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TRAIN CORRIDOR SCHEDULING PROCESS
INCLUDING A BALANCED FEASIBLE
SCHEDULE COST FUNCTION

FIELD OF THE INVENTION

This invention relates to a process for scheduling the
movement of trains over a rail corridor having a plurality of
sidings or parallel tracks with crossover switches.

BACKGROUND OF THE INVENTION

A rail corridor 1s a collection of tracks and sidings
connecting two rail terminal areas. An example of a rail
corridor 8 1s shown 1n FIG. 1, showing a single main track
10 and three sidings 20. The western end of the rail corridor
1s on the left side of FIG. 1 and the eastern end on the right.

Scheduling rail transportation on a rail corridor 1s par-
ficularly complex as compared to highway, water, or air
fransportation. Trains using a single track traveling 1in oppo-
site directions (1.e., a meet) or trains traveling in the same
direction (i.e., a pass) must meet in the vicinity of a siding
so that one train can be sided to let the other pass.
Alternatively, 1f there exists a double main line with cross-
over switches, one train can be switched to the second main
line to allow the other train to pass. Also, when such meets
or passes occur at a siding, the siding chosen must be long
enough to accommodate the train to be sided, and the train
to be sided must arrive at the siding and have sufficient time
to pull onto the siding before the passing train arrives at the
siding.

The railroad must earn revenue from 1its transportation
operations, and some of this revenue 1s generally at risk if
trains cannot deliver freight on time. The destination time of
the trains must be managed insofar as possible to prevent
late penalties 1incurred by the railroad. Therefore scheduling
frains across a rail corridor involves arranging meets and
passes as required for all trains, and while also meeting the
schedule for each train so that they all arrive, on time, at the

end of the corridor.

Commercially applied scheduling processes attempted to
date have been based on paradigms which involve simula-
tion with branch and bound techniques to find a conflict-free
schedule. Since a branch and bound process must sort
through many binary choices as 1t proceeds toward a
solution, these techniques are slow, and do not take advan-
tage of quantitative relationships that can be adduced from
the scheduling context.

Additionally, the prior art technique search processes
actually become more complex and take longer to arrive at
a solution as the number of sidings in the rail corridor
increases. This 1s due to the search algorithms that form the
basis for these prior art techniques. More sidings requires the
scarch algorithm to search through and consider more
choices before arriving at an optimum solution. As will be
shown below, the technique of the present invention over-
comes this disadvantage. Since the present invention calcu-
lates a cost function where each siding represents a lower
cost, having more sidings will make 1t easier for the algo-
rithm to identify the optimal (i.e. minimal) cost.

One prior art technique uses quantitative information such
as train speed, destination, and time of departure as discrete
variables 1 an artificial intelligence based system. The
artificial intelligence process involves rules that are used to
scarch through the trial cases until the best case 1s found. In
addition to the considerable time taken by an artificial
intelligence system to optimize a solution, 1t 1s also known
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that a slight change to the initial conditions may produce a
significantly different result. In any case, a slight change to
the 1mitial conditions will require a new and lengthy com-
putation to find the optimum solution. A commercial product
referred to as The Movement Planner, offered by GE-Harris
Railway Electronics L.L.C. of Melbourne, Fla., implements
such an artificial intelligence solution.

As can be seen, the total set of parameters for scheduling
a corridor can be large, and of both discrete and continuous
types. Generally, a cost function based on these parameters
can be formulated, and then some method of search 1s
executed that will reduce the cost and/or find a feasible
schedule for the subject trains. But, the presence of discrete
variables 1n the search space prevents or greatly complicates
the application of any “hill-climbing” search processes
based on the use of gradients

SUMMARY OF THE INVENTION

Cost functions that are everywhere differentiable have the
advantage over prior art arfificial intelligence solutions of
being amenable to gradient-based minimization algorithms
that do not have to accommodate the difficulties that arise in
discrete or partially discrete search spaces. The present
invention 1s a process whereby a rail corridor and the train
schedule along that corridor can be characterized by a
differentiable (i.e., continuous) cost function, so that a
scarch process based on differentiation may be applied to
scheduling train activity in the corridor.

The present mvention 1s an analytical process for sched-
uling trains across a corridor that 1s driven by a cost function
to be minimized, where the cost function 1s a continuous and
differentiable function of the scheduling variables. The
present mvention 1s an improvement over the prior art cost
functions that include discrete variables and thus are not
differentiable everywhere. The present invention will permat
the use of search processes relying on gradients, and as such,
will converge to solutions much more quickly than the prior
art scheduling processes involving simulation, or searching,
through discrete options.

The corridor scheduling process of the present invention
involves three steps for 1dentification of the optimum sched-
ule. After an acceptable differentiable cost function 1s
derived, the first step 1s the gradient search process wherein
the gradient of the differentiable cost function i1s determined.
The cost function 1s a sum of individual localizer functions.
For each pair of trains in the corridor that might intersect,
using the localizer function, the intersection point 1s iden-
tified as having a high value if the train trajectories do not
intersect near a siding and lower values as the intersection
point moves toward any siding. The gradient process may
not move all intersection points precisely to the center of
sidings dependent upon the selected threshold value and
parametric values of the localizer function. Instead, the
oradient process varies train departure times so that the set
of all intersection points of trains are moved nearer to
sidings. The second phase of the process simply moves the
points precisely to the centers of sidings, selects which train
to side, and computes exact arrival and departure times for
the trains at the siding to assure the physical integrity of the
meet. In order to center the intersection points at sidings and
side specific trains, the speeds of the mndividual trains must
be modified. This 1s accomplished during the second step of
the scheduling process.

The third step maintains the proper siding relationships
between any two meeting trains, as determined 1n step two,
but allows the meet time to vary 1n an effort to assure that
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no train exceeds an upper speed limit. This final phase 1is
again a gradient search process applied to all of the meet
points determined 1n the second step.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention can be more easily understood, and
the further advantages and uses thereof more readily
apparent, when considered 1n view of the description of the
preferred embodiments and the following figures. Identical
reference characters 1 the figures refer to 1dentical compo-
nents of the invention.

FIG. 1 1illustrates of a simple rail corridor;

FIG. 2 15 a string diagram 1illustrating the corridor sched-
uling problem 1n terms of intersecting lines;

FIG. 3 1s a flow chart for the corridor scheduling process
of the present invention;

FIG. 4 1llustrates the
FIG. 5 1s a graph of the basic sigmoid function;

basic geometry of train trajectories;

FIG. 6 illustrates the use of sigmoid sums to discriminate
an 1nterval,;

FIG. 7 illustrates the construction of a localizer function
from sigmoid functions;

FIG. 8 1llustrates an example of a localizer function for
two sidings;

FIGS. 9A and 9B show the modification of a localizer
function to account for corridor endpoints;

FIG. 10 illustrates the necessary geometry to achieve a
balanced localizer function;

FIGS. 11A, 11B, and 11C 1illustrate a techmique for
approximating the economic penalty function;

FIG. 12 shows a penalty term function for early departure
of a train;

FIG. 13 1s an 1mitial infeasible string graph schedule for
twelve trains;

FIG. 14 1s a string graph for trains of FIG. 13 after a
ogradient search of the present invention;

FIG. 15 shows the process whereby intersection points are
moved to a siding center;

FIG. 16 shows moving the first intersection point to a
siding center;

FIG. 17 illustrates the process of speed adjustments to
center all meets;

FIGS. 18A and 18B through FIGS. 24A and 24B illustrate
certain infeasibilities created by centering meets on sidings
and the resolution thereof;

FIGS. 19A and 19B 1illustrates the two types of siding
conflict;

FIGS. 20A and 20B 1llustrate the resolution of certain
siding conflicts;

FIGS. 21A and 21B 1illustrate the “unresolvable” siding
conflict;

FIGS. 22A through 22D illustrate resolution of both types
of siding contlicts;

FIGS. 23A through 23E show the cases for downward
resolvable siding conflicts;

FIGS. 24A and 24B show the resolution of upward-
resolvable siding contilicts;

FIG. 25 1llustrates train trajectories represented as broken
line segments;

FIG. 26 1s an evaluation of the train trajectory vector;

FIG. 27 shows an adjustment of train trajectory to accom-
modate siding delays;
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FIG. 28 shows siding details for a westbound sided train;

FIG. 29 1llustrates siding details for eastbound passing,
trains;

FIG. 30 1s a complete string graph adjusted for centered
meets and train sidings; and

FIGS. 31 and 32 are flow charts illustrating algorithms
implemented by the present 1invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Before describing in detail the train corridor scheduling
process 1n accordance with the present invention, it should
be observed that the present invention resides primarily 1n a

novel scheduling process algorithm and not 1n the particular
detailed configurations thereof.

The traditional method of graphic depiction of a train
schedule for a rail corridor 1s referred to as a string graph as
shown 1n FIG. 2. This string graph represents a time-distance
ograph of train movement 1n the corridor depicted i FIG. 1.
The horizontal axis represents time, (i.€., a fixed window of
time) and the vertical axis represents distance, with the point
at the origin of the graph being the western end of the
corridor, and the point at the top being the eastern end of the
corridor. The width of the graph represents the period of
interest 1n which the trains will be scheduled. Lines on the
oraph sloping one way represent traffic in one direction
across the corridor, while lines slopping 1 the opposite
direction represent oppositely-directed traffic. Only the posi-
tion of the engine 1s shown. The horizontal bars across the
oraph, bearing reference to character 20, correspond to the
siding locations.

The mvention as presented herein 1s described 1n con-
junction with a single-rail corridor with sidings. But those
skilled 1n the art will recognize that 1t can be easily extended
to multiple track main lines with cross-over switches
between the main lines.

The essential criterion for an acceptable schedule, as
expressed 1n terms of the string graph of FIG. 2, 1s that any
two train trajectories (lines) on the graph must intersect at a
siding 20. If their meets are at sidings, then 1n addition, a
choice has to be made as to which train to side.

Note that, unless all of the intersecting lines actually
intersect within the sidings 20, the schedule 1s infeasible.
Assuming, for the nonce, that all train speeds will be fixed,
the departure times for the trains can be adjusted in order to
move the train lines about and attempt to place all intersec-
tion points over the sidings 20. In another embodiment of the
present invention, 1t would be possible, as well, to vary train
speeds, which would change the slopes of the train trajectory
lines, 1n order to place intersection points over the sidings
20. In yet another embodiment, both speeds and departure
fimes can be varied simultaneously to find a feasible meet/
pass plan for the trains.

The process to be described herein treats the corridor
scheduling problem as a geometry problem, rather than
directly as a scheduling problem, as suggested by the prior
art. It does so by providing a mechanism by which train
trajectory lines are moved under control of a gradient-search
process based on a differentiable cost function 1n a manner
that moves the intersection points to or close to established
sidings.

The search process of the present invention permits
variation of speeds and departure times, separately or jointly,
and will use an everywhere differentiable cost function that
takes on lower values as the schedule approaches feasibility.
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Because the cost function 1s everywhere differentiable, an
iterative, gradient-search method can be applied that assures
that the successive schedules found by the search process in
fact converge to a conflict-free result.

Moreover, it 1s possible to include, 1n another embodiment
of the present 1invention, the constraint that a siding must be
longer than a train to be sided on 1it. It 1s further possible to
include, i yet another embodiment, the economic costs
incurred by adjusting train schedules. In other embodiments,
constraints on maximum train speed and the early departure
of trains can also be considered.

It will be appreciated by those skilled 1n the art that
although FIG. 2 1llustrates a situation with three sidings and
three trains traveling 1n each direction, the technique of the
present mnvention can be easily extended to any number of
trains operating 1n each direction and any number of sidings
on the rail corridor. The concepts of the present invention
can also be extended to a rail corridor with more than one
main line and crossover switches between the main line
tracks. The present invention can be applied to any rail
corridor where one train can be switched to another track
when a meet or pass with another train occurs.

The scheduling of trains must first be feasible, but in
addition, there may be choices as to which trains to side or
the order to run trains, which helps to assure that economic
penalties will not be incurred or, failing that, will at least be
ameliorated.

Process 30 for obtaining both schedule feasibility and
economic acceptability may consist of a number of steps as
shown 1n FIG. 3. First, at step 31, an nitial prearrangement
of the trains 1s done, establishing their order of entry into the
corridor. At this point, the train order 1s based solely on due
times, (represented as an input to step 31 from block 32)
with no analysis as to the corridor capacity or specific
departure times. At step 33, an inmitial schedule for the trains
1s determined; there are several numerical optimization
techniques that may be applied here. See for example,

Numerical Optfimization by Jorge Nacedad and Stephen J.
Wright; Springer, New York 1999; ISBN 0-387-98793-2.

This 1nitial schedule 1s mput to the gradient search
process, step 34, to be discussed below, which minimizes
schedule infeasibility. In another embodiment the gradient
scarch process can also minimize economic penalties
incurred by the railroad for the late arrival of trains and give
due consideration to maximum train speeds, early departure
times and siding lengths. The gradient search adjusts train
departure times (i.e., the time the train enters the corridor)
and/or speeds so that meets occur near sidings. The process
30 loops through siding choice step 38 and the conflicts
decision step 36 until all train 1ntersections are placed at or
near sidings on the rail corridor by adjusting the speed
and/or departure time (i.e., the time the train enters the
corridor) of the trains traversing the corridor.

The decisions made at step 38 as to which train to side for
cach pair of trains meeting at a siding may be driven by
considerations of relative economic cost due to the delays
created by siding one train versus another train. This siding
decision process represents another embodiment of the
present invention and will be discussed further below.

