US006298396B1
a2 United States Patent (10) Patent No.: US 6,298,396 B1
Loyer et al. 45) Date of Patent: Oct. 2, 2001
(54) SYSTEM FOR LOADING A CURRENT 5,754,764 * 5/1998 Davis et al. ...ccoooeeiiinnnnne, 709/250
BUFFER DESCIPTOR REGISTER WITH A 2,,8055927 * 9/1998 Bowlfs et al. coeeveeeereienae, 710/23
VALUE DIFFERENT FROM CURRENT ,860,119 * 1/1999 DockSer .ooeveeeeeeiiveneevneevennnn. 711/156
VALUE TO CAUSE A PREVIOUSLY READ 5?951?676 *9/1999 Henry et al. oo, 712/225
BUFFER DESCRIPTOR TO BE READ AGAIN OTHER PUBLICATIONS
(75) Inventors: Bruce A. Loyer, Austin; Thai H. Am I86™ED/EDLYV Microcontrollers User’s Manual,
Pham, Pflugerville; David A. Spilo, Advanced Micro Devices Corporation, © 1997, Chapter 8,
Austin, all of TX (US) pp. 1-8 and Chapter 9, pp. 1-14.
Motorola’s MC68302 Integrated Mulii—protocol Processor
(73) Assignee: Advanced Micro Devices, Inc., Fact Sheet, Motorola Corporation, © 1998.
Sunnyvale, CA (US) Am79C90 CMOS Local Area Network Controller For Eth-
ernet (C—LANCE), Advanced Micro Devices Corporation, ©
(*) Notice: Subject to any disclaimer, the term of this 1998.
patent 1s extended or adjusted under 35 AMC68302 Integrated Mutliprotocol Processor User’s
U.S.C. 154(b) by 0 days. Manual, Motorola Corporation, © 1995.
(21) Appl. No.: 09/088,355 * cited by examiner
(22) Filed: Jun. 1, 1998 Primary FExaminer—Thomas Lefa |
Assistant Examiner—Abdelmoniem Elamin
(51) INt. CL7 oo, GO6F 13/14 (74) A{{Orngyj Agenf) OF Firmﬂqkin? Gump? Strauss,
(52) US.ClL . 710/22; 710/23; 710/34; Hauver & Feld, L.L.P.
714/40; 714/42
(58) Field of Search ... 71022, 23,34, ©7) ABSTRACT
714740, 42 In a microcontroller employing a buifer descriptor ring
_ direct memory access (DMA) unit, transmission of a packet
(56) Reterences Cited can be split between multiple buffers. If an error occurs
US PATENT DOCUMENTS during the transmission of one of the buft ers, the buffer
| descriptor ring DMA unit includes a provision that allows
3?624?613 : 11/}971 Smlth f:/t al. 709/243 t'le Software tO reset the DMA Channel tO the ﬁrst buffer
5?1555830 10/}992 KuraShlge 710/24 COI]t&iI]iIlg the failed paCket and tO reStart the tr&I]SII]iSSiOH Of
5,361,334 * 11/1994 Cawleyccoceeeieiiiiiiiviianeneee. 709/243 the failed packet, rather than proceeding to the next packet
5,448,702 9/1995 Garcia et al. ...coeevvinvennnnnnnne, 395/325 ’ '
5,535,359 * 7/1996 Hata et al. ..cccovveervvvnnnnrennnn.n. 711/119
5.657.443 * 8/1997 Krech, Jr. wooeeoeeeeeoereeerernnnn. 714/42 16 Claims, 13 Drawing Sheets
M\
174 17.
_ _ __ _C _______________ Vb
124 126 | 108 140

Am186
CPU

GLUELESS
INTERFACE
TO RAM/ROM

I
X

ciiP |V oo || WATCHDOG | | INTERRUPT

SELECTS | 1 ¢ TIMER CONTROLLER
||
|

HIGH-SPEED SYNCHRONOUS
UART WITH SERIAL
AUTOBAUD INTERFACE (SS1)

GENERAL-
DRAM
CONTROLLER TIMERS PURPOSE
DMA
112

RAW DCE

PCM-
HIGHWAY

GCI (|OM-2)

US 6,298,396 B1

Sheet 1 of 13

Oct. 2, 2001

U.S. Patent

291 991 9l
vst | oo
(@-won 109 | A/
vst | o1aH vl
wio NN
¥ VSl J1dH
namvy | vst | 970H

(ISS) JOV4YILNI anvgo.1ny
H1IM 14V

(133d5-HIIH

WIH4S
SNONOYHINAS

1504ddd
—1Vd3IN1D

JITIONLNOD JINIL SOl
LdNYYILNI O0AHI LYM

NOd/WVY OL
JOVA43INI

SNEREER,

|
|
S19313S | ! NdD
dH) | 1] 9gLwy
|
_9eL 1 el
\ n

U.S. Patent

CLOCKS

Oct. 2, 2001

X1

XZ

CLKOUT
UCLK/USBSOF/USBSCI

USBXT
USBX2

Address and 20| A19-A0

Address/Data Buses

Bus Status
and Control

Timer Control

USB Control {

Reserved and USB
Transceliver Control

synchronous Serial
Port Control

Programmable
/O Control

48
{Shared

(16 | AD15-ADO

S6
ALE
S2
ST

SO/[USBXCVR]

HOLD
HLDA[CLKSEL1]
RD

WR

DTR
DEN/DS
ARDY
SRDY
BHE/(ADEN|
WHB

WIB

£ O5T-T%0
BSIZE8
TMRINO
TMROUTO
TMRINT
TMROUT1

USBD+/UDPLS
USBD-/UDMNS

RSVRD1/UXVRCV
RSVRD2/UXVEN
RSVRD3/UTXDMNS
RSVRD4/UTXDPLS

SDEN
SCLK
SDATA

P1047-PIO0

Sheet 2 of 13

RES
RESOUT
INTO
INT7-INT1
INT8/PWD
NMI

MCS2/CASO
MCST/CAST

MCSOIUCSXS) |
PCS7-PCSG |

PCS5/[TESTMODE]
WICLKSEQ]

F53-Pcss 4
PCST/{USRSELZ]
PCSO/USBSELT]

DRQ1-DRQO

RXD_AB.C.D
XD_ABCD
RCLK_A,B,C.D
TCLK_A,B,.C,D
)
D

CTS_ABC,

RXD_A,B.C,D
TXD_AB.C.D
CLK_A,B,C,D
FSC_AB.CD

)

T1SC_AB.C,

FIG. 1B

:
|
|

US 6,298,396 B1

Reset Control

Memory and
Peripheral Control

DMA Control

GCl Bus*®

HDLC Channels
DCE Interface™

HDLC Channels
PCM Interface®

UART

High Speed UART*

U.S. Patent Oct. 2, 2001 Sheet 3 of 13 US 6,298,396 B1

178 124

EXECUTION

MEMORY UNIT

180 | INT

vy
READ/WRITE 162
UNIT

RING BUFFER
DMA

CONTROL

Y S W

164

148
HOLC HSUART USB

US 6,298,396 B1

. —— [OINODRNLYLS
. 90 ®80¢ |zz1Z | NG SNVAL

) 0Lz SSIAQV
| 4Nd "SNvdL

5534ddV INIY
didJ)S10 SNVl

_.......IIIIII........III....:.................I....I...........................
| _
| 0912 _
| (1~ INOJ31Ad oriz 1INNQD 319
_ +30ay 24ng) N "4N9 SNV¥L |

RTeTeod 9INOD/SNLYLS
, . o 980¢ |5z7Z2 N 4nd SNl _
) qo0c 201z SSAaQV |

" | N “4Ng 'SNVL |

yo—

o | (§aay z4ng) . |

-+ _ ’ 7

E | |

= _ (L= INOD3LAG

7 +daav N4ng) q9lLZ s |
| . qgriz 1NNOJ 3LAG |
| . 2002 ¢ 49 SNVYL

- . .q @:28\825 |

= | Gzlz 2 N9 SNVYL |

& | (Maav N4ng) TR, _

S _ 2 "4N9 "SNVIL

S e

> | (L= INODILA e s |
|+ yaav ::mw Byle m%m@mwﬂh _
| |
“ |

(Maav L4ng)

U.S. Patent
|
|
|
|
|
|
|
|
|
|
|
|
|

3
N
|
|
|
|
S |
\
|
|
|

US 6,298,396 B1

Sheet 5 of 13

Oct. 2, 2001

U.S. Patent

8LE

yLE

gLE

cLE

40

(X 13M0vd) € ¥344n9

(X 13M0vd) L ¥344ng

INIY d0LdII54Q AYINI—¥

AJONIN

mmh.\

J44H ONISS3I0dd S

Fd3H ONISSI00dd S| VIANG

JIVMLA0S

US 6,298,396 B1

Sheet 6 of 13

Oct. 2, 2001

U.S. Patent

9ee (vdIaas
vyeE QV1000aS
cE€
oee

S I 7/

226 WOULOAS H‘\\\

oze Noopas 9.1 886 \

1dilINgd 1d3d 11901, 1N91 |

Vs "Old

TAR mwm.. vvm \oyE 10vE 1 8EE

Idd)

I

T

80c

0sc

pGZ

INJH

d0dav]

699G
139LL

LN R

V 90c

U.S. Patent Oct. 2, 2001 Sheet 7 of 13 US 6,298,396 B1

Owner semaphore set Owner semaphore
and not start-of-packet 400 not set
OWN=1 OWN=0 40z
404 S1P=0 SEARCH FOR

