(12) United States Patent

Mongan et al.

(10) Patent No.:
45) Date of Patent:

US006304982B1

US 6,304,982 Bl
Oct. 16, 2001

(54)

(75)

(73)

(%)

(21)
(22)

(51)
(52)

(58)

(56)

NETWORK DISTRIBUTED AUTOMATED
TESTING SYSTEM

Inventors: John Thomas Mongan, Sausalito;
Dorothy Mack Cribbs, Mill Valley;
John Ricardo DeAguiar, Sebastopol,
all of CA (US)

Assignee: AutoDesk, Inc., San Rafael, CA (US)

Notice:

Appl. No.:

Filed:
Int. Cl.’

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by O days.

09/114,981

Jul. 14, 1998

HO2H 3/05

US.Cl 714/38; 714/26; 714/45;

Field of Search
714/38, 46, 4, 37, 45, 709/217, 218, 219

5,325,530 *
5,475,843 *
5,561,763 *
5,600,789

5,745,767 *
5,748,882 *
5,751,941 *
5,781,720

714/46
714/25, 26, 31,

References Cited

U.S. PATENT DOCUMENTS

6/1
12/1
10/1

2/1

4/1

5/1

5/1

7/1

994
995
996
997
998
998
998
998

Mohrmanncceveeeneennennee.. 395/700
Halwviatti et al. ...ccovunene.... 395/700
Eto et al. wovveeenervenvannnnnee. 395/183.11
Parker et al.cueuneee 395/183.14
Rosen et al. ..ccvvevvieviunnnnnnnn. 395/704
Huangcccocvveveennvnnnnen. 395/184.01
Hinds et al. ..cuueveuenen...e.. 395/183.14
Parker et al.cueuneee 395/183.14

Receive test
and results

Analyze error
messages

o504

Create new
group

5,841,975
5,905,856
6,002,871
6,012,152
6,026,499

O A R I

11/]
5/

1998
1999

12/]
1/2000
2/2000

1999

Layne et al. 395/200.33
Ottensooser ..ceeveevneen.e... 395/183.14
Duggan et al. 395/704
Donik et al. .ocovvveeviiiininnennee. 714/26
Shirakihara et al. 714/11

OTHER PUBLICAITONS

Oshana, R., “Software Testing with Statistical Usage Based
Models,” Embedded Systems Programming, Jan. 1997. (8

pages).

* cited by examiner

Primary Fxaminer—INorman M. Wright
ABSTRACT

(57)

A server computer acts as a central repository for tests
performed by any number of connected client computers, as
well the results of these tests returned by the client com-
puters. A test manager executed by the server computer
analyzes the results of the tests performed by the client
computers, and determines which tests have passed or failed
during execution, whether the tests failed because of an
application or other error, and which tests should be
re-executed by the same or different client computer. A test
ogrouper analyzes the error messages produced by the appli-
cation being tested, so that tests that reveal the same defect
can be grouped together. A test reducer 1s 1teratively applied
to selected tests to reduce the test to the smallest subset of
the original test that still reveals the defect. In this manner,
the present invention maximizes the testing efficiency of the
resources used and minimizes the amount of time required
of the operator to confirm failures.

500

902

Group test
with matches

506

60 Claims, 6 Drawing Sheets

US 6,304,982 Bl

Sheet 1 of 6

/
tLl

II
<
n
v
LLS

Oct. 16, 2001

U.S. Patent

cEl

gt

8Cl

gcl

S11NS3d

S1N3I'O

SLS3L

d430Nd4dy
1831

1£4°

d3d4N0Y™O
1S3l

ccl

H3OVNVIN
1S3l

0ct

HINIVLNOD
1S31

BLi

N3N0
1S3L

9Ll

JOLVHINGD
1544

vil

WYHO0dd
d3IANYIS

¢l

PO H3IAY3S

I Ol

AV

WvH90dd

NOLLVOIlddV

cOl

U.S. Patent Oct. 16, 2001 Sheet 2 of 6 US 6,304,982 Bl

FIG. 2
Gather information
on client computer

Transmit information
and request test
Retrieve test from
server computer
Execute test on
client computer
Transmit results to
server computer

202

U.S. Patent Oct. 16, 2001 Sheet 3 of 6 US 6,304,982 B1

FIG. 3
Fill queue 300
of tests
302
Wait for
next event
306 308 310
304
Select test Send test Move test to
from queue to client container

314

no 216 320 322

. 318
yes
Create result Pass test and resuits Pass results to
object object to test manager test grouper
o 324
Other
processing

esulits fro
client?

Wa)sAs woy ajped pue
eiqionpoidal-uou se 3s3) }e

sJa)nduwiod Jusio
10})9} anand

J30Npal 1s9) 0}

§}insal }S9) puas

US 6,304,982 Bl

—_ 8cy 1148 4 ok
WIs)SAS woy anol AL ananb 0} wMai pue
- pue PIjap se Jsa} e Be|4 ou 159} Yew ‘Gey 188
& Oy .
3 vZp S8 ZLF
4 .
w Jayndwiod Juaip uo
= uojeuLIojUl auuIeX3
$YA
= .
= wia)sAs woyj aJnel L w18]qouc A pajie) Lpaiie} wa)sAs wouy
< puUe JOu3 Se 1S9 Yey oL uonedddy S3 1S9} oL JOAD]SO ou 159} a8y
v /
2 oL¥ cov L
8Ly 90Y
sjnsal
~ 1S9} 2A1909Y
—
5 0,0}
-+
S
=N
S” ¥ Oid
-