Once the siding decisions are made, some of the trajec-
tories (those for sided trains) on the string graph (FIG. 2)
will become broken lines, (representing infeasible meets)
which may cause new schedule infeasibilities for some train
frajectories. At this point, the gradient search can again be
applied, but only to the subset of subtrajectories that have
been driven 1nto infeasible meets. Multiple passes through
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the gradient search step 34 and siding decision process step
38 should bring the schedule to complete feasibility.

FIG. 4 characterizes the train trajectories as lines based on
the initial departure times (moment of entry into the
corridor) and the train speed. In FIG. 4, the bottom of the
vertical axis represents the west end of the corridor, and the
positive direction along that axis corresponds to eastbound
travel. The time window of interest for travel in the corridor

begins at time d,, and the length of the corridor 1s denoted
by L.

FIG. 4 focuses on characterizing one eastbound train and
one westbound train, respectively T, and T, with corre-
sponding trajectories labeled L; and L;. s; s; denote the
speeds and d;, d; denote the departure times of the trains T,
and T, respectively. The departure time of a train 1s the time
at which 1t enters the corridor: for an eastbound train, that
corresponds to a point situated on the horizontal axis of FIG.
4, (1.e., t=0) and for a westbound train, that corresponds to
a point located on the horizontal line y=L.

Then for train trajectory L; (eastbound), we may express
the relationship between coordinates for any point on the
line 1n the form

y—20 s (3-1)
I—d; ’

ar

Y =51 — S;d;.

For train T, (westbound), the form of trajectory L, can be
likewise expressed as

(3-2)

y:—SjI+dej+L.

We can write equations of identical form for both eastbound
and westbound trains by writing

y=st-5.d~+0L, (3-3)
where the speed of westbound trains by convention will be
the negative of the train’s actual speed, and

if train T; 1s eastbound (3-4)

0
| _{ 1 if train 7; is westbound

This form of a linear equation (3-3) is not the usual form
directly 1 terms of slope and intercept, but 1n this analysis
train speeds and departure times will be varied and the form
of Equation 3-3 has the advantage of expressing the train
trajectories explicitly in terms of speeds and departure times.

The objective of the present invention 1s to determine the
coordinates of intersection points (t;, y;;) for pairs of train
trajectories, and move these intersection points to sidings.
For trains T; and T, the solution for the trajectory intersec-
tion point 1s (t;, y;;), where

dej _dej + (QJ, — QI)L
Iy = .

Sj—Sj

(3-5)

and
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-continued
Sij(dj — dj) + (Sjgj' — SJ,'QI')L

Sj—Sj

(3-6)

Yij =

(t;;, ¥;;) 1s derived by equating equation (3-1) and (3-2) (atter
making the notation change suggested by equation (3-3)).

This characterization of the intersection point applies to
intersections of like- directed or oppositely-directed trains,
so that the analysis to be developed concerning intersection
points will adjust train trajectories involving both meets and
passes.

To this point the train scheduling problem has been
abstracted to a context of moving imtersecting lines about
until all intersection points are within certain ranges (the
siding bars 20 in FIG. 2). When all intersection points that
are within the rectangle (representing the corridor 8) are also
within the sidings 20, we have obtained a feasible schedule.

It 1s an objective to obtain a feasible schedule using a
scarch process that minimizes a cost function, and in the
preferred embodiment, the preferred cost function will have
a high value if any intersection point 1s outside a siding bar,
and a low value if and only if all intersection points are
within the siding bars. Intersection points entirely outside
the graph are not considered; the corridor and scheduling
period are considered to be co-extensive with the graph.

Let a tunction of a single y, with this cost function
property be a localizer function, and construct such a local-
izer function using the sigmoid function as a basis. The
preferred function will depend on the basic sigmoid
function, which has the equation

B (4-1)

| + eox’

o(x; @, ) =

and has a graph of the form shown i FIG. 5.

The parameter p of the sigmoid function determines a
horizontal asymptote for the curve, and the parameter o
determines how sharply the function rises as i1t crosses the
y-axis. As ¢ approaches infinity, the sigmoid curve
approaches a step function. In the preferred embodiment
3=1.0 and ¢=0.5.

Because the sigmoid function can transition sharply from
a low to a high value, 1t 1s a good continuous approximation
of discrete processes. Sums of sigmoids can also be used to
determine whether or not a variable has a value 1 an
interval. Specifically, for the interval [a, b], define the
function

D(x;a,b) =0(x—a; a.,p)-o(x-b,a,p). (4-2)

Based on the graph of the sigmoid as depicted 1n FIG. 5,
the graph of D(x; a, b) takes the form shown in FIG. 6, which
shows the function D(x; a, b) (reference character 60)
derived as a sum of two sigmoid functions 62 and 64.

Since each of the sigmoids 62 and 64 could be made to
approximate a step function as closely as desired, the
function D(x; a, b) can be defined to very sharply discrimi-
nate when X is in the interval [a, b], and can be made to
approach a pulse of width b-a as closely as desired.

Also, since the function D(x; a, b) (reference character 60)
approaches zero as X becomes more distant from the interval
[a, b], it is possible to sum such interval discriminators (for
non-overlapping intervals) and thereby obtain a function
which takes a high value when x 1s 1n any of the intervals of
interest, but 1s low otherwise. This 1s shown 1n FIG. 7 for the
two intervals [a,, b,] and [a,, b,], and it is obvious to those
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skilled 1n the art that the construction 1s generalizable to any
finite number of intervals.

The localizer function 70 shown in FIG. 7 (generated by
summing sigmoid functions 72, 74, 76, and 78) can be
extended to any {finite number of intervals, so such a
localizer can be constructed for any corridor of the type in
FIG. 1 (one main track, one or more sidings). The sidings are
represented along the x-axis between points a1 and ba.

The localizer function 70 has the form

2
L', B ay, b, az, by) =B ) olx—a;a, B+
i=1

2

D olx=b,a P

=1

The cost function for the scheduling problem of FIG. 2
will be derived below using the localizer function concept,
and assuming n. sidings. In the preferred embodiment, the
cost function will be low if and only 1f the y-coordnate y,;
for an mtersection of train trajectories lies within the range
of a siding, but the localizer function 70 of FIG. 7 1n fact
displays the opposite effect. Thus we will first define the
localizer function

N (4-3)
L'x;a, B,ar, by, ..., ayg, by =,8—Zr:r(x—ai; @, B) +
i=1

s
D olx—bsa, B,
=1

which has the desired property of taking a low value 1f and
only if X 1s 1n one of the intervals

[alﬂbl]: = [anS:bnS]:

and a high value otherwise. That 1s, Equation 4-3 defines a
localizer function that 1s the 1nverse of the localizer function
70. See the localizer function 80 1n FIG. 8.

The localizer function as defined above in Equation 4-3
(and taking the form of the inverse of the localizer function
70 in FIG. 7) will now be used to define a cost function
which takes lower values as the intersection points of train
trajectories are moved toward sidings. Two versions of the
cost function are described separately below.

A Simplified Feasible-Schedule Cost Function

Now letting n,- be the set of all trains to be run in the
corridor, and letting L. represent the train trajectory line for
train T, (as in FIG. 2). Define a set I of all possible
y-coordinates of the intersection points between the train
frajectories by

={y, /iy, }=LNL &ij {1, ..., nyt}.

Note that, with reference to FIG. 2, this set includes all
possible 1ntersection points between train trajectories, even
though some of those points may not be within the corridor
8 and/or time window of interest. It 1s necessary to consider
such out-of-corridor intersection points because the search
process will move the train trajectories, and may bring into
the corridor 8 an 1ntersection point that mnitially was outside
the corridor 8.

To create a cost function that takes on a low value if and
only 1if all intersection points lie within one of the sidings 20,
we sum localizer function values dertved from Equation 4-3.
Specifically define the vector that represents all intersection
points 1n the vicinity of

(5-1)
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y=Wilyi €D (5-2)
. —
and define the cost function C'( y )by
C' () = Z L'(yiji @, B.ar, br, ..., ang, byy). (5-3)

ygEf

The cost function 1s a multidimensional function of the
vector y, where each value of the vector yields a different
sum based on localizer function values. Each localizer
function value comprising the sum indicates whether an
intersection point is in a feasible range (the siding bars 20 of
FIG. 2) or not. See the cost function 80 of FIG. 8, where the
x-axis represents distance along the corridor. If all of the
intersection points relative to a specific siding are feasible,

C'(?) should take a low value in the vicinity of points
represented by that siding; otherwise, it takes a value near
the value of 3. When many intersection points are mnvolved,
3 may have to be chosen so that the near-zero sums of a large
number of feasible intersection points do not result in a value
in the range of {3, which would mask the feasibility that 1s to
be discriminated by the function.

C’(?) is a differentiable function of the vector ? (the
intersection points) and therefore in each of the variables
that determine the various intersection points, 1.€., departure
times and/or speeds of the trains. Therefore the cost function
can be used with gradient search technique or other search
techniques based on partial derivatives, to minimize the cost
function value at sidings. One such technique will be dis-

cussed below. Since each intersection point occurring as a

ﬁ . - . .
component of y 1s a function of the train departure times

and the speeds of the corresponding trains, we may treat the
cost function as one which may be optimized by adjusting
cither speeds or origination times of the trains, or both.
Accounting for Corridor Endpoints

The fact that the intersection points 1n I may not always
represent intersections of trajectories within the corridor 8
poses a difficulty for the cost function as defined 1n Equation
5-3, which 1s that any intersection point outside the corridor
is a “don’t care” point for the search process (so long as it
remains outside the corridor), but the cost function as
defined 1in Equation 5-3 will assign a high value to such a
point. Recall that the cost function of Equation 5-3 1s based
on the localizer function of Equation 4-3, which 1s 1llustrated
by reference character 90 in FIG. 9A. Thus as Equation 5-3
1s currently formulated, an otherwise feasible solution might
be masked by such a “don’t care” point.

In another embodiment of the present invention, the
solution mvolves modifying the localizer function 90. FIG.
9A depicts the localizer function 90, as defined by Equation
4-3, and a modified localizer function 92, which 1s generated
by adding two more sigmoid functions 94 and 96 to account
for the end points of the corridor 8.

Specifically, define

e=y-coordinate of the eastern end of the corridor 8,

(5-4)

w=y-coordinate of the western end of the corridor 8,

then alter the definition of the localizer function by including
the s1igmoid functions 74 and 96 as follows.

Lix;a,paq,by, . .. anS;bnSpe,w)=L'(x;'Ct, B, a.,by, . ..
x,0L,p)-o(x—-e; a,p).

&, D, S)—D’(W—
(5-5)
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The use of the localizer function L of Equation 5-5 also
requires rewriting of the cost function 1n Equation 5-3, as
follows.

C(y) = Z L(y;; @, B, ay, by, ...

yijel

n ﬂnsa bﬂsa Ea W)

(5-6)

This cost function then should take a high value so long,
as any train trajectory intersection point within the corridor
1s infeasible, but has a low value for all feasible intersection

points, as well as intersection points that fall outside of the
corridor.

Like C’(?), C(?) is a differentiable function in each

—
component of the vector (y). Any Gradient search tech-
niques or the use of other information based on partial

—
derivatives, can be used to minimize the value of C(y ) in
the regions of the sidings.

A Balanced Feasible-Schedule Cost Function

As can be seen from the localizer functions 70, 90, or 92,
the sidings (as represented by the x-axis values a, to b,) are
shown as being of different lengths. In fact, rail corridors
typically have sidings of different lengths. The consequence
of different length sidings, with respect to the cost function
(see Equation (5-6)) is that the cost function minima corre-
sponding to sidings do not have the same y value. See the
cost function 80 of FIG. 8. For siding Si1, the cost function
y value 1s represented by reference character 82 and the y
value for siding S2 is represented by reference character 84.
Note that the minimum at reference character 82 has a larger
value than the minimum at reference character 84. Because
the sidings are different lengths, the sigmoid sum that is
creating the minimum uses a narrower portion of the sig-
moid function for narrower sidings and, therefore, the asso-
clated minimum does not drop down as far as for a wider
siding. This effect may cause the cost function gradient
optimization process to favor a long siding with a deeper
minimum when 1t 1s located very close to a short siding with
a shallow minimum. In the embodiment discussed below,
the cost function will be adjusted to achieve equal minima
for all sidings.

If the derivative of the localizer function 80 has a zero
exactly at the midpoint between sidings, then the search
process will have no tendency to favor one siding over
another. We will call such a localizer function balanced. The
situation depicted in FIG. 8 does not assure that the cost
function derivative will have a zero properly situated,

although the derivative may appear to be zero between the
sidings, 1t can be shown by those skilled 1n the art, through
equation manipulation, that the zero i1s usually off-center.
FIG. 10 1llustrates a means to achieve a close approximation
to a balanced cost function. In FIG. 10, the intervals [a,, b, ],
la,, b,], and [a,, b;] represent locations of sidings along the
main corridor. We would like to assure that the derivative of
the localizer function, as defined for this corridor, will be
zero at the midpoints m,,, and m,, between sidings. The
localizer function generating the cost function 1s a sum of
sigmoids, each of which contributes substantially only
within the 1mmediate vicinity of the sidings for which 1t
creates a minmimum 1n the localizer function. If we assume
that the localizer function at point m,, does not depend
significantly on the sigmoid terms other than those used to
create minima for the two immediately surrounding sidings,
then we may write a simplified localizer 1n the form
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L (x,;'ﬂ 1:blnﬂ2:bz)=ﬁ_g(x_bl UL, ﬁ)+U(X—£I 1>, ﬁ)—D’(X— bz?“—: I?))+D'(x—
ﬂz;ﬂ-:ﬁ)- (5_7)

Note here that the sigmoid functions used to generate the
localizer function are only those sigmoid functions repre-

senting sidings to the left and right of the point of interest on
the localizer function.