' INITIALIZE CHANNEL AVAILABLE BUFFER
SEARCH FOR OWN=1 OWN="
START-OF-PACKET } Clear owner STP=1 Owner
semaphore and semaphore
advance to next / Qwner <ot
descriptor semaphore
set and _
start-of-packet 408
406 TRANSMIT BYTE
TC> 0] AND %%%%MENT
TRANSMIT DATA
C=0) Er(::o) Terminal count and
NP=1 NP=0 J not end-of-packet
Terminal
count and
end-of-packet 410
Wait for packet SIGNAL END OF F
to be sent \ TRANSMIT S TR
Owner
412 semaphore

Set

FIG. 6

U.S. Patent

Oct. 2, 2001

502

504

506

508

510

512

514

516

BCNT=xx
TTCE=xx

STP=TRUE
ENP=FALSE
BCNT=20
TTCE=TRUE

STP=FALSE
ENP=FALSE
BCNT=20
TTCE=FALSE

STP=FALSE
ENP=FALSE
BCNT=20
TTCE=FALSE

STP=FALSE
ENP=FALSE
BCNT=20

TTCE=TRUE

STP=FALSE
ENP=FALSE
BCNT=_20
TTCE=FALSE

STP=FALSE
ENP=FALSE
BCNT=20
TTCE=FALSE

STP=FALSE
ENP=FALSE
BCNT=20

TTCE=TRUE

Sheet 8 of 13

’/ 500

STP=FALSE
ENP=FALSE

(SKIPPED)

START PACKET
20 BYTES
INTERRUPT

20 BYTES

20 BYTES

20 BYTES

INTERRUPT

20 BYTES

20 BYTES

20 BYTES
INTERRUPT
END PACKET

US 6,298,396 B1

U.S. Patent Oct. 2, 2001 Sheet 9 of 13 US 6,298,396 B1

600
BUFF. DESC y

9 STP=FALSE
ENP=FALSE

602

604
—

: STP=FALSE
ENP=FALSE

606

STP=FALSE
e ENP=FALSE —> —

608
—_— —

-+ (int)

STP=FALSE
ENP=FALSE

o

STP=FALSE >DBLED=1
4 ENP=FALSE — >

610

STP=FALSE
) ENP=TRUE —>

612

ENP=FALSE 614

; STP=TRUE
ENP=FALSE

616

U.S. Patent

632

T

Oct. 2, 2001

12

Sheet 10 of 13

620
INT
622
DISABLE
AMIT
CHANNEL
624
LOAD CURRENT
BUF. DESC. W/
INDEX OF DESC.
W/STP SET
626

RESET OWN
BITSTO T
ENABLE XMIT
CHANNEL

630

628

13

US 6,298,396 B1

A

7

T4

US 6,298,396 B1

Sheet 11 of 13

Oct. 2, 2001

U.S. Patent

90/
EYWaHEWS

b0.
AL QRS

co.
[VWQHRWS

00Z
PYNQLBWS

I $@ ekl 020 mhinkaskapinll 0 peasisiasl 0 O Seeaasheas00 O Sipeaa— SR

WMWY 862
LI 984
AWAMWAMWWAWMWMWN| 782
L1 A e€l

(XTYXYYYTYTYTYTSTTYTYTSYY 08/

L)84

AN 972
//////////////) %%

8.1

US 6,298,396 B1

Sheet 12 of 13

Oct. 2, 2001

U.S. Patent

LL Did

¢4/
Tulll__

JaSW 87|

W|=
05/

96/
.
——l
8/

10
d0
1l
dl
1¢
dd
1€
o1

10
d0
1l
dl

1
dd
1t
gt

cv/

Ov/

cl Ild

AJIET10d . AN RS
LLLGE

US 6,298,396 B1

beg
- 918
SNVYLETIO . GHN SNvaLe
Jeo 0L10.8
. AJMZTI0 . A3 A
Yo
- . 101,
e - vLE
= SNVY1ZT10d . (33N SNvdle
b
7 °ee 218
ADMLTIOq . (33N A3l
_ - 1100,
& - 0OLS8
¥ SNYY L LT10 . (34N SNvall
: . 0100.€
S — 808
EEL
AJ40 110d . P
1000.£ ” —
228 0-GLLINMOY T10d | y3)Nn0D 01D
- 908
SNV 1GTI0d . (43N SNvdld 008
0000.€ 208
028 [€1:GL]

U.S. Patent

US 6,298,396 B1

1

SYSTEM FOR LOADING A CURRENT
BUFFER DESCIPTOR REGISTER WITH A
VALUE DIFFERENT FROM CURRENT
VALUE TO CAUSE A PREVIOUSLY READ
BUFFER DESCRIPTOR TO BE READ AGAIN

BACKGROUND OF THE INVENTION

1. Field of the Invention

The mvention relates to microcontrollers, and more spe-
cifically to a microcontroller having an 1mproved buifer
descriptor ring DMA unat.

2. Description of the Related Art

Specialized microcontrollers with integrated communica-
fion features are becoming particularly attractive for com-
munications applications. A microcontroller, or an embed-
ded controller, 1s uniquely suited to combining functionality
onto one monolithic semiconductor substrate (i.e. chip). By
embedding various communication features within a single
chip, a communications microcontroller may support a wide
range ol communication applications.

Microcontrollers have been used for many years in many
applications. A number of these applications mvolve com-
munications over electronic networks, such as telephone
lines, computer networks, and local and wide area networks,
in both digital and analog formats. In communications
applications, a microcontroller generally has a number of
integrated communications peripherals 1n addition to the
execution unit. These can be low and high speed serial ports,
as well as more sophisticated communications peripherals,

such as a universal serial bus (USB) interface, and high level
data link control (HDLC) channels.

Further, microcontrollers that are employed 1n communi-
cations applications typically include secondary peripherals
that remove some of the burden of transferring data from the
execution unit. For example, a direct memory access (DMA)
controller can directly transfer data from memory to a
communications port, and vice versa, with minimal proces-
sor 1ntervention.

One such type of direct memory access controller 1s a
buffer descriptor ring DMA controller. A circular buffer
DMA controller 1s a DMA controller that allows for the
transfer of data from a circular buffer 1n memory. A buifer
descriptor ring DMA controller takes this concept a step
further, providing a ring 1n memory of buffer descrlptors as
opposed to simply a circular buffer itself. That 1s, a ring 1s
maintained 1n memory of pointers to and control variables
for buffers, also located 1n memory, which actually contain
the data to be transferred. Buffer descriptor ring DMA 1s
especially useful in communications applications that
employ “packetized” data, such as network communications
and ISDN and T1 data communications applications. Bufiler
descriptor ring DMA has been previously implemented. One
example of such an implementation 1s the Am79C90C-
LLANCE (Local Area Network Controller for Ethernet)
device by Advanced Micro Devices, Inc. of Sunnyvale,
Calif. Using buffer descriptor ring DMA, software executed
by the microcontroller can compose packets of data for
fransmission over a packet style communications network,
and then commission the butfer descriptor ring DMA unit to
send streams of packets with little or no processor 1nterven-
fion.

SUMMARY OF THE INVENTION

In prior buifer descriptor ring DMA units, a logical packet
of data could be split among multiple physical buffers for

5

10

15

20

25

30

35

40

45

50

55

60

65

2

transmission one after another. If an error occurred during
the transmission of a packet of data, however, the builer
descriptor ring DMA unit typically advanced to the next
logical packet. According to the invention, however, the
fransmission of an incompletely transmitted packet can be
restarted at the beginning of the packet. According to one
embodiment, this 1s achieved by halting the buffer descriptor
ring DMA channel, reloading a current transmit buifer
descriptor variable with the first buffer descriptor of the
packet, and restarting transmission of the data.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1s a block diagram of a typical microcontroller
implemented according to the present invention;

FIG. 1B 1s a schematic pinout diagram of the pinouts for
the microcontroller of FIG. 1A;

FIG. 2 1s a block diagram illustrating the relationship
between a bufler descriptor ring DMA unit, communications
peripherals, and memory according to the invention;

FIG. 3 a block diagram illustrating memory data struc-
tures 1mplemented by a buffer descriptor in DMA unit
according to the invention;

FIG. 4 1s a block diagram illustrating the processing and
ownership of buffer descriptors in a buffer descriptor ring
DMA system according to the ivention;

FIG. 5A and 3B are illustrations of buffer descriptors and
control registers implemented by the buffer descriptor ring
DMA unit according to the mnvention;

FIG. 6 1s a state diagram for a transmit channel in the
buffer descriptor ring DMA unit according to the invention;

FIG. 7 1s a memory diagram 1llustrating the buffer level
interrupt control in the buffer descriptor ring DMA unit
according to the mvention;

FIG. 8A 1s a memory diagram 1illustrating the packet
retransmission capability of the buffer descriptor ring DMA
unit according to the invention;

FIG. 8B 1s a flow chart illustration of an interrupt routine
implemented 1n conjunction with FIG. 8A

FIG. 9 1s a memory diagram 1llustrating the use of the
packet reset and retransmission capability of the bufler
descriptor ring DMA unit according to the invention to insert
high priority packets ito the buffer descriptor ring DMA
unit chain;

FIG. 10 1s a memory diagram and block diagram 1llus-
trating the multiple channels of the buffer descriptor ring
DMA unit according to the mnvention;

FIG. 11 1s a timing illustration of the staggered descriptor
polling according to the invention; and

FIG. 12 1s a schematic illustration of circuitry for imple-
menting the stageered descriptor polling of FIG. 11.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENT RELATED APPLICATTIONS

The following related applications are hereby incorpo-
rated by reference:

U.S. patent application Ser. No. 09/088,200, now U.S.
Pat. No. 6,182,165 entitled STAGGERED POLLING
OF BUFFER DESCRIPTORS IN A BUFFER
DESCRIPTOR RING DIRECT MEMORY ACCESS
SYSTEM, filed concurrently, by David A. Spilo.

