters
comprising 4 data characters and said predetermined number
comprises 4 consecutive data characters of said input stream.

50. Data decompression apparatus for decompressing an
input stream of compressed codes to recover an output

stream of data characters corresponding thereto comprising

means for storing strings of data characters, said stored
strings having respective codes associated therewith, a
string being stored as a grouping of a predetermined
number of data characters concatenated with at least
one data character, said grouping of said predetermined
number of data characters defining a grouped character,
cach said grouped character having associated there-
with a code less than a predetermined code, each code
assoclated with a stored string being greater than any
code associated with a grouped character,

said apparatus operative 1n a decompression cycle to

comparing a received compressed code to said prede-

termined code and 1f said received compressed code 1s

less than said predetermined code, to

output the data characters of the grouped character
corresponding to said received compressed code so
as to provide said output stream of data characters,

store an extended string comprising the string corre-
sponding to the compressed code received in the
previous decompression cycle extended by the first
data character of said grouped character correspond-
ing to said received compressed code,

said compressed code received 1n said previous decom-
pression cycle defining a previous code, and

assign a code to said stored extended string, said code
assigned to said stored extended string being greater
than any code associated with said grouped charac-
ters.

51. The apparatus of claim 50 wherein, 1f said received
compressed code 1s not less than said predetermined code
and said received compressed code corresponds to one of
said stored strings, said apparatus 1s operative to

recover sald grouped character and said at least one data
character of the stored string corresponding to said
received compressed code,

recover the data characters of the recovered grouped
character of said stored string corresponding to said
received compressed code,

output the recovered data characters so as to provide said
output stream of data characters,

store an extended string comprising the string correspond-
ing to said previous code extended by the first data
character of the recovered grouped character of said
stored string corresponding to said received com-
pressed code, and

assign a code to said stored extended string, said code
assigned to said stored extended string being greater
than any code associated with said grouped characters.

US 6,307,485 Bl

47

52. The apparatus of claim 50 wherein, if said received
compressed code 1s not less than said predetermined code
and said received compressed code does not correspond to
one of said stored strings, said apparatus 1s operative to

compare said previous code to said predetermined code
and 1f said previous code 1s less than said predeter-
mined code, to
recover the data characters of the grouped character
corresponding to said previous code,
output the data characters of said grouped character
corresponding to said previous code extended by the
first data character of said grouped character corre-
sponding to said previous code so as to provide said
output stream of data characters,
store an extended string comprising said grouped char-
acter corresponding to said previous code extended
by the first data character of said grouped character
corresponding to said previous code, and
assign a code to said stored extended string, said code
assigned to said stored extended string being equal to
said received compressed code.
53. The apparatus of claim 350 wherein, 1f said received
compressed code 1s not less than said predetermined code
and said received compressed code does not correspond to

one of said stored strings, said apparatus 1s operative to

compare said previous code to said predetermined code
and 1f said previous code 1s not less than said prede-
termined code,

recover said grouped character and said at least one data
character of the stored string corresponding to said
previous code,

recover the data characters of the recovered grouped
character of said stored string corresponding to said
previous code,

output the recovered data characters extended by the first
data character of said recovered grouped character of
said stored string corresponding to said previous code
so0 as to provide said output stream of data characters,

store an extended string comprising said stored string
corresponding to said previous code extended by said
first data character of said recovered grouped character
of said stored string corresponding to said previous
code, and

assign a code to said stored extended string, said code
assigned to said stored extended string being equal to

said recerved compressed code.
54. Data decompression apparatus for decompressing an
input stream of compressed codes to recover an output
stream of data characters corresponding thereto comprising

means for storing strings of data characters in first and
second storage means, said stored strings having
respective codes associated therewith,

a string being stored in said first storage means as a
plurality of consecutive groupings of data characters,
cach said grouping comprising a predetermined
number of data characters, said grouping of said
predetermined number of data characters defining a
grouped character, each said grouped character hav-
ing associated therewith a code less than a predeter-
mined code, each code associated with a stored
string being greater than any code associated with a
ogrouped character,

a string being stored 1n said second storage means as a
root code extended by at most one less than said
predetermined number of data characters,

at least one of said strings stored in said second storage
means being stored as an extension of a string stored

10

15

20

25

30

35

40

45

50

55

60

65

43

in said first storage means wherein said root code
comprises the code associated with said string stored
in said first storage means,

at least one of said strings stored 1n said second storage
means being stored as one grouped character
extended by at most one less than said predetermined
number of data characters wheremn said root code
comprises said one grouped character, and

a table listing the codes associated with strings stored
in a particular one of said first and second storage
means,

said apparatus operative 1n a decompression cycle to

receive a compressed code,

output the data characters of a string of data characters
corresponding to said received compressed code so
as to provide said output stream of data characters,

set a temporary flag 1n accordance with said string
corresponding to said received compressed code,
said temporary flag indicating one of said first and
second storage means 1nto which to store an
extended string 1n the next decompression cycle,

store an extended string 1n one of said first and second
storage means 1n accordance with an update flag
indicating into which of said first and second storage
means to store said extended string, said extended
string based on the string corresponding to the com-
pressed code received 1n the previous decompression
cycle,

said compressed code received 1n said previous decom-
pression cycle refining a previous code,

assign a code to said stored extended string, said code
assigned to said stored extended string being greater
than any code associated with said grouped
characters,

list said code assigned to said stored extended string 1n
said table if said extended string 1s stored in said
particular one of said first and second storage means,
and

transfer said temporary flag to said update flag.