It can be shown by computation that

g ..
— (L(x; ay, by, az, b)) =0

0x

x—mlz

provided that
my,—bi=a,—m,5 & My,—a,=br—m,,

as 1s shown 1n FIG. 10. This requirement will force both
sidings to be of the same length, of course, and additionally,
the next siding corresponding to the interval [a,, b,] must

then be the same length as the siding corresponding to
interval [ a,, b, . It follows by induction that all sidings along
the corridor must have equal lengths for the localizer func-
tion for the corridor to be balanced.

Bringing such an artifact to bear would have two effects:

(1) the search might, at least slightly, mislocate intersection
points, since the exact position of the sidings would not be
reflected 1n the model;

(2) siding lengths would not be accurately represented
relative to train lengths.

Of these two drawbacks, the latter 18 1n fact of no
consequence, because the modification to the localizer func-
fion to account for siding lengths will not affect the subse-
quent step of the present invention (to be discussed below)
wherein train lengths are considered relative to siding
lengths. The former effect will be of minor consequence,
since getting train 1ntersection points nearly 1nto the vicinity
of sidings will allow minor adjustments to train speed to
ensure 1ntersections occur at sidings. This step of the present
invention will also be discussed further below.

In another embodiment especially favorable if there 1s a
large discrepancy between the shortest and longest siding,
begin with all sidings assumed equal, thereby preventing,
bias among sidings 1n the early part of the search, and then
adjust the localizer slowly back toward correct siding
lengths as the search process iterates. Specifically, this may
be 1mplemented 1n another embodiment of the present
invention as follows. Betore the search process begins,

(1) compute the average siding length S, as

(5-3)

i (b; — a;)
=1 |

Save =
4 1, 7

(2) redefine the position of each siding S, (corresponding to
corridor interval [a, b.]) as corresponding to the interval

[a'(0), b'(0)], where

ﬂj+bf—5ﬂw ﬂj+bf+Sﬂw _
a; = g,andb;f: £, (5-9)
2 2
(3) define, for any integer n>0,
a'(n)=a' e M+a,(1-e™") and b',(n)=b e +b(1-e*"), (5-10)
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where A 1s a positive real number. Note then that

a:(0) = a; and lim a;(n) = a;,

H—0G

and

pi(0) = & and lim bl(n) = b;.

H—0G

Begin the process by letting n=0 and then as the search
proceeds, mcrease n according to some scheme.

For example, one preferred scheme would be to note
when successive values of the cost function (during the
gradient search process as discussed below) have a differ-
ence smaller than a predetermined threshold (see for
example, the threshold value € referred to 1in conjunction
with Equation 8-3 and the textual material following imme-
diately thereafter), then begin to increase n (relative to the
differences in siding lengths) and recompute the localizer
function until siding lengths are within 5% of being accu-
rate. This will permait the 1nitial localizer to correspond to the
balanced localizer, so that sidings will not tend to be favored
solely by length. The 1nitial “push” of intersections toward
one or another siding will be unbalanced. As n increases, the
localizer function will more accurately reflect the true cor-
ridor structure, so that eventually an accurate schedule is
obtained.

Accounting for Train Lengths versus Siding Lengths

The cost function as described above permits a search for
a feasible schedule only insofar that trains will meet in the
vicinity of sidings. No reference has been made to the
lengths of the trains relative to the sidings, and 1if two trains
have a “feasible” meet at a siding that will hold neither of
them, then the situation 1s not actually feasible. There are
other reasons that trains may not use a siding, related to
orade, transportation of hazardous materials, etc., so the
following analysis to block the use of a siding by a given
train refers to more situations than just train length versus
siding length.

The cost function of Equation 5-6 will not prevent such an
infeasibility from occurring, but in another embodiment, a
simple modification of the localizer functions (Equation 5-5)
on which the cost function 1s based will suffice to prevent
such 1nfeasibilities.

In particular, the cost function contains a term for each
possible train trajectory intersection point. In the previous
embodiment all such terms are of exactly the same form.
Now suppose that we define the localizer functions to be
specific to each possible intersection point of train
trajectories, as follows. In this case, we generalize from the
context of FIG. 2, and assume a total of n¢ sidings

Sy, - -5, along the corridor, and ng trains T, ..., T, . We
need the following notation:
let

H,=the length of siding S,;(i=1, . . . ny), (6-1)
and let

M =the length of train T,(i=1, . . ., ny). (6-2)

For any two tramns T, and T, define the following set of
sidings from amongst all sidings 1n the corridor:

S;={Syke{1 ..., N}& (M, SH)v(M,ZH))}. (6-3)

S;; 1s the subset of sidings along the corridor on which at
least one of the two trains T, and T, can be sided. Now, 1f the
localizer function for the intersection point of the train
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trajectories of 'T; and 'I; does not include the sigmoid terms
(sce Equation 5-7) corresponding to sidings not in S, then
it will remain high even though y;; 1s within a siding, but the
siding 1s too short for either train. In this way, accounting for
siding versus train length actually reduces the computational
complexity of the cost function.

To specifically redefine the cost function 1n this form, first
redefine the localizer functions to be specific to train pairs,
1.€.,

Lilyjian B =B- ) olyj—ana B+ (6-4)
hedij
Z o(yij — bps @, ) —
hedy;
o(w—yij; @, B) — oy — e @, p).
Where the subscript “h” 1dentifies a siding.
Finally redefine the cost function as
C(y) = Z Lij(yy; @, p), (6-6)

yUEf

which extends the definition of feasibility so that now the

value of C(?) will be low if and only if

(1) all train trajectory intersections occur on siding bars, and

(2) at least one of the two trains in such an intersection can
be sided 1n the corresponding siding.

Note that this technique can be extended beyond the con-
sideration of train length versus siding length: if neither of
two trains T; and 'T; can be sided on siding S, for any reason,
then the localizer for the intersection point y,: should omit
the term corresponding to S,. For example, we may have a
case where a coal train could be sided at S,, but would be
unable to restart because of grade, but the mterfering train,
a multimodal, 1s absolutely not to be sided for a coal train.
In this case, the siding may be long enough for either train,
but would be precluded from consideration anyway. Clearly
in other embodiments the definition of each S;; can be
contracted to exclude cases such as this, thereby sharpening
the ability of the search process to prevent unacceptable
sidings.

Economic Costs, Early Departure, and Speed Constraints
The cost function as described by either Equation 5-6 or

6-6 will facilitate the finding of feasible train schedules, but
includes no cognizance of the other effects of altering
individual train schedules to achieve feasibility. In another
embodiment, the cost function 1s modified so that it jointly
considers schedule feasibility, and the economic cost of late
arrival.

Economic Costs (i.e., Late Arrival) Function
Railroad freight service may incur various types of incen-

fives for on-time delivery of freight. For the moment,

consider just two types of delay penalties:

(1) step function penalty—if a train T, misses a preset
delivery time f1, there 1s a fixed penalty cost h;

(2) step function plus linear increase—if the preset delivery
fime f1 1s missed, there 1s an i1mmediate penalty h,
(possibly 0) which thereafter linearly increases at a rate of
m . dollars per hour.

FIG. 11A depicts a single generic form for both of these
cases, since both h; and m; may be zero or positive. Thus,
FIG. 11A 1illustrates a combined penalty function mcluding
both a step penalty plus a linear penalty.

The cost function as proposed 1s 1n not a differentiable
function since it lacks a defined slope at the time t.. This fact
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precludes, or at least complicates, use of any gradient search
technique for minimizing economic cost unless special
allowances are made at or near the time t. For this reason,
FIGS. 11B and 11C depict two approximations to the cost
function, a step plus linear penalty, and a linear penalty only,
respectively. In both figures, a line segment 1s grafted onto
a sigmoid function in such a way that the resulting function
remains differentiable at all points.

For the step plus linear penalty, a sigmoid 1s used to
represent the cost up to a time slightly beyond t,, to which
1s then appended a line of slope m;. See FIG. 11B. Provided
the crossover point from sigmoid to line segment 1s chosen
at the point of the sigmoid where the slope 1s exactly m,,
(reference character 110) the resulting approximation is
differentiable at all points, and therefore smoothly integrat-
able into a gradient search process. If (t , y_) represents the
crossover point; then the differentiable version of the penalty
function may be defined by

ho(t—1, ;) forr<i,

Aill; fiahiami)z{ (-1

m;t+ v, —my;l; fortrz=i,

The sigmoids used here will all have 3, values of 1, so that
the notation for the parameter [, 1n each sigmoid will be
suppressed. This choice 1s made so that the asymptote of the
sigmold 1s determined to be h, in conjunction with the
penalty value to be represented.

The value of o, 1s positive, and may be chosen to
approximate the step cost as sharply as desired. In one

embodiment the search 1s started with “gentle” sigmoids,
then increase the values of the o.;’s as the search progresses.
This allows the early search to progress toward correct
economic decisions rapidly, and then 1n the later stages of
scarch, the mnformation concerning economic cost 1s sharp-
ened to provide more accurate final results.

In order to determine the crossover point 110 ((t , y.) in
FIG. 11B), it 1s necessary to solve the equation

(7-2)

e, h _
E‘( o1 @;))

I‘ZI‘,:

for the value of t_, with t_>t.. The technique for solving this
equation 1s well known to those skilled 1n the art. It should
be mentioned that the slope of o(t-t;c;) is everywhere
positive, and takes a maximum at the point t=t. That
maximum can be driven as high as possible by selecting a
large «.;, so solving Equation 7-2 1s always possible.

Finally, for the purposes of expressing the gradient as will
be explained below, note that the independent variable t 1n
Equation 7-1 1s 1n fact a function of the departure time d; and
speed s; of tramm T, and thercfore we may rewrite the
equation as

( L L

hfﬂ'(df + — — 1] {1’5) for df + — < I, (7_3)
¥ S

Ailsi, dis b, B, m;) =< 7

m;d; + — + v, —m;l; ford, + — =1,

\ A S

FIG. 10C also uses a transition from sigmoid to line
secgment at point 112 on the sigmoid where the slope is
exactly that of the line: the difference 1s that in this case the
crossover point t_ 1s less than t. Except for that fact, the
approximating function has a description identical to that
provided 1in Equations 7-1 and 7-3.

Now, we extend the cost function of Equation 5-6 or
Equation 6-6 as follows. The extended cost function
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accounting for both schedule feasibility and economic cost
1s defined by

S, o (7-4)
FO) =nCO) +(L=m ) A3, ds i, iy my),
=1

where

Me[0,1] is a weighting factor between O and 1 used to
adjust the relative importance between economic and
schedule feasibility considerations.

ﬁ L) - *
d=(d,,d,, . .., d, ) is the vector of train departure times,
—

S =(81,8, - - - , S, ) 1s the vector of train speeds.

In fact, the intersection points y of train trajectories are
functions of the train departure times and speeds, so we may
rewrite Equation 7-4 in the form

5> 7 5> ) (7_5)
F(3, d) =nC(s, d) + (1 —TEJZ Ai (s, & 4, By, 1),
=1

and 1t 1s from this latter form that the gradient may be
directly computed as discussed below.

The value of the weighting factor y must be chosen, and
the choice 1s of some importance. Note that the cost function
as defined i Equation 7-5 will be driven upward both by
infeasible scheduling choices, as well as choices that make
trains late, and vice versa. The difficulty arises when changes
of departure times or speeds cause countervailing effects 1n
the two halves of the cost function of Equation 7-5. If the
first term, representing feasibility, 1s driven up by less than
the second term, representing timeliness, 1s driven down,
then the search process may be emphasizing economic cost
fo such an extent that 1t converges on infeasible schedules.

In one embodiment, the weighting actor 1 can be varied
during the search. For example, starting with a low value of
n would tend to try to force low economic cost at the
expense of feasibility. This might cause the trains to swap
places 1n the lineup, to improve the overall timeliness of
arrivals, before the actual emphasis begins on selecting
speeds and departure times that create a feasible schedule. In
any event, the decision as to how to vary 1y during the search
will benefit from actual testing with examples, and final
mechanism for modulating v will necessarily come from
experience familiar to those skilled in the art.

An approximate process for gauging the weighting factor

. . = =
Ci1 is to note that the cost components C( s ,d ) and

ny
Z A(si, dis 1;, B, m;)
i=1

comprise different numbers of summands, and therefore
have different magnitudes approximately in proportion to
the number of summands 1mnvolved. For example, if there are
a total of twenty trains, resulting in sixty intersections on the

string graph, then C(?,E‘) comprises sixty summands and

nr
Z A(s;, dis 4, by, my)
i=1

comprises twenty summands. To more or less equalize the
effects of these two contributions to the cost function, one
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would set the weight m to the value n=20/(60+20)=0.25,
thereby equalizing the contribution of each half of the cost

) ) —_— >
function (i.e., the two terms C( s, d) and

nr

Z A(si, dis 1, By, my))

1=1

to the total cost. From this example, 1t can be seen that the
establishment of a specific value of 1 1s very speciiic to the
situation under study, as 1s generally recognized by those

proficient 1n the art of complex optimization.
Early Departure Cost Function

The late penalty assessed for economic reasons will tend
to prevent train departures from being arbitrarily late.
However, the formulations of cost functions so far given
(Equations 5-6, 6-6, 7-5) have no terms which prevent the
train trajectories from being arbitrarily early. A cost function
to prevent early departures can be formulated in terms of the
ubiquitous sigmoid function by defining a cost

T

Ed) =) [1-o(d—e; o)),

=1

(7-6)

where

¢ 1s the earliest possible departure time for train T,
and

a.'. 1s denoted with a prime to distinguish it from the o, of
Equation 7-3.