Pending U.S. patent application Ser. No. 09/088,478, now
U.S. Pat. No. 6,212,593 enfitled BUFFER LEVEL
INTERRUPT MASKING IN BUFFER DESCRIPTOR

US 6,298,396 B1

3

RING DIRECT MEMORY ACCESS SYSTEM, filed
concurrently, by Thar H. Pham and Patrick E. Maupin.

Microcontroller Overview

Turning to FIG. 1, shown 1s a block diagram of a typical
microcontroller M implemented according to the mnvention.
Such a microcontroller 1s preferably implemented on a
single monolithic integrated circuat.

The microcontroller M preferably includes an internal bus
100 coupling, an execution unit 124, system peripherals 174,
memory peripherals 176 and serial communication periph-
erals 172. The execution unit 124 1n the disclosed embodi-
ment 1s compatible with the AM186 1nstruction set 1imple-
mented 1n a variety of microcontrollers from Advanced
Micro Devices, Inc., of Sunnyvale, California. A variety of
other execution units could be used mstead of the execution
unit 124. The system peripherals 174 include a watch dog
timer (WDT) 104 for generating non-maskable interrupts
(NMIs), microcontroller resets, and system resets. An inter-
rupt controller 108 for supporting thirty-six maskable inter-
rupt sources through the use of fifteen channels 1s also
provided as a system peripheral. One disclosed system
peripheral 1s a three channel timer control unit 112. The
timer control unit 112 includes three 16-bit programmable
fimers. Another system peripheral 1s a general purpose direct
memory access (DMA) unit 116 with four channels 0-3. The
microcontroller M further supports user programmable
input/output signal (PIOs). In the disclosed embodiment,
forty-eight PIOs are provided.

The memory peripherals 176 of the disclosed microcon-

troller include a DRAM controller 170, a glueless interface
168 to a RAM or ROM, and a chip select unit 126. In the

disclosed embodiment, the DRAM controller 170 1s fully
integrated 1nto the microcontroller M. In the disclosed
embodiment, the chip select unit 126 provides six chip select
outputs for use with memory devices and eight chip select
outputs for use with peripherals.

A low speed serial port implemented as a universal
asynchronous receiver/transmitter (UART) 136 is provided
as a serial communication peripheral. The low speed UART
136 1s typically compatible with a standard 16550 UART
known to the industry. Another serial communication
peripheral 1n the disclosed embodiment 1s a synchronous
serial interface (SSI) 140. Preferably the microcontroller M
acts as a master 1n the synchronous serial interface 140,
which 1s a standard synchronous serial channel.

The microcontroller M 1n the disclosed embodiment 1s
particularly well suited to communications environments.
To this end, the serial communication peripherals 172 of the
micorcontroller M include a number of high speed commu-

nication controllers, including a High-level Data Link Con-
trol (HDLC) controller 144, a Universal Serial Bus (USB)

controller 146, and a high speed serial port (HSUART) 148.
The disclosed HDLC controller 144 provides four HDLC
channels 164. The HDLC channels 164 and the USB con-
troller 146 can be written to and read from by a “Smart-
DMA” unit 150, a unit which provides for chained buifers
that are accessed via pairs of DMA channels. The Smart-
DMA unit 150 allows for a high degree of packetized
transfer without excessive execution unit 124 intervention.
The SmartDMA unit 150 preferably consists of four Smart-
DMA controllers, SmartDMAOQO-3, that each consists of a
pair of DMA channels.

The HSUART 148 serves to form an asynchronous serial
link across a bus to devices external to the microcontroller

M. The asynchronous nature indicates that the HSUART 148

10

15

20

25

30

35

40

45

50

55

60

65

4

does not provide a separate clock signal to clock the data.
Instead the rate at which data 1s sent and received must be
predetermined or determined through autobauding and inde-
pendently controlled on sending and receiving ends. This
data rate 1s known as the baud rate. In accordance with the
present mnvention, the HSUART 148 performs automatic
baud detection with adjustment to a programmable baud rate
as discussed below. It should be understood that the micro-
controller M may include multiple HSUARTs 148. While a
microcontroller 1s one potential device for providing an
asynchronous receiver/transmitter in accordance with the
present invention, an asynchronous receiver/transmitter may
alternatively be provided independently or in connection
with other devices. The nature of the particular device used
in connection with an asynchronous receiver/transmitter 1s

not critical to the present mvention.

The disclosed HDLC controller 144 also includes an
interface multiplexer 162. This multiplexer 162 couples the
four HDLC channels 164, four time slot assignors (TSA)
166, and a number of external buses. Specifically, using the
time slot assignors or otherwise, the HDLC channels 164
can be selectively coupled to a pulse code modulation
(PCM) highway, a general circuit interface (GCI), an ISDN
oriented modular interface revision 2 (IOM-2) serial bus, a
data carrier equipment (DCE) serial interface, and other
oeneral and specific interfaces that often use packetized
communication. Further, the HDLC channels 164 support

HDLC, SDLC, Link Access Procedures Balanced (LAPB),
Link Access Proccdures on the D-channel (LAPD), and PPP,
and as noted above, each include an independent time slot
assignor 166 for assigning a portion of a serial frame to each
HDLC for isochronous or isochronous-type communication.

Turning to FIG. 1B, shown are 1llustrative pinouts for the
microcontroller M 1implemented according to the invention.
[llustrated are clock pinouts for the clock 102, address and
address/data bus pinouts to the bus interface unit 120, bus
status and control pinouts, again generally for the bus
interface unit 120, timer control pinouts coupled to the timer
control unit 112, USB control and transceiver control
pinouts for the USB controller 146, synchronous serial
controller pinouts for the synchronous serial interface 140,
programmable I/O pinouts for the programmable I/O unit
132, reset control pinouts, memory and peripheral control
pinouts coupled to both the chip select unit 126 and the bus
interface unit 120, DMA control pinouts for the general
purpose DMA unit 116 and the SmartDMA unit 150, HDLC
channel/DCE interface/PCM i1nterface pinouts for coupling
to the HDLC controller 144, UART pinouts for the low
speed UART 136, and high speed UART pinouts for the
HSUART 148. All of these pinouts, of course, are
illustrative, and a wide variety of other functional units and
assoclated pinouts could be used without detracting from the
spirit of the invention. For example, a number of both the
communications and general purpose peripherals from FIG.
1A could be eliminated, or added to, without detracting from
the spirit of the invention.

The techniques and circuitry according to the invention
could be applied to a wide variety of microcontrollers. The
term “microcontroller” 1itself has differing definitions in
industry. Some companies refer to a processor core with
additional features (such as I/O) as a “microprocessor” if it
has no onboard memory, and digital signal processors
(DSPs) are now used for both special and general purpose
controller functions. As here used, the term “microcontrol-
ler” covers all of the products, and generally means an
execution unit with added functionality all implemented on
a single monolithic integrated circuit.

US 6,298,396 B1

S
The Buifer Descriptor Ring DMA Unit

Turning to FIG. 2, 1llustrated 1s a block diagram of the
relationship between the SmartDMA, or buffer descriptor
ring DMA, unit 150 to the execution unit 124, to the USB
controller 146, to the high speed UART 148, to the HDLC

channels 164, and to an external memory 178. In the
disclosed embodiment, the SmartDMA unit 150 provides
eight channels set up as four pairs of transmit and receive
channels. Each of these channels points to a buffer descriptor
ring within the memory 178, as 1s further described below 1n
conjunction with FIGS. 3—4. The buffer descriptor ring
contains a series of bufler descriptors, which 1n turn point to
actual data buffers, also in the memory 178. The SmartDMA

unit 150 accesses the buifer descriptor ring, and 1n turn the
buflers, sequentially, either reading from or writing to those
buffers 1n performing DMA with a source or destination,
which could be the memory 178, the HDLC channels 164,
the high speed UART 148, or the USB controller 146. This
buffer descriptor ring architecture 1s generally compatible
with the DMA controller found in the Am79C90 C-LANCE
(Local Area Network Controller for Ethernet) integrated
circuit by Advanced Micro Devices, Inc. of Sunnyvale,
Calif. The buffer descriptor ring DMA unit 150 provides for
transmission and reception of data across multiple memory
buffers, reporting on status and providing control for the
buffers 1n an execution unit 124 transparent or semi-
fransparent manner.

In the Smart DMA unit 150, shown are a descriptor/bufler
read/write unit 180 and a buffer descriptor ring DMA control
unit 182. The descriptor/butier read/write unit 180 generally
serves the purpose of reading from and writing to the
memory 178 (here done through the RAM/ROM interface
168), and correspondingly transmitting the data to the DMA
destination or source. Because the SmartDMA unit 150
employs bufler descriptor rings, the descriptor/butier read/
write unit 180 must access the memory 178 both for reading,
from and writing to buffer descriptors, and for reading from
and writing to the buflers pointed to by those buifer descrip-
tors.

The butfer descriptor ring DMA control unit 182 performs
a variety of functions, including controlling the states of
transmission and reception of DMA during buifer descriptor
ring DMA, and maintaining information concerning the
current buffer descriptor that 1s being used to access the
current buffer for the channel. Further, a variety of other
control functions arc provided by the buffer descriptor ring
DMA control unit 182, such as providing interrupts, polling
buffer descriptor rings via the descriptor/builer read/write
unit 180, and arbitrating DMA access.