U.S. Patent Oct. 16, 2001 Sheet 5 of 6 US 6,304,982 B1

FIG. 5

Recelve test 200
and results

Analyze error 202
messages

504 506

/
Group test
with matches

Create new 08
group
510

U.S. Patent Oct. 16, 2001 Sheet 6 of 6 US 6,304,982 B1

FIG. 6

Receive test 600

and results

Parse test 602
into portions
604 606 608
Reduce Modify and Re-queue
test? reduce test modified test
Report and 610
store resuilts
612

US 6,304,982 B1

1

NETWORK DISTRIBUTED AUTOMATED
TESTING SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATTONS

This application 1s related to the following co-pending
and commonly-assigned patent applications:

application Ser. No. 09/115,168, enfitled “AUTOMATED
TEST GENERATOR,” filed on same date herewith, by

John T. Mongan; and

application Ser. No. 09/114,828, entitled “COMPLETE,
RANDOMLY ORDERED TRAVERSAL OF CYCLIC

DIRECTED GRAPHS,” filed on same date herewith,
by John T. Mongan and Dorothy M. Cribbs;

both of which applications are incorporated by reference
herein.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present mvention generally relates to a system for
testing computer programs, and, 1n particular, to a network
distributed automated testing system.

2. Description of the Related Art

As application programs become more complex, there 1s
a need for automated systems to test the application pro-
orams before they are released to end users. One technique
1s to develop one or more test scripts that automate the
testing process, wherein the test script stores a series of
commands to be executed by the application program to
avold having an operator enter a series of commands. This
approach 1s used because a computer can execute a test
script somewhat faster than an operator manually entering
the commands, and can do so unattended, freeing the
operator for other tasks. Existing software quality assurance
(QA) tools such as Segue’s Quality Works/QA Partner and
Microsoft’s Visual Test support the creation and use of
scripts for software testing, thereby considerably reducing
the operator time required relative to manual testing.

Computer processing time 1s far cheaper and exists in
much greater surplus than human operator time. Therefore,
software testing 1s effectively limited by the amount of
operator 1intervention required per test. Even with
automation, there are a number of steps that must be taken
by an operator. Even though creation and execution of tests
may be automated, the operator must review the results of
the execution, correlate the results from multiple machines,
document any errors or defects, debug the application pro-
oram and/or the test script itself, and/or re-execute the test
script. These manual efforts are time consuming and costly.

In large-scale use of such automated testing, most users of
these tools find it necessary to manually divide their tests
into batches, run the batches i1n parallel on different
machines and then manually combine the results. These
operations create a significant additional operator overhead
for automated testing. Since there 1s a fixed overhead per
machine, this style of testing discourages making testing
faster or more comprehensive by using many machines,
because the rapidly increasing overhead quickly causes
diminishing returns. Further, this style of testing is poorly
suited for tests that are randomly or automatically generated,
since the division of tests into batches must be done before
cach testing session instead of just once, further increasing
the overhead.

Thus, there 1s a need 1n the art for techniques that increase
testing efficiency by solving these problems. The present

10

15

20

25

30

35

40

45

50

55

60

65

2

invention solves these problems using a server computer as
a central repository for all tests and results, wherein the
server computer 1s connected to any number of client
computers that perform the tests.

SUMMARY OF THE INVENTION

To address the requirements described above, the present
invention discloses a method, apparatus, and article of
manufacture wherein a server computer acts as a central
repository for tests performed by any number of connected
client computers, as well as the results of these tests returned
by the client computers. A test manager executed by the
server computer analyzes the results of the tests performed
by the client computers, and determines which tests have
passed or failed during execution, whether the tests failed
because of an application or other error, and which tests
should be re-executed by the same or different client com-
puter. A test grouper analyzes the error messages produced
by the application being tested, so that tests that reveal the
same defect can be grouped together. A test reducer 1is
iteratively applied to selected tests to reduce the test to the

smallest subset of the original test that still reveals the
defect.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings in which like reference
numbers represent corresponding parts throughout:

FIG. 1 1s an exemplary hardware environment used to
implement the preferred embodiment of the mmvention;

FIG. 2 1s a flowchart that illustrates the general logic of a
client computer performing the steps of the present inven-
tion;

FIG. 3 1s a flowchart that illustrates the general logic of a
server computer performing the steps of the present inven-
tion;

FIG. 4 1s a flowchart that illustrates the general logic of a
test manager performing the steps of the present invention;

FIG. 5 1s a flowchart that illustrates the general logic of a
test grouper performing the steps of the present invention;
and

FIG. 6 1s a flowchart that illustrates the general logic of a
test reducer performing the steps of the present imvention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

In the following description, reference 1s made to the
accompanying drawings which form a part hereof, and
which 1s shown, by way of 1llustration, several embodiments
of the present invention. It 1s understood that other embodi-
ments may be utilized and structural changes may be made
without departing from the scope of the present mnvention.

Overview

The present invention improves testing efficiency by
using a server computer as a central repository for all tests
performed by any number of connected client computers.
The server computer also acts a central repository for the
results of these tests returned by the client computers. A test
manager executed by the server computer analyzes the
results of the tests performed by the client computers, and
determines which tests have passed or failed during
execution, whether the tests failed because of an application
or other error, and which tests should be re-executed by the
same or different client computer. In this manner, the present

US 6,304,982 B1

3

invention maximizes the testing efficiency of the resources
used and minimizes the amount of time required of the
operator to confirm failures. The operator 1s presented with
tests grouped according to their status, 1.e., tests that
succeeded, tests with errors, tests that may reveal an appli-
cation program defect but are difficult or impossible to
reproduce, and tests that reproducibly cause an application
program to fail. For the latter category, the operator has test
results for each client computer, so it 1s immediately appar-
ent whether a defect 1s universal for the application program
or specific to a particular type or configuration of client
computer. Further, instead of having to interpret whether
individual tests were successtful or failed, a test grouper
analyzes the error messages produced by the application
being tested, so that tests that reveal the same defect can be
orouped together. Moreover, a test reducer 1s 1teratively
applied to selected tests to reduce the test to the smallest
subset of the original test that still reveals the defect.