FIG. 12 represents a term of this cost function for train T
clearly, 1t rapidly becomes high as train T, 1s pushed toward
an unrealizable departure time, and rapidly drops as the
departure time enters the realizable region. There 1s no
actual economic cost associated with early departures, just a
feasibility 1ssue. Therefore the terms of Equation 7-6 rep-
resenting each train are arbitrarily given a height of 1, (i.e.,
sigmoid asymptotic value of 1) and this Equation 7-6 can
likewise be combined with the cost functions for schedule
feasibility and economic cost. Speciiically, let

G(3, d) = niC(3, d) + mA(S, d) + 3 E(d), (7-7)
where
m+n+ns=1. (7-8)

In one embodiment, the specific weighting of the com-
ponents of cost in Equation 7-7 can be calculated as dis-
cussed above 1n the example with twenty trains and sixty
intersections points 1n the corridor. The schedule feasibility
and early departure terms will each have sixty summands
and the economic penalty term will have twenty terms.
Using an equation similar to the one set forth above for
calculating m, we calculate n,=%7, n,=37 and n,=34. Other
welghting values can be established based on specific user
circumstances.

Maximum Train Speed Cost Function

In the embodiment when the search process i1s permitted
to vary train speeds 1n order to achieve feasibility and cost
minimization, there must be a means to prevent the speeds
from exceeding practical limits for the trains and tracks
involved. In this embodiment we will create an additional
component of the cost function that will enforce such speed
constraints. Such a speed constraint can be 1mplemented
analogously to the early departure constraint of Equation
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7-6. Specifically, define a speed cost function as

nr i
V) = ) olsi =™, o
i=1

where
s, ""*)=the maximum allowable speed for train T..

Like the other cost functions discussed herein, since the
maximum speed cost function 1s derived from a sum of
sigmoid functions, 1t 1d a differentiable function with respect
to the intersection points of the trains on the corridor.
Therefore a gradient search process can be used to find the
minima of the cost function values.

The total cost function, including feasibility of meets and
passes, constraints on early departures and late arrivals (1.e.,
economic penalty), as well as constraints on maximum train
speed then 1s a generalization of Equation /-7, namely

G(3, d) =n1C(3, d) + A3, d) + ;3 E(d) +n4 V), (7-10)

where

Mm+m+n+ns=1 (7-11)

The specific values of the weighting factors for the
components of Equation 7-10 can be determined by experi-
ment. In one embodiment, using the same scheme as set
forth above in conjunction with Equation (7-8), for twenty
frains and sixty intersections, 1,=0.1 and n,=n,=m,=0.3.

The Gradient Search Process

The gradient Vf (?) of any function f(?) is a vector in
the same space as the independent variable X which points

in direction of maximum change of f(?) within a small local
arca on the function’s surface, thereby pointing the way
toward a local minimum or maximum. As such, 1t 1s much
heralded 1n the legends and poetry of optimization theory.
Calculation of the gradient of the various cost functions
discussed below will permit location of the local minima
identifyring schedule feasibility.

In the current context of train scheduling, as will be appre-
ciated by those skilled 1n the art, there are a number of
possible parameters describing a train trajectory that may be
varied to resolve conflicts within a rail corridor, 1.¢e., to drive
the cost function lower. The mathematics for a gradient
scarch varying only the departure times or speeds of trains,
and then varying both departure times and train speeds 1s
discussed below. We will first deal only with the cost
function associated with schedule feasibility (Equation 5-6)
but will then extend the cost function to include consider-
ations of economic costs, early departures and maximum
train speed as discussed above, and represented by the cost
function of Equation 7-10.

Gradient Search to Optimize Schedule Feasibility By Vary-
ing Only the Train Departure Times

First, assume that there are n, trains and permit the vector

? (as represented in Equation (5-2)) to contain all possible

intersection points. But each intersection point y,. has the
characterization given 1n Equation 3-6, which 1s repeated
here for convenience.
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SjSJ'(dj — d_;) + (Sjgj — SJQE)L
y{f — "

S;—SJ,'

(8-1)

then y, 1s directly expressed in terms of departure times and
speeds for all of the trains i1n the schedule. Also for
convenience, recall the notation for speeds and departure

times originally introduced above, which are repeated
below.

L=the length of the corndor,

s;=the speed of train T, (taken as a negative value for T,
westbound),

d.=the departure time (time of entry into corridor) of train
t, and

. {0 tor T; eastbound

1 for T: westbound

Next define the vectors ?=(Sl, ...,8,)and(d,,...,d,).
Express the cost function 1n the following terms. For nota-
tional convenience, suppress the dependence of the localizer
and cost functions on o and 3.

C(y) = C(5, ﬁ_f) = Z Lij(yy) = Z Lii(si, sj, di, d;). (8-2)

yHEf yHEf

The objective i1s to vary the vector d (train departure
times) in order to drive the cost function lower, and one
technique which can at least locate a local minimum of the
cost function 1s the gradient-directed descent, defined itera-
fively as follows.

—
(1) Start with an initial estimate for departure time, d , for
cach train n,, a stopping criterion, €>0, and a step size h.

(2) For the estimate, ﬁﬂ, compute the gradient V(E})C(E)\

., > _ —> _ —>
d=d _ of the cost function at d , for varying only d, and
normalize i1t so that it has an absolute value of 1, 1.e.,

define

v C(d) (8-3)

7=

|V C(d)

In the notation, the dependence of the cost function on s

- - - %
1s suppressed, since for the nonce we are varying only d.

(3) Compute the value CH=C(€H) compute €H+1=€H—hg,
and then compute CH+1=C(€‘H+1).

(4) If |C,-C, _ ,|<e, then the search is stopped, and ﬁml is
accepted as the final answer. Otherwise, replace E‘H with

E‘ml and return to Step (2). In the preferred embodiment,
the search is stopped when |C,-C, _,|=(0.001)|C,-C,|.
The stopping threshold for such problems 1s very situation
dependent, as 1s generally recognized by practitioners of
the art of optimization.

[t remains to explicitly represent the gradient V(E)C(E)\

—
d=d _ which 1s used 1 the iteration. The cost function as

shown 1n Equation 5-6 1s a function of the vector of

— —
intersection points, y , and the components of y are func-

— —
tions of the components of the vectors s and d. Since at
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this point only d is variable, the gradient V(H})C(F) of the Starting with

cost function, 1s a vector of the form

J 4, 4,
VO CE) = [6—1(:(5) ﬂ(:‘(.s) 5 C(E)], (8-9)
d} J 4, e, = (8-4) ny
C(ﬁf)— ﬂ_chc(d) EC(Q’) Y C(d)|, 5
ny

we need to compute the components of the form

and we may obtain each component of V(E)C(ﬁ) by ;

applying the chain rule for differentiation: 10 ——(C6))
Sk
1 \ (8-5)
Jd S 4, s,
ECM) dd }Z M| = aa, }Z Fii) using the differentiation chain rule. To that end, note that
i Er 15
p 3 p (8-10)
— — (L, i : — 5) = —
Z [ (Lie (Vi) 5 (yk)] 55 (CO = 5= }Z LU(yU)
o
J sisk(di —di) + (i — s¢ 0L
= —— (Lig (Yir) ( _ ] 3
=y 6 Vik adk S — 5% 20 — E Z sz(y:k)
Vi €1
I i | (5-6) 5
yIZE.’a 1;{( k(yk))( i k) — Z ﬂ(er(yrk))_(yzk)
25
Using Equation 8-6 and Lemma A3 1n the Appendix A we
can ﬁnally CXpress the k-th component of the gradient as and we proceed to obtain an exp]ici‘[ expression for
§, o a8 (8-7) G
H(C(a’)) = BZ{ Z [ (i = b (B~ (v — b)) = 3V 5o Vi)
yigel
oy —a; (B —o(yy —a;) +
as follows.
0 SiSk(dy — di) + (8:0 — s 0L (8-11)
ﬂ(ym)_ 0 k( Si — Sk ]
_Isiseldi = di) + (50 — s 0)](= 1) + (s; = sp)si(di — &) — ;L]
B (s — 5k )*
_ Sildy — di)(si — 2sp ) + L(2s51.0; — s5i0 — 5:6;)
B (i — 5 )* |
45 R .
_continued Exploiting Equations 8-10, 8-11, and Lemma A3 of the
o(w =y )(B—o(w—yy)) - Appendix A provides a final explicit form for the gradient,
as shown below
AIRY
o(yik —e)f—o(yik - E’))]( — k) - 50
N
(8-12)
E(C(S)) = E {Zl lo(yix — b)) (B—0(yu —b;) —
Y €1 J
Gradient Search to Optimize Schedule Feasibility by Vary- (i — a)(B - oy —a;) +
ing Only the Train Speeds 53
ow—yu (B —o(w—yy)) -
Much of what was developed above can be applied here w
as well. The primary difference 1s that we now emphasize vy — e} — (v — E))]i(m .
— —
that C(y )may be regarded as a function of the vector s, g /
with d held constant, and we wish to vary s to seek a local
minimum of the cost function, and suppress the dependence - The search rule using the gradient as computed in Equa-
. s fion 8-12 1s an exact analogue of the search rule given 1n
n d. We may therefore represent C( y ) as _ _ — > —>
s Equation 8-7 with any occurrence of the vectors d ,d g, d,,
—> _ — - —>
d ., ... replaced with the vectors s,s 8, ., ...,

C(y)=C(s). (8-8) respectively.
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Gradient Search to Optimize Schedule Feasibility by Vary-
ing both Departure Times and Train Speeds

Bearing in mind that the speeds and departure times of
trains can be varied independently, we may also exploit the

—=>
expression of the cost function as a function of both s and

ﬁ .
d, 1e.,

C(y )=C(s , d),

and consider the joint variation of speed and departure time
to seek a cost function local minimum. In this case, the
ogradient vector takes the form

V69 oz, d) = (8-13)

J . - s, Lo 0 5 4, L oo
[EC(S, d), - aS”T C(S, d), HC(S, d), - @dnT C’(S, d)]

—> —> ‘
Because s and d are not functionally dependent on each
other, 1t follows that

4, ~

Y (8-14)
E¥) (C(d)),

0 o O O (ci.d
5o (CE. d)) = 5—(CE and —=-(C(3. d)) =

so the components of the gradient of Equation 8-13 are
already determined by Equations 8-7, 8-11, and 8-12.

The search rule 1 this case 1s of the same form as
Equation 8-7, except that we consider the aggregate vector
s.d),

V=

(8-15)

— — —>
and replace all references to d,d,,d,,

_ — = > —> _
with references to v,v,, v , Vv _ ., respectively.

Including Early Departure Effects in the Gradient Search

Recall from the discussion above that a cost function
causing high cost for early train departures, and low cost
otherwise, can be posed 1 terms of the sigmoid function.
Repeating Equation 7-6,

ﬁ -
d ., 1n that rule

nT
Ed)= ) [1-o(d; —e;all,

i=1

(8-16)

where
¢, 1s the earliest possible departure time for train T,

E; =

and

o', alfects the steepness of the rise of cost as early

e

departure 1s approached.

The value of ¢' may be set by experiment, but the results
should not be particularly sensitive to 1ts value. A good first
guess, 1n one embodiment, for the value of a'. would be 0.8,
although this parameter might be made smaller 1f there 1s
some latitude as to the earliest departure times.
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If we wish to combine this early departure cost with
schedule feasibility cost, we do so 1n a weighted sum of
terms, 1.€.,

D(s, d)=C(s, d)+(1-mE(d me(0,0), (8-17)

This concept was previously discussed above. See for
example, Equation 7-7 where the aggregate cost function
includes schedule {feasibility, economic cost, and early
departure effects.

Since the gradient operation 1s linear on the space of
functions to which 1t applies, we may write

(D(s,d

N=nV(C(s, d)+A-mVE(D)). (8-18)

We will rely on the previous gradient computations for the
first term on the right side of Equation 8-17. See Equation
8-7 with the substitutions set forth 1n Equation 8-15 and the
text following.

To deal with the second term on the right side of Equation
8-17 or 8-18, assume only the departure time vector d will
be varied 1 a search for a schedule which 1s both feasible
and prevents early departures. We then wish to determine the

gradient of E(g) relative to the vector ?, which is of the
form

. . O .
VN EW)) = [a—dl(E(d ).

d , -
E(E(az)),, s

and (see Equations 8-6 and A-2)

o T 9

H(E(E )= (17

(8-20)

= —(1 =)l —o(d; —er; o )o(dy —er; ap)).

We can now construct the gradient V(E)(D(?,ﬁ)) using
Equations 8-7, 8-18, and 8-20. Departure times are inde-

—
pendent of train speeds, so the cost component E( d ) does
—

not depend on the speeds s . Thus the final form of the
oradient

VEOECS d)=E,, ..., E

P TRy T

. Eznr) (8-21)

with both train speeds and departure times variable, can be
summarized as

(8-22)

forieil, ..., nr}

: d)) —(l-mU -o(d; —e;;a))a(d; —e;;a3)) forief{nr+1, ..., 2nr)

where reference 1s implicitly made to Equations 8-7, 8-12,
and 8-15.