Turning to FIG. 3, 1llustrated 1s an overview of the data
structures employed in the buffer descriptor ring DMA unit
150 according to the invention. FIG. 3 illustrates a single
transmit channel of one of the four SmartDMA unit 150
channel pairs. The other channels operate 1n a similar
manner, and a receive channel operates 1n a manner similar
to a transmit channel. The transmit channel as 1llustrated in
FIG. 3 includes a transmit descriptor ring address pointer
200 located within the buifer descriptor ring DMA control
unit 182 and a transmit ring count 202, also located in the
buffer descriptor ring control unit 182. The transmit descrip-
tor ring address pointer 200 1s a pointer to a location within
the memory 178 that 1s the starting address of a buifer
descriptor ring 204 employed by the illustrated SmartDMA
unit 150 transmit channel. The transmit ring count 202 1s a
count of the number of bufler descriptors within that buifer
descriptor ring 204 pointed to by the transmit descriptor ring

address pointer 200.

10

15

20

25

30

35

40

45

50

55

60

65

6

Turning to the memory 178, a general overview 1s shown
of the corresponding buifer descrlptor ring 204 and buffers
206a-206¢ pointed to by the buffer descriptor ring 204. The
buffer descriptor ring 204 1s located at the address in
memory 178 held 1n the transmait descriptor ring address 200.
The buffer descriptor ring 204 illustrated includes a first
descriptor 208a, a second descriptor 2085, and an Nth
descriptor 208c. For clarity, the descriptors between the
second descriptor 2086 and the Nth descriptor 208c¢ are
omitted. Each descriptor 208 includes a transmit buifer
address 210, transmit buffer status/configuration values 212,
and a transmit buffer byte count 214. The transmait buffer
address 210 1s a pointer to another portion of the memory
178 that contains the corresponding transmit buffer 206 for
a particular descriptor 208. For example, the descriptor 2084
has a transmit buffer 1 address 210a which points to the
transmit buffer 206a. The transmit buffer byte count 214 in
turn defines the length of the transmit buffer 206. For
example, the transmit buifer 1 byte count 2144 indicates the
length of the transmit buffer 206a. Finally, the transmait
buffer status and configuration values 212 are used for
control and status purposes during DMA urging the corre-
sponding transmit buffer 206, and are further discussed
below 1n conjunction with FIG. 5.

Also shown are three unused portions 216. These portions
216 are unused 1n the transmit buifer descriptor ring 204, but
would be used 1n a read buffer descriptor ring to provide
error codes associated with a read buffer, such as frame,
parity, overflow, underflow, and other errors.

FIG. 4 1s a block diagram 1illustrating further operational
details of the buffer descriptor ring DMA of FIG. 3. In
operation, the transmit buifer descriptor ring 204 of FIG. 3
1s written to and read from by both the execution unit 124
and the descriptor/buffer read/write unit 180 of the Smart-
DMA unit 150. For example, the execution unit 124 can set
up the transmit channel illustrated 1 FIG. 3 by loading an
appropriate transmit descriptor ring address 200 and a
transmit ring count 202. The execution unit can then load
buffers 206 with data for transmission, and set up the
corresponding transmit buffer descriptors 208 to point to
those transmit buifers 206. To allow the SmartDMA unit 150
to then access those buffers and transmit them without
processor 1ntervention, the execution unit 124 relinquishes
“ownership” of the transmit buffer descriptors 208 and their
corresponding buflers 206 by sctting an ownership sema-
phore within the transmait buffer status/configuration values

212.

FIG. 4 1llustrates processing employing a buffer descrip-
tor ring 300 having four buffers. The four entry buifer
descriptor ring 300 1s held within the memory 178 at a
location 302. The four descriptors 304, 306, 308, and 310 are
circular 1n nature, with control passing from the fourth
descriptor 310 to the first descriptor 304. The first and fourth
descriptors 304 and 310 are shown with their ownership
semaphore set to 0, which indicates they are “owned” by the
execution unit 124, whereas the second and third descriptors
306 and 308 are 1llustrated with their ownership semaphore
set to 1, such that they are “owned” by the SmartDMA unait
150. The first descriptor points to a first buffer 312, the
second descriptor points to a second buffer 314, the third
descriptor points to a third buffer 316, and the fourth
descriptor points to a fourth butfer 318. In the illustrated four
entry bufler descriptor ring 300, the software 1s shown as
currently processing the fourth descriptor 310. This means
that the software, which owns the fourth descriptor 310, can
write data to the fourth buffer 318 for subsequent processing

by the SmartDMA controller 150. Once 1t has loaded the

US 6,298,396 B1

7

fourth buffer 318, the software running on the execution unit
124 sets the ownership semaphore to 1, transterring 1t to the

SmartDMA unit 150.

From the SmartDMA unit 150 side, the SmartDMA unit
150 has already processed the first buffer 312, which con-
tains data for a first logical packet X. It 1s 1 the process of
transmitting the second buffer 314, which contains addi-
tional data for the packet X, and once that 1s complete, will
o0 to the third buffer 316 and transmit the final data for the
packet X. Of note, after the SmartDMA unit 150 processed
the first buffer 312, it set the ownership flag to 0 1n the
corresponding descriptor 304. That transferred ownership to
the software running the execution unit 124, which can
cither load new data into the buffer 312, or simply change
the descriptor 304 to point to a new bufller containing
additional data for the packet Y. Once the SmartDMA unait
150 completes processing of the second buifer 314, 1t will

to the third buffer

set the ownership flag to O and proceed

316.

It 1s seen that the buifer descriptor ring illustrated 1in FIGS.
3 and 4 1s particularly suitable for communications over
serial channels that employ packetized data, such as USB,
T1, HDLC, and the like. The execution unit 124 can

compose the packets of data, store them 1n the memory 178,
and then the set buffer descriptors 304-310 1n the buffer
descriptor ring 300 to point to those packets of data.

Turning to FIGS. 5A and 5B, 1llustrated are the detailed
layouts of the transmit buffer descrlptors 208 and the control
registers within the SmartDMA unit 150. The transmat buifer
descriptor 208 provides a 16-bit low order buffer address
value LADDR 250 and a corresponding high order 8-bit
value HDDR 252 which together form the transmit buflfer
address 210. The transmit buffer byte count 214 1s actually
a 15-bit byte count value BCNT 254, which 1s preferably
stored 1n a twos-compliment format. The remaining used
bits, of which there are four, form wvalues for status and
configuration of the buffer descriptor 208. An ownership flag
OWN 256 allocates ownership to the software executed by
the execution unit 124 when 0, and to the SmartDMA unit
150 when 1. As has been previously discussed, generally the
software sets the OWN bait after filling a buifer 206 pointed
to by the descriptor, and the SmartDMA unit 150 clears the
OWN bit after transmitting the contents of the correspond-
ing buifer 206. Neither the software nor the SmartDMA unit
150 can or should alter a buffer descriptor 208 after it has
relinquished ownership.

A second value 1s a start of packet bit STP 2588. This bit,
when true, indicates that the corresponding buffer 206 1s the
first buifer to be used by the SmartDMA unit 150 for this
packet of data. The STP bit 256 1s employed for chaining,
buffers together and using multiple butfers 206 to transmit a
single packet of data. The STP bit 256 must be set in the first
buffer of the packet, or the SmartDMA unit 150 will skip the
buffer descriptor 208 and poll the next descriptor until both

the OWN value 256 and the STP value 258 are set.

An end of packet value ENP 260 correspondingly 1ndi-
cates the last buffer 206 to be used by the SmartDMA unit

150 for this packet. If both the STP value 258 and the ENP
value 260 are set, the packet {its 1nto a single buifer 206.

Finally, a transmit terminal count interrupt enable bit 262
provides for bufler-by-buffer mterrupt control according to
the mvention. Historically, buffer descriptor ring DMA units
provided for either enabling an interrupt on the end of
transmission of each buffer, such as a buffer 206, or dis-
abling such mterrupts. According to the mnvention, however,
the TTCE value 262, when 0, disabled iterrupts upon

10

15

20

25

30

35

40

45

50

55

60

65

3

completion of the corresponding butfer 206, while setting
that value to 1 enables such an interrupt on completion of
transmission of a corresponding buffer 206. This allows the
SmartDMA unit 150 to be set up to provide interrupts on the
end of some, but not all, buffers 206, and 1s further discussed
below 1 conjunction with FIG. 7.

Receive buffer descriptors within a receive bufiler descrip-
tor ring are of a similar format, but further include error
condition values for particular receive errors, such as fram-

ing errors, overflow errors, cyclic redundancy check errors,
and buffer errors. The unused word 216 1llustrated in FIG. 3
1s also used 1n a receive buller descriptor, providing a
message byte count which 1s the length of bytes of the
packet. This count may be less than the buifer byte count
BCNT associated with the receive descriptor when a par-
ticular buffer holds the last data for a received packet. A
receive buller descriptor does include a RT'CE bit for receive
terminal count interrupt enable, and operates in a similar

manner to the TTCE bit 262 1n the transmit buifer descriptor
208.

