(12) United States Patent

Sathyanarayan et al.

US006304904B1

(10) Patent No.:
45) Date of Patent:

US 6,304,904 B1
Oct. 16, 2001

(54)

(75)

(73)
(%)
(21)
(22)
(60)

(51)
(52)

(58)

(56)

METHOD AND APPARATUS FOR 5,742,905 4/1998 Pepe et al. ...ccoevverveenrennenee, 455/461
COLLECTING PAGE-LEVEL 5,751,933 * 5/1998 Dev et al.oovvuveveennnnn.. 395/182.02
PERFORMANCE STATISTICS FROM A 5,768,510 6/1998 GISh eevvveieiivieeeeeenene, 395/200.33
5,787,471 * 7/1998 Inoue et al. ...c.ovvvvnvenninnnnnnn. 711/133
NETWORK DEVICE 5,805,735 9/1998 Chen et al. ..coovvrivivniininnnnn, 382/239
Inventors: Seshadri Sathyanarayan; Robert 2’233’5? : 1;?222 ﬂ;ﬁ;; """"""""""""""""" ;%ggi
Conrad Knauerhase, both of Portland, 5.805.470 * 4/1999 Pirolli et al. woo.ovoovssooooonn 707/102
OR (US) 5905988 * 5/1999 Schwartz et al. wooovovvvveeen.... 707/104
: _ . 5,031,912 * 8/1999 Wuetal. ..covvevevnevininninnnnnnn, 709/224
Assignee: I['}tsel Corporation, Santa Clara, CA 5933832 * 8/1999 Suzuoka et al. w.oooeovvevvernnn... 707/101
(US) 5,941,944 * §/1999 MSSErly .c.eeeeeveeneeneeneeereeneeneen 709/203
Notice: SllbjeCt to aﬂy diSClaiI]:]er, the term Of thlS 559485061 z 9/999 Merriman et Ell. 709/219
ont is extended or adiusted under 35 5,960,409 9/1999 Wexler ..coovvvviviiniiniiiiiinnennes 705/14
pd At b 0] 6,018,619 * 1/2000 Allard et al. voooveevveverrerrrnnn. 709/224
U.S.C. 154(b) by 0 days. 6,112,238 * 8/2000 Boyd et al. wooocerrrerersrrrrrnnn 709/224
6,141,684 * 10/2000 McDonald et al. 709/222
Appl. No.: 09/002,164 6.240.444 * 52001 Fin et al. oo 709,205
Related U.S. Application Data Armando Fox and Eric A. Brewer, “Reducing WWW
Provisional application No. 60/041,003, filed on Mar. 27, Latency and Bandwidth Requirements by Real-Time Dis-
1997. tillation,” Fifth International World Wide Web Conference,
INt. CL7 oo, GO6F 15/173 May 6-10, 1996.
U.S. CL oo 709/224; 709/219; 709/222; ~ Armando Fox et al., Adapting to Network and Client Vari-
’ 700 /205. 709 /223’ ability via On—Demand Dynamic Distillation, Unmiversity of
Field of Search 305/182.02; 707/102, ~ Cal- at Berkeley, Sep. 1996. .
707/106. 101. 202. 10: 702/195: 711/133: Lucas et al. Statistical Characterization Wide Area IP Trathic
709/227, 224, 217, 219, 205, 222, 201, EEE, Sep. 19977
202, 239, 226, 206, 223; 379/111; 345/335, * cited by examiner
329; 370/389; 713/201; 705/114 Primary Examiner—Mehmet B. Geckal
References Cited Assistant Examiner—Thong Vu
US. PATENT DOCUMENTS (74) Attorney, Agent, or Firm—Kenyon & Kenyon
(57) ABSTRACT
5,373,375 12/1994 Weldy ooeoeeeeveereeerereeeeeen 358/523
5?485?579 1/996 HltZ et ﬂl. 709/227 A method for Collecting Statistics from q network device
5,517,612 5/:996 Dwin et al. .oooveveeriiiiinnn. 395/166 configured to service requests from one or more other
555445320 8/996 KOI]I'Eld 395/20009 deViceS Coupled thereto iIlChldeS the StepS Of maiﬂtaiﬂiﬂg q
5,627,886 * 5/1997 BOWMAN .eoveveeverreerersererrernane. 379111 e i " i ol
5,673,322 9/1997 Pepe et al. weoveveeeerereerereeennn 380/49 08 ML COMAIINE OTC OT HOTL CHIHES d550LIatbCt WL tdt
5.684.969 1171997 TShida wooovoeoeooooorrorsooe oo 395342 request serviced by the network device; identitying a page-
5701451 12/1997 Rogers et al. woovvvvvvvvorrrvroeenn 395/600 level request serviced by the network device; and generating
5706434 1/1998 Kremen et al. ..o.............. 395/200.09 statistics assoclated with the servicing of the page-level
5,721,827 2/1998 Logan et al.cceeveereenrnenne 709/217 request by the network device from the log file enftries
5,724,556 3/1998 Souder et al. ...oceveeenennnnnneenn. 395/500 assoclated with the page-level request.
5,727,157 3/1998 Orretal. .ooovevvevnieininennnn. 709/224
5,727,159 3/1998 KiKinis ..cooevevvvvivnieninninnene. 395/200.76 9 Claims, 3 DI'aWillg Sheets
34
.
HTTP
REMOTE PROXY CU%LFEREF
52 TRANSCODE MANAGER CONTENT
f 14 5' SERVER
| BROWSER | f ey || | PERFORMANCE 13
PROVIDERS MONITOR
/f 16 CONTENT
CLIENT 24 CACHE INTERFACE yd SERVER
LGl 114