Including the Economic Costs 1n the Gradient Search

The types of costs incurred by railroads for late deliveries
were discussed above, and there was provided a differen-
fiable approximation to the function of late costs expressed

as a function of time. By using such an approximation,
which 1s everywhere differentiable, the avoidance of late
costs can be incorporated into the gradient search process.
Arrival times are affected by both train speeds and train
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departure times, although either speed, departure time, or
both may be varied during the search.

The form of the late cost approximation function was
given by (see Equation 7-3)

hio(u; — 15 ;) for u; <1, (8-23)

Ai(u;; t;, by, m;) = {

Ve +m;(u; — 1) foru; =1, ’

where
u=the actual arrival time of the train,
t.=the time at which late penalties begin to accrue,
h=the size of the step penalty (in k$),

m,=the rate of the linear portion of the penalty (in k$/hr.),
and

t =the transition point where the cost function changes
from a sigmoid to a line segment.
Shortening this cost function to the form Afu;) for the

) —_—
nonce, and defining u =(uy, . . ., u,, ), We may express a cost
function which accounts for the arrival times of all trains 1n
the form

I 8-24
AG) = ) Aiw). &
i=1
But we also have the relationship
w=d;+ (8-25)

3§

so we may consider an alternative representation of Equa-
fion 8-24 as

(8-26)

This latter form of the cost 1s appropriate to our search
process, since that process 1s based on varying the compo-
nents of the vector s and d.

Now to incorporate late arrival costs 1nto the search, we
extend the cost function of Equation 8-18 to the form

D(’s, d)=,C(s, d naE(d)+nA(s, d), (8-27)
where the 1, are weighting factors satisfying,
Ny +HNo+1s=1, (8-28)

The choices for these weights must be determined by
experiment, and 1n one embodiment of the present invention
it 1s possible to vary them iteratively as the search
progresses. Individual users of the present invention may
assign these weights as determined by the characteristics of
the corridor and the costs imposed to the railroad for the
various elfects built into the search algorithm. In the pre-
ferred embodiment, these weights take on values as deter-

mined in conjunction with the discussion of Equation (7-8)
above.

é,

k

0

=111 5. (C(S. d)) + 1
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Gradient Search to Optimize Schedule Feasibility, Early
Departures, and Economic Costs by Varying Only the Train
Departure Times

A search using the late arrival cost function of equation

. . . . ﬁ
8-27 may 1mvolve variation of only the departure times d,

in which case the gradient by which the search 1s directed 1s
of a form analogous to that shown 1n Equation 8-19. We may
then express a component of the gradient vector in the form

0 0 ~

L, = ) P B
5 (D6 ) = m 5 (C. d)) + ma g E) + 1345, d)

(8-29)

Borrowing from Equations 8-6 and 8-20, we expand Equa-
tion 8-29 to the form

(8-30)

54 (Pl 3) =

ﬂ(mw))( — |-

na(l —o(d, —ep; @ )o(d, —ey; @) +

0 , 8,
7?3ﬂ( R(HRJ)H(H;{)

2.

(1l —o(dy —ex; a)o(dy —ep; ;) +

c| D Lty k) -

5‘m i — Sk

{U:ﬂhkﬂ’k(l — (U ap))o(uy; o) for uy <1,

N3y, for u;, > 1.

which, with the help of Equation 8-7, provides an explicit

= —
representation of the components of the gradient of D( s, d )
when only the train departure times are varied.

Gradient Search to Optimize Schedule Feasibility, Early
Departures, and Economic Costs by Varying Only the Train
Speeds

If the departure times of trains are held constant, and
speeds are varied, then the gradient used to alter the speed

—
vector s =(s;, . .., s, ) during the search is of the form
VED(s, H=Vm,C(s, DemaE(d)nA(s, )

=, VC(s, d ), VA(s, d), (8-31)

Where E(ﬁ) 1s independent of the train speed. We therefore

can obtain the k-th component of this gradient as

(8-32)

Sk

4, J
m (A @)) E (1y )]
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-continued
(—hpay (1 — o (uy; ap))o(uy; ay)
6 L = SJ%
= —Cls, d})) +13-
g (CB ) +msy
st

where the first term on the right side of Equation 8-32 can
be expressed 1 a completely explicit form by reference back
to Equation 8-12.

Gradient Search to Optimize Schedule Feasibility, Early
Departures, and Economic Costs by Varying Both Train
Departure Times and Train Speeds

— —
In this case, both d and s are variables in the complete
cost function of Equation 8-25, so the gradient takes the
form

VE-DD(s, DN=nVEDC(s, D),V OECD ), VE
HACs, d)). (8-33)

Again regarding the gradient in vector form, the compo-
nents of the first term of the sum on the left of Equation 8-33
are readily obtainable with the help of Equations 8-14, as
explicitly represented with the help of Equations 8-7, 8-11,
and 8-12. The components of the second term can be
obtained using Equation 8-20, and the components of the
third term are obtained using Equations 8-30 and 8-32.

Including Maximum Speed Limitation Effects 1n the Gradi-
ent Search

A component of the cost function that would rise sharply
in value as the speed s of a train T, became close to the
maximum speed s, specified for the train was developed
above. That component had the formulation (see Equation

7-9)

nr i
VE = ) otlsi =) N
i=1

and occurred as a weighted term of the cost function, 1.e.,

— —
s, d

G( s,

)=, C(S, dpmACS, Do E(d)n,V(s) (8-35)
where the sum of the weights 1s chosen to be 1 1n the
preferred embodiment. Since variation of speed 1s indepen-

dent of the departure times of trains, we have that

VOV $)=0, (8-36)
so constraining the search by maximum train speeds does
not effect the components of the gradient obtained as partial
derivatives with respect to the departure times. Relative to

the gradient terms obtained as partial derivatives with
respect to train speeds, we have

VOG(d,5) = VO Cld. 3) + VO A(d, 5) + VO VS (837

o C(d,3) 4 A 5) +
2,

35y,

e,
U4[E(V(§))a SRp (V(E))]

and
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(i =1y)

(et > 1)

-continued

8 [
Z o(s; — ngax}; @, f3)

0s
S

s (8-38)
a—(V(S)) =
Sk

¥
—(1 —o(s; = ™™ @, Po(s; — s a, B)

p

where the explicit form of the derivative in Equation 8-38 1s
from Equation A-2 of the Appendix.

Expression of the Full Gradient

For the sake of completeness, the complete expressions of

these components of Equation 8-38 are provided below.
First, let

¥

— (D3, d)) forkell, ..., nr) (8-39)

s
D}r{ = 3 k

8, . -
E(D(S, d)) forkei{nr+1, ..., 2nr}

and select the weighting factors 1, M-, N1, N4 satistying

N4+, +15+1,=1.

- . ﬁ - .
Note the mndexing of the vector D places the partial deriva-
fives with respect to s, first and then the partial derivatives
with respect to d, second, but there are n, values of each
index.

i)

y.i'f{ =f

N (8-40)
Z (i —0;)(B—0(yiu — b)) — oy —
=1

J':

OV —aj))(B—o(yy —a;))+(w—yu)(S—o(w-—

e,
Vi) —o(yu —e)(f—o(yu —e))l e (Vi )]} +

) (_L]{hkﬂ:’k(l—D'(Hk;ﬂ’k))ﬂ-(”k;@k) (e = 1)
-

T2
St (1t > Iy)

_|_
my,

& (max) (max)
M —o(si —si 5 @, Bo(s; —si s a, B

p

where

0 _Sildi = di s = 2sp) + L(2si 0 — 510 — 5i6);)

E(J"H{) = (5: — 5. )2

(8-41)

Forke {nr+1, ..., 207}, (8-42)
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-continued

@ IS
Dy =mn BZ*" Z (Vi = b)) (B —o(yiu — b)) —

vl 7

oy —aj))(B—olyw —a;))+
o(w—Yu )(B—ow—yi))—

(i — eXB— i — | ——m |} -

S — 5

m(l —o(di — e a))o(di —ei; @) +

{hkﬂ:’k(l — o (g o )o(u; ) for uy < 1.
13

my, for wu; > 1,

[Mlustration of the Gradient Search Process
An example with twelve trains, six in each direction,

running 1n a 150 mile corridor over an eight hour time
window 1s provided below.

FIG. 13 shows the string graph for the 1nitial unprocessed
schedule (i.e., train departure times were chosen without
regard to feasibility), and Table 1 below shows the infor-
mation concerning each train. There are twelve trains on the
corridor and the time frame of interest is eight hours (12:00
to 20:00). The columns of the table indicate:

(1) the train identification number (shown in the string graph
as an integer at the center of each associated string)

(2) direction of travel (Direction),

(3) earliest acceptable departure time (Min. Departure),

(4) actual departure time (Act. Departure),

(5) latest arrival time before penalty is incurred (Max.
Arrival)

(6) initial speed (Speed),

(7) train length (Length),

(8) initial penalty incurred for being late (Penalty Step),
(9) per hour penalty for each hour late (Penalty Slope),
(10) maximum permitted speed (Max. Speed).

TABLE 1
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The gradient search as discussed above was 1nitiated with
departure times being varied and train speeds held constant,
and with the cost function including the penalties for early
departure and economic penalties (i.e., late arrival). The
resulting string graph 1s shown in FIG. 14.

Comparing FIG. 14 with FIG. 13, 1t can be seen that of the
initial 31 points of intersection of train trajectories, in FIG.
13, nine were close to feasible, where we will define “close”
rather arbitrarily 1n terms of the intersection dots at least
touching a siding 20. Thus 23 intersection points were not
close to feasible. In the final version of FIG. 14 some
intersection points have disappeared, primarily because

frains four and five have joined together 1 a convoy
(identified in FIG. 14 by the number 5 on the coincident
strings), and some trains have been pushed off the string

oraph. In FIG. 14, there are only two intersection points not
meeting the definition of close.

Table 2 below shows the final schedule, which resembles
the original schedule except for the actual departure times of
trains. Note that all trains require 7.5 hours from actual
departure until arrival at the destination, so only train six 1s
late, but frain six 1s 1n fact only four minutes late.

Initial Train Schedule. before Gradient Search

Train Min. Act.

[D  Direction Departure Departure Max. Arrival Speed (mph) Length (mi.) Penalty Step Penalty Slope Max. Speed

1 west 6:45 7:30 17:45 20.0
2 west 8:30 9:15 19:45 20.0
3 west 11:00 11:20 21:30 20.0
4 west 13:00 13:15 23:30 20.0
5 west 14:30 14:50 25:00 20.0
6 west 16.00 16:20 26:30 20.0
7 cast 7:00 7:20 18:00 20.0
3 cast 9:00 9:30 19:45 20.0
0 cast 11:00 11:30 21:30 20.0
10 cast 13:30 13:40 24:00 20.0
11 east 15:00 15:15 26:00 20.0
12 cast 17:00 17:15 2°7:00 20.0

R S S R S Vo B U e T SO G

60

65

1.000 0.450 40.0
1.500 0.150 35.0
1.000 0.300 45.0
0.000 0.000 50.0
2.000 0.200 40.0
1.500 0.000 40.0
2.500 1.000 35.0
1.500 0.300 50.0
0.000 0.000 35.0
0.000 0.500 40.0
1.500 0.250 40.0
0.000 0.000 40.0
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TABLE 2

30

Train Schedule after Gradient Search

Train Min. Act.
[D  Direction Departure Departure Max. Arrival Speed (mph) Length (mi.) Penalty Step Penalty Slope  Max. Speed
1 west 6:45 6:50 17:45 20.0 1.1 1.000 0.450 40.0
2 west 8:30 9:17 19:45 20.0 1.2 1.500 0.150 35.0
3 west 11:00 11:41 21:30 20.0 1.4 1.000 0.300 45.0
4 west 13:00 14:10 23:30 20.0 1.0 U 000 0.000 50.0
5 west 14:30 16:37 25:00 20.0 1.4 2.000 0.200 40.0
6 west 16:00 19:04 26:30 20.0 1.1 1.500 0.000 40.0
7 east 7:00 7:40 18:00 20.0 0.9 2.500 1.000 35.0
8 east 9:00 10:03 19:45 20.0 1.1 1.500 0.300 50.0
9 east 11:00 12:29 21:30 20.0 1.3 0.000 0.000 35.0
10 east 13:30 14:59 24:00 20.0 1.1 0.000 0.500 40.0
11 east 15:00 17:20 26:00 20.0 1.1 1.500 0.250 40.0
12 east 17:00 19:48 277:00 20.0 1.0 0.000 0.000 40.0

Improving the Gradient Search Result by Speed Adjust-
ments

In this embodiment the gradient search result 1s modified
by adjusting train speeds between sidings to achieve better
siding meets. The gradient search process brought train
intersections near, but may not have brought them exactly to
the center points of sidings. This embodiment includes a
technique for accounting for actual siding delays by chang-
ing 1ntersiding speeds of trains as necessary to preserve the
positions of intersection points at sidings. In order to provide
a standard basis for that process, 1n this embodiment we will
first adjust the results of the gradient search so that the
intersection points of train trajectories have y-coordinates
precisely at the centerpoints of sidings. The intersection
points must be moved 1n order of 1increasing time coordinate,

to assure that all prior intersection points have already been
appropriately adjusted.

To center intersection points at sidings and side specific
frains, the train speeds of the trains involved must be
modified somewhat. Of course, modifying a train’s speed at
any point could affect 1ts trajectory downline, which would
move the positions of its future meets with other trains. This
1s avoilded by requiring that the centered intersection points
remain fixed, and that train speeds be varied as necessary to
meet that requirement. More specifically, the train that will
not be sided at a given intersection point will be constrained
to pass through the centered intersection point, and the train
that will be sided will undergo speed adjustments as needed
to arrive and side before the opposed train 1s within an
interfering (i.e., minimum stopping distance) of the siding
train.