Hardware Environment

FIG. 1 schematically illustrates an exemplary hardware
environment used 1n the preferred embodiment of the
present invention. The present invention 1s implemented
using a network 100 to connect one or more client computers
102 to one or more server computers 104. A typical com-
bination of resources may include client computers 102 that
comprise personal computers, network computers, or
workstations, and server computers 104 that comprise per-
sonal computers, network computers, workstations,
minicomputers, or mainframes. The network 100 coupling
these computers 102 and 104 may comprise a LAN, WAN,
Internet, etc.

Generally, the present invention is implemented using one
or more computer programs and databases that are executed
and/or interpreted by the server computer 104 and/or the
client computers 102. In the exemplary embodiment of FIG.
1, these computer programs and databases mclude a client
program 106, application program 108, and test script 110
executed by the client computers 102; a server program 112,
an optional test generator 114, test queue 116, test container
118, test manager 120, test grouper 122, and test reducer 124
executed by the server computer 104; and a test database
126, clients database 128, results database 130, and error
messages database 132 stored on or accessible to the server
computer 104.

Each of the computer programs and/or databases com-
prise 1nstructions and data which, when read, interpreted,
and executed by their respective computers, cause the com-
puters to perform the steps necessary to execute the steps or
clements of the present invention. The computer programs
and databases are usually embodied 1n or readable from a
computer-readable device, medium, or carrier, e.g., a local
or remote data storage device or memory device coupled to
the computer directly or coupled to the computer via a data
communications device.

Thus, the present invention may be implemented as a
method, apparatus, or article of manufacture using standard
programming and/or engineering techniques to produce
software, firmware, hardware, or any combination thereof.
The term “article of manufacture” (or alternatively, “com-
puter program carrier or product”) as used herein is intended
fo encompass one or more computer programs and/or data-
bases accessible from any device, carrier, or media.

Of course, those skilled 1n the art will recognize that the
exemplary environment 1llustrated in FIG. 1 1s not intended
to limit the present invention. Indeed, those skilled 1n the art

10

15

20

25

30

35

40

45

50

55

60

65

4

will recognize that other alternative hardware environments
may be used without departing from the scope of the present
invention.

Operation of the Network Distributed Automated
Testing System

The present mvention initiates operations by executing,
the client program 106 on the client computers 102 and the
server program 112 on the server computer 104. In turn, the
client program 106 controls the initiation and operation of
the application program 108 on the client computers 102,
and the server program 112 controls the initiation and
operation of the optional test generator 114, test queue 116,
test container 118, test manager 120, test grouper 122, and
test reducer 124 on the server computer 104.

When the client program 106 1s executed by the client
computer 102, 1t first gathers information about the client
computer 102, which may include information about the
configuration of the client computer 102, the operating
environment of the client computer 102, the application
program 108 being tested, the test 110 being performed, etc.
The gathered information 1s packaged in a client message
that 1s sent from the client program 106 to the server
program 112 along with a request for a test 110.

Tests 110 retrieved from the test database or generated by
the optional test generator 122 are used to fill the test queue
116, which stores any number of tests 110 to be executed on
the client computers 102. Each test 110 1s encapsulated
within an object 1n the queue 114, wherein the object
includes information about the test’s current status, execu-
tion history, and which client computers 102 should execute
the test 110. The queue 114 may be filled with prewritten
tests 110 or tests 110 may be generated as needed to keep a
minimum number of tests 110 queued at all times.

When the server program 112 receives a request for a test
110 from a client program 106, 1t selects the first test 110
from its queue 114 that best matches the information
received from the client program 106, and then transmits
that test 110 to the client program 106. The server program
112 also marks the object representing the test 110 with the
current time and moves 1t to the test container 118, which
stores any number of executing tests 110.

The client database 124, which maintains a list of con-
nected client computers 102, 1s updated when a client
program 106 first requests a test 110. This database 124 1s
used by the test manager 120 to determine which client
computers 102 are currently available, and 1s also used to
maintain test 110 statistics on a per client program 108 basis
and/or per client computer 102 basis.

After the client program 106 receives the test 110 from the
server program 112, it loads the test 110 1nto an appropriate
testing tool, and then executes the test 110. When the test
110 has finished executing, the client program 106 sends the
results to the server program 112 and then repeats the
process. The client program 106 continues testing in this
manner until it 1s stopped. Since no tests 110 or results are
permanently stored on the client computer 102, the only
storage overhead on the client computer 104 1s the overhead
associated with actually executing the client program 106,
the application program 108, and the test 110 1itself.

If a user-configurable period passes before the results of
the test 110 are reported from the client program 106 to the
server program 112, a timeout occurs and the test 110 is
removed from the container 116 and returned to the queue
114. Moreover, the test 110 1s retired 1if 1t causes more than
one timeout to occur. This provides a level of fault tolerance

US 6,304,982 B1

S

to deal with any crashes or mterruptions of the client
computers 102.

When the server program 112 receives results from a
client program 106, it encapsulates the results 1n a results
object, which 1s attached to the appropriate test 110 object in
the container 116. The test 110 object 1s then removed from
the container 116 and transferred to the test manager 120 for
processing. The results are also stored 1n the results database
130 on the server computer 104.