U.S. Patent Oct. 16, 2001 Sheet 1 of 3 US 6,304,904 B1

FIG. 1

10

US 6,304,904 B1

Sheet 2 of 3

Oct. 16, 2001

U.S. Patent

CH N

£l

¢l

¢l

A

U.S. Patent Oct. 16, 2001 Sheet 3 of 3 US 6,304,904 B1

20 START

SORT
25 LOG FILE

&
=

PAGE—LEVEL
REQUEST FILE

55 GET REQUEST
FILE RECORD

45

US 6,304,904 B1

1

METHOD AND APPARATUS FOR
COLLECTING PAGE-LEVEL
PERFORMANCE STATISTICS FROM A
NETWORK DEVICE

This application claims the benefit of the identically-
fitled U.S. Provisional Application No. 60/041,003, filed
Mar. 27, 1997 by Seshadr Sathyanarayan et al. and assigned
to Intel Corporation, the disclosure of which i1s expressly
incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present mnvention relates generally to the field of data
communications for personal computers (PCs), and in par-
ticular to a system for collecting statistics from a network
device such as a proxy server.

2. Related Art

The Internet 1s quickly becoming the preferred data
communications medium for a broad class of computer users
ranging from private individuals to large multi-national
corporations. Such users now routinely employ the Internet
to access information, distribute information, correspond
clectronically, and even conduct personal conferencing. An
ever-growing number of mdividuals, organizations and busi-
nesses have established a presence on the Internet through

“web pages” on the World-Wide Web (“the Web”).

In a typical network arrangement for accessing the
Internet, a plurality of client devices may be configured to
channel requests for Internet resources, such as Web pages,
through a network device known as a proxy, or proxy server.
For example, proxy servers are often used to channel
requests for client devices residing behind a so-called
“firewall,” or for client devices which use dial-up connec-
tions to an Internet service provider (ISP). For a variety of
reasons, 1t may be desirable to collect statistics relating to
the performance of such network devices, as well as other
devices including content servers. Moreover, 1t may some-
fimes be desirable to collect such performance statistics at a
page level (that is, compiled with respect to each requested
Web page processed by the network device). Unfortunately,
there are no existing tools for collecting page-level statistics
from such network devices. Instead, known monitoring
tools, such as the Webstone™ utility distributed by Silicon
Graphics Inc., only collect statistical information at a system
level. While system-level statistics may be useful for some
purposes, for many applications such statistics provide an
insufficient level of detail. Accordingly, there 1s a need for a
method and apparatus to collect page-level statistics from a
network device.