The 1ntersection points are processed 1n of increasing time
order, so that all downline adjustments of trajectories may
account for earlier modifications. As each intersection point
1s processed, the decision as to which train to side may
depend on various criteria, which can be established as
special rules auxiliary to the overall algorithm. For example,
if only one of the two trains is too long for the siding, then
the other train must be sided. Another special case would be
invoked for a train which could not restart if 1t sided on an
upgrade of the corridor (that is, it could not generate
sufficient tractive effort to move uphill).

If there are no special circumstances dictating that one of
the two trains should side, then the criteria for deciding the
train to side 1s that of train speed: 1n efl

ect, siding a train
requires that it arrive “early” at the siding, relative to the
centered intersection point, so that i1t can slow down and pull
into the siding without interference from the opposed train.
Arriving early implies that the train must obtain a speed
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orcater than that which was nominally assigned by the
ogradient-search process of the present invention, and there 1s
of course, some practical upper limit on train speed, as will
be discussed below. The siding decision must be made based
on which of the two trains will be driven less far toward its
upper limit, given that 1t must be sided. Once the decision 1s
made, the speed and arrival times of both trains are fitted to
the actual requirement of siding the train.

FIG. 15 shows such a situation, where the intersection
point (X;;, y;;) of trains T; and T is to be moved to the center
of siding S, (de&gnated by pomt (X5, (a5,+b;,)/2)), given that
the 1mmedlately prior 1ntersection points affecting trains T,
and T, have already been adjusted. Clearly the speeds
needed for train T; (from S,_, to S;) and for T; (from S, ,
to S,) are given by

Chp — Cp1

Sih] = (10-2)
Xij — Xik

and

S = Ch+l — Ch (10-3)
Aij = jp

where
by, —a

o h2 " tor A=1, ..., Rn,,

and trains T, T, are the trains representing the immediately
previous meets of with trains T; and T, respectively.

There 1s also the case where there 1s no prior point of
intersection, i.c., where the intersection point (x;;, y;;) 1s the
first mtersection point for either or both of T; or T;, as shown
in FIG. 16. In this case, the speed needed to assure inter-
section at the siding center 1s given by

Ch
Sin-1 = for T; eastbound

}:jj' — d;

(10-4)

and

L—Ch

o (10-5)
i Xij — d;

for T; westbound

FIG. 17 illustrates the result of centering all meets for the
ogradient search results shown 1n FIG. 14, on sidings 181
through 188 by adjusting train speeds between sidings. In
clfect, rather minor speed adjustments are usually sufficient
to center all meets.

Resolving Siding Conftlicts

There 1s one possible undesirable side-effect that may

arise when centering meets or passes, as illustrated in FIGS.
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18A and 18B. After executing the gradient search process,
the 1nitial intersection points are shown 1n FIG. 18A. Train
T, intersects train T'; at point 180, train T, 1ntersects train TA
at point 181 and train T, 1ntersects train T, at point 182. The
result of centering all the meets represented by points 180,
181, and 182, by speed adjustments as discussed above, 1s
shown 1n FIG. 18B. Train T, 1s sided on siding S, _ , at point
183 because of its meet with train T, and train T, 1s sided
at siding S, , at point 184 because of its meet with train T..

The difficulty created is that trains T, and T, must both be
sided on the same siding S__ ,, although they are traveling in
opposite directions, because one train i1s waiting on the
siding that the other tramn must occupy before the former
train pulls out. This cannot be accomplished, so the result of
centering all of the meets will in a case like this be an
infeasible schedule. We will denote these artifacts as siding
conilicts.

The meet-centering process can produce two types of

siding conflicts, as shown 1n FIG. 19A and 19B. FIG. 19A
repeats the siding problem 1illustrated in FIG. 18B. FIG. 19B

illustrates another siding confilict situation, but as 1n FIGS.
18B and 19A, the problem 1s again that two trains traveling
in opposite directions must be sided on the same siding.
Tramns T, and T, intersect at pomnt 194, with the former
sided, while trains T, and T, intersect at point 196, with the
former sided. Both of the siding conflict types shown 1n
FIGS. 19A and 19B can be resolved by moving the meet of
the conilicting trains to an adjacent siding, as shown 1n
FIGS. 20A and 20B.

FIG. 20A represents a siding conflict 1dentical to FIG.
19A. The conflict at the meet pomnt 200 1s resolved by
moving 1t upward to point 201 i FIG. 20B. This 1s accom-
plished by accelerating or decelerating the necessary trains
between adjacent sidings. Similarly, the siding confilict of
FIG. 19B can be resolved by moving it downward.

This process of resolution as illustrated by FIG. 20B (that
1s, the upward and downward movement of meets to resolve
siding conflicts) will work if the trains in conflict have at
most one meet at the siding to which their meet 1s moved,
but will not work 1f both trains have meets at the siding to
which their meet 1s moved, as shown 1n FIGS. 21 A and 21B.
In that case, the resolution of the original siding conflict at
pomt a 210 in FIG. 21A by moving it to pomt 211 1n FIG.
21B, simply creates yet another siding conflict.

However, there 1s an inductive way to resolve all siding
conilicts which might occur from the meet centering pro-
cess: 1 we call the siding conflict of FIGS. 18B and 19A an
upward-resolvable conflict, and the siding conflict of FIG.
19B a downward-resolvable conflict, 1t follows that any
siding contlict occurring on siding S, 1s 1n fact resolvable,
because the contlict point may be pushed to the end of the
corridor, where any meets with the two trains involved can
be avoided by slightly modifying the departure/arrival times
of the mvolved trains as necessary.

This 18 1llustrated 1n FIGS. 22A-D, where the 1llustrations
on the right provide resolutions of the siding contlicts on the
left. The intersection at point 220 1n FIG. 22A 1s moved to
point 221 1n FIG. 22B, by reducing the speed of train T,. In
FIG. 22C, the siding contlict at point 224 1s removed by
moving the mtersection of point of trains T, and T, to point
225. Now feasible sidings can occur at intersection points
225 and 226.

Now we may proceed by induction to show that all siding
conilicts are resolvable, with the basis being provided by the
techniques demonstrated 1n FIG. 22, and with the inductive
assumption being that all siding conflicts occurring on siding
S,._i,forn=2, can be resolved by pushing the contlict point
to the end of the corridor.
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FIGS. 23 A through 23E illustrate a downward-resolvable
siding conflict on siding S,, and 1t 1s shown that for all
possible variations of that conflict, it can be resolved to a
situation where, at worst, 1t results 1n a new siding conflict
resulting on siding S, _,. By our inductive assumption, any
such 1nduced siding conilicts can be resolved. FIG. 23A
shows the original meet situation. FIG. 23B (case 1) shows
the resolution if trains T, and T, have no meets at points d
and f. FIG. 23C (case 2a) shows the resolution when train T
has a meet at point d, train T, has no meet at point f, and train
T5 is not sided. FIG. 23D (case 2b)) shows the resolution
when train T, has a meet at point d, train T, has no meet at
point f, and train Ts is sided. The resolution of case 3 (not
shown) where train T, has no meet at point d, train T, has
a meet at point 1, 1s 1dentical to case 2a and 2b. Finally, case
4 1s 1llustrated 1in FIG. 23E where trains T, and T, both have
meets on siding S .

FIG. 24 shows a similar demonstration for an upward-
resolvable siding conflict on S_, except the illustration is
limited to a worst case, with 1t being evident that cases with
fewer constraining meets are also resolvable to, at worst,
siding conflicts on S__,. FIG. 24A 1illustrates the original
meet situation with the modification accomplished by mov-
ing the meet at point ¢ to point g, as illustrated in FIG. 24B.

We conclude, finally, that although the meet centering
process can produce infeasible string graphs because of the
siding conflicts, all such siding conflicts can be resolved to
feasible situations which do not mclude siding conflicts.
When moving a meet point from one siding to the next lower
one, there will usually be some horizontal latitude as to
where to place 1t, and so to some degree, train speed limits
can be favored. Note, however, that the resolution of these
conilicts may result 1n some occasions where trains must
travel at unrealizable speeds. This will be dealt with by
mtroducing a new gradient optimization process 1n another
embodiment of the present invention below.

Accounting for Siding Time

As described to this point, the invention permits an initial
schedule of trains on the corridor, arranged without regard
for meets and passes, to be moved toward a schedule which
minimizes or eliminates meets or passes occurring at infea-
sible locations, 1.€., not at sidings.

After the processes of improving the gradient search
results by speed adjustments and resolving siding conflicts
have been applied, as discussed above, to the original
oradient search result, there has been created a string graph
in which each train trajectory 1s depicted as a sequence of
straight line segments, constrained to meet other train tra-
jectories at the centerpoints of sidings. The string graph,
adjusted after the gradient search as necessary to move all
meets to centerpoints of sidings, will be called the incom-
plete string graph.

The gradient search and the speed adjustments produce a
meet of two trains at a siding, but 1n one embodiment 1t does
not actually account for the need for one train to side, or for
the fact that the train has a length. To actually side one train,
it must arrive at the siding far enough 1n advance of the other
train to completely pull 1nto the siding, and 1t must delay its
departure until the other train 1s clear of the siding.

FIG. 25 1llustrates this problem. To this point, a train
trajectory has been approximated as a single unbroken line
segment (as in FIG. 2), in actuality, it will take the form of
a broken line segment 1f the corresponding train must be
sided. In FIG. 25, the trains T, and T, must side, so the
corresponding trajectories L, and L, reflect the required
siding time with horizontal line segments 250 and 252
inserted 1nto the trajectories. The minimum length of the
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horizontal segment 1s determined by the length and speed of
the opposed train. Therefore the level of resolution 1nto train
trajectory planning must be improved 1n this embodiment to
obtain an implementable train schedule, based on the results
of the gradient search. It 1s necessary to develop the math-
ematics of siding trains, given that an initial schedule has
been obtained using the gradient search process, above.

Defining the Train Trajectory Vector Implicit 1n the purely
geometric format described to this point, are the numerical
quantities needed to define the train trajectory vector of
Equation 10-1. Specifically, for train T;, the value of b, (T,
castbound) or ot b; , (T, westbound) must be equal to the
departure time d, of the train, which was determined by the
oradient secarch process, with possible modification by the
resolution of siding conilicts. Now for an eastbound train,

assume that the first meet with another train occurs with train

T at siding S,, h>0, thus we specifically know that T; must
be at point (x;;, ¢;) on the string graph, as shown in FIG. 26.
Then the speed s, of train T,, from 1ts origin, must be

(10-6)

and 1t follows that b, for k=1, . . ., h, and ¢, for k=1, . .
. h—-1, may be determined as follows.

by = b+ X fork=1,... 4 (10-7)

Sih
and

b
Eik:b;g+—k fork=1,..., h-1. (10-8)

We can now proceed on the next line segment (i.e., from
meet to meet) defining the trajectory of T, to obtain a speed,
determined by the intersections of T, with other trains, from
which we can determine the times of arrival of T, at all
intermediate siding edges, thereby filling 1n all of the data
required for the train trajectory vector of T, except the siding
decision values B, . Siding decisions have not yet been
considered, so these values will be defined later.

It should be clear that an analogous process can be defined
for westbound trains, so we have inductively defined all train
frajectory vectors using the incomplete string graph.
Extending the Definition of the Train Trajectory

The definition of train trajectories as equations relating
distance along the corridor to time, as given by Equation 3-3,
does not accommodate the siding time and siding decisions
required for some trains. Instead, 1t provided a character-
1zation of trajectories as straight line segments, for the
purpose of minimizing the computations needed for the
oradient search process. In order to generalize the trajectory,
in this embodiment the simple definition of a trajectory will
be modified by adding parameters accounting for train
delays at sidings.

Where a corridor has ns sidings, we begin by defining the
frain trajectory vector, and for notational convenience, we
will designate the west end of the corridor as siding S, and
the east end of the corridor as siding S, ,;, with the
recognition that these “sidings” have a length of zero. Given
this convention, define the train trajectory vector for train T,
as

—

#=0:b0,b;15 - -

where

0,=the direction of train T; (already defined in Equation
3-4),

- bi,ns+1pe.il:sefz: s S By, .o Bins)! (10-1)
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b.,=the time at which train T. reaches siding S,

(h=0, . . . ,n_,),
¢,,=the time at which train T, departs the siding S, (h=1,

.., D),

B 1 1t 7; 1s sided on S},
"o if T; 1s not sided on .S,

The times at which a train reaches or departs from a siding,
will be the time at which the head of the train reaches the
upstream or downstream (“downstream” or “upstream” 1s
defined relative to the direction of the train) end of the
siding, respectively. Also for consistency, since siding S; has
endpoints a, and b,, as measured from the west end of the
corridor, let b, denote the beginning of the corridor, and
a, .1 denote the end of the corridor.

Detailing the Siding Process

FIG. 14 demonstrated the result of the gradient search
process, and demonstrates that the search process has the
capability to adjust departure times so that train trajectories
intersect at sidings. The gradient search process cannot
usually perfectly align all meets at sidings, and so the
meet-centering process was also described above. Once we
have 1n fact placed all meets at sidings, we might use train
speed adjustments to interpret the resulting string graph as
showing that the engines of trains pass exactly at the
centerpoints of sidings.