Turning to FIG. 5B, shown are a number of registers
employed by the SmartDMA unit 150 for control, status, and
operation. Each pair of SmartDMA channels within the
SmartDMA unit 150 includes its own set of such registers.
[llustrated 1s the set of registers for the first pair of channels,
pair 0. A SmartDMA control register SDOCON 320 sets up
the receive and transmit channels for this SmartDMA chan-
nel pair. Two 16-bit registers SDOTRCAL 322 and
SDOTRCAH 324 together hold the transmit descriptor ring
address 200, previously discussed in conjunction with FIG.
3. Similarly, two 16-bit registers SDORRCAL 326 and
SDORRCAH 328 together hold the receive buifer descriptor

ring address.

Status information 1s updated by the SmartDMA unit 150
within a SmartDMA status register SDOSTAT 330. A Smart-
DMA current buffer descriptor register SDOCDB 332
includes two values that both control and indicate the current
buffer descriptor being used by channel pair O of the
SmartDMA unit 150 for both the transmit channel and the
receive channel. While the SDOCBD register 332 indicates
the current buifer descriptor, the current location being used
within the buffer pointed to by that descriptor 1s indicated 1n
two registers, a current transmit address register SDOCTAD
334 and a current recerve address register SDOCRAD 336.
These are 16-bit registers, which are not large enough to
individually address all available memory within the
memory 178. As 16-bit registers, however, they are sufli-
cient to uniquely address within a particular buffer, such as
onc of the transmit buifers 206. This limits the size of a
fransmit or receive buller to 65,536 bytes, but that will
ogenerally be more than adequate to handle standard com-
munications needs.

Returning to the SmartDMA control register SDOCON
320, this register contains a number of bits of interest. It
provides three interrupt mask registers: a transmit end-of-
packet mterrupt bit TEPI 338, a transmit buffer unavailable
interrupt bit TBUI 340, and a transmit terminal count
interrupt bit TTCI 342. Referring back to the bufler descrip-
tor ring DMA control unit 182 within the SmartDMA unit
150 (FIG. 2) as well as FIG. 1A which contains an interrupt
controller 108, it 1s understood that the SmartDMA unit 150
provides an appropriate interrupt source to the interrupt
controller 108. The interrupt controller 108 1s preferably a
standard interrupt controller, of which there are a variety,
which 1s responsive to input signals from various sources to
selectively provide imterrupts to the execution unit 124. The
implementation of an interrupt source within a peripheral

US 6,298,396 B1

9

device, as well as the interrupt controller 108, 1s well known
to the art. Specifically referring to the SmartDMA control
register SDOCON 320, these masks bits effectively enable
and disable the passing of interrupt from the interrupt
sources within the SmartDMA unit 150, here shown to be
the buffer descriptor ring DMA control unit 182. But the
exact location of implementation of the interrupt source
within the SmartDMA unit 150 1s not critical, as there are
many techniques to provide interrupts responsive to certain
conditions.

The transmit end-of-packet interrupt bit TEPI 338, when
true, causes a SmartDMA unit 150 to generate an interrupt
after transmitting the last byte of the current logical packet.
Referring to FIG. 5A, if the current descriptor 208 has its
end-of-packet value ENP 260 set, an end-of-packet interrupt
will be generated on the completion of transmission of the

corresponding buffer 206. If, however, the TEPI bit 338 is
false, such an imterrupt 1s masked. The transmit buifer

unavailable interrupt bit TBUI 340, when set, indicates that
during the transmission of a partlcular packet the Smart-
DMA unit 150 has moved to the next buffer descriptor 208,

but that buffer descriptor 1s not owned by the SmartDMA
unit 150. That 1s, the OWN bit 256 of the next descriptor 208
1s 0. Such an interrupt may be desirable to inform the
software being executed that the current packet has not been
scamlessly transmitted.

The transmit terminal count interrupt bit TTCI 342 1s
related to the TTCE bit 262 within the transmit buiffer
descriptor 208. Specifically, when the TTCI bit 342 1s set,

the SmartDMA unit 150 will provide an interrupt upon
completion of transmission of the current butfer 206 pointed
to by the buffer descriptor 208, but only if the transmait
terminal count interrupt enable bit TTCE 262 1s set 1n the

corresponding bufler descriptor 208. Setting the TTCI bit
342 to 0 masks all terminal count interrupts on completion
of transmission of a particular buffer 206 regardless of the
setting of the TTCE bit 262 within the bufler descriptor 208.
But by providing enablement and disablement of the trans-
mit terminal count interrupt on a buifer descriptor 208 level,
all, some, or none of the buffers 206 can cause an interrupt
upon completion of transmission.

This 1s particularly helpful with small buffers 206. Rather
than causing an interrupt after the completion of transmis-
sion of each buffer 206, for example the software can
program the SmartDMA 150, via the TTCE bits 262 within
the bufler descriptors 208, to cause an interrupt on every
third transmitted builer 206 for example. This can reduce
the mterrupt overhead by an amount arbitrarily selected by
the software designer.

The SmartDMA control register SDOCON 320 imcludes
three corresponding receive bufler interrupt mask bits REPI
344, RBUI 346, and RTCI 348 that function 1n a manner
similar to the TEPI bit 338, TBUI bit 340, and TTCI b1t 342.

A transmit set OWN bit TXSO 350 within the SDOCON
register 320 allows the SmartDMA unit 150 to control
whether 1t clears the OWN bit 256 within the butfer descrip-
tor 208 upon completion of transmission from a current
buffer. This 1s often desirable, but sometimes not. For
example, a ring of buflfers can be set to continuously transmit
a predetermined, perhaps 1dle, packet by setting the TXSO
bit 350 to 1. The OWN bats 256 of the buffer descriptors 208
are then never cleared by the SmartDMA unit 150, and
therefore the SmartDMA unit 150 will never stop at a butfer
descriptor to wait for the OWN bit 256 to be set. A receive

set OWN bit RXSO 352 operates 1n a similar manner.

Two relative priority bits P 354 indicate the priority of this
channel relative to other channels during simultaneous trans-
fer.

10

15

20

25

30

35

40

45

50

55

60

65

10

A forced poll bit POLL 356, when set to 1, forces the
SmartDMA unit 150 to immediately poll the OWN bit 256
of the current bufler descriptor 208 to determine if that
buffer 206 has been turned over to the SmartDMA unit 150.

As 15 further discussed below 1 conjunction with FIGS.
1012, when the four pairs of SmartDMA channels are
enabled but currently not transmitting data, they remain
“parked” on the current buifer descriptor within the transmait
buffer descriptor rings. When the software needs to transmit
data, the software loads a corresponding transmit butfer 206
with that data, loads that data into the transmit buffer address
210 of the current buifer descriptor 208, and then sets the
OWN bit 256 to 1, a. lowmg the SmartDMA unit 150 to
begin to transmit that buffer 206. But the SmartDMA unit
150 does not continuously read the transmit buffer status/
configuration register 212 within the current butfer descrip-
tor 208 to determine the status of the OWN bit 256, as that
would consume excessive bandwidth. The SmartDMA unit
150 1nstead periodically polls that OWN bit 256. By pro-
viding the forced poll bit POLL 356, the software can force
the SmartDMA unit 150 to immediately poll the current
buil and thus i1mmediately start

‘er descriptor 208,

fransmission, once the software has set up a buffer 206 for
fransmission.

A start/stop SmartDMA transmit channel bit TXST 358
and a start/stop SmartDMA receive channel bit RXST 360
enable and disable the transmit and receive channels for the
current channel pair of the SmartDMA unit 150.

The SDOTRCAL register 322 contains the 12 low order
bits of the transmit descriptor ring address 200, but also
includes three transmit ring count bits TRC that encode for
the number of entries 1n the transmit buffer descriptor ring
204. That 1s, this 3-bit value represents the value of the
transmit ring count 202 as an exponent of 2, thus represent-

ing values from 1 through 128 1n powers of 2. The
SDORRCAL register 326 1s similarly configured.

The SmartDMA status register SDOSTAT 330 provides a
number of status bits. These bits can be read by the execu-
tion unit 124 to determine the source of a particular inter-
rupt. A transmit end-of-packet bit TEP 362 is true when the
last byte of a packet has been transmitted successtully by the
transmitter (which would correspondingly cause a transmit
end-of-packet iterrupt 1f the TEPI bit 338 1s set true 1n the
SDOCON register 320). A transmit buffer unavailable bit
TBU 364 similarly indicates a transmit buffer 1s not
available, corresponding to the transmit buifer unavailable
interrupt if the TBUI b1t 340 1s set. A transmit terminal count
bit TTC 366 1s true 1f the last byte of the current buffer 206
has been transmitted and the buffer released. As previously
discussed, interrupts corresponding to this event are affected
by both the TTCI bit 342 within the SDOCON register 320
and the TTCE bit 262 within the transmit buffer descriptor
208. Three corresponding bits are implemented for a receive
buffer ring, a receive end-of-packet bit REP 368, a receive

buffer unavailable bit RBU 270, and a receive terminal count
hit RTC 372.

The SDOCBD register 332 contains a current receive
buffer descriptor value CRBD 374 and a current transmit
buffer descriptor value CTBD 376. Writing to these fields
causes the SmartDMA channel to change the current
descriptor to the newly written descriptor value, but the
receive and transmit channel enable bits TXST 358 or RXST
360 must first be cleared before writing to the corresponding
CRBD value 374 or CTBD value 376. Both the CRBD field
374 and the CTBD field 376 roll over once the number of
buffers indicated by the TRC value or the RRC values are
exceeded.