SUMMARY OF THE INVENTION

An embodiment of the present invention provides a
method for collecting statistics from a network device
configured to service requests from one or more other
devices coupled thereto. According to this embodiment, a
log file containing one or more entries associlated with each
request serviced by the network device 1s maintained. A
page-level request serviced by the network device 1s
identified, statistics are generated associated with the ser-
vicing of the page-level request by the network device from
the one or more log file entries associated with the page-
level request.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic diagram 1illustrating a network
device configured to collect statistics according to a first
embodiment of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 1s a schematic diagram 1illustrating a network
device configured to collect statistics according to a second
embodiment of the present invention.

FIG. 3 1s a flow diagram 1illustrating a method for col-
lecting performance statistics according to an embodiment
of the present 1nvention.

DETAILED DESCRIPTION

Embodiments of the present invention provide the ability
to measure the performance of a network device, such as a
proxy or content server, at a page level. With reference to
FIG. 1, a network device 1 to which embodiments of the
present invention may be advantageously applied 1s config-
ured to service requests from a plurality of other devices 10
coupled thereto by a communications link 9. Network
device 1 may comprise, for example, a firewall or other type
of network proxy, a content server or other network server,
or a client device including a local proxy. The requests
serviced by network device 1 may comprise, for example,
HTTP (HyperText Transfer Protocol) requests for Web
pages resident on the World-Wide Web. Such requests
typically include a so-called page-level request, specifying a
URL (Uniform Resource Locator) for the Web page, and one
or more object-level requests associated with objects, such
as 1mages, related to the page-level request. Depending upon
the particular implementation, network device 1 may inde-
pendently service requests received from other devices 10,
or may forward such requests to upstream devices (not
shown) for service. In the latter case, network device 1
would typically receive a response from the upstream device
and forward that response (either with or without some
manipulation, such as transcoding) to the requesting other

device 10.

In this particular embodiment, network device 1 includes
a log file 14 containing entries associated with the servicing,
of requests. Log file 14 may include entries associated with
both page-level and object-level requests serviced by net-
work device 1. As discussed further below, the entries 1n log
file 14 typically contain information relating to the perfor-
mance ol network device 1 1n servicing received requests
and/or responses. Network device 1 also mcludes a perfor-
mance monitor 5, which may be implemented as a software
routine comprising a set of executable instructions. Perfor-
mance monitor 5 may be programmed to collect page-level
statistics for network device 1 by processing entries in log

file 14.

Alternatively, network device 1 may 1itself comprise a
content server, or may be implemented as part of a network
server, as a stand-alone computer in communication with a
network server, or as a distributed system of computers.
Network device 1 may be coupled, for example, to an ISP’s
network, a corporate network, or anywhere on the Internet.

The schematic diagram of FIG. 2 1llustrates another type
of network device to which embodiments of the present
invention may be advantageously applied. According to this
particular embodiment, a network client 12 accesses content
servers 13, 13' through a transcoding server 34. Network
client 12 includes a browser 32, such as the Netscape
Navigator v.3.0 browser (although the invention is not
limited in this respect), which manages the presentation of
data to a user. In the illustrated arrangement, network client
12 1s “non-enabled,” meaning no specialized transcoding
software 1s preloaded on network client 12. Content servers
13, 13' may comprise, for example, content servers resident
on the Internet. In this particular arrangement, network
client 12 communicates requests for information to, and

US 6,304,904 B1

3

receives 1nformation from, transcoding server 34 over a
client/server communications link 14. Transcoding server 34
in turn communicates with content servers 13, 13' through
server/network communications link 16. The respective
communications links 14, 16 may comprise any suitable
communications media known 1n the art.