Now the focus will be on a technique by which a string,
oraph such as that in FIG. 14, with meets centered on
sidings, as discussed above, can be modified further to
provide a full, feasible string graph schedule with trains
sided as necessary. We will assume that we begin with all
train meets centered at sidings, and all possible siding
conilicts resolved as necessary. The process will be induc-
tive: we will begin by ordering the collection of all inter-
section points on the incomplete string graph according to
the time of 1ntersection, and we will proceed to modity them,
in time order, so that each intersection point reflects a
feasible siding arrangement.

FIG. 27 1illustrates the technique to be applied, as 1t 1s
applied to 1intersection point y,,. It 1s assumed that all
intersection points of the string graph prior i time to y,,
have already been modified by this process, so that the
required time and speed data concerning trains T, and T,
prior to point y,, are 1n fact valid. Of the two trajectories
passing though v, ,, we will choose to side train T,, and the
modification of trajectory for T, 1s indicated by the dashed
sequence ol line segments. Effectively, we require that T,
operate at a higher speed from the last intersection point on
the trajectory (relative to the incomplete string graph) in
order to arrive at siding S, , so that the last car of T, actually
enters the siding before the engine of train T, arrives at the
west end of siding S .

FIGS. 28 and 29 represent possible meet/pass situations
between trains. There are four basic cases, as follows:

(1) an eastbound train sides for a westbound train,
(2) a westbound train sides for an eastbound train,
(3) an eastbound train sides for a passing eastbound train,
(4) a westbound train sides for a passing westbound train.

There are also four variants on each case (for a total of 16
cases), depending on whether either or both of the trains
involved were sided at the previous intersection point on
their trajectories. This has significance because a train
leaving a siding will have a lower initial speed (the pullout
speed from the siding) across an intersiding segment than a

train which has not been sided.

Essential parameters for the process will be defined 1n
conjunction with FIGS. 28 and 29. Relative to any train T,
let
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A, =the arrival time of the last car of T, at the upstream end
of the siding S, ,
D_ =the time at which the head of T, arrives at the down-

stream edge of siding S,

36

ApZDy—f(v)). (10-14)

where v; 1s the speed ot 'T; as it approaches siding S,

Condition 10-13 also requires a modification, because it

tr:h=ﬂ_le tipzle at Whic_h a train '1; not sided at S, passes the 5 cqyid be the case that T, could actually clear the downstream
midpoint of the siding S, _ o end of the siding (relative to T,) before T, could get there,
kathe pull}n{ pullout s.peed of any train for siding S,, even 1f T, pulled into the siding, continued moving at
p(i,h)=the siding at which T; had the most recent meet betore maximum siding speed, and arrived at the downstream end
the present meet at S""I . . of the siding. In that case, D;, 1s limited by the speed of T,
f(v)=the minimum stopping time for train T; at speed v. The 10 - ..
. . . . . not the position of T, and takes the minimum value
approximation used for this function 1s explained in J
Appendix B.
Alth ' on ] oW ] bn — an — M; (10-15)
ough the following notation 1s not new, we review 1t Dip = Aip + - 3
here for convenience: let "
a,=the coordinate of the western end of siding S,, 15
b,=the coordinate Of‘ the eastern end of siding S, so the corrected version of Condition 10-14 1s
M.=the length of train T,,
[=the length of the corridor (with the western end being the by — an — M.
origin), and finally, let Dip = maX{A jhs Ain + - I}- (10-16)
20
b
Cp = @+ h, the coordinate of the mudpoint of siding.S),. (10-9) , _ ,
2 Constraints 10-14 and 10-16 then provide the practical
constraints by which meets and passes can be planned.
Relative to the earlier descriptors of the train trajector . The quantities in the inequalities are functions of the train
vector for train T; (Equation 10-1), note that speeds on the previous intersiding segments and of the
departure times from the last siding: inductively, we assume
Din=Cin (10-10) that the departure times for both trains from their previous
and, for an unsided train passing siding S,, assumed to meets are kHOWU‘: and we I]ill{St derive the speeds I}eeded by
maintain constant speed across the extent of the siding, 3p both trains to arrive at the siding S, so that constraints 10-14
and 10-16 are met. The known quantities, for the trains T,
. bi; + e (10-11) and T}, at the beginning of the inductive step, are
: (1) t;, the time at which T, should be at the center of S,
(Equation 10-11),
the value of which was established by centering all meets at 39 (2) D, i for T,
sidings. ?
. L . . L 3D, ..., for T.
In the following derivations, the trains meeting at a siding (3) D, PLA) T,
. . . . To satisly constraints 10-14 and 10-16, we must deter-
S, will be trains T, and T, and T, will always be the train to : .
. J . mine values forD_,D. A and A, in terms of speeds, and
be sided. The apparent constraints that must be met for T to th ve th : , / o ‘ l't'j for th q o
be sided (see FIGS. 28 and 29), are 40 then solve the constraint inequalities for the speeds require
to meet the constraints.
Ap=Dy, (10-12) The speeds so obtained are for T; and T, from their last
meets to their common meet, and when we solve the
and Co .. . . g :
constraint inequalities (subject to the siding choices made)
D =A (10-13) 45 to obtain these train speeds, we will also determine the
These two constraints are somewhat 1dealized, and both ;alufs f:(?rresgoniiﬁng LO tems (11 )t_(3) ffo?e dfortt.rams I;and
need modifications. First, 1t would be unsafe to apply Tj 4 bSI 'mgf ﬁ’ _ 656 y Com.[ilebmg K © 111': Ve Process.
inequality 10-12 literally, because 1f, for any reason, train T; He DASIS C_' the induction w1 _ ¢ la enﬁ up later.
were to stop short of being fully sided, then train T, might __ 1The Inductive Step for the Unsided Train
in fact be too close to stop in time to avoid a collision. Thus Y We first determine the speeds, from the requirements that
condition 10-12 should be replaced with the unsided train pass the center of siding S, at time t;;:
( b
D;oim+ Chs _hpij il for T; eastbound, and not sided at Sz (10-17)
i
D im+ 4 “h T OPA . for T; eastbound, and sided at S, 5
Vplih) S =1
Lih = 9 . .
D pijm + p(‘j}h " for T; westbound and not sided at S, x)
g
M : —_ — M.
D im+ S “plid ~ O ! for T; westbound and sided at Sy,
k Vplih) > it
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Note that there are also two special cases of Equations
10-17, namely

33

-continued
tip=d; for T; eastbound, ( o — Chp—ap+M; for T; eastbound (10-25)
S h—1
t; ner1=d;+for T; westbound (10-18) Ajp = < by —cp+ M.
fip — L for T'; westbound
\ > ik
and for notational consistency, we define _ _ o _ _
For the unsided train, the determination of D, 1n Equation
10 ‘ . . gt .
c=0, 10-24 completes the inductive step of the siding algorithm.
Note that 1f there are sidings between S, and S, ,,, then the
and times of arrival and departure from those sidings 1s 1mplicit
in the speeds calculated in Equations 10-20 through 10-23.
For k an index of such a siding, we have the following
results:
( ay, — b
eiplim T+ i Sj:ij i for T; eastbound and not sided at S, 5 (10-26)
M;, a—buim—M;
€j.pim 7 "’ y— p_(J’h} L for T; eastbound and sided at S,z
Pl 4.h) S j h—1
bjk = X
Api iy — Di -
€iniimy + - for T; westbound and not sided at S, 5
g
M ; a — b, — M;
einlim + _, § 2N _ - L for T; westbound and sided at S,
\ Vp(J,h} S..f':h
Cpcr1=L (10-19) 4,
Additionally, the validity of equation 10-17 requires that
the distance between sidings S, and S, ,, exceed the length
M. of train T,. From Equations 10-17, we may solve for the 35
speeds required:
cp — by
Sip-1 = PP for T; eastbound and not sided at S, n); (10-20) 40
Lin = Djp(jh)
ch—bpiim — M; :
Sipg = —— P o (10-21) We may then write
tin = Djpiiy — —
Y plj.h) 45
for 7; eastbound and sided at S,; p);
’ b = a 10-27
Qpiim — C b; for T; eastbound (10-27)
Sip = plnk) T , for T; westbound and not sided at .S, ; p); (10-22) 4 Sk -1 /
Lin = D j.pijh) €jic = * b,
50 by + ™ for T'; westbound
_ Gpiim == M, (10-23) “‘ ke
th - M o
)
Lin = Djptim = -—
ply.h)
tor 7; westbound and sided at S,; . ‘ _ ‘
< The Inductive Step for the Sided Train

Now that the speed for the unsided train 1s determined, we
may solve for D, and A, as follows:

( by — cp

i+ (10-24)

for T; eastbound

S jh-1

Dijp =5 ;
Cp — Ay

for T; westbound

\ S jh

60
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Half of the inductive step for the sided train T, 1s already
complete, 1n that we can set the value D, to be any value
satisfying condition 10-16, although we would normally set
that value to be as small as possible. However, we must also
determine the speed required by T, from the previous siding
S,.m Where T, had a meet to S, that will satisty Condition
10-14. There are four cases, based on whether T, 15 cast-
bound or westbound, and did or did not side at S_; ,,. We
express A, for each of these cases, and then use Condition

10-14 to determine a minimum speed for T,.
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D; pim + — for T;
Sih—1 Vh
M dp — b (i) M; M,
Di pim + S 7 L+ L for T
VY pii k) Si h—1 Vi
Ain = by, M
{':1 . — .
pli.h) 1 ;
D‘g’p“’h} + a— for Ti
Sik Vi
M. ﬂ(h}—bh—M' M.
Di piim + L+ = .+ —  for T;
\ V(i h) Sih Vi

Since the value of D, has been determined 1n the previous
section, Equation 10-28 and Condition 10-12 lead to

inequalities for the speed s, ors., ., of T,, as follows.
ay — by 3
Sipt > h = Upli,h) . (10-29)
Dip—fiv;i) = Dipim— —
Vi
for 7; eastbound and not sided at Sp; s,
ﬂh—b (i,h}_ME _
Sih-1 = 2 M. M.’ (10-39)
Dip—fivi)=D;pim — - —
Vplihy YV
for 7; eastbound and sided at S, n),
& i - b
Sih = il " - (10'31)
D — fi(v;) = Dj iy — —
Vi
for T; westbound and not sided at S, ,
L pi; — f’? — M,_' -
S 2 pli.h) I, » . (10 32)
Dy — fi(v;) =D piipy — i
Vpiihy  Vh
for T; westbound and sided at S, zy,
where
(10-33)

{5 i1 for T; eastbound
Vv =
J

S T; westbound

All of the quantities on the right sides of imequalities
10-29 through 10-32 are known, so the speed s;;, or s, ;,_; for
train T 1s determined, and the inductive step 1s complete. It
a siding S, 1s mtermediate to S, and S, ; ;,, then Equations
25 and 26 establish the values of ¢, and b, .

Establishing an inductive basis for the above depends
only on the observation that the very first meet for any train
T; or T, 1s preceded by the entry into the corridor from the
cast or west end. All of the computations then required to
arrive and meet at siding S,, subject to the constraints, are
based on the original departure time of the relevant train, to
which D .,y or D ., 1s set equal, as the case may be.

Finally, the inductive process defined above determines
speeds, and the times of arrival and departure for each train
at each siding, based on meets at the sidings. Once a train has
encountered its last meet, the final speed 1s adjusted to assure
that 1t arrives at the end of the corridor as scheduled. If train

T has 1ts last meet at siding S, , then the speeds between all
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eastbound and not sided at S,; 4

eastbound and sided at Sy p)

westbound and not sided at Sy(;

westbound and sided at Sy

subsequent sidings which are required to exit the corridor as
scheduled are given by

Sih = Sihtl = -0 =S, = (10-34)
(- L-p _
for 7; eastbound and not sided at .5y,
bine+1 = €in
1 L-bn—-M, .
T for T; eastbound and sided at .Sy,
Dinesl — €ip — —
y Vi
and
Sih-1 =Sip-2= ... =51 = (10-35)
( Gy .
tor T; westbound and not sided at Sy,
bio — e
y ap — M,; .
T tor T; westbound and sided at S}.
bio — ein — —
\ Vh

FIG. 30 displays a final and complete string graph which
was has been adjusted for centered meets, and then for train
sidings.

FIG. 31 1s a flow chart implementing one of the algo-
rithms of the present invention. The flow chart of FIG. 31
can be processed on any special purpose or general purpose
computer. The software code necessary to implement the
FIG. 31 tflow chart can be written by anyone who 1s skilled
in the art of preparing software code, given the information
in FIG. 31 and the description of the invention provided
herein.

Processing begins at a step 310 where the initial condi-
tions are established. That 1s, there 1s assumed an 1nitial

ﬁ . - - . - . .
vector y ,, which 1dentifies either the nitial train speed or
the nitial departure times of the trains on the corridor, or

both. The vector ?H 1s used to calculate the intersection
points at a step 312 and then the value of the localizer
function for each calculated intersection point 1s determined
at a step 314. At a step 316, the localizer function values are
summed to create a schedule feasibility cost function with an

arcument ?” As discussed above, there are many different
cost function types associated with different embodiments of
the present invention. For instance, Equation 8-17 identifies
two cost functions. The cost function of schedule feasibility
(C) and a cost function associated with early departure
effects (E). The economic cost function is defined in Equa-
tion 8-26 and the maximum speed cost function 1s defined 1n
Equation 7-9. Depending upon the embodiment of the
present 1nvention, one or more of these cost functions will
be used to create the cost function at the step 316.