Upon receiving the test 110 object and results object, the
test manager 120 first determines whether the test 110
passed or failed 1n 1ts most recent execution. If 1t passed, the
test manager 120 checks to see whether the test 110 has ever
failed. If 1t has never failed, the test 110 is retired from the
system.

If the test 110 failed 1n 1ts most recent execution, the test
manager 120 attempts to determine whether the faillure was
due to a defect 1n the application program 108 being tested
or an error 1n the test 110 itself. In the latter case, the test 110
1s marked as an error and retired.

In the former case, the test manager 120 examines the
information concerning the client computer 102 that
executed the test 110, and determines if other different client
computers 102 are currently connected to the server com-
puter 102 and are available for executing the test 110. If
there are such available client computers 102, the test 110 1s
returned to the queue 114 to await execution by these client
computers 102; otherwise, the test 110 1s marked as an
application program 108 defect and retired from the system.

If a test 110 has failed only once, the test manager 120
checks to see 1f an “attempting reproduction” tlag associated
with the test 110 1s set. If the flag 1s set, the test manager 120
marks the test 110 as non-reproducible application program
108 defect and retires 1t from the system. If the flag 1s not set,
the test manager 120 sets the flag, marks the test 110 for
execution only on the client computer 102 where it origi-
nally failed and returns the test 110 to the queue 114.

If the test 110 has failed two or more times, the test
manager 120 examines the information concerning the his-
tory of the client computer 102 that executed the test 110,
and determines if other different client computers 102 are
currently connected to the server computer 102 and are
available for executing the test 110. If there are such
available client computers 102, the test 110 1s returned to the
queue 114 to await execution by these client computers 102;
otherwise, the test 110 1s marked as an application program
108 defect and retired from the system. This ensures that
every test 110 that causes a reproducible application pro-
oram 108 defect has been executed on every type of avail-
able client computer 102.

Instead of having to interpret the results from many tests
110, the operator is presented with groups of tests 110: (1)
passing tests 110, (2) tests 110 with errors in them, (3)
non-reproducible tests 110 that may reveal an application
program 108 defect but are ditficult or impossible to repro-
duce; and (4) tests 110 that reproducibly cause the applica-
tion program 108 to fail. For the latter category, the operator
has test 110 results for each client computer 102, so 1t 1s
immediately apparent whether a failure 1s universal for the
application program 108 or specific to a particular type or
coniiguration of the client computer 102; no re-execution or
further mvestigation 1s needed to make this determination.
Furthermore, for the tests in this category, the test grouper
122 analyzes the error messages generated by the applica-
tion program 108 during the execution of the test 110, and
compares these messages with the error message database

10

15

20

25

30

35

40

45

50

55

60

65

6

128 compiled from previously executed tests 110. If there 1s
a match, the test 110 1s grouped with matching tests 110,
indicating that the tests 110 1n this group all appear to detect
the same application program 108 defect. If there 1s no
match, a new group 1s created for the defect, and its error
messages are added to the database 128.

In another alternative embodiment, at the option of the
operator, a test reducer 124 selects one test 110 from each
failure type and attempts to reduce 1t to a minimum portion
thereof necessary to reproduce the failure, so that interpre-
tation and analysis by the operator takes the minimum
possible time and effort. The reduced test 110 1s re-queued
for re-execution by the client computers 102. The results of
the re-executed test 110 are again processed, but by the test
reducer 124 rather than the test manager 120. This process
1s repeated until the test reducer 124 1s unable to perform
further reductions on the test 110.

Finally, 1n a preferred embodiment, the automated system
will take all necessary precautions to ensure fault tolerance.
If the server computer 104 1s used with a large number of
client computers 102, client programs 106, and/or tests 110
over a specified period of time, the results database 130 may
hold the results for thousands of computer hours of testing.
Further, tests 110 held 1n the container 116 or queue 114 may
be related to important defects and should not be lost. In
order to protect this 1nvestment, 1t 1s desirable that the
system be tolerant of hardware and software faults, on the
server side as well as the client side. Thus, the client
computers 102 and/or server computers 104 may write the
irrecoverable aspects of 1ts current state to a data storage
device periodically. Using this information, the client com-
puters 102 and/o server computers 104 can be restarted
without information loss.

Logic of the Network Distributed Automated
Testing System

Flowcharts which 1llustrate the logic of the network
distributed automatic testing system of the present invention
are shown 1n FIGS. 2, 3, 4 and §. Those skilled 1n the art will
recognize that this logic 1s provided for illustrative purposes
only and that different logic may be used to accomplish the
same results.

Client Program

FIG. 2 1s a flowchart that 1llustrates the general logic of
the client program 106 when performing the steps of the
present 1nvention.

Block 200 represents the client program 106 gathering
information on the client computer 102. This information
may 1nclude, inter alia, information about the operating
environment of the client computer 102, the application
program 108 being tested, and the test 110 being performed.

Block 202 represents the client program 106 requesting a
test 110 from the server program 112. The request includes
the gathered information, so that the server program 112 can
choose an appropriate test 110.

Block 204 represents the client program 106 receiving the
test 110 from the server program 112.

Block 206 represents the client program 106 1nitiating
execution of the test 110 on the client computer 102.
Generally, the test 110 1s loaded 1nto an appropriate testing
tool for execution, although some tests may execute without
such tools.

Block 208 represents the client program 108 transmitting,
the results from the execution of the test 110 to the server
program 112, as described 1n FIG. 3.

Thereafter, control transfers to Block 202.

Server Program

US 6,304,982 B1

7

FIG. 3 1s a flowchart that illustrates the general logic of
the server program 112 when performing the steps of the
present mvention.