US 6,298,396 B1

11

Turning to FIG. 6, 1llustrated 1s a SmartDMA unit 150
transmit channel flow diagram. Beginning at state 400, the

SmartDMA unit 150 enters an 1nitialization mode when the
transmit channel 1s first enabled by setting the TXST bit 358

within the SDOCON register 320. The transmit channel
reads the current transmit buffer descriptor 208 and deter-

mines if it 1s the owner (because the OWN bit 256 is set). If
the OWN bit 256 1s not set, control proceeds to a search for
available buffer state 402, where the OWN bit 256 of the
current butfer 208 1s periodically polled to determine if 1t has
been set to 1, indicating that software has a relinquished
control to the SmartDMA unit 150. When this happens,
control then passes back to the initialize channel state 400,
and then to the either a search for start-of-packet state 404
or a transmit data state 406, depending on whether the
start-of-packet bit STP 258 1s correspondingly set. If the
OWN b1t 256 and the start-of-packet bit STP 258 are set,
control proceeds to the transmit data state 406, because
current buffer descriptor 208 1s owned by the SmartDMA
unit 150 and 1s the start of a packet.

If the OWN bit 256 1s set and the STP bit 258 1s cleared,
however, control proceeds to the search for start-of-packet
state 404, where the OWN bit is reset (if the transmit set own
bit TXSO 350 is set in the control register SDOCON 320)
and the SmartDMA unit 150 advances to the next descriptor

(by incrementing the current transmit buffer descriptor count
CTBD 376) and returns to the initialize channel state 400.

When the OWN bit 256 and the STP bit 258 are both set
within the current buffer descriptor 208, then the SmartDMA
unit 150 1s both the owner of the current buffer descriptor
and that buffer descriptor 208 points to the start of a packet,
so control proceeds to the transmit data state 406. In the
transmit data state 406, the address of the buffer 206
associated with this buffer descriptor 208 1s read from the
descriptor 208 (the LADR 250 and the HADR 2852 bits) into
the STOCTAD register 334. Further, the transmit channel
reads the length of the corresponding buifer 206 from the
current buffer descriptor 208 by reading the BCNT value
254 and programs that value mnto an internal terminal count
register. The transmit channel then begins transmitting by
fransmitting one byte of data from the buffer 206 to the
destination device for every DMA request. After each
transter, the source address 1in the SDOCTAD register 334 1s
incremented and the internal transfer count 1s decremented.
This all occurs 1n a transmit byte and decrement count state
408. Once the terminal count reaches 0, 1f the end-of-packet
bit ENP 260 is O, indicating additional buffers are required
for transmission of this packet, control proceeds to the get
next buffer state 410, where the transmit channel attempts to
acquire the next buffer 206 pointed to by the next bufler
descriptor 208. If the OWN bit 256 1n the next buifer
descriptor 208 1s 0, the software owns the descriptor, so the

transmit channel periodically polls the buifer descriptor 208
until the OWN bit 256 becomes 1.

If an error condition occurs before the transmit channel
acquires the next descriptor 208 (i.e., before the OWN bit
256 becomes 1), the error causes the requesting transmit
source to shut down and the SmartDMA unit 150 to be
reprogrammed. Specifically, an error would occur if an
additional DMA request occurred before the transmit chan-
nel acquired the next butfer 206, causing a data underflow.
Historically, such an error would cause the transmit channel
to simply attempt to find the next packet within the buifer
descriptor ring 204. According to the invention, however,
such an error causes the transmit channel to be disabled
(typically by software, but possibly by hardware, the TXST
bit 358 is set to 0 within the SDOCON register 320),

10

15

20

25

30

35

40

45

50

55

60

65

12

allowing the current transmit buffer descriptor address 376
to be reprogrammed. This 1s further discussed below 1n
conjunction with FIGS. 8 and 9, but 1n general allows the
current packet to be retransmitted on such an error.

Assuming the transmit channel does obtain the next butfer
206 by the OWN bit 256 going high, control proceeds from
the get next bufler state 410 back to the transmit data state
406, where excursions between the transmit data state 406,
the transmit byte and decrement count state 408, and the get
next bufler state 410 are repeated until the transmit count
becomes 0 and the end-of-packet bit ENP 260 for the current
descriptor 208 1s 1. At that point, the current packet has been
completely transmitted, so control proceeds to a signal
end-of-transmit state 412, where the transmit channel sig-
nals the end of the packet to the destination device by
asserting an internal signal, waits for the indication from that
device that the transmitted packet has been successtully
received, advances to the next bufler descriptor 208 within
the transmit buffer descriptor ring 204, and moves to the
scarch for start of packet state 404.

After each buffer 1s transmitted, the ownership flag for the

descriptor 208 for that particular buffer 206 is released to the
software unless the TXSO0 bit 350 and the SDOCON register

320 1s set.

It will be appreciated the receive buifer channel operates
in a similar manner, although 1t further provides for errors on
recerved data.

Buffer level Interrupts

Turning to FIG. 7, shown 1s a buifer descriptor chain 500
that 1llustrates the ability to selectively provide the end of
buffer (or transmit terminal count) interrupt, on a buffer-by-
buffer basis. This ability can be useful to reduce the fre-
quency ol iterrupts, for example, while ensuring there are
always buifer descriptors and corresponding buffers avail-
able for the SmartDMA unit 150. For example, rather than
providing for an interrupt at the end of each buitfer 206, the
software can set up a transmit buifer descrlptor ring 500
where interrupts occur every third buffer. In any case,
turning to FIG. 7, shown are eight transmit buffer descrlptors
502-516. As the SmartDMA unit 150 processes these
descriptors, 1t first processes the transmit buffer descriptor
502, whose start of packet bit STP 258 and end of packet bit
ENP 260 are both false, so the transmit channel proceeds to
the transmit buifer descriptor 504.

The transmit buffer descriptor 504 points to the first buffer
of a packet, because the STP bit 238 is true and the ENP bat
260 1s false. Here, as for the remainder of the buffers, it 1s
assumed that the byte count BCNT 254 for each bufler 206
1s 20. After the 20 bytes of the bufler 206 are transmitted, a
fransmit terminal count interrupt 1s generated because the
transmit terminal count interrupt enable bit TTCE 262 for
the transmit buffer descriptor 504 is true. (This assumes that

the TTCI bit 342 1n the SDOCON register 320 1s also true,
enabling this type of interrupt.)

The software then proceeds to the next transmit buflfer
descriptor 506, which 1s a middle buffer for the current
packet because the STP bit 258 and the ENP bit 260 are both
false. In this case, after the 20 bytes of the corresponding
buffer 206 are transmitted, no transmit on terminal count
mterrupt 1s generated because the TTCE bit 262 1s false.
Instead, the transmit channel releases this buifer descriptor
506 (by resetting the OWN bit 256) and proceeds to the next
buffer descriptor 508. Here again, after the 20 bytes are
transmitted, no interrupt 1s generated because the TTCE bat
262 1s again false. Control proceeds to the next transmit

US 6,298,396 B1

13

buffer descriptor 510, but this time after completion of the
buffer a transmit on terminal count interrupt 1s generated

because the TTCE bit 262 1s true.

Control then proceeds through the next two transmit
buffer descriptors 512 and 514, neither of which generate an
interrupt because their TTCE b1t 262 1s false. Finally, control
proceeds to the transmit buffer descriptor $16, which 1s the
last buffer for the current packet as indicated by the ENP bit

260 being true. After this packet 1s transmitted, an interrupt
will be generated because the TTCE bit 262 1s true, but even
if 1t were false, 1t will an interrupt would be generated 1f the
transmit on end-of-packet interrupts were enabled by setting
the TEPI bit 338 within the control register SDOCON 320.
That 1s, either of these could provide the source of the
interrupt for the last packet.

In FIG. 7, only the completion of transmission of every
third buffer generated an interrupt. This could of course be
varied depending on the needs of the circumstance, but
rather than providing a “all or nothing” approach, greater
flexibility 1s created for the interrupt generation in the chain
buffers.

As an example, a DMA transfer could include a chain of
64 butlers, each eontammg 32 bytes. Without implementing
the buifer-by-buffer end-of-buffer interrupt buffer control,
cither 64 interrupts would be generated during the course of
the transfer, or none. Instead, any desired number of inter-
rupts can occur during this chain by setting a corresponding
number of the TTCE bits 262 true or false among the 64
fransmit bufler deserlptors in consideration of the buifer
size and the data processing rate.

This technique 1s equally applicable to receive buller
deserlptor rmgs By only providing mterrupts on some of the
receive bullers, overall interrupt servicing can be reduced
while maintaining any level of desired control.

Programmable Entry Points

Turning to FIGS. 8A—8B, illustrated 1s the restartable
nature of the transmit buifer descriptor ring DMA according
to the mvention. Historically, when using buffer chaining
DMA, 1f an error occurred 1n the middle buffer of a chain,
the bufler descriptor ring DMA unit would simply advance
to the start of the next packet and begin transmitting there.
According to the invention, however, an error 1n the middle
buifer of a chain does not necessarily result 1n the DMA unit
150 proceeding to the next packet. Instead, the software can
restart the current packet. This 1s done by loading the current
transmit buffer descriptor field CTBD 376 with the number
of the buffer descriptor that 1s the start of the packet in which
the error occurred.

As 1llustrated 1n FIG. 8A, a transmit buffer descriptor ring
600 includes 8 transmit buffer descriptors 602—616. These
arc numbered consecutively to be bufler descriptors O

through 7 as retflected by the current transmit buifer descrip-
tor field CTBD 376 number within the SDOCBD register

332.