At a step 318, the gradient of the cost function at ?H 1S
calculated. At a step 320, a new argument for the cost
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function 1s created. This argument 1s referred to as ?ml and
1s calculated using the gradient value from step 318 and a
predetermined step size. This step size 1s based on the
oradient value and must be determined 1n each situation so
as to converge toward the function minimum. Reference 1s

made to the four step process outlined at Equation 8-3. At a
step 322, the magnitude of the difference between the cost

42

same 1S not limited thereto but 1s susceptible of numerous
changes and modifications as are known to a person skilled
in the art. I, therefore, do not wish to be limited to the details
shown and described herein, but intend to cover all such
changes and modifications as are obvious to one of ordinary
skill 1n the art.

Appendix A

Properties of the Sigmoid and Localizer Functions.

Lemmal: o, a, B)=p-0(—x;a, ) (Al)
N | _ a1 (e =1 B
o ﬁ—ﬂ'(—x,w,ﬁ)—ﬁ( _1+€‘H]_ ( 1 + e ]_1+€_ﬂ_ﬂ-(x’w”8)
Q.E.D.
d aw (A2)
Lemma 2: a(ﬂ'(ﬂx + b, a, B) = FH(M + b, a, B)SB—olax+b; a, f5))
Proof : i(ﬂ'(ﬂx + b, @, B) = i()8(1 + E‘””‘ﬂ+b})_l) = B(=1)(1 + e @D T2 ga)eel@xth)
x dx
aw | PBe~¥axth) aw Ji:
= FG‘(&I}.’:+ b, a, ) T D) Fﬂ'(ax+b @, ,8)( T g-:r(aﬁb})
aq aw
:gﬂ'(ﬂx+b;H,ﬁ)ﬂ'(—(ﬂx+b);&,ﬁ)— 7 oclax+ b, a, P B —clax + b; a, B))
Q.E.D.

function at ?H and ?ml 1s calculated. At a decision step
324, the results from the step 322 are compared to a
threshold. If the threshold 1s not exceeded, then the cost

function minimum has been located and a schedule for the
corridor 1s produced. This 1s illustrated diagrammatically at

a step 325. If the threshold i1s exceeded, then further calcu-
lations can be performed to find the cost function minimum.

At this point, processing moves to a step 326 where the

- % - é
previous value of y _ 1s now set equal to the value of y , _,

and processing returns to the step 312 where the intersection
points are again calculated. Processing then continues
through the steps 314, 316, 318, 320, and 322, followed by
decision step 324 where the magmtude 1s again compared to
the threshold value.

As discussed above, there are additional refinements that
can be made from the schedule produced at the step 325.
These refinements represent additional embodiments of the
invention and are discussed in detail above. In flow chart
form, they are presented 1n FIG. 32. In lieu of processing
proceeding to the step 325 1in FIG. 31 when the threshold
value 1s not exceeded, processing can instead continue to a
step 340 1llustrated 1n FIG. 32. Here, adjustments are made
to 1ntersiding train speeds so that the intersections will occur
precisely at the sidings. This embodiment 1s discussed in
conjunction with FIGS. 15, 16 and 17. In another
embodiment, siding conilicts can be resolved at a step 342.
This embodiment 1s discussed 1 conjunction with FIGS.
18-24 above. The matter of accounting for the time the
trains are sided 1s represented by a processing step 344. This
embodiment 1s discussed above 1n conjunction with FIGS.
25-30. Finally, mcorporation of these additional embodi-
ments provide for the generation of another train schedule
for the rail corridor, as 1llustrated at a step 346.

While I have shown and described embodiments 1n accor-
dance with the present invention, it 1s understood that the
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The following result follows from the derivation of the
localizer function 1n the body of this document, and from
application of Lemma 2.

Lemma 3: Let (-oo,w),(a;,by), . . . (ay,by),(€,0) represent
mutually disjoint 1ntervals, W1th —w<a,;<b,<a, . .
-::aNch«:m Then L(x;0,p) defined to be low if and only 1f
X is in or near one of the intervals (-oo,w),(a;,b,), .
(a5,Da).(€,0) takes the form

N (A3)
Lx,a, p=B- ) [ox—bia, p—ox—a;a, B -
=1

ow—x; 8 —oclx—e;,a, B,

and
- (L . B) = Bi; o(x=bj; 0, PB-0o(x=bj; a. ) -
'D-(-x —d;, &, 18)(18_ G'(X— a;, &, 18))] +
U'(W — X, U, 18)(18 _ D-(W — X, U, 18)) _
LT(X — €, i, 18)(18 — G'(X — €, i, 18))}
Appendix B
A Train Stopping Time Approximation
The basic formula for acceleration/deceleration of a body
1S
F=MA, (B1)
where

F=the braking force applied,
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M=the mass of the body,

A=the acceleration of the body.
A train has brakes on every car, and each car has mass, so
we will assume that the total maximum braking force and
mass are proportional to the length of the train. Therefore
Equation B1 may be written as

A=k, (B2),

1.e., the deceleration available at maximum braking 1is
(approximately) independent of the train’s length or mass.
To evaluate k, we assume that a train moving 50 mph could
stop in 1 mile, therofer its average speed during (linear)
deceleration would be 25 mph, and the time required to
reach a full stop would be

(1 mi./25 mph)(60 min/hr)=2.4 minutes.

Thus the equation relating train speed v to stopping time f(v)
takes the form

f(v)=v/A=v/k
and

2.4=50/k (B3)

therefore
k=50/2.4=20.83 (mph/min).
The final form 1s then

flv)=v/20.83, (B4)

where f(v) 1s in minutes, and v is in miles per hour.

Appendix C

Variable Glossary

A (t)—the late penalty function assessed for train T,
(Equation 7-1)

A, —the time of arrival of the end of train T, at the upstream
edge of siding S,

A(?,?)—the cost function component forcing on-time
arrivals

a,—the distance from the west end of the corridor® at which
siding S, begins

B.,—the decision variable as to whether train T, 1s sided at
siding S,

b,—the distance from the west end of the corridor at which
siding S; ends (a;<b;)

C(?,?)—the cost function forcing trajectory intersections
at sidings

c,—the midpoint of siding S,

D..—the time of departure of train T, from the downstream
edge of siding S,

d —the departure time of train T,

—
d —the vector of dimension n, of departure times for all

frains
E—the name of the point at the east end of the corridor

E( d )—the cost function component preventing early train
departures

f{v)—the minimum stopping time of train T, at from speed
\Y

G(?,?)—the total scheduling cost function (Equation
7-10)

10

15

20

25

30

35

40

45

50

55

60

65

44

H.—the length of siding S,

h—the step penalty cost incurred when train T, arrives late

[—the set of all intersections of train trajectories (even if not
on the string graph)

[—the length of the corridor

[.—the line on the string graph representing the trajectory of
train T,

L(y)—the localizer function, with minima corresponding to
cach siding (Equation 5-5)

[(y)—the balanced localizer function (Equation 5-7)

L, (y;)—the localizer modified so trains T, and T; won’t

meet where neither can side
M_.—the length of train T,
m —the late penalty per time unit when train T, arrives late
n.—the number of sidings along the corridor
n,—the number of trains 1nvolved 1n the optimization
p(i,h)—the siding prior to S, at which train T; had a meet,
S —the designator for the 1-th siding, traveling eastward on
the corridor
s—the speed of train T,
s, _maximum speed permitted for train T,

s.,—train T,s speed between the downstream edges of

sidings S, and S, _
—>
s —the vector of dimension n, of speeds for all train

T —the designator for the 1-th train

T';—the set of all sidings where at least one of trains T; and
T, can side

t—the arrival time at which train T, begins to incur late
penalties

t,—the time at which train T, if not sided at S, reaches c,.

t;—the time coordinate associated with trajectory intersec-

tion pointy y,;

V(?)—the cost function component which limits train
speeds

v,—the pullin/pullout speed for trains at siding S,

W—the name of the point at the west end of the corridor
(zero on the distance axis)

y.—the distance from the west end of the corridor at which

7
trams T; and T, mtersect

g * . . .
y —the vector of all trajectory intersection points Vi

a—the sigmoid function parameter controlling steepness of
rise (Equation 4-1)

3—the horizontal asymptote of the sigmoid function
(Equation 4-1)

1,—the weight applied to the feasibility component C(?,
ﬁ) of the cost function

1,—the weight applied to the late arrival component A(?,

ﬁ) of the cost function
N,—the weight applied to the early departure component E(

g) of the cost function
Nn,—the weight applied to the maximum speed component

V(?) of the cost function
0 —a variable denoting the direction of tram T, 0 1f

castbound, 1 if westbound
o(x) the sigmoid function (Equation 4-1)

What 1s claimed 1s:

1. Amethod for scheduling the movement of a plurality of
frains operating on a rail corridor to accommodate the
intersection of trains traversing the rail corridor, whereby
cach train has at least one variable travel parameter, whereby
the rail corridor includes at least one main line and a
plurality of secondary tracks onto which a train may be
moved to avoid an intersection with another train, said
method comprising the steps of:
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(a) deriving a localizer function to represent the rail
corridor, wherein said localizer function has a value
within a first range between secondary tracks and has a
value within a second range in the vicinity of each
secondary track, wherein the localizer function repre-
sents each secondary track as having equal length;

(b) selecting a value for at least one travel parameter for
cach of the plurality of trains;

(c) finding the intersection points for the plurality of
trains;

(d) determining the value of said localizer function for
cach intersection point;

(¢) summing said localizer function values to create a
schedule feasibility cost function sum, wherein said
schedule feasibility cost function sum represents the
cost function associated with the intersection of trains
at a secondary track;

(f) changing one or more of the values selected in step (b)
to find the minimum of the cost function.
2. The method of claim 1 wherein the step (a) includes the
steps of:

(al) computing the average length of the secondary tracks
on the rail corridor; and

(a2) redefining the boundaries of each secondary track as
represented by the localizer function so that each
secondary track has a length equal to the average
length.

3. The method of claim 1 wherein step (f) includes the

steps of:

(f1) incrementally increasing the length of each secondary
track from the average value toward 1its actual value;
and

(f2) changing one or more of the values selected in step
(b) to find the minimum of the cost function.

4. The method of claim 1 wherein the travel parameter
includes train speed.

5. The method of claim 4 including a step (g) adjusting
frain speeds between secondary tracks to ensure that each
Intersection occurs at a secondary track.

6. The method of claim 4 including a step (g) modifying
the 1ntersiding speed of at least one of the plurality of trains
to account for the time a train spends on a secondary track.

7. The method of claim 1 wherein the travel parameter
includes the entry time of the train onto the rail corridor.

8. The method of claim 1 wherein the travel parameter
includes train speed and the entry time of the train onto the
rail corridor.

9. The method of claim 1 wherein the secondary track
includes a passing siding.

10. The method of claim 1 wherein the secondary track
includes two parallel tracks with crossover switches ther-
cbetween.

11. The method of claim 1 wherein the localizer function
1s derived by summing a plurality of sigmoid functions,
wherein said sigmoid functions are disposed with respect to
cach other and the location of the secondary tracks, such that
the localizer function takes on a value in the first range
between secondary tracks and has a value in the second
range 1n the vicinity of each secondary track.

12. An apparatus for scheduling the movement of a
plurality of trains operating on a rail corridor to accommo-
date the intersection of trains traversing the rail corridor,
whereby each train has at least one variable travel parameter,
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whereby the rail corridor 1includes at least one main line and
a plurality of secondary tracks onto which a train may be
moved to avoid an intersection with another train, said
apparatus comprising:
means for deriving a localizer function to represent the
rail corridor, wherein said localizer function has a value
within a first range between secondary tracks and has a
value within a second range in the vicinity of each
secondary track, wherein the localizer function repre-
sents each secondary track as having equal length;

means for selecting a value for at least one travel param-
cter for each of the plurality of trains;

means for finding the intersection points for the plurality
of trains;

means for determining the value of said localizer function
for each intersection point;

means for summing said localizer function values to
create a schedule feasibility cost function sum, wherein
said schedule feasibility cost function sum represents
the cost function associated with the intersection of
trains at a secondary track;

means for changing one or more of the selected values to
find the minimum of the cost function.
13. The apparatus of claam 12 wherein the means for
deriving the localizer function comprises:

means for computing the average length of the secondary
tracks on the rail corridor; and

means for defining the boundaries of each secondary track
as represented by the localizer function so that each
secondary track has a length equal to the average
length.

14. The apparatus of claim 12 including means for incre-
mentally increasing the length of each secondary track from
the average value toward the actual secondary track length
value.

15. The apparatus of claim 12 wherein the travel param-
cter includes train speed.

16. The apparatus of claim 15 including means for adjust-
ing train speeds between secondary tracks to ensure that
cach intersection occurs at a secondary track.

17. The apparatus of claim 15 mncluding means for modi-
fying the intersiding speed of at least one of the plurality of
frains to account for the time a train spends on a secondary
track.

18. The apparatus of claim 12 wherein the travel param-
cter includes the entry time of the train onto the rail corridor.

19. The apparatus of claim 12 wherein the travel param-
eter includes train speed and the entry time of the train onto
the rail corridor.

20. The apparatus of claim 12 wherein the secondary track
includes a passing siding.

21. The apparatus of claim 12 wherein the secondary track
includes two parallel tracks with crossover switches ther-
cbetween.

22. The apparatus of claim 12 wherein the localizer
function 1s derived by summing a plurality of sigmoid
functions, wherein said sigmoid functions are disposed with
respect to each other and the location of the secondary
tracks, such that the localizer function takes on a value
within the first range between secondary tracks and takes on
a value within the second range in the vicinity of each
secondary track.
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