Block 300 represents the server program 112 filling the
queue 114 of tests 110 on the server computer 104. The test
queue 116 stores any number of tests 114 to be executed on
the client computers 102, and each test 110 1s encapsulated
by an object 1n the queue 114, wherein the object includes
information about the current status of the test 110, the
execution history of the test 110, and which client computers
102 should execute the test 110. The server program 112
may {ill the queue 114 with prewritten tests 110 or tests 110
may be generated automatically as needed to keep a mini-
mum number of tests 110 queued at all times.

Block 302 represents the server program 112 waiting for
the next event to occur. Thereafter, Blocks 304-322 are
performed 1n response to the type of event.

Block 304 1s a decision block that represents the server
program 112 determining whether the event was the receipt
of a request from the client computer 102. If so, control
transfers to Block 306; otherwise, control transfers to Block
312.

Block 306 represents the server program 112 selecting a
test 110 from the queue 114 for the client computer 102 that
best matches the mformation received from the client pro-
oram 106. Block 308 represents the server program 112
sending a copy of the selected test 110 to the client program
106. Block 310 represents the server program 112 moving
the selected test 110 from the queue 114 to the container 116.
Thereafter, control transfers back to Block 302.

Block 312 1s a decision block that represents the server
program 112 determining whether the event was the expi-
ration of timer for a test 110 in the queue 114, which
indicates that a user-configurable period passed without the
results of the test 110 being reported from the client program
106 to the server program 112. If so, control transfers to
Block 314; otherwise, control transters to Block 318. Block
314 represents the server program 112 moving the test 110
from the container 116 back to the queue 114. Thereafter,
control transfers back to Block 302.

Block 316 1s a decision block that represents the server
program 112 determining whether the event was the receipt
of the test 110 results from the client program 106. If so,
control transfers to Block 318; otherwise, control transfers
to Block 322. Block 318 represents the server program 112
creating a results object for the test 110 results, and termi-
nating the timer associated with the client program 106.
Block 320 represents the server program 112 passing the test
110 and the results object to the test manager 120 for further
processing, as described 1n FIG. 4. Block 322 represents the
server program 112 passing the test 110 and the results
object to the test grouper 122 for further processing, as
described 1in FIG. 5. Thereafter, control transfers back to
Block 302.

Block 324 represents the server program 112 performing,
other processing tasks. Thereafter, control transfers back to
Block 302.
lest Manager

FIG. 4 1s a flowchart that illustrates the general logic of
the test manager 120 when performing the steps of the
present mvention.

Block 400 represents the test manager 120 receiving the
test 110 and results object from the server program 112.

Block 402 1s a decision block that represents the test
manager 120 determining whether the test 110 failed. If not,
control transfers to Block 404; otherwise, control transfers

to Block 416.

10

15

20

25

30

35

40

45

50

55

60

65

3

Block 404 1s a decision block that represents the test
manager 120 determining whether the test 110 ever was
unsuccessful, 1.e., whether 1t ever failed. If not, control
transfers to Block 406; otherwise, control transfers to Block
408.

Block 406 represents the test manager 120 retiring the test
110 from the system.

Block 408 1s a decision block that represents the test
manager 120 determining whether the test 110 failed just
once. If so, control transters to Block 410; otherwise, control
transiers to Block 420.

Block 410 1s a decision block that represents the test
manager 120 determining whether an “attempting reproduc-
tion” flag associated with the test 110 1s set. If not, control
transfers to Block 412; otherwise, control transfers to Block

414.

Block 412 represents the test manager 120 setting the flag,
marking the test 110 for execution only on the client
computer 102 where 1t originally failed, and returning the
test 110 to the queue 114.

Block 414 represents the test manager 120 retiring the test
110 from the system as being associated with a non-
reproducible application program 108 defect.

Block 416 1s a decision block that represents the test
manager 120 determining whether the test 110 failed due to
an application program 108 defect. If not, control transfers
to Block 418; otherwise, control transfers to Block 420.

Block 418 represents the test manager 120 marking the
test as an error and retiring the test 110 from the system.

Block 420 represents the test manager 120 examining the

information concerning the client computer 102 that
executed the test 110.

Block 422 1s a decision block the represents the test
manager 120 determining whether other different client
computers 102 are currently connected to the server com-
puter 102 and are available for executing the test 110. If not,

control transfers to Block 424; otherwise, control transfers
to Block 428.

Block 424 represents the test manager 120 marking the
test 110 as an application program 108 defect and retiring the
test 110 from the system.

Block 426 represents the test manager 120 (optionally)
invoking the test reducer 124 for further processing of the
test 110, as described 1n FIG. 6.

Block 428 represents the test manager 120 returning the
test 110 to the queue 114 for execution by other client
computers 102.

Test Grouper

FIG. 5 1s a flowchart that 1llustrates the general logic of
the test grouper 122 when performing the steps of the
present 1nvention.

Block 500 represents the test grouper 122 receiving the
test 110 and results object from the test manager 120.

Block 502 represents the test grouper 122 analyzing the
error messages generated by the application program 108
during the execution of the test 110 and comparing these
messages with the error message database 128 compiled
from previously executed tests 110.

Block 504 1s a decision block that represents the test
cgrouper 122 determining whether there 1s a match from the
comparison. If so, control transfers to Block 506; otherwise,
control transfers to Block 508.

Block 506 represents the test grouper 122 grouping the
test 110 with matching tests 110, indicating that the tests 110
in this group all appear to detect the same application
program 108 defect.

Block 508 represents the test grouper 122 creating a new
oroup for the defect, and adding its error messages to the

database 128.