55. The apparatus of claim 54 wherein, 1n said decom-
pression cycle, said apparatus 1s operative to compare said
received compressed code to said predetermined code and 1t
said received compressed code 1s less than said predeter-
mined code, said apparatus 1s operative to

output the data characters of the grouped character cor-
responding to said received compressed code,

set said temporary flag to indicate said second storage
means,

if said update flag indicates said second storage means,
store said extended string 1n said second storage means,
said extended string comprising the string correspond-
ing to said previous code extended by the first data
character of said grouped character corresponding to
said received compressed code, and

if said update flag indicates said first storage means, store
said extended string 1n said first storage means, said
extended string comprising the root code of the string,
corresponding to said previous code extended by an
extension grouped character, said extension grouped
character comprising the data characters extending the
root code of said string corresponding to said previous
code concatenated hy the first data character of said
ogrouped character corresponding to said received com-
pressed code.
56. The apparatus of claim 54 wherein, 1n said decom-
pression cycle, said apparatus 1s operative to compare said

US 6,307,485 Bl

49

received compressed code to said predetermined code and 1t
said received compressed code 1s not less than said prede-
termined code and said received compressed code corre-
sponds to one of said stored strings, said apparatus 1is
operative to

determine, from said table, 1n which of said first and

second storage means the string corresponding to said

received compressed code 1s stored and if said string

corresponding to said received compressed code 1s

stored 1n said first storage means, said apparatus 1s

further operative to

recover, from said first storage means, the grouped
characters of said string corresponding to said
received compressed code,

recover the data characters of the recovered grouped
characters of said string corresponding to said
received compressed code,

output the recovered data characters,

set said temporary flag to indicate said second storage
means,

if said update flag indicates said second storage means,
store said extended string in said second storage
means, sald extended string comprising the string
corresponding to said previous code extended by the
first data character of the initial grouped character of
said string corresponding to said received com-
pressed code, and

if said update flag indicates said first storage means,
store said extended string in said first storage means,
said extended string comprising the root code of the
string corresponding to said previous code extended
by an extension grouped character, said extension
orouped character comprising the data characters
extending said root code of said string corresponding,
to said previous code concatenated by said first data
character of said inmitial groused character of said
string corresponding to said received compressed
code.

57. The apparatus of claim 54 wherein, 1n said decom-
pression cycle, said apparatus 1s operative to compare said
received compressed code to said predetermined code and 1t
said received compressed code 1s not less than said prede-
termined code and said received compressed code corre-
sponds to one of said stored strings, said apparatus 1is
operative to

determine, from said table, in which of said first and

second storage means the string corresponding to said

received compressed code 1s stored and if said string

corresponding to said received compressed code 1s

stored 1n said second storage means, said apparatus 1s

further operative to

recover, from said second storage means, the root code
and the n data characters extending the root code of
said string corresponding to said received com-
pressed code,

if said recovered root code 1s less than said predeter-
mined code, recover the data characters of said
recovered root code, output the recovered data char-
acters of said recovered root code and said n data
characters recovered from said string corresponding
to said received compressed code, thereby outputting
the data characters of said string corresponding to
said received compressed code,

if said recovered root code 1s not less than said prede-
termined code, recover, from said first storage
means, the groused characters of the string corre-
sponding to said recovered root code, recover the

10

15

20

25

30

35

40

45

50

55

60

65

50

data characters of the recovered grouped characters
of said string corresponding to said recovered root
code, output the data characters recovered from said
ogrouped characters of said string corresponding to
said recovered root code and output said n data
characters recovered from said string corresponding
to said received compressed code, thereby outputting,
the data characters of said string corresponding to
said received compressed code,
set said temporary flag to indicate said first storage
means 1f n 1s equal to one less than said predeter-
mined number of data characters, otherwise set said
temporary flag to indicate said second storage
means,
if said update flag indicates said second storage means,
store said extended string in said second storage
means, sald extended string comprising the string,
corresponding to said previous code extended by the
first data character of said string corresponding to
said received compressed code, and
if said update flag indicates said first storage means, store
said extended string 1n said first storage means, said
extended string comprising the root code of the string
corresponding to said previous code extended by an
extension grouped character, said extension grouped
character comprising the data characters extending said
root code of said string corresponding to said previous
code concatenated by the first data character of said
string corresponding to said received compressed code.
58. The apparatus of claim 54 wherein, 1n said decom-
pression cycle, said apparatus 1s operative to compare said
received compressed code to said predetermined code and 1t
said received compressed code 1s not less than said prede-
termined code and said received compressed code does not
correspond to one of said stored strings, said apparatus 1s