Transcoding server 34 may be configured to provide a
wide variety of transcoding services to network client 12
and/or network devices, such as content servers, with which
network client 12 communicates. In this context, the term
“transcode” refers to virtually any type of addition, deletion
or modification of data transmitted to or from network client
12 by or through transcoding server 34. In addition to the
collection of statistics as set forth herein, examples of such
transcoding services include data compression, i1mage
scaling, and dynamic removal of predetermined content. In
the context of the present invention, the collection of sta-
fistics may be the only transcoding service provided to a
particular client device, or may be only one of a variety of
SEIvICes.

As 1llustrated 1n FIG. 2, transcoding server 34 may
include a transcode manager 22 and a plurality of transcode
service providers 24. Transcode manager 22 1s configured to
act upon data received by transcoding server 34, such as a
request for a network object generated by client device 12 or
a reply to such a request provided by content server 13. In
this particular example, transcode manager 22 1s responsible
for selectively mvoking one or more of transcode service
providers 24 based upon a predetermined selection criterion.
With reference to FIG. 1, performance monitor 5 may be

implemented, for example, as a transcoding service provider
24.

In the arrangement shown 1n FIG. 2, transcoding server 34
includes an HTTP (HyperText Transfer Protocol) remote
proxy 36, capable of accessing content servers 13, 13' over
server/network communications link 16. HTTP remote
proxy 36 provides functionality different from known net-
work proxies, which generally are little more than a conduit
for requests to, and replies from, external Internet resources,
in that 1t 1s capable not only of examining such requests and
replies, but also of acting upon commands in the requests by,
for example, determining whether or not to transcode con-
tent. Moreover, using transcode manager 22, HI'TP remote
proxy 36 1s capable of changing content received from
content servers 13, 13' prior to returning it to a requesting
network client 12.

Looking more closely at the arrangement shown in FIG.
2, transcode manager 22 1s coupled to HTTP remote proxy
36, and manages the transcoding of data to be transmitted
from transcoding server 34 to network client 12. To this end,
transcode manager 22 controls transcode service providers
24 to selectively transcode content based on a predetermined
selection criterion. For example, one or more transcode
service providers 24 may provide the capability to compress
and/or scale different types of data content, such as image,
video, or HTML (HyperText Markup Language), in addition
to providing statistical collection functionality as discussed
above. Transcoding server 34 may also 1nclude a server-side
cache memory 30 managed by a server-side cache interface
28. Server-side cache memory 30 may be used to store both
original and transcoded versions of content for later trans-
mission to network client 12 without the need to re-retrieve
the content from network 18 or to re-transcode the content.

Transcode manager 22 may comprise a relatively simple,
uniform 1interface to HTTP remote proxy 36, and may
provide an API (Application Programming Interface) for

10

15

20

25

30

35

40

45

50

55

60

65

4

transcoding data received by HTTP remote proxy 36.
Transcode manager 22 manages one or more transcode
service providers 24 that are accessed through a common
SPI (Service Provider Interface). In this particular
implementation, transcode manager 22 1s designed 1n com-

pliance with the Windows Open Systems Architecture
(WOSA), and may be implemented as a Win32 DLL

(Dynamic Link Library). The WOSA architecture, described
in Readings on Microsoft Windows and WOSA (Microsoft
Corp. 1995), enables additional transcode service providers
24 to be dynamically added to the system to provide new
features and/or better transcoding algorithms, while at the
same time not requiring changing or retesting other software
components 1n the system.