US 6,304,982 B1

9

Block 510 represents the end of the logic.
Test Reducer

FIG. 6 1s a flowchart that illustrates the general logic of
the test reducer 124 when performing the steps of the present
invention.

Block 600 represents the test reducer 124 receiving the
test 110 and results object from the test manager 120, after
the test 110 has been i1dentified as causing an application
program 108 defect.

Block 602 1s a decision block that represents the test
reducer 124 parsing the test 110 into its smallest syntacti-
cally discrete portions.

Block 604 1s a decision block that represents the test
reducer 124 analyzing the results object, state variables
and/or the list of test 110 portions to determine whether it 1s
able to reduce the test 110 from 1ts current state. If the test
110 can be reduced, control transfers to Block 606;
otherwise, control transfers to Block 610.

Block 606 represents the test reducer 124 modifying
(reducing) the test 110. At this step, any number of tech-
niques may be used in reducing a test 110, including, but not
limited to one or more of the following:

(a) eliminate all portions of the test 110 following the
portion 1n which the application program 108 defect
was detected;

(b) determine if the defect can be detected using (in order)
the last portion, the last two portions, etc., before the
portion which detects the defect; and

(¢) eliminate one or more randomly selected portions; if
re-execution still detects the application program 108
defect; otherwise replace the removed portions and
climinate a new or complementary set of portions. The
number of portions eliminated 1n each iteration may be
scaled according to the number of portions remaining
in the test 110 and the success/failure ratio of recent
reduction attempts.

Block 608 represents the test reducer 124 re-queuing the

reduced test 110 for re-execution by a client computer 102.
Block 610 represents the test reducer 124 indicating that
it 1s unable to perform further reduction, and saving its
results 1n the results database 130.
Block 612 represents the end of the logic.

Conclusion

This concludes the description of the preferred embodi-
ment of the mvention. The following describes some alter-
native embodiments for accomplishing the present inven-
fion.

For example, any type of computer, such as a mainframe,
minicomputer, work station or personal computer, or net-
work could be used with the present invention. In addition,
any software program, application or operating system could
benelit from the present 1nvention.

In summary, the present invention discloses a method,
apparatus, and article of manufacture wherein a server
computer acts as a central repository for tests performed by
any number of connected client computers, as well the
results of these tests returned by the client computers. A test
manager executed by the server computer analyzes the
results of the tests performed by the client computers, and
determines which tests have passed or failed during
execution, whether the tests failed because of an application
or other error, and which tests should be re-executed by the
same or different client computer. A test grouper analyzes
the error messages produced by the application being tested,
so that tests that reveal the same defect can be grouped

10

15

20

25

30

35

40

45

50

55

60

65

10

together. A test reducer 1s 1teratively applied to selected tests
to reduce the test to the smallest subset of the original test
that still reveals the defect.

The foregoing description of the preferred embodiment of
the mvention has been presented for the purposes of 1llus-
tration and description. It 1s not intended to be exhaustive or
to limit the 1nvention to the precise form disclosed. Many
modifications and variations are possible 1n light of the
above teaching. It 1s intended that the scope of the invention

be limited not by this detailed description, but rather by the
claims appended hereto.
What 1s claimed 1s:
1. An application program testing apparatus, comprising:
(a) one or more server computers providing a repository
for one or more tests and results therefrom; and

(b) one or more client computers, connected to the server
computers, for retrieving the tests from the repository,
for executing the tests in conjunction with one or more
application programs executed by the client computers,
and for storing the results from the executed tests 1n the
repository;

wherein each of the server computers includes a test
manager for analyzing the results of the tests performed
by the client computers and for determining which of
the tests have passed and which of the tests have failed
and for grouping the tests based on the analyzed results.

2. The apparatus of claam 1, wherein each of the client
computers includes means for gathering information about
the client computer.

3. The apparatus of claim 2, wherein the gathered infor-
mation 1s selected from group comprising (1) information
concerning an operating environment of the client computer,
(2) information concerning the application program being
tested, and (3) information concerning the test being per-
formed.

4. The apparatus of claim 2, wherein each of the server
computers includes means for selecting a test for the client
computer based on the gathered information.

5. The apparatus of claim 1, wherein the each of the server
computers 1ncludes a test queue for storing any number of
tests available for execution on the client computers.

6. The apparatus of claim 5, wherein each test 1s repre-
sented 1n the queue by an object that includes information
about the test’s current status, execution history, and which
client computers should execute the test.

7. The apparatus of claim 5, wherein a test 1s selected from
the queue 1n response to a request from the client computer
based on a match with information provided by the client
computer.

8. The apparatus of claim 1, wherein each of the server
computers includes a test container for storing any number
of tests being executed on the client computers.

9. The apparatus of claim 1, wherein each of the server
computers includes a timer for each test being executed on
the client computers.

10. The apparatus of claim 1, wherein the test manager
includes means for determining whether the tests failed
because of a defect 1n the application program.

11. The apparatus of claim 1, wherein the test manager
includes means for determining whether an error 1s universal
for the application program or specific to a particular type or
conilguration of client computer.

12. The apparatus of claim 1, wherein the test manager
includes means for determining whether the tests should be
re-executed by a same or different client computer.

13. The apparatus of claim 1, wherein the test manager
oroups tests that succeeded, tests with errors, tests that may

US 6,304,982 B1

11

reveal a defect 1n an application program but are not
reproducible, and tests that reproducibly reveal an applica-
tion program defect.

14. The apparatus of claim 1, further comprising a test
reducer for reducing and re-executing the tests to reveal a
portion thereof that reproduces an application program
defect.

15. The apparatus of claim 14, wherein the test reducer
further comprises means for iteratively reducing and
re-executing the tests based on results from previously
executed tests.