Proceeding through the chain, the SmartDMA unit 150
skips the Oth buifer descriptor 602 and begins transmitting
on the first buifer descriptor 604 because the start of packet
bit STP 258 1s set. It confinues transmitting the current
packet according to the second buflfer descriptor 606, whose
end of packet bit ENP 260 1s

false. This continues with the
next buller descriptor 608, but assume at this point the 4th

buffer descriptor 610 has not yet had its ownership trans-
ferred from the software to the SmartDMA unit 150. An
underflow imterrupt can occur from the transmitting device
to the transmit channel of the SmartDMA unit 150, which
indicates an error condition during the DMA transfer.

10

15

20

25

30

35

40

45

50

55

60

65

14

In prior units, the DMA unit would simply proceed to the
next packet, which here begins 1n the 7th buffer descriptor
616. Instead, according to the invention, when the error
occurs after the transmission of the buffer corresponding to
the 3rd buifer descriptor 608, the transmit channel 1s turned
off by resetting the TXST bit 359 in the SDOCON register

320.

The software 1s then programmed to reload the current
transmit buffer descriptor CTBD value 376 with the value of
the bufler descriptor that 1s the start of the current packet. In
this case, the first buffer descriptor 604 1s the first buifer
within this packet, so the software loads the CTBD value
376 with 1. The software should also “clean up” the buffer
descriptor chain 600 to some extent, specifically by setting
the ownership bits OWN 256 for each of the buffers within
the failed packet to 1, so that the SmartDMA unit 150 will
not halt and poll any of the buffer descriptors 604—608 when
it 1s restarted. Then, the transmit channel 1s restarted by the
software by setting the TXST bit 358 to true. Control then
proceeds with a new transmission 618 of the 1st bufler

within the failed packet from the transmit buifer associated
with the first buller descriptor 604.

By providing programmability of the current transmit
buffer descriptors, the software 1s given the power to restart
the transmission of the current packet. Further, the
SDOCTAD register 334 provides the current transmit
address within a particular buffer where a failure may have
occurred. If an error occurs 1n the middle of a bufter 206, the
software can even determine exactly where 1n a packet the
transmission failed, and can determine whether to restart the

packet or to proceed to the next packet based on the location
of that failure.

Turning to FIG. 8B, illustrated 1s a flow chart of an
mterrupt routine 620 executed by the software upon the error
that occurs during the transmit of a packet as illustrated in
FIG. 8. Once an interrupt handler and the software had
determined that the error was caused by a failure during the
transmission of a packet, control proceeds to step 622, where
the current transmit channel 1s disabled by setting the TXST
bit 358 to 0. It 1s possible for the SmartDMA unit 150 to be
designed to disable 1itself, but usually , such as an error
indicated from another device, 1t may be desirable or nec-

essary for the software to disable the particular transmait
channel that has failed on the SmartDMA unit 150.

Proceeding to step 624, the current transmit bufler
descriptor value CTBD 376 1s then loaded by the software
with the index of the first buffer in the current packet.
Specifically, referring to FIG. 8A, this would be accom-
plished by loading a 1 into the current transmit buffer
descriptor value CTBD 376. Proceeding to step 626, the
software then sets the OWN baits for any buffers which have
been transmitted and ownership relinquished to the software
so that the SmartDMA unit 150 will retransmit them without
polling. Speelﬁeally, the OWN bits of the first, second, and
third buffer descriptors 604—608 of FIG. 8A should have
been reset to O after they had been transmitted by the
transmit channel of the SmartDMA unit 150, so they are set
to 1.

Control then proceeds to step 630, where the software

simply reenables the transmit channel by setting the TXST
bit 358 within the control register SDOCON 320. This
portion of the interrupt routine 620 then exits at step 630.

Therefore, by providing controlability of the current
buffer being transmitted by the buffer chaining DMA unit, a
current packet can be retransmitted when an error occurs
during the transmission of that packet, rather than simply

US 6,298,396 B1

15

skipping the packet and proceeding to the next packet. This
has the potential of reducing the number of packets that need
to be retransmitted for error recovery.

Turning to FIG. 9, illustrated 1s a memory diagram that
shows another application of the ability to restart the Smart-
DMA unit 150 at a predetermined location. Here, a memory
632 contains four packets 634, 636, 638, and 640 that are
cach 1illustrated to contain two buller descriptors pointing
towards corresponding bufifers. At a first time T1, the current
transmit buffer descriptor CTBD field 376 1s 1illustrated as
pointing at the first packet 634. The SmartDMA unit 150 first
transmits the two buflers associated with the first packet 634,
leaving a situation as illustrated at time T2. At time T2, the
two bufler descriptors that together form the packet 634 have
been transmitted, so the OWN bit 256 1n each of those bufler
descriptors will be set to zero, indicating they are owned by
the software. Further, the CTBD field 376 will now poit to
the second packet 636.

Assume the two bulifers associated with the packet 636 are
then transmitted. This yields time T3, when the CTBD field
376 now points to the third packet 638. Assume, however,
that the execution unit 124 then needs to insert a new packet
at the head of the buffer descriptor ring. Specifically, assume
that a new, high priority packet, i1llustrated as a packet 642,
should be transmitted before the packets 638 and 640.
Theretore, the software 1nserts appropriate buifer descriptors
for the packet 642 1n front of the then currently transmitting
packet 636. This 1s illustrated at time T3. Then, the software
sets the current transmit buffer descriptor field CTBD 376 to
point back to the packet 642. The start of packet bit STP 1s
set 1n the first buffer descriptor of the packet 642, and the end
of packet ENP 1s set 1n the second buifer descriptor of the
packet 642. Because the packet 636 has been transmitted,
the ownership bits OWN 256 for those buffer descriptors
will currently grant ownership to the software. To prevent a
SmartDMA unit 150 from “stalling” on the now transmitted
packet 636, the software further sets the OWN bits 256 for
the packet 636 so that the SmartDMA unit 150 will process
those bufler descriptors. To prevent the packet 636 from
being retransmitted, the STP bit 258 1s reset 1n the first buifer
descriptor of the packet 636, such that 1t will be 1gnored. The

SmartDMA unit 150 1s then restarted by the execution unit
124.

Proceeding to the time T4, this illustrates the operation
once the SmartDMA unit 150 1s restarted. The packet 642 1s
transmitted, and then the first buffer descriptor of the packet
636 1s again read. Because the ownership bit OWN 256 1s
set, the SmartDMA unit 150 does not stall, but because the
start of packet bit STP 258 has been reset, the SmartDMA
unit 150 skips over the two bufiler descriptors of the packet
636 and proceeds with transmitting the packet 638.

Therefore, the controllable current buffer descriptor field
of the SmartDMA unit 150 allows higher priority packets to
be 1mserted 1n the current stream of packets being transmit-

ted.

Stageered Descriptor Polling

A channel of the SmartDMA unit 150 can be “active”
without transmitting or receiving any data. Further, a chan-
nel of the SmartDMA unit may even need to transmit or send
data, but be unable to access a buffer 206 because the
software presently owns the buffer through the ownership
flag OWN 256 of the corresponding buifer descriptor 208. In
cither case, the SmartDMA unit 150 periodically polls the
OWN bit 256 of the current buffer descriptor for that
particular channel. This can cause a bandwidth and latency

10

15

20

25

30

35

40

45

50

55

60

65

16

problem, especially when two channels simultaneously
become active.

For a better understanding, FIG. 10 illustrates four pairs
of SmartDMA channels that can encounter this problem

according to the imvention. Specifically, four SmartDMA
channel pairs SmartDMAO 700, SmartDMA1 792, Smart-

DMA2 704, and SmartDMAZ3 706 each have an associated
pair of transmit and receive channels 708—722. As previ-
ously discussed, each of these channels has an associated
buffer descriptor ring 1n memory 178, here 1llustrated as
blocks of memory 724-738. Further, each of the buffer
descriptor rings 724—738 has a current buffer descriptor
designated to by the current receive buifer descriptor field
CRBD 374 or the current transmit buffer descriptor field
CTBD 376 (for the SmartDMAO 700) and corresponding
variables associated with each of the other three channel
pairs. Assume for purposes of illustration that all of the
transmit and receive channels are enabled, but 1dle. For the
transmit channels 708, 712, 716, and 720, this would mean
that the current butfer descrlptor and the associated blocks of
memory have theirr OWN bit 256 set to 0, indicating the
software owns the current buffer descriptor because 1t has
not yet established an associated builer for transmission of
data. For the receive channels 710, 714, 718, and 722,
typically an 1dle channel would have the current buifer
descriptor owned by the SmartDMA unit 150, because the
need to access the associated receive bufler 1s driven by the
source of external data, as opposed to by the availability of
data within the buffer 1itself. Assume for 1illustrative
purposes, however, that received data 1s being provided on
the four received channels 710, 714, 718, and 722, but that
the software still owns the associated buffer descriptor
within the memory 178. Although this 1s a worse case
illustration, the problem occurs even if only the transmait
channels are currently waiting on an available buifer, and
even 1f only two of the transmit channels are waiting on an
available buffer.

The problem that arises 1s that 1t takes bandwidth on the
bus 100, as well as bandwidth to the memory 178, to poll the
OWN bits 256 of buifer descriptors within the memory 178.
Therefore, they are not continuously polled, but instead
polled at predetermined intervals. Turning to FIG. 11, illus-
trated are two polling techniques, one polling technique 740
which has been historically employed, and a second polling
technique 742 according to the invention. In the diagram
associated with the technique 740, the buffer descriptors 1n
the memory 378 are polled approximately every 1.28 mil-
liseconds (or any other predetermined period), but they are
all polled at once. Specifically, every 1.28 milliseconds,
prior buifer chaining DMA engines would have checked the
channel O transmit descriptor, the channel 0 receive
descriptor, the channel 1 transmait descriptor, the channel 1
receive descriptor, and so on, contiguously, for each of the
fransmit or receive channel that was awaiting an available
buffer in the memory 178. This caused, however, increased
bandwidth usage and interrupt latency since 1n a worse case,
eight contiguous polls would occur 1n a row occupying a
time 744. Because interrupts have lower priority than DMA,
this would lead to an interrupt latency of eight times that that

would occur 1n a single poll.