Like transcode manager 22, server-side cache mterface 28
may be modeled after a standard Get/Set mnterface. Server-
side cache memory 30 essentially “owns™ all cached objects,
in that 1t manages the properties and storage of the objects
and may 1nvalidate any non-locked object at any time;
however, the actual format of any given cached object 1s
known only by transcode manager 22 and its associated
transcode service providers 24. Thus, for data integrity and
transcoding efficiency purposes, all access to server-side
cache memory 30 1n this arrangement 1s through transcode
manager 22.

In operation, transcode manager 22 may use a Read() call
to read data from a specified cached object data stream. For
example, transcode service provider 24 may invoke this call
and tunnel stream data through HTTP remote proxy 36
directly to network client 12. Similarly, a Write() call may
be used to cache data from a new HTTP data stream. This
call will append an incoming data stream received from, for
example, a Web server or transcode service provider 24, to
an opened cache stream which may be concurrently read
using the Read() call.

Transcode manager 22 may be configured to include the
following calls:

GetObject(URL, InParams, &OutParams, &OutStream, .

N &
GetScaledObject(URL, InParams, &OutParams,
&OutStream, Stage, . . .);

PutObject(URL, InParamStruct, &InStream,
&OutParams, &OutStream, . . .).

Transcode manager 22 may use such calls to manage the
provision of requested content to network client 12. For
example, the GetObject() call may be used to service
non-enabled client requests, and returns a non-transcoded
(original) version of a specified hypertext object. In this
arrangement, transcoding server 34 assumes that each HT'TP
request has a unique thread that may be blocked until the
request 1s satisfied. Accordingly, the GetObject() call will
block until 1t either returns the requested data stream or
indicates failure with a cause (e.g., object does not exist).
This ability to return a so-called standard hypertext object 1s
advantageous for compatibility reasons, enabling embodi-
ments of the present invention to be used with existing
browsers that do not include support for certain transcoding
functionality (e.g., advanced data compression), and
enabling users to selectively retrieve non-transcoded ver-
sS101S.

The GetScaledObject() call is similar to GetObject(), and
1s also used to request an object from server-side cache
memory 30; however, 1t adds support for requesting a
particular version of that object, such as a high-quality
rendition. Unlike traditional caching proxies, transcode ser-
vice providers 24 can use server-side cache memory 30 to

US 6,304,904 B1

S

store several different versions of an object to support clients
with different communications and/or presentation capabili-
fies. Thus, an additional “Stage” parameter may be used to
indicate which version of the cached object 1s to be returned
to network client 12. Where transcode service provider 24 1s
configured to scale network content, 1t may use this param-
eter to request a version of a cached object having, for
example, a default scaled quality, a refinement to a better-
quality version, or the original non-scaled version.

In this particular arrangement, when network client 12

requests a hypertext object, HI'TP remote proxy 36 uses
either the GetObject() or GetScaledObject() call
(depending on if network client 12 is capable of receiving
scaled/transcoded datatypes) to retrieve the hypertext object
from transcode manager 22. If the hypertext object 1s not
found, transcode manager 22 uses the CreateEntry() call to
create an entry (in effect, a placeholder) in server-side cache
memory 30 for the new object. The new entry 1s returned to
HTTP remote proxy 36, which requests the hypertext object
from network 18. As a data stream for the hypertext object
1s returned, HTTP remote proxy 36 calls transcode manager
22 using the PutObject() call, passing into this call the new
entry and the handle to the data stream to be placed into the
entry. Transcode manager 22 selects an appropriate
transcode service provider 24 based, for example, on the
content type of the data stream. In this context, the term
content type encompasses a datatype, an HTTP MIME
(Multipurpose Internet Mail Extensions) type, a content
format, and so on. The selected transcode service provider
24 uses a separate thread to read the incoming data stream,
transcode it (for example, scan for predetermined content
and delete it if found), and place it within the entry of
server-side cache memory 30. The current thread 1mmedi-
ately returns to HTTP remote proxy 36, which once again
calls GetScaledObject() (or GetObject()). This case will
always result in a cache hit. This thread then works simul-
taneously with the separate thread in the PutObject() to
tunnel data (either original or transcoded) from transcoding
server 34 to network client 12.