operative to

compare said previous code to said predetermined code

and 1f said previous code 1s less than said predeter-

mined code, said apparatus 1s further operative to

output the data characters of the grouped character
corresponding to said previous code extended by the
first data character of said grouped character corre-
sponding to said previous code,

set said temporary flag to indicate said second storage
means, and

store said extended string 1n said second storage means,
sald extended string comprising said grouped char-
acter corresponding to said previous code extended
by the first data character of said grouped character
corresponding to said previous code.

59. The apparatus of claim 54 wherein, 1n said decom-
pression cycle, said apparatus 1s operative to compare said
received compressed code to said predetermined code and 1f
said received compressed code 1s not less than said prede-
termined code and said received compressed code does not
correspond to one of said stored strings, said apparatus 1s
operative to

compare said previous code to said predetermined code
and 1f said previous code 1s not less than said prede-
termined code, said apparatus 1s further operative to
determine, from said table, in which of said first and
second storage means the string corresponding to
said previous code 1s stored and 1f said string corre-
sponding to said previous code 1s stored 1n said first
storage means, said apparatus 1s further operative to
recover, from said first storage means, the grouped
characters of the string corresponding to said
previous code,

US 6,307,485 Bl

51

recover the data characters of the recovered grouped
characters of said string corresponding to said
previous code,

output the recovered data characters extended by the
first data character of said string corresponding to
said previous code,

set said temporary flag to indicate said second stor-
age means, and

store said extended string in said second storage
means, saild extended string comprising said string
corresponding to said previous code extended by
said first data character of said string correspond-
ing to said previous code.

60. The apparatus of claim 54 wherein, 1 said decom-
pression cycle, said apparatus 1s operative to compare said
received compressed code to said predetermined code and 1t
said received compressed code 1s not less than said prede-
termined code and said received compressed code does not
correspond to one of said stored strings, said apparatus 1s
operative to

compare said previous code to said predetermined code
and 1f said previous code 1s not less than said prede-
termined code, said apparatus 1s further operative to
determine, from said table, in which of said first and
second storage means the string corresponding to
said previous code 1s stored and if said string corre-
sponding to said previous code 1s stored in said
second storage means, said apparatus i1s further
operative to
recover, from said second storage means the root
code and the n data characters extending the root
code of said string corresponding to said previous
code,
1f said recovered root code 1s less than said prede-
termined code, recover the data characters of said
recovered root code, output the recovered data
characters of said recovered root code and said n
data characters recovered from said string corre-
sponding to said previous code extended by the
first data character of said recovered root code,
thereby outputting the data characters of the string
corresponding to said received compressed code,
if said recovered root code 1s not less than said
predetermined code, recover, from said first stor-
age means, the grouped characters of the string
corresponding to said recovered root code, recover
the data characters of the recovered grouped char-

10

15

20

25

30

35

40

45

52

acters of said string corresponding to said recov-
ered root code, output the data characters recov-
ered from said grouped characters of said string
corresponding to said recovered root code and
output said n data characters recovered from said
string corresponding to said previous code
extended by the first data character of said string
corresponding to said recovered root code, thereby
outputting the data characters of the string corre-
sponding to said received compressed code,

set said temporary flag to indicate said first storage
means 1f n 1s equal to two less than said prede-
termined number of data characters, otherwise set
said temporary tlag to 1ndicate said second storage
means,

if said update flag indicates said second storage
means, store said extended string 1n said second
storage means, said extended string comprising
said string corresponding to said previous code
extended by the first data character of said string
corresponding to said received compressed code,
and

if said update flag indicates said first storage means,
store said extended string 1n said first storage
means, said extended string comprising said
recovered root code of said string corresponding,
to said previous code extended by an extension
orouped character, said extension grouped char-
acter comprising the data characters extending
said root code of said string corresponding to said
previous code concatenated by the first data char-
acter of said string corresponding to said received
compressed code.

61. The apparatus of claim 38, 59 or 60 further operative
to assign a code to said stored extended string equal to said
received compressed code.

62. The apparatus of claim 52, 53, 59, 59 or 60 further
including

a code counter for assigning said code to said stored

extended. string, said code counter being incremented
for each assigned code, and

means for comparing said received compressed code to
the code 1n said code counter so as to determine if the
string corresponding to said received compressed code
1s one of said stored strings.

	Front Page
	Drawings
	Specification
	Claims