16. The apparatus of claim 14, wherein the test reducer
further comprises means for reducing the tests into syntac-
tically discrete portions.

17. The apparatus of claam 1, further comprising means
for ensuring fault tolerance from faults 1n the client com-
puters.

18. The apparatus of claim 1, further comprising means
for ensuring fault tolerance from faults in the server com-
puters.

19. A method for testing application programs, compris-
ing the steps of:

(a) storing one or more tests and results therefrom in a
repository of one or more server computers;

(b) retrieving the tests from the repository to one or more
client computers connected to the server computers,
executing the retrieved tests 1n conjunction with one or
more application programs executed by the client
computers, and storing the results of the executed tests
from the client computers to the repository of the server
computers; and

(¢) analyzing the results of the tests performed by the
client computers including determining which of the
tests have passed and which of the tests have failed
based on the results of the tests and grouping the tests
based on the results of the tests.

20. The method of claim 19, wherein each of the client
computers mcludes means for gathering information about
the client computer.

21. The method of claim 20, wherein the gathered infor-
mation is selected from group comprising (1) information
concerning an operating environment of the client computer,
(2) information concerning the application program being
tested, and (3) information concerning the test being per-
formed.

22. The method of claim 20, wherein each of the server
computers includes means for selecting a test for the client

computer based on the gathered information.

23. The method of claim 19, wherein the each of the
server computers includes a test queue for storing any
number of tests available for execution on the client com-
puters.

24. The method of claim 23, wherein each test 1s repre-
sented 1 the queue by an object that includes information
about the test’s current status, execution history, and which
client computers should execute the test.

25. The method of claim 23, wherein a test 1s selected
from the queue 1n response to a request from the client
computer based on a match with information provided by
the client computer.

26. The method of claim 19, wherein each of the server
computers includes a test container for storing any number
of tests being executed on the client computers.

27. The method of claim 19, wherein each of the server
computers includes a timer for each test being executed on
the client computers.

28. The method of claim 19, wherein the step of analyzing
the results further includes determining whether the tests
failed because of a defect in the application program.

10

15

20

25

30

35

40

45

50

55

60

65

12

29. The method of claim 19, wherein the step of analyzing
the results further includes determining whether an error 1s
umversal for the application program or specific to a par-
ticular type or configuration of client computer.

30. The method of claim 19, wherein the step of analyzing
the results further includes determining whether the tests
should be re-executed by a same or different client computer.

31. The method of claim 19, wherein grouping the tests
comprises grouping tests that succeeded, tests with errors,
tests that may reveal a defect in an application program but
are not reproducible, and tests that reproducibly reveal an
application program defect.

32. The method of claim 19, further comprising the step
of:

(a) storing one or more tests and results therefrom in a
repository of one or more server computers;

(b) retrieving the tests from the repository to one or more
client computers connected to the server computers,
executing the retrieved tests in conjunction with one or
more application programs executed by the client
computers, and storing the results of the executed tests
from the client computers to the repository of the server
computers; and

(¢) reducing and re-executing the tests to reveal a portion

thereof that reproduces an application program defect.

33. The method of claim 32, wherein reducing and
re-executing further comprises iteratively reducing and
re-executing the tests based on results from previously
executed tests.

34. The method of claim 32, wherein reducing further
comprises reducing the tests into syntactically discrete por-
fions.

35. The method of claim 19, further comprising the step
of ensuring fault tolerance from faults 1n the client comput-
erS.

36. The method of claim 19, further comprising the step
of ensuring fault tolerance from faults in the server com-
puters.

37. An article of manufacture comprising a computer
program carrier readable by a computer and embodying one
or more 1nstructions executable by the computer to perform
method steps for testing application programs, the method
comprising the steps of:

(a) storing one or more tests and results therefrom in a
repository of one or more server computers;

(b) retrieving the tests from the repository to one or more
client computers connected to the server computers,
executing the retrieved tests in conjunction with one or
more application programs executed by the client
computers, and storing the results of the executed tests
from the client computers to the repository of the server
computers; and

(c) analyzing the results of the tests performed by the
client computers including determining which of the
tests have passed and which of the tests have failed
based on the results of the tests and grouping the tests
based on the results of the tests.

38. The article of manufacture of claim 37, wherein each
of the client computers includes means for gathering infor-
mation about the client computer.

39. The article of manufacture of claim 38, wherein the
gathered information is selected from group comprising (1)
information concerning an operating environment of the
client computer, (2) information concerning the application
program being tested, and (3) information concerning the
test being performed.

US 6,304,982 B1

13

40. The article of manufacture of claim 38, wherein each
of the server computers mcludes means for selecting a test
for the client computer based on the gathered information.

41. The article of manufacture of claim 37, wherein the
cach of the server computers includes a test queue for storing
any number of tests available for execution on the client
computers.

42. The article of manufacture of claim 41, wherein each
test 1s represented 1n the queue by an object that includes
information about the test’s current status, execution history,
and which client computers should execute the test.

43. The article of manufacture of claim 41, wherein a test
1s selected from the queue 1n response to a request from the
client computer based on a match with information provided

by the client computer.

44. The article of manufacture of claim 37, wherein each
of the server computers includes a test container for storing
any number of tests being executed on the client computers.

45. The article of manufacture of claim 37, wherein each
of the server computers includes a timer for each test being

executed on the client computers.
46. The article of manufacture of claim 37, wherein the

step of analyzing the results further includes determining
whether the tests failed because of a defect 1n the application

program.
47. The article of manufacture of claim 37, wherein the

step of analyzing the results further includes determining
whether an error 1s universal for the application program or
specific to a particular type or configuration of client com-
puler.