In this particular embodiment, transcode manager 22 1s
coupled to a performance monitor §' programmed to collect
page-level performance statistics for transcoding server 34
as discussed herein. Performance monitor 5' may be used,
for example, to determine how much time 1s being saved 1n
downloading content as a result of scaling or other transcod-
ing services provided by transcoding server 34, how well a
particular compression algorithm may be working, and the
percentage ol objects per page effected by such services.
Such information may then be put to any of a wide variety
of uses, including response time comparisons with other
network devices and improving the performance of
transcoding services. For such purposes, page-level statistics
provide the most meaningful of end-user visible perfor-
mance metrics (for example, latency). Embodiments of the
present invention are therefore directed to collecting such
statistics at a page level, including total latency, connect
fime, objects compressed and percent reduction in bytes
transferred per page over ditferent dial-up connections. With
particular reference to the embodiment illustrated 1n FIG. 2,
devices such as transcoding server 34 are capable of
compressing, scaling or otherwise transcoding content prior
fo transmitting it to a client device. In order to monitor,
collect statistics for, and help improve the performance of
such devices, 1t may be useful to track page-level informa-
tion such as the number of objects (e.g., images, audio, text,
etc.) processed by transcoding server 34 per requested Web
page, the size of a compressed Web page, the total end-to-
end latency for a compressed Web page, and so on.

10

15

20

25

30

35

40

45

50

55

60

65

6

A particularly advantageous feature which may be pro-
vided by embodiments of the present invention 1s oif-line
collection of performance statistics. In other words, page-
level performance statistics may be derived after completion
of a test run from 1nformation logged by transcoding server
34 during the test run. By contrast, most existing perfor-
mance measurement tools collect performance metrics
on-line while tests are being run, which can have the
undesirable effect of degrading the performance of other
applications active on transcoding server 34 during the test
run.

FIG. 3 provides a flow diagram illustrating a method
according to another embodiment of the present invention.
To assist 1n describing this embodiment, structural elements

are described using the reference numbers for the embodi-
ment 1llustrated 1in FIG. 1; however, 1t should be noted that
the method of FIG. 3 1s not limited to that particular
structural implementation. In general, the approach of the
illustrated embodiment 1s to sort or otherwise process a
system log maintained by network device 1 to organize
entries in log file 14 (containing performance-related data)
associated with Web page requests (and the individual
objects associated with such requests) in time sequence by
user (or client device 10) identified, for example, by IP
address. Information collected 1n this manner may then be
used to measure a variety of page-level metrics, including
end-to-end page latency, time taken to compress each page,
latency reduction (for example, with respect to the original,
uncompressed page), percent fewer bytes transferred to the
client, original and compressed page sizes, average of origi-
nal and compressed object sizes (typically for affected
objects only), and the number of effected objects/images.

The method 1llustrated in FIG. 3 makes use of information
cgenerally maintained 1in a log file by network devices
coniigured to service HI'TP requests. Such devices typically
log the following items of information for each request that
they service: HTTP request string; sequence number
assigned to each request as the request 1s received; IP
address of a requesting client device; time of request;
whether a requested object was found 1n a cache storage;
original size of the requested object; size of the requested
object after transcoding; return code for the requested
object; time-stamp for when the request was first received by
the network device; time at which the request was sent to a
content server; time at which the response (for example, the
requested page or object) was received from the content
server; time at which transcoding was complete and the
requested object forward to the requesting client device; and
time at which the service 1s complete. For some purposes, 1t
may be necessary to enhance the existing logging facilities
of a network device to ensure that information 1s logged for
desired statistics.