Second, however, assume that on a particular poll 746,
three buffers became available for DMA that was needed,
here 1llustrated 1n a time period 748, 750, and 752. This
would cause three of the channels to begin performing
DMA, which could occupy virtually all of the bandwidth on
the bus 100 and a great deal of the bandwidth to the memory
178. Further, worse case interrupt latency becomes very

US 6,298,396 B1

17

poor 1f all of the bus bandwidth 1s occupied, since there will
be no time for mterrupts during a period 754.

It should be understood that generally, DMA transfers on
a single channel, such as the transfer 748, do not occupy all
of the bandwidth of the memory 178 or a bus 100. An
external device 1s periodically requesting for an additional
data, leaving 1dle times during which interrupts can be
serviced or other bus activity can take place. But when a
number of DMA ftransfers are simultaneously occurring,

these can occupy all available bandwidth. Because DMA
typically has a higher priority than interrupts, interrupt
latency then becomes very poor.

According to the 1invention as illustrated in the technique
of 742, these latency and bandwidth problems are largely
alleviated by staggering the polling of the descriptors asso-
ciated with each of the DMA channels 708—722. According
to the technique 742, the same three DMA transiers 748,
750, and 752 occur, but they are now distributed 1n time and
do not overlap, thereby alleviating bandwidth crowding.
Further, by staggering the descriptor polling, the latency for
a particular poll 1s limited to the amount of time 1t takes for
a single descriptor poll as illustrated by the time period 756,
instead of a cumulative amount for the number of channels
that have to be polled, as illustrated by the time period 744.
The polls are distributed throughout the 1.28 millisecond
fime period 1in which all the polls occur. The poll of the
SmartDMAO 700 transmit channel 708 results 1n the first
DMA transfer 748, but then when the SmartDMA 2 704
transmit channel 716 1s polled approximately 0.64 millisec-
onds later, the DMA transfer 750 does not overlap with the
DMA transfer 748. The same occurs for the SmartDMA 3
706 receive channel 722, where the DMA 752 does not
overlap with either the DMA 748 or 750.

Theretfore, distributing descriptor polling, whatever the
duty cycle of a complete polling cycle, improves interrupt
latency both by avoiding multiple consecutive descriptor
polls and by reducing overlap of DMA transfers and corre-
sponding bandwidth crowding.

Turning to FIG. 12, illustrated 1s a stmple circuit diagram
of how a single timer/counter can be used to distribute the
descriptor polling. A system clock imnput 800 continuously
drives a counter 802, which in this embodiment 1s a 16-bit
counter that outputs a continuous count POLL__COUNT
[15:0]. The top 3 bits of POLL__COUNT [15:13] are then
provided to a series of eight comparator 804-818. Each of
these comparators 804-818 compares to a successive 3 bit
value, with the comparator 804 matching to a value 3’000,
and the comparitor 806 matching to 3'b000, and so on
through the comparator 818, which matches to 3'b111. The
outputs of these comparators are provided to a series of AND
cates 820-834. The other mput of the AND gates 820834
receive a signal which reflects whether a corresponding
transmit or receive channel 708—722 1s awaiting ownership
of a buffer descriptor within the memory 178. The output of
the AND gates 820-834 are signals provided to the remain-
der of the SmartDMA unit 150, which provides a pulse
indicating 1t 1s now time to poll the ownership OWN of the
buffer descriptor corresponding to the channel 708-722.
Referring to the AND gate 820, for example, if the transmait
channel 708 is neither enabled or not awaiting availability of
a buifer, 0TRANS__NEED will be 0, indicating that transmit
channel O 1s not 1n need of a poll. If 1t 1s 1n need of a poll,
however, the TRANS_NEED signal will be true, and when
POLL__COUNT |[15:13] equals 3'b000, a pulse is provided
on the POLLOTRANS signal, whose rising edge indicates
that a poll 1s necessary using the current buffer descriptor in
the memory areca 724.

10

15

20

25

30

35

40

45

50

55

60

65

138

Similarly, when POLL__COUNT [15:13] equals 3'b001,
the output of the comparitor 806 becomes true, so if the
receive channel 710 1s 1n need of a poll, the output of the
AND gate 822 will go true, and the rising edge of
POLLORCYV will indicate that 1t 1s then time to poll the
ownership of the current buffer descriptor i the buifer
descriptor ring located 1n the memory area 726. In this way,
the eight available channels are distributed throughout a
complete polling period.

Of course, a variety of other techniques can be used to
distribute the polling throughout a polling period, and the
distribution need not be linear. But by reducing the overlap
when bullers simultaneously become available, and reduc-
ing the occurrence of consecutive polls, interrupt latency 1s
reduced and bandwidth availability 1s increased.

Of note, 1t 1s generally not necessary for a single DMA
channel pairs read and write channels to be stageered from
cach other. Aread channel will rarely be in a mode where the
DMA channel 1s periodically polling the ownership flag in
the receive buller descriptor, so to have such a poll occur at
or ncar the same time as the poll of the transmit buifer
descriptor generally will not include latency, since such a
poll will rarely occur.

The foregoing disclosure and description of the invention
are 1llustrative and explanatory thereof, and various changes
in the number of bits, number of signals, order of steps, field
sizes, connections, components, and materials, as well as 1n
the details of the 1llustrated hardware and construction and
method of operation may be made without departing from
the spirit of the invention.

We claim:

1. A microcontroller implemented as a single monolithic
integrated circuit, comprising:

an execution unit for executing instructions; and

a buffer descriptor ring direct memory access (DMA)

controller coupled to the execution unit, comprising:

a current bufler descriptor register writeable from the
execution unit that points to a buffer descriptor for
current processing by the buffer descriptor ring DMA
controller; and

a buffer descriptor unit that reads a buifer descriptor
from a buffer descriptor chain corresponding to a
value 1n the current buffer descriptor register and
directs the DMA controller to perform DMA actions
in response to the buifer descriptor using a bulifer,

wherein the current bufler descriptor register can be
loaded with a buffer descriptor value different from
the current buffer descriptor, causing the bufler
descriptor unit to begin reading a previously read
buffer descriptor and performing DMA actions using
a previously used buffer.

2. The microcontroller of claim 1, wherein the buffer
descriptors are transmit buffer descriptors.

3. The microntroller of claim 1, wherein the buffer
descriptor unit reads buifer descriptors that each include a
start of buffer poimnter 1n memory, a terminal count, and
status and control bits.

4. The microcontroller of claim 1, wherein the buffer
descriptor ring DMA controller performs DMA from
memory to a high-level data link control (HDLC) port.

S. The microcontroller of claim 1, wherein the buffer
descriptor ring DMA controller performs DMA from
memory to a universal serial bus (USB) port.

6. The microcontroller of claim 1, wherein the buffer
descriptor ring DMA controller performs DMA from
memory to a universal asynchronous receiver/transmitter

(UART) port.

US 6,298,396 B1

19

7. The microcontroller of claim 1, wherein the buffer
descriptor ring DMA controller performs DMA f{rom
memory to memory.

8. The microcontroller of claim 1, wherein the current
buffer descriptor register 1s loaded with a buffer descriptor
value of a bufler descriptor for a beginning of a packet that
corresponds to an error.

9. A buffer descriptor ring direct memory access (DMA)
controller, comprising:

a current buffer descriptor register writeable by an execu-
tion unit that points to a bufler descriptor for current
processing by the buffer descriptor ring DMA control-
ler; and

a bufler descriptor unit that reads a buffer descriptor from
a buffer descriptor chain corresponding to a value 1n the
current buffer descriptor register and directs the DMA

controller to perform DMA actions 1n response to the
buffer descriptor using a bulifer,

wherein the current buffer descriptor register can be
loaded with a buffer descriptor value different from the
current bufler descriptor, causing the buifer descriptor
unit to begin reading a previously read builer descriptor
and performing DMA actions using a previously used

bufter.

10. The buffer descriptor ring DMA controller of claim 9,
wherein the buffer descriptors are transmit bufler descrlp-
tors.

5

10

15

20

25

20
11. The buff

er descriptor ring DMA controller of claim 9,
wherein the bulfer descriptor unit reads buffer descriptors
that each include a start of buffer pointer 1n memory, a
terminal count, and status and control baits.

12. The buffer descriptor ring DMA controller of claim 9,
wherein the bufler descriptor ring DMA controller performs

DMA from memory to a high-level data link control
(HDLC) port.

13. The buffer descriptor ring DMA controller of claim 9,
wherein the bufller descriptor ring DMA controller performs
DMA from memory to a universal serial bus (USB) port.

14. The buffer descriptor ring DMA controller of claim 9,
wherein the bufler descriptor ring DMA controller performs
DMA from memory to a umversal asynchronous receiver/
transmitter (UART) port.

15. The buffer descriptor ring DMA controller of claim 9,
wherein the bufler descriptor ring DMA controller performs
DMA from memory to memory.

16. The buffer descriptor ring DMA controller of claim 9,
wherein the current buller descriptor register 1s loaded with
a buffer descriptor value of a buffer descriptor for a begin-
ning of a packet that corresponds to an error.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