48. The article of manufacture of claim 37, wherein the
step of analyzing the results further includes determining
whether the tests should be re-executed by a same or
different client computer.

49. The article of manufacture of claim 37, wherein
ogrouping the tests comprises grouping tests that succeeded,
tests with errors, tests that may reveal a defect in an
application program but are not reproducible, and tests that
reproducibly reveal an application program defect.

50. The article of manufacture of claim 37, wherein the
method further comprises reducing and re-executing the
tests to reveal a portion thereof that reproduces an applica-
fion program defect.

S51. The article of manufacture of claim S50, wherein
reducing and re-executing further comprises iteratively
reducing and re-executing the tests based on results from
previously executed tests.

52. The article of manufacture of claim 5§50, wherein
reducing further comprises reducing the tests into syntacti-
cally discrete portions.

53. The method of claim 37, further comprising the step
of ensuring fault tolerance from faults 1n the client comput-
ersS.

54. The method of claim 37, further comprising the step
of ensuring fault tolerance from faults in the server com-
puters.

55. An application program testing apparatus, comprising:

(a) one or more server computers providing a repository
for one or more tests and results therefrom;

(b) one or more client computers, connected to the server
computers, for retrieving the tests from the repository,
for executing the tests in conjunction with one or more
application programs executed by the client computers,
and for storing the results from the executed tests 1n the
repository; and

(¢) a test reducer for reducing and re-executing the tests
to reveal a portion thereof that reproduces an applica-
tion program defect;

10

15

20

25

30

35

40

45

50

55

60

65

14

wheremn the test reducer further comprises means for
reducing the tests according to one or more of the
following techniques:

(a) eliminate all portions of the test following the
portion 1n which the application program defect was
detected;

(b) determine if the defect can be detected using (in
order) the last portion, the last two portions, etc.,
before the portion which detects the defect; and

(¢) eliminate one or more randomly selected portions;
if re-execution still detects the application program
defect; otherwise replace the removed portions and
climinate a new or complementary set of portions.

56. A method for testing application programs, compris-
ing the steps of:

(a) storing one or more tests and results therefrom in a
repository of one or more server computers;

(b) retrieving the tests from the repository to one or more
client computers connected to the server computers,
executing the retrieved tests in conjunction with one or
more application programs executed by the client
computers, and storing the results of the executed tests
from the client computers to the repository of the server
computers; and

(c) reducing and re-executing the tests to reveal a portion

™

thereof that reproduces an application program defect;

wherein reducing further comprises reducing the tests
according to one or more of the following techniques:

(a) eliminating all portions of the test following the
portion in which the application program defect was
detected;

(b) determine if the defect can be detected using (in
order) the last portion, the last two portions, etc.,
before the portion which detects the defect; and

(¢) eliminate one or more randomly selected portions;
if re-execution still detects the application program
defect; otherwise replace the removed portions and
climinate a new or complementary set of portions.

57. An article of manufacture comprising a computer
program carrier readable by a computer and embodying one
or mote 1structions executable by the computer to perform
method steps for testing application programs, the method
comprising the steps of:

(a) storing one or more tests and results therefrom in a
repository of one or more server computers;

(b) retrieving the tests from the repository to one or more
client computers connected to the server computers,
executing the retrieved tests in conjunction with one or
mote application programs executed by the client
computers, and storing the results of the executed tests
from the client computers to the repository of the server
computers; and

(¢) reducing and re-executing the tests to reveal a portion
thereof that reproduces an application program defect;

wheremn reducing further comprises reducing the tests
according to one or more of the following techniques:

(a) eliminating all portions of the test following the
portion 1n which the application program defect was
detected;

(b) determining if the defect can be detected using (in
order) the last portion, the last two portions, etc.,
before the portion which detects the defect; and

(¢) eliminating one or more randomly selected portions;
if re-execution still detects the application program
defect; otherwise replace the removed portions and
climinate a new or complementary set of portions.

US 6,304,982 B1
15 16

58. An application program testing apparatus, comprising: with one or more application programs executed by the

(a) one or more server computers providing a repository client computers, and store the results from the
for one or more tests and results therefrom; and executed tests 1n the repository;

(b) one or more client computers, connected to the server (c) analyzing error messages generated by the application
computers, for retrieving the tests from the repository, . program during the execution of the test including
for executing the tests 1n conjunction with one or more comparing the analyzed error messages with an error
application programs executed by the client computers, message database compiled from previously executed
and for storing the results from the executed tests i the tests and grouping the tests based on the comparison.
repository; 60. A method for testing application programs, compris-

wherein the test grouper further comprises means for 10 ing the steps of:
analyzing error messages generated by the application (a) providing a repository for one or more tests and results
program during the execution of the test, for comparing, therefrom; and
the analyzed error messages with an error message (b) retrieving the tests from the repository by one or more
database compiled from previously executed tests, and 15 client computers which execute the tests in conjunction
for grouping the tests based on the comparison. with one or more application programs executed by the

59. An article of manufacture comprising a computer client computers, and store the results from the

program carrier readable by a computer and embodying one executed tests in the repository;

Or more 1nstructions eﬁxecutablﬁe by the computer to perform (¢) analyzing error messages generated by the application
methoc} steps for testing application programs, the method 20 program during the execution of the test including
comprising the steps of: comparing the analyzed error messages with an error

(a) providing a repository for one or more tests and results message database compiled from previously executed
theretfrom; and tests and grouping the tests based on the comparison.

(b) retrieving the tests from the repository by one or more
client computers which execute the tests in conjunction I N

	Front Page
	Drawings
	Specification
	Claims