The method illustrated in FIG. 3 may be performed either
on-line or off-line, although for many types of network
devices off-line processing 1s generally preferable. Where
off-line processing 1s desired, a test run may be performed
in which a set of predetermined HTTP requests specifying
particular Web pages to be retrieved are sent to network
device 1 from one or more client devices 10 (each with their
own IP addresses). Such requests may be sent to network
device 1 individually or in batches. The requests and the
resulting log file 14 from network device 1 may then be used
to compile page-level statistics as discussed below.

According to this particular embodiment, the log file from
network device 1 1s first sorted by IP address to group all of
the requests from each client device 10, effectively creating
separate log files for each client device 10 (Step 25). The

US 6,304,904 B1

7

requests are then further sorted by timestamp and request 1D
(a unique sequential identifier assigned by network device 1)
to ensure that requests for any individual objects (for
example, images) associated with a requested Web page
immediately follow the request for the Web page itself (Step
25). The use of the request ID will resolve a situation where
two requests contain equal timestamps, ensuring that page
requests are 1n the order in which they were received by
network device 1.

Once the log file 1s properly sorted, page-level requests
may be extracted to a separate request file based on, for
example, characteristics of the URL (Step 30). Alternatively,
a request file used to generate the test load on network
device 1 may be used. Then, for each entry i the request
file, the location of that request in the sorted log file 1is
determined. This processing serves the dual purpose of (1)
climinating from further processing any requests that were
not serviced by network device 1; and (2) providing an index
into the sorted log file for ready access to the first log entry
assoclated with each serviced request. The request file may
also be sorted and any duplicate entries deleted to ensure
there 1s only one entry for each serviced request.

Once the request file and log file are built and/or properly
sorted, the request file may be sequentially processed to
compile desired page-level performance statistics. For each
entry retrieved from the request file (Step 35), here com-
prising a tuple of <HTTP request, log file index>, the
associated log file index 1s used to access the log file entry
or entries associated with that request (Step 40). The infor-
mation carried 1n the log file entries may then be used to
derive page-level performance statistics (such as, time to
download, bytes sent, bytes effected by transcoding, etc.) by,
for example, consolidating a plurality of log {file enftries
associated with a given page-level request (Step 485).

The embodiment illustrated in FIG. 3 provides only one
possible 1implementation of a method for compiling page-
level statistics for network device 1, and 1s not intended to
limit the scope of the claimed invention. Persons skilled in
the art will recognize that many variations are possible in
keeping with the teachings herein.

Embodiments of the present invention may be distributed,
for example, as a set of instructions residing on a storage
medium. Such a storage medium might be a memory of a
computer; a piece of firmware; a portable storage device,
such as a diskette or other magnetic storage device, or a
CD-ROM; or any other medium on which 1t 1s known to
store executable instructions.

Although the present invention has been described largely
with reference to embodiments for processing requests for
data from the Internet, persons skilled 1n the art will recog-
nize that it 1s equally applicable to other networking envi-
ronments. For example, embodiments of the present inven-
tion may be used to measure the performance of a network
device arranged between a client device and an “intranet.”
An 1nfranet typically 1s a secure corporate network modeled
after the Internet architecture, and generally includes mecha-
nisms for communicating with external networks such as the
Internet.

The foregomg 1s a detailed description of particular
embodiments of the present i1nvention. The invention
embraces all alternatives, modifications and variations that
fall within the letter and spirit of the claims, as well as all
equivalents of the claimed subject matter. For example,
some or all of the features described above may be used to
measure the performance of a content server. Likewise,
embodiments of the present invention may be readily
adapted for use with communications protocols other than

10

15

20

25

30

35

40

45

50

55

60

65

3

HTTP. Persons skilled m the art will recognize from the
foregoing detailed description that many other alternatives,
modifications and variations are possible.

What 1s claimed 1s:

1. A method for collecting page-level performance statis-
fics from a network device configured to perform transcod-
Ing services in connection with responding to requests for
web pages by client devices coupled thereto, wherein the
requested web pages mnclude one or more associated objects,
said method comprising:

servicing a request for a web page by a client device,
including retrieving the requested web page and each of
its associated objects, transcoding at least one of the
retrieved web page or an associated object, and return-
ing the web page and 1ts associated objects to the client
device;

maintaining a log file containing a plurality of entries
assoclated with each request for a web page serviced by
the network device, the plurality of entries comprising
a page-level entry corresponding to the web page and
one or more object-level entries corresponding to the
objects associlated with the web page;

identifying a page-level entry 1n the log file for a given
web page request serviced by the network device;

identifying each object-level entry in the log file for
objects associated with the web page; and

ogenerating page-level performance statistics associated
with the servicing of the given web page request by the
network device using information compiled from the
identified page-level and object-level log file entries,
the page-level performance statistics providing a mea-
sure of performance improvement attributable to the
transcoding performed by the network device in con-
nection with servicing the given web page request.

2. The method of claim 1, wherein said step of generating
page-level performance statistics comprises generating a
measure of latency associated with servicing of the web
page request.

3. The method of claim 1, wherein said step of generating
page-level performance statistics comprises generating a
measure of time taken by the network device to transcode
the web page or associated object.

4. The method of claim 1, wherein said step of generating
page-level performance statistics comprises comparing a
length of time required to return a web page and 1ts asso-
clated objects with transcoding and without transcoding.

5. The method of claim 4, wherein said step of generating
page-level performance statistics further comprises compar-
ing a measure of size for said transcoded and untranscoded
web page or assoclated object.

6. An apparatus for collecting page-level performance
statistics from a network device conficured to perform
transcoding services 1n connection with responding to
requests for web pages by client devices coupled thereto,
wherein the network device includes a log file containing a
plurality of entries corresponding to each web page request
serviced by the network device, the plurality of enftries
comprising a page-level entry corresponding to the web
page and one or more object-level entries respectively
corresponding to one or more objects associated with the
web page, the network device transcoding at least one of the
web page or an associated object prior to returning it to the
client device, said apparatus comprising a computer pro-
crammed to perform the steps of:

identifying a page-level entry 1n the log file for a given
web page request serviced by the network device;

US 6,304,904 B1

9

identifying each object-level entry in the log file for the
objects associated with the given web page; and

generating page-level performance statistics associated
with the servicing of the given web page request by the
network device using information compiled from said 3
1dentified page-level and object-level entries 1n the log
file, the page-level performance statistics providing a
measure of performance improvement attributable to
the transcoding performed by the network device 1n
connection with servicing the given web page request. 19
7. A storage medium containing a set of 1nstructions for
execution by a computer, the set of instructions enabling the
computer to collect page-level performance statistics for a
network device configured to perform transcoding services
in connection with responding to requests for web pages by 15
client devices coupled thereto, wherein the network device
maintains a log file containing a plurality of entries associ-
ated with each web page request that 1t services, the plurality
of entries comprising a page-level entry corresponding to the

10

web page or an associated object prior to returning it to the
client device, said set of 1nstructions comprising instructions

1dentifying a page-level entry 1n the log file for a given

web page request serviced by the network device;

identifying each object-level entry in the log file for the

objects assoclated with the given web page; and

ogenerating page-level performance statistics associated

with the servicing of the given web page request by the
network device using information compiled from said
identified page-level and object-level entries in the log
file, the page-level performance statistics providing a

measure ol performance improvement attributable to
the transcoding performed by the network device 1n
connection with servicing the given web page request.

8. The storage medium of claim 7, wherein said storage

medium comprises a magnetic storage device.
9. The storage medium of claim 7, wherein said storage

web page and one or more object-level entries respectively 20 medium comprises a memory of the computer.

corresponding to one or more objects associated with the
web page, the network device transcoding at least one of the

	Front Page
	Drawings
	Specification
	Claims